init_sysctl.c revision 1.23 1 /* $NetBSD: init_sysctl.c,v 1.23 2004/03/17 10:21:59 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.23 2004/03/17 10:21:59 yamt Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "pty.h"
46 #include "rnd.h"
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/sysctl.h>
51 #include <sys/errno.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/unistd.h>
55 #include <sys/disklabel.h>
56 #include <sys/rnd.h>
57 #include <sys/vnode.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/msgbuf.h>
61 #include <dev/cons.h>
62 #include <sys/socketvar.h>
63 #include <sys/file.h>
64 #include <sys/tty.h>
65 #include <sys/malloc.h>
66 #include <sys/resource.h>
67 #include <sys/resourcevar.h>
68 #include <sys/exec.h>
69 #include <sys/conf.h>
70 #include <sys/device.h>
71
72 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
73 #include <sys/ipc.h>
74 #endif
75 #ifdef SYSVMSG
76 #include <sys/msg.h>
77 #endif
78 #ifdef SYSVSEM
79 #include <sys/sem.h>
80 #endif
81 #ifdef SYSVSHM
82 #include <sys/shm.h>
83 #endif
84
85 #include <machine/cpu.h>
86
87 /*
88 * try over estimating by 5 procs/lwps
89 */
90 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
91 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
92
93 #ifndef MULTIPROCESSOR
94 #define sysctl_ncpus() (1)
95 #else /* MULTIPROCESSOR */
96 #ifndef CPU_INFO_FOREACH
97 #define CPU_INFO_ITERATOR int
98 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
99 #endif
100 static int
101 sysctl_ncpus(void)
102 {
103 struct cpu_info *ci;
104 CPU_INFO_ITERATOR cii;
105
106 int ncpus = 0;
107 for (CPU_INFO_FOREACH(cii, ci))
108 ncpus++;
109 return (ncpus);
110 }
111 #endif /* MULTIPROCESSOR */
112
113 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
114 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
115 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
116 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
117 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
118 static int sysctl_setlen(SYSCTLFN_PROTO);
119 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
120 static int sysctl_kern_file(SYSCTLFN_PROTO);
121 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
122 static int sysctl_msgbuf(SYSCTLFN_PROTO);
123 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
124 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
125 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
126 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
127 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
128 #if NPTY > 0
129 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
130 #endif /* NPTY > 0 */
131 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
132 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
133 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
134 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
135 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
136 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
137 static int sysctl_doeproc(SYSCTLFN_PROTO);
138 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
139 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
140 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
141 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
142
143 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
144 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
145
146 /*
147 * ********************************************************************
148 * section 1: setup routines
149 * ********************************************************************
150 * these functions are stuffed into a link set for sysctl setup
151 * functions. they're never called or referenced from anywhere else.
152 * ********************************************************************
153 */
154
155 /*
156 * sets up the base nodes...
157 */
158 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
159 {
160
161 sysctl_createv(SYSCTL_PERMANENT,
162 CTLTYPE_NODE, "kern", NULL,
163 NULL, 0, NULL, 0,
164 CTL_KERN, CTL_EOL);
165 sysctl_createv(SYSCTL_PERMANENT,
166 CTLTYPE_NODE, "vm", NULL,
167 NULL, 0, NULL, 0,
168 CTL_VM, CTL_EOL);
169 sysctl_createv(SYSCTL_PERMANENT,
170 CTLTYPE_NODE, "vfs", NULL,
171 NULL, 0, NULL, 0,
172 CTL_VFS, CTL_EOL);
173 sysctl_createv(SYSCTL_PERMANENT,
174 CTLTYPE_NODE, "net", NULL,
175 NULL, 0, NULL, 0,
176 CTL_NET, CTL_EOL);
177 sysctl_createv(SYSCTL_PERMANENT,
178 CTLTYPE_NODE, "debug", NULL,
179 NULL, 0, NULL, 0,
180 CTL_DEBUG, CTL_EOL);
181 sysctl_createv(SYSCTL_PERMANENT,
182 CTLTYPE_NODE, "hw", NULL,
183 NULL, 0, NULL, 0,
184 CTL_HW, CTL_EOL);
185 sysctl_createv(SYSCTL_PERMANENT,
186 CTLTYPE_NODE, "machdep", NULL,
187 NULL, 0, NULL, 0,
188 CTL_MACHDEP, CTL_EOL);
189 /*
190 * this node is inserted so that the sysctl nodes in libc can
191 * operate.
192 */
193 sysctl_createv(SYSCTL_PERMANENT,
194 CTLTYPE_NODE, "user", NULL,
195 NULL, 0, NULL, 0,
196 CTL_USER, CTL_EOL);
197 sysctl_createv(SYSCTL_PERMANENT,
198 CTLTYPE_NODE, "ddb", NULL,
199 NULL, 0, NULL, 0,
200 CTL_DDB, CTL_EOL);
201 sysctl_createv(SYSCTL_PERMANENT,
202 CTLTYPE_NODE, "proc", NULL,
203 NULL, 0, NULL, 0,
204 CTL_PROC, CTL_EOL);
205 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
206 CTLTYPE_NODE, "vendor", NULL,
207 NULL, 0, NULL, 0,
208 CTL_VENDOR, CTL_EOL);
209 sysctl_createv(SYSCTL_PERMANENT,
210 CTLTYPE_NODE, "emul", NULL,
211 NULL, 0, NULL, 0,
212 CTL_EMUL, CTL_EOL);
213 }
214
215 /*
216 * this setup routine is a replacement for kern_sysctl()
217 */
218 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
219 {
220 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
221 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
222 extern int dumponpanic; /* defined in kern/subr_prf.c */
223
224 sysctl_createv(SYSCTL_PERMANENT,
225 CTLTYPE_NODE, "kern", NULL,
226 NULL, 0, NULL, 0,
227 CTL_KERN, CTL_EOL);
228
229 sysctl_createv(SYSCTL_PERMANENT,
230 CTLTYPE_STRING, "ostype", NULL,
231 NULL, 0, &ostype, 0,
232 CTL_KERN, KERN_OSTYPE, CTL_EOL);
233 sysctl_createv(SYSCTL_PERMANENT,
234 CTLTYPE_STRING, "osrelease", NULL,
235 NULL, 0, &osrelease, 0,
236 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
237 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
238 CTLTYPE_INT, "osrevision", NULL,
239 NULL, __NetBSD_Version__, NULL, 0,
240 CTL_KERN, KERN_OSREV, CTL_EOL);
241 sysctl_createv(SYSCTL_PERMANENT,
242 CTLTYPE_STRING, "version", NULL,
243 NULL, 0, &version, 0,
244 CTL_KERN, KERN_VERSION, CTL_EOL);
245 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
246 CTLTYPE_INT, "maxvnodes", NULL,
247 sysctl_kern_maxvnodes, 0, NULL, 0,
248 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
249 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
250 CTLTYPE_INT, "maxproc", NULL,
251 sysctl_kern_maxproc, 0, NULL, 0,
252 CTL_KERN, KERN_MAXPROC, CTL_EOL);
253 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
254 CTLTYPE_INT, "maxfiles", NULL,
255 NULL, 0, &maxfiles, 0,
256 CTL_KERN, KERN_MAXFILES, CTL_EOL);
257 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
258 CTLTYPE_INT, "argmax", NULL,
259 NULL, ARG_MAX, NULL, 0,
260 CTL_KERN, KERN_ARGMAX, CTL_EOL);
261 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
262 CTLTYPE_INT, "securelevel", NULL,
263 sysctl_kern_securelevel, 0, &securelevel, 0,
264 CTL_KERN, KERN_SECURELVL, CTL_EOL);
265 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
266 CTLTYPE_STRING, "hostname", NULL,
267 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
268 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
269 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
270 CTLTYPE_INT, "hostid", NULL,
271 sysctl_kern_hostid, 0, NULL, 0,
272 CTL_KERN, KERN_HOSTID, CTL_EOL);
273 sysctl_createv(SYSCTL_PERMANENT,
274 CTLTYPE_STRUCT, "clockrate", NULL,
275 sysctl_kern_clockrate, 0, NULL,
276 sizeof(struct clockinfo),
277 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
278 sysctl_createv(SYSCTL_PERMANENT,
279 CTLTYPE_STRUCT, "vnode", NULL,
280 sysctl_kern_vnode, 0, NULL, 0,
281 CTL_KERN, KERN_VNODE, CTL_EOL);
282 sysctl_createv(SYSCTL_PERMANENT,
283 CTLTYPE_STRUCT, "file", NULL,
284 sysctl_kern_file, 0, NULL, 0,
285 CTL_KERN, KERN_FILE, CTL_EOL);
286 #ifndef GPROF
287 sysctl_createv(SYSCTL_PERMANENT,
288 CTLTYPE_NODE, "profiling", NULL,
289 sysctl_notavail, 0, NULL, 0,
290 CTL_KERN, KERN_PROF, CTL_EOL);
291 #endif
292 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
293 CTLTYPE_INT, "posix1version", NULL,
294 NULL, _POSIX_VERSION, NULL, 0,
295 CTL_KERN, KERN_POSIX1, CTL_EOL);
296 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
297 CTLTYPE_INT, "ngroups", NULL,
298 NULL, NGROUPS_MAX, NULL, 0,
299 CTL_KERN, KERN_NGROUPS, CTL_EOL);
300 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
301 CTLTYPE_INT, "job_control", NULL,
302 NULL, 1, NULL, 0,
303 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
304 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
305 CTLTYPE_INT, "saved_ids", NULL, NULL,
306 #ifdef _POSIX_SAVED_IDS
307 1,
308 #else /* _POSIX_SAVED_IDS */
309 0,
310 #endif /* _POSIX_SAVED_IDS */
311 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
312 sysctl_createv(SYSCTL_PERMANENT,
313 CTLTYPE_STRUCT, "boottime", NULL,
314 NULL, 0, &boottime, sizeof(boottime),
315 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
316 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
317 CTLTYPE_STRING, "domainname", NULL,
318 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
319 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
320 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
321 CTLTYPE_INT, "maxpartitions", NULL,
322 NULL, MAXPARTITIONS, NULL, 0,
323 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
324 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
325 CTLTYPE_INT, "rawpartition", NULL,
326 NULL, RAW_PART, NULL, 0,
327 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
328 sysctl_createv(SYSCTL_PERMANENT,
329 CTLTYPE_STRUCT, "timex", NULL,
330 sysctl_notavail, 0, NULL, 0,
331 CTL_KERN, KERN_TIMEX, CTL_EOL);
332 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
333 CTLTYPE_INT, "autonicetime", NULL,
334 sysctl_kern_autonice, 0, &autonicetime, 0,
335 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
336 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
337 CTLTYPE_INT, "autoniceval", NULL,
338 sysctl_kern_autonice, 0, &autoniceval, 0,
339 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
340 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
341 CTLTYPE_INT, "rtc_offset", NULL,
342 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
343 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
344 sysctl_createv(SYSCTL_PERMANENT,
345 CTLTYPE_STRING, "root_device", NULL,
346 sysctl_root_device, 0, NULL, 0,
347 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
348 sysctl_createv(SYSCTL_PERMANENT,
349 CTLTYPE_INT, "msgbufsize", NULL,
350 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
351 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
352 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
353 CTLTYPE_INT, "fsync", NULL,
354 NULL, 1, NULL, 0,
355 CTL_KERN, KERN_FSYNC, CTL_EOL);
356 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
357 CTLTYPE_INT, "sysvmsg", NULL, NULL,
358 #ifdef SYSVMSG
359 1,
360 #else /* SYSVMSG */
361 0,
362 #endif /* SYSVMSG */
363 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
364 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
365 CTLTYPE_INT, "sysvsem", NULL, NULL,
366 #ifdef SYSVSEM
367 1,
368 #else /* SYSVSEM */
369 0,
370 #endif /* SYSVSEM */
371 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
372 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
373 CTLTYPE_INT, "sysvshm", NULL, NULL,
374 #ifdef SYSVSHM
375 1,
376 #else /* SYSVSHM */
377 0,
378 #endif /* SYSVSHM */
379 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
380 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
381 CTLTYPE_INT, "synchronized_io", NULL,
382 NULL, 1, NULL, 0,
383 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
384 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
385 CTLTYPE_INT, "iov_max", NULL,
386 NULL, IOV_MAX, NULL, 0,
387 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
388 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
389 CTLTYPE_INT, "mapped_files", NULL,
390 NULL, 1, NULL, 0,
391 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
392 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
393 CTLTYPE_INT, "memlock", NULL,
394 NULL, 1, NULL, 0,
395 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
396 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
397 CTLTYPE_INT, "memlock_range", NULL,
398 NULL, 1, NULL, 0,
399 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
400 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
401 CTLTYPE_INT, "memory_protection", NULL,
402 NULL, 1, NULL, 0,
403 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
404 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
405 CTLTYPE_INT, "login_name_max", NULL,
406 NULL, LOGIN_NAME_MAX, NULL, 0,
407 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
408 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
409 CTLTYPE_STRING, "defcorename", NULL,
410 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
411 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
412 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
413 CTLTYPE_INT, "logsigexit", NULL,
414 NULL, 0, &kern_logsigexit, 0,
415 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
416 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
417 CTLTYPE_INT, "fscale", NULL,
418 NULL, FSCALE, NULL, 0,
419 CTL_KERN, KERN_FSCALE, CTL_EOL);
420 sysctl_createv(SYSCTL_PERMANENT,
421 CTLTYPE_INT, "ccpu", NULL,
422 NULL, 0, &ccpu, 0,
423 CTL_KERN, KERN_CCPU, CTL_EOL);
424 sysctl_createv(SYSCTL_PERMANENT,
425 CTLTYPE_STRUCT, "cp_time", NULL,
426 sysctl_kern_cptime, 0, NULL, 0,
427 CTL_KERN, KERN_CP_TIME, CTL_EOL);
428 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
429 sysctl_createv(SYSCTL_PERMANENT,
430 CTLTYPE_STRUCT, "sysvipc_info", NULL,
431 sysctl_kern_sysvipc, 0, NULL, 0,
432 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
433 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
434 sysctl_createv(SYSCTL_PERMANENT,
435 CTLTYPE_INT, "msgbuf", NULL,
436 sysctl_msgbuf, 0, NULL, 0,
437 CTL_KERN, KERN_MSGBUF, CTL_EOL);
438 sysctl_createv(SYSCTL_PERMANENT,
439 CTLTYPE_STRUCT, "consdev", NULL,
440 sysctl_consdev, 0, NULL, sizeof(dev_t),
441 CTL_KERN, KERN_CONSDEV, CTL_EOL);
442 #if NPTY > 0
443 sysctl_createv(SYSCTL_PERMANENT,
444 CTLTYPE_INT, "maxptys", NULL,
445 sysctl_kern_maxptys, 0, NULL, 0,
446 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
447 #endif /* NPTY > 0 */
448 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
449 CTLTYPE_INT, "maxphys", NULL,
450 NULL, MAXPHYS, NULL, 0,
451 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
452 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
453 CTLTYPE_INT, "sbmax", NULL,
454 sysctl_kern_sbmax, 0, NULL, 0,
455 CTL_KERN, KERN_SBMAX, CTL_EOL);
456 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
457 CTLTYPE_INT, "monotonic_clock", NULL,
458 /* XXX _POSIX_VERSION */
459 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
460 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
461 sysctl_createv(SYSCTL_PERMANENT,
462 CTLTYPE_INT, "urandom", NULL,
463 sysctl_kern_urnd, 0, NULL, 0,
464 CTL_KERN, KERN_URND, CTL_EOL);
465 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
466 CTLTYPE_INT, "labelsector", NULL,
467 NULL, LABELSECTOR, NULL, 0,
468 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
469 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
470 CTLTYPE_INT, "labeloffset", NULL,
471 NULL, LABELOFFSET, NULL, 0,
472 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
473 sysctl_createv(SYSCTL_PERMANENT,
474 CTLTYPE_NODE, "lwp", NULL,
475 sysctl_kern_lwp, 0, NULL, 0,
476 CTL_KERN, KERN_LWP, CTL_EOL);
477 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
478 CTLTYPE_INT, "forkfsleep", NULL,
479 sysctl_kern_forkfsleep, 0, NULL, 0,
480 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
481 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
482 CTLTYPE_INT, "posix_threads", NULL,
483 /* XXX _POSIX_VERSION */
484 NULL, _POSIX_THREADS, NULL, 0,
485 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
486 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
487 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
488 #ifdef P1003_1B_SEMAPHORE
489 200112,
490 #else /* P1003_1B_SEMAPHORE */
491 0,
492 #endif /* P1003_1B_SEMAPHORE */
493 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
494 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
495 CTLTYPE_INT, "posix_barriers", NULL,
496 /* XXX _POSIX_VERSION */
497 NULL, _POSIX_BARRIERS, NULL, 0,
498 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
499 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
500 CTLTYPE_INT, "posix_timers", NULL,
501 /* XXX _POSIX_VERSION */
502 NULL, _POSIX_TIMERS, NULL, 0,
503 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
504 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
505 CTLTYPE_INT, "posix_spin_locks", NULL,
506 /* XXX _POSIX_VERSION */
507 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
508 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
509 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
510 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
511 /* XXX _POSIX_VERSION */
512 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
513 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
514 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
515 CTLTYPE_INT, "dump_on_panic", NULL,
516 NULL, 0, &dumponpanic, 0,
517 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
518 sysctl_createv(SYSCTL_PERMANENT,
519 CTLTYPE_INT, "root_partition", NULL,
520 sysctl_kern_root_partition, 0, NULL, 0,
521 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
522 sysctl_createv(SYSCTL_PERMANENT,
523 CTLTYPE_STRUCT, "drivers", NULL,
524 sysctl_kern_drivers, 0, NULL, 0,
525 CTL_KERN, KERN_DRIVERS, CTL_EOL);
526 }
527
528 SYSCTL_SETUP(sysctl_kern_proc_setup,
529 "sysctl kern.proc/proc2/proc_args subtree setup")
530 {
531
532 sysctl_createv(SYSCTL_PERMANENT,
533 CTLTYPE_NODE, "kern", NULL,
534 NULL, 0, NULL, 0,
535 CTL_KERN, CTL_EOL);
536
537 sysctl_createv(SYSCTL_PERMANENT,
538 CTLTYPE_NODE, "proc", NULL,
539 sysctl_doeproc, 0, NULL, 0,
540 CTL_KERN, KERN_PROC, CTL_EOL);
541 sysctl_createv(SYSCTL_PERMANENT,
542 CTLTYPE_NODE, "proc2", NULL,
543 sysctl_doeproc, 0, NULL, 0,
544 CTL_KERN, KERN_PROC2, CTL_EOL);
545 sysctl_createv(SYSCTL_PERMANENT,
546 CTLTYPE_NODE, "proc_args", NULL,
547 sysctl_kern_proc_args, 0, NULL, 0,
548 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
549
550 /*
551 "nodes" under these:
552
553 KERN_PROC_ALL
554 KERN_PROC_PID pid
555 KERN_PROC_PGRP pgrp
556 KERN_PROC_SESSION sess
557 KERN_PROC_TTY tty
558 KERN_PROC_UID uid
559 KERN_PROC_RUID uid
560 KERN_PROC_GID gid
561 KERN_PROC_RGID gid
562
563 all in all, probably not worth the effort...
564 */
565 }
566
567 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
568 {
569 u_int u;
570 u_quad_t q;
571
572 sysctl_createv(SYSCTL_PERMANENT,
573 CTLTYPE_NODE, "hw", NULL,
574 NULL, 0, NULL, 0,
575 CTL_HW, CTL_EOL);
576
577 sysctl_createv(SYSCTL_PERMANENT,
578 CTLTYPE_STRING, "machine", NULL,
579 NULL, 0, machine, 0,
580 CTL_HW, HW_MACHINE, CTL_EOL);
581 sysctl_createv(SYSCTL_PERMANENT,
582 CTLTYPE_STRING, "model", NULL,
583 NULL, 0, cpu_model, 0,
584 CTL_HW, HW_MODEL, CTL_EOL);
585 sysctl_createv(SYSCTL_PERMANENT,
586 CTLTYPE_INT, "ncpu", NULL,
587 sysctl_hw_ncpu, 0, NULL, 0,
588 CTL_HW, HW_NCPU, CTL_EOL);
589 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
590 CTLTYPE_INT, "byteorder", NULL,
591 NULL, BYTE_ORDER, NULL, 0,
592 CTL_HW, HW_BYTEORDER, CTL_EOL);
593 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
594 UINT_MAX : physmem * PAGE_SIZE;
595 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
596 CTLTYPE_INT, "physmem", NULL,
597 NULL, u, NULL, 0,
598 CTL_HW, HW_PHYSMEM, CTL_EOL);
599 sysctl_createv(SYSCTL_PERMANENT,
600 CTLTYPE_INT, "usermem", NULL,
601 sysctl_hw_usermem, 0, NULL, 0,
602 CTL_HW, HW_USERMEM, CTL_EOL);
603 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
604 CTLTYPE_INT, "pagesize", NULL,
605 NULL, PAGE_SIZE, NULL, 0,
606 CTL_HW, HW_PAGESIZE, CTL_EOL);
607 sysctl_createv(SYSCTL_PERMANENT,
608 CTLTYPE_STRING, "disknames", NULL,
609 sysctl_hw_disknames, 0, NULL, 0,
610 CTL_HW, HW_DISKNAMES, CTL_EOL);
611 sysctl_createv(SYSCTL_PERMANENT,
612 CTLTYPE_STRUCT, "diskstats", NULL,
613 sysctl_hw_diskstats, 0, NULL, 0,
614 CTL_HW, HW_DISKSTATS, CTL_EOL);
615 sysctl_createv(SYSCTL_PERMANENT,
616 CTLTYPE_STRING, "machine_arch", NULL,
617 NULL, 0, machine_arch, 0,
618 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
619 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
620 CTLTYPE_INT, "alignbytes", NULL,
621 NULL, ALIGNBYTES, NULL, 0,
622 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
623 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
624 CTLTYPE_STRING, "cnmagic", NULL,
625 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
626 CTL_HW, HW_CNMAGIC, CTL_EOL);
627 q = (u_quad_t)physmem * PAGE_SIZE;
628 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
629 CTLTYPE_QUAD, "physmem64", NULL,
630 NULL, q, NULL, 0,
631 CTL_HW, HW_PHYSMEM64, CTL_EOL);
632 sysctl_createv(SYSCTL_PERMANENT,
633 CTLTYPE_QUAD, "usermem64", NULL,
634 sysctl_hw_usermem, 0, NULL, 0,
635 CTL_HW, HW_USERMEM64, CTL_EOL);
636 }
637
638 #ifdef DEBUG
639 /*
640 * Debugging related system variables.
641 */
642 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
643 struct ctldebug debug5, debug6, debug7, debug8, debug9;
644 struct ctldebug debug10, debug11, debug12, debug13, debug14;
645 struct ctldebug debug15, debug16, debug17, debug18, debug19;
646 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
647 &debug0, &debug1, &debug2, &debug3, &debug4,
648 &debug5, &debug6, &debug7, &debug8, &debug9,
649 &debug10, &debug11, &debug12, &debug13, &debug14,
650 &debug15, &debug16, &debug17, &debug18, &debug19,
651 };
652
653 /*
654 * this setup routine is a replacement for debug_sysctl()
655 *
656 * note that it creates several nodes per defined debug variable
657 */
658 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
659 {
660 struct ctldebug *cdp;
661 char nodename[20];
662 int i;
663
664 /*
665 * two ways here:
666 *
667 * the "old" way (debug.name -> value) which was emulated by
668 * the sysctl(8) binary
669 *
670 * the new way, which the sysctl(8) binary was actually using
671
672 node debug
673 node debug.0
674 string debug.0.name
675 int debug.0.value
676 int debug.name
677
678 */
679
680 sysctl_createv(SYSCTL_PERMANENT,
681 CTLTYPE_NODE, "debug", NULL,
682 NULL, 0, NULL, 0,
683 CTL_DEBUG, CTL_EOL);
684
685 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
686 cdp = debugvars[i];
687 if (cdp->debugname == NULL || cdp->debugvar == NULL)
688 continue;
689
690 snprintf(nodename, sizeof(nodename), "debug%d", i);
691 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
692 CTLTYPE_NODE, nodename, NULL,
693 NULL, 0, NULL, 0,
694 CTL_DEBUG, i, CTL_EOL);
695 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
696 CTLTYPE_STRING, "name", NULL,
697 NULL, 0, cdp->debugname, 0,
698 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
699 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
700 CTLTYPE_INT, "value", NULL,
701 NULL, 0, cdp->debugvar, 0,
702 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
703 sysctl_createv(SYSCTL_PERMANENT,
704 CTLTYPE_INT, cdp->debugname, NULL,
705 NULL, 0, cdp->debugvar, 0,
706 CTL_DEBUG, CTL_CREATE, CTL_EOL);
707 }
708 }
709 #endif /* DEBUG */
710
711 /*
712 * ********************************************************************
713 * section 2: private node-specific helper routines.
714 * ********************************************************************
715 */
716
717 /*
718 * sysctl helper routine for kern.maxvnodes. drain vnodes if
719 * new value is lower than desiredvnodes and then calls reinit
720 * routines that needs to adjust to the new value.
721 */
722 static int
723 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
724 {
725 int error, new_vnodes, old_vnodes;
726 struct sysctlnode node;
727
728 new_vnodes = desiredvnodes;
729 node = *rnode;
730 node.sysctl_data = &new_vnodes;
731 error = sysctl_lookup(SYSCTLFN_CALL(&node));
732 if (error || newp == NULL)
733 return (error);
734
735 old_vnodes = desiredvnodes;
736 desiredvnodes = new_vnodes;
737 if (new_vnodes < old_vnodes) {
738 error = vfs_drainvnodes(new_vnodes, l->l_proc);
739 if (error) {
740 desiredvnodes = old_vnodes;
741 return (error);
742 }
743 }
744 vfs_reinit();
745 nchreinit();
746
747 return (0);
748 }
749
750 /*
751 * sysctl helper routine for rtc_offset - set time after changes
752 */
753 static int
754 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
755 {
756 struct timeval tv, delta;
757 int s, error, new_rtc_offset;
758 struct sysctlnode node;
759
760 new_rtc_offset = rtc_offset;
761 node = *rnode;
762 node.sysctl_data = &new_rtc_offset;
763 error = sysctl_lookup(SYSCTLFN_CALL(&node));
764 if (error || newp == NULL)
765 return (error);
766
767 if (securelevel > 0)
768 return (EPERM);
769 if (rtc_offset == new_rtc_offset)
770 return (0);
771
772 /* if we change the offset, adjust the time */
773 s = splclock();
774 tv = time;
775 splx(s);
776 delta.tv_sec = 60*(new_rtc_offset - rtc_offset);
777 delta.tv_usec = 0;
778 timeradd(&tv, &delta, &tv);
779 rtc_offset = new_rtc_offset;
780 settime(&tv);
781
782 return (0);
783 }
784
785 /*
786 * sysctl helper routine for kern.maxvnodes. ensures that the new
787 * values are not too low or too high.
788 */
789 static int
790 sysctl_kern_maxproc(SYSCTLFN_ARGS)
791 {
792 int error, nmaxproc;
793 struct sysctlnode node;
794
795 nmaxproc = maxproc;
796 node = *rnode;
797 node.sysctl_data = &nmaxproc;
798 error = sysctl_lookup(SYSCTLFN_CALL(&node));
799 if (error || newp == NULL)
800 return (error);
801
802 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
803 return (EINVAL);
804 #ifdef __HAVE_CPU_MAXPROC
805 if (nmaxproc > cpu_maxproc())
806 return (EINVAL);
807 #endif
808 maxproc = nmaxproc;
809
810 return (0);
811 }
812
813 /*
814 * sysctl helper routine for kern.securelevel. ensures that the value
815 * only rises unless the caller has pid 1 (assumed to be init).
816 */
817 static int
818 sysctl_kern_securelevel(SYSCTLFN_ARGS)
819 {
820 int newsecurelevel, error;
821 struct sysctlnode node;
822
823 newsecurelevel = securelevel;
824 node = *rnode;
825 node.sysctl_data = &newsecurelevel;
826 error = sysctl_lookup(SYSCTLFN_CALL(&node));
827 if (error || newp == NULL)
828 return (error);
829
830 if (newsecurelevel < securelevel && l && l->l_proc->p_pid != 1)
831 return (EPERM);
832 securelevel = newsecurelevel;
833
834 return (error);
835 }
836
837 /*
838 * sysctl helper function for kern.hostid. the hostid is a long, but
839 * we export it as an int, so we need to give it a little help.
840 */
841 static int
842 sysctl_kern_hostid(SYSCTLFN_ARGS)
843 {
844 int error, inthostid;
845 struct sysctlnode node;
846
847 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
848 node = *rnode;
849 node.sysctl_data = &inthostid;
850 error = sysctl_lookup(SYSCTLFN_CALL(&node));
851 if (error || newp == NULL)
852 return (error);
853
854 hostid = inthostid;
855
856 return (0);
857 }
858
859 /*
860 * sysctl helper function for kern.hostname and kern.domainnname.
861 * resets the relevant recorded length when the underlying name is
862 * changed.
863 */
864 static int
865 sysctl_setlen(SYSCTLFN_ARGS)
866 {
867 int error;
868
869 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
870 if (error || newp == NULL)
871 return (error);
872
873 switch (rnode->sysctl_num) {
874 case KERN_HOSTNAME:
875 hostnamelen = strlen((const char*)rnode->sysctl_data);
876 break;
877 case KERN_DOMAINNAME:
878 domainnamelen = strlen((const char*)rnode->sysctl_data);
879 break;
880 }
881
882 return (0);
883 }
884
885 /*
886 * sysctl helper routine for kern.clockrate. assembles a struct on
887 * the fly to be returned to the caller.
888 */
889 static int
890 sysctl_kern_clockrate(SYSCTLFN_ARGS)
891 {
892 struct clockinfo clkinfo;
893 struct sysctlnode node;
894
895 clkinfo.tick = tick;
896 clkinfo.tickadj = tickadj;
897 clkinfo.hz = hz;
898 clkinfo.profhz = profhz;
899 clkinfo.stathz = stathz ? stathz : hz;
900
901 node = *rnode;
902 node.sysctl_data = &clkinfo;
903 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
904 }
905
906
907 /*
908 * sysctl helper routine for kern.file pseudo-subtree.
909 */
910 static int
911 sysctl_kern_file(SYSCTLFN_ARGS)
912 {
913 int error;
914 size_t buflen;
915 struct file *fp;
916 char *start, *where;
917
918 start = where = oldp;
919 buflen = *oldlenp;
920 if (where == NULL) {
921 /*
922 * overestimate by 10 files
923 */
924 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
925 return (0);
926 }
927
928 /*
929 * first copyout filehead
930 */
931 if (buflen < sizeof(filehead)) {
932 *oldlenp = 0;
933 return (0);
934 }
935 error = copyout(&filehead, where, sizeof(filehead));
936 if (error)
937 return (error);
938 buflen -= sizeof(filehead);
939 where += sizeof(filehead);
940
941 /*
942 * followed by an array of file structures
943 */
944 LIST_FOREACH(fp, &filehead, f_list) {
945 if (buflen < sizeof(struct file)) {
946 *oldlenp = where - start;
947 return (ENOMEM);
948 }
949 error = copyout(fp, where, sizeof(struct file));
950 if (error)
951 return (error);
952 buflen -= sizeof(struct file);
953 where += sizeof(struct file);
954 }
955 *oldlenp = where - start;
956 return (0);
957 }
958
959 /*
960 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
961 * asserts that the assigned value is in the correct range.
962 */
963 static int
964 sysctl_kern_autonice(SYSCTLFN_ARGS)
965 {
966 int error, t = 0;
967 struct sysctlnode node;
968
969 node = *rnode;
970 t = *(int*)node.sysctl_data;
971 node.sysctl_data = &t;
972 error = sysctl_lookup(SYSCTLFN_CALL(&node));
973 if (error || newp == NULL)
974 return (error);
975
976 switch (node.sysctl_num) {
977 case KERN_AUTONICETIME:
978 if (t >= 0)
979 autonicetime = t;
980 break;
981 case KERN_AUTONICEVAL:
982 if (t < PRIO_MIN)
983 t = PRIO_MIN;
984 else if (t > PRIO_MAX)
985 t = PRIO_MAX;
986 autoniceval = t;
987 break;
988 }
989
990 return (0);
991 }
992
993 /*
994 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
995 * former it merely checks the the message buffer is set up. for the
996 * latter, it also copies out the data if necessary.
997 */
998 static int
999 sysctl_msgbuf(SYSCTLFN_ARGS)
1000 {
1001 char *where = oldp;
1002 size_t len, maxlen;
1003 long beg, end;
1004 int error;
1005
1006 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1007 msgbufenabled = 0;
1008 return (ENXIO);
1009 }
1010
1011 switch (rnode->sysctl_num) {
1012 case KERN_MSGBUFSIZE:
1013 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
1014 case KERN_MSGBUF:
1015 break;
1016 default:
1017 return (EOPNOTSUPP);
1018 }
1019
1020 if (newp != NULL)
1021 return (EPERM);
1022
1023 if (oldp == NULL) {
1024 /* always return full buffer size */
1025 *oldlenp = msgbufp->msg_bufs;
1026 return (0);
1027 }
1028
1029 error = 0;
1030 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1031
1032 /*
1033 * First, copy from the write pointer to the end of
1034 * message buffer.
1035 */
1036 beg = msgbufp->msg_bufx;
1037 end = msgbufp->msg_bufs;
1038 while (maxlen > 0) {
1039 len = MIN(end - beg, maxlen);
1040 if (len == 0)
1041 break;
1042 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1043 if (error)
1044 break;
1045 where += len;
1046 maxlen -= len;
1047
1048 /*
1049 * ... then, copy from the beginning of message buffer to
1050 * the write pointer.
1051 */
1052 beg = 0;
1053 end = msgbufp->msg_bufx;
1054 }
1055
1056 return (error);
1057 }
1058
1059 /*
1060 * sysctl helper routine for kern.defcorename. in the case of a new
1061 * string being assigned, check that it's not a zero-length string.
1062 * (XXX the check in -current doesn't work, but do we really care?)
1063 */
1064 static int
1065 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1066 {
1067 int error;
1068 char newcorename[MAXPATHLEN];
1069 struct sysctlnode node;
1070
1071 node = *rnode;
1072 node.sysctl_data = &newcorename[0];
1073 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1074 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1075 if (error || newp == NULL)
1076 return (error);
1077
1078 /*
1079 * when sysctl_lookup() deals with a string, it's guaranteed
1080 * to come back nul terminated. so there. :)
1081 */
1082 if (strlen(newcorename) == 0)
1083 return (EINVAL);
1084
1085 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1086
1087 return (0);
1088 }
1089
1090 /*
1091 * sysctl helper routine for kern.cp_time node. adds up cpu time
1092 * across all cpus.
1093 */
1094 static int
1095 sysctl_kern_cptime(SYSCTLFN_ARGS)
1096 {
1097 struct sysctlnode node = *rnode;
1098
1099 #ifndef MULTIPROCESSOR
1100
1101 if (namelen == 1) {
1102 if (name[0] != 0)
1103 return (ENOENT);
1104 /*
1105 * you're allowed to ask for the zero'th processor
1106 */
1107 name++;
1108 namelen--;
1109 }
1110 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1111 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1112 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1113
1114 #else /* MULTIPROCESSOR */
1115
1116 u_int64_t *cp_time = NULL;
1117 int error, n = sysctl_ncpus(), i;
1118 struct cpu_info *ci;
1119 CPU_INFO_ITERATOR cii;
1120
1121 /*
1122 * if you specifically pass a buffer that is the size of the
1123 * sum, or if you are probing for the size, you get the "sum"
1124 * of cp_time (and the size thereof) across all processors.
1125 *
1126 * alternately, you can pass an additional mib number and get
1127 * cp_time for that particular processor.
1128 */
1129 switch (namelen) {
1130 case 0:
1131 if (*oldlenp == sizeof(u_int64_t) * CPUSTATES || oldp == NULL) {
1132 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1133 n = -1; /* SUM */
1134 }
1135 else {
1136 node.sysctl_size = n * sizeof(u_int64_t) * CPUSTATES;
1137 n = -2; /* ALL */
1138 }
1139 break;
1140 case 1:
1141 if (name[0] < 0 || name[0] >= n)
1142 return (ENOENT); /* ENOSUCHPROCESSOR */
1143 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1144 n = name[0];
1145 /*
1146 * adjust these so that sysctl_lookup() will be happy
1147 */
1148 name++;
1149 namelen--;
1150 break;
1151 default:
1152 return (EINVAL);
1153 }
1154
1155 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1156 if (cp_time == NULL)
1157 return (ENOMEM);
1158 node.sysctl_data = cp_time;
1159 memset(cp_time, 0, node.sysctl_size);
1160
1161 for (CPU_INFO_FOREACH(cii, ci)) {
1162 if (n <= 0)
1163 for (i = 0; i < CPUSTATES; i++)
1164 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1165 /*
1166 * if a specific processor was requested and we just
1167 * did it, we're done here
1168 */
1169 if (n == 0)
1170 break;
1171 /*
1172 * if doing "all", skip to next cp_time set for next processor
1173 */
1174 if (n == -2)
1175 cp_time += CPUSTATES;
1176 /*
1177 * if we're doing a specific processor, we're one
1178 * processor closer
1179 */
1180 if (n > 0)
1181 n--;
1182 }
1183
1184 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1185 free(node.sysctl_data, M_TEMP);
1186 return (error);
1187
1188 #endif /* MULTIPROCESSOR */
1189 }
1190
1191 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1192 /*
1193 * sysctl helper routine for kern.sysvipc_info subtree.
1194 */
1195
1196 #define FILL_PERM(src, dst) do { \
1197 (dst)._key = (src)._key; \
1198 (dst).uid = (src).uid; \
1199 (dst).gid = (src).gid; \
1200 (dst).cuid = (src).cuid; \
1201 (dst).cgid = (src).cgid; \
1202 (dst).mode = (src).mode; \
1203 (dst)._seq = (src)._seq; \
1204 } while (/*CONSTCOND*/ 0);
1205 #define FILL_MSG(src, dst) do { \
1206 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1207 (dst).msg_qnum = (src).msg_qnum; \
1208 (dst).msg_qbytes = (src).msg_qbytes; \
1209 (dst)._msg_cbytes = (src)._msg_cbytes; \
1210 (dst).msg_lspid = (src).msg_lspid; \
1211 (dst).msg_lrpid = (src).msg_lrpid; \
1212 (dst).msg_stime = (src).msg_stime; \
1213 (dst).msg_rtime = (src).msg_rtime; \
1214 (dst).msg_ctime = (src).msg_ctime; \
1215 } while (/*CONSTCOND*/ 0)
1216 #define FILL_SEM(src, dst) do { \
1217 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1218 (dst).sem_nsems = (src).sem_nsems; \
1219 (dst).sem_otime = (src).sem_otime; \
1220 (dst).sem_ctime = (src).sem_ctime; \
1221 } while (/*CONSTCOND*/ 0)
1222 #define FILL_SHM(src, dst) do { \
1223 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1224 (dst).shm_segsz = (src).shm_segsz; \
1225 (dst).shm_lpid = (src).shm_lpid; \
1226 (dst).shm_cpid = (src).shm_cpid; \
1227 (dst).shm_atime = (src).shm_atime; \
1228 (dst).shm_dtime = (src).shm_dtime; \
1229 (dst).shm_ctime = (src).shm_ctime; \
1230 (dst).shm_nattch = (src).shm_nattch; \
1231 } while (/*CONSTCOND*/ 0)
1232
1233 static int
1234 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1235 {
1236 void *where = oldp;
1237 size_t *sizep = oldlenp;
1238 #ifdef SYSVMSG
1239 struct msg_sysctl_info *msgsi = NULL;
1240 #endif
1241 #ifdef SYSVSEM
1242 struct sem_sysctl_info *semsi = NULL;
1243 #endif
1244 #ifdef SYSVSHM
1245 struct shm_sysctl_info *shmsi = NULL;
1246 #endif
1247 size_t infosize, dssize, tsize, buflen;
1248 void *buf = NULL;
1249 char *start;
1250 int32_t nds;
1251 int i, error, ret;
1252
1253 if (namelen != 1)
1254 return (EINVAL);
1255
1256 start = where;
1257 buflen = *sizep;
1258
1259 switch (*name) {
1260 case KERN_SYSVIPC_MSG_INFO:
1261 #ifdef SYSVMSG
1262 infosize = sizeof(msgsi->msginfo);
1263 nds = msginfo.msgmni;
1264 dssize = sizeof(msgsi->msgids[0]);
1265 break;
1266 #else
1267 return (EINVAL);
1268 #endif
1269 case KERN_SYSVIPC_SEM_INFO:
1270 #ifdef SYSVSEM
1271 infosize = sizeof(semsi->seminfo);
1272 nds = seminfo.semmni;
1273 dssize = sizeof(semsi->semids[0]);
1274 break;
1275 #else
1276 return (EINVAL);
1277 #endif
1278 case KERN_SYSVIPC_SHM_INFO:
1279 #ifdef SYSVSHM
1280 infosize = sizeof(shmsi->shminfo);
1281 nds = shminfo.shmmni;
1282 dssize = sizeof(shmsi->shmids[0]);
1283 break;
1284 #else
1285 return (EINVAL);
1286 #endif
1287 default:
1288 return (EINVAL);
1289 }
1290 /*
1291 * Round infosize to 64 bit boundary if requesting more than just
1292 * the info structure or getting the total data size.
1293 */
1294 if (where == NULL || *sizep > infosize)
1295 infosize = ((infosize + 7) / 8) * 8;
1296 tsize = infosize + nds * dssize;
1297
1298 /* Return just the total size required. */
1299 if (where == NULL) {
1300 *sizep = tsize;
1301 return (0);
1302 }
1303
1304 /* Not enough room for even the info struct. */
1305 if (buflen < infosize) {
1306 *sizep = 0;
1307 return (ENOMEM);
1308 }
1309 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1310 memset(buf, 0, min(tsize, buflen));
1311
1312 switch (*name) {
1313 #ifdef SYSVMSG
1314 case KERN_SYSVIPC_MSG_INFO:
1315 msgsi = (struct msg_sysctl_info *)buf;
1316 msgsi->msginfo = msginfo;
1317 break;
1318 #endif
1319 #ifdef SYSVSEM
1320 case KERN_SYSVIPC_SEM_INFO:
1321 semsi = (struct sem_sysctl_info *)buf;
1322 semsi->seminfo = seminfo;
1323 break;
1324 #endif
1325 #ifdef SYSVSHM
1326 case KERN_SYSVIPC_SHM_INFO:
1327 shmsi = (struct shm_sysctl_info *)buf;
1328 shmsi->shminfo = shminfo;
1329 break;
1330 #endif
1331 }
1332 buflen -= infosize;
1333
1334 ret = 0;
1335 if (buflen > 0) {
1336 /* Fill in the IPC data structures. */
1337 for (i = 0; i < nds; i++) {
1338 if (buflen < dssize) {
1339 ret = ENOMEM;
1340 break;
1341 }
1342 switch (*name) {
1343 #ifdef SYSVMSG
1344 case KERN_SYSVIPC_MSG_INFO:
1345 FILL_MSG(msqids[i], msgsi->msgids[i]);
1346 break;
1347 #endif
1348 #ifdef SYSVSEM
1349 case KERN_SYSVIPC_SEM_INFO:
1350 FILL_SEM(sema[i], semsi->semids[i]);
1351 break;
1352 #endif
1353 #ifdef SYSVSHM
1354 case KERN_SYSVIPC_SHM_INFO:
1355 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1356 break;
1357 #endif
1358 }
1359 buflen -= dssize;
1360 }
1361 }
1362 *sizep -= buflen;
1363 error = copyout(buf, start, *sizep);
1364 /* If copyout succeeded, use return code set earlier. */
1365 if (error == 0)
1366 error = ret;
1367 if (buf)
1368 free(buf, M_TEMP);
1369 return (error);
1370 }
1371
1372 #undef FILL_PERM
1373 #undef FILL_MSG
1374 #undef FILL_SEM
1375 #undef FILL_SHM
1376
1377 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1378
1379 #if NPTY > 0
1380 /*
1381 * sysctl helper routine for kern.maxptys. ensures that any new value
1382 * is acceptable to the pty subsystem.
1383 */
1384 static int
1385 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1386 {
1387 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1388 int error, max;
1389 struct sysctlnode node;
1390
1391 /* get current value of maxptys */
1392 max = pty_maxptys(0, 0);
1393
1394 node = *rnode;
1395 node.sysctl_data = &max;
1396 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1397 if (error || newp == NULL)
1398 return (error);
1399
1400 if (max != pty_maxptys(max, 1))
1401 return (EINVAL);
1402
1403 return (0);
1404 }
1405 #endif /* NPTY > 0 */
1406
1407 /*
1408 * sysctl helper routine for kern.sbmax. basically just ensures that
1409 * any new value is not too small.
1410 */
1411 static int
1412 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1413 {
1414 int error, new_sbmax;
1415 struct sysctlnode node;
1416
1417 new_sbmax = sb_max;
1418 node = *rnode;
1419 node.sysctl_data = &new_sbmax;
1420 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1421 if (error || newp == NULL)
1422 return (error);
1423
1424 error = sb_max_set(new_sbmax);
1425
1426 return (error);
1427 }
1428
1429 /*
1430 * sysctl helper routine for kern.urandom node. picks a random number
1431 * for you.
1432 */
1433 static int
1434 sysctl_kern_urnd(SYSCTLFN_ARGS)
1435 {
1436 #if NRND > 0
1437 int v;
1438
1439 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1440 struct sysctlnode node = *rnode;
1441 node.sysctl_data = &v;
1442 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1443 }
1444 else
1445 return (EIO); /*XXX*/
1446 #else
1447 return (EOPNOTSUPP);
1448 #endif
1449 }
1450
1451 /*
1452 * sysctl helper routine to do kern.lwp.* work.
1453 */
1454 static int
1455 sysctl_kern_lwp(SYSCTLFN_ARGS)
1456 {
1457 struct kinfo_lwp klwp;
1458 struct proc *p;
1459 struct lwp *l2;
1460 char *where, *dp;
1461 int pid, elem_size, elem_count;
1462 int buflen, needed, error;
1463
1464 if (namelen == 1 && name[0] == CTL_QUERY)
1465 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1466
1467 dp = where = oldp;
1468 buflen = where != NULL ? *oldlenp : 0;
1469 error = needed = 0;
1470
1471 if (newp != NULL || namelen != 3)
1472 return (EINVAL);
1473 pid = name[0];
1474 elem_size = name[1];
1475 elem_count = name[2];
1476
1477 p = pfind(pid);
1478 if (p == NULL)
1479 return (ESRCH);
1480 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1481 if (buflen >= elem_size && elem_count > 0) {
1482 fill_lwp(l2, &klwp);
1483 /*
1484 * Copy out elem_size, but not larger than
1485 * the size of a struct kinfo_proc2.
1486 */
1487 error = copyout(&klwp, dp,
1488 min(sizeof(klwp), elem_size));
1489 if (error)
1490 goto cleanup;
1491 dp += elem_size;
1492 buflen -= elem_size;
1493 elem_count--;
1494 }
1495 needed += elem_size;
1496 }
1497
1498 if (where != NULL) {
1499 *oldlenp = dp - where;
1500 if (needed > *oldlenp)
1501 return (ENOMEM);
1502 } else {
1503 needed += KERN_LWPSLOP;
1504 *oldlenp = needed;
1505 }
1506 return (0);
1507 cleanup:
1508 return (error);
1509 }
1510
1511 /*
1512 * sysctl helper routine for kern.forkfsleep node. ensures that the
1513 * given value is not too large or two small, and is at least one
1514 * timer tick if not zero.
1515 */
1516 static int
1517 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1518 {
1519 /* userland sees value in ms, internally is in ticks */
1520 extern int forkfsleep; /* defined in kern/kern_fork.c */
1521 int error, timo, lsleep;
1522 struct sysctlnode node;
1523
1524 lsleep = forkfsleep * 1000 / hz;
1525 node = *rnode;
1526 node.sysctl_data = &lsleep;
1527 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1528 if (error || newp == NULL)
1529 return (error);
1530
1531 /* refuse negative values, and overly 'long time' */
1532 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1533 return (EINVAL);
1534
1535 timo = mstohz(lsleep);
1536
1537 /* if the interval is >0 ms && <1 tick, use 1 tick */
1538 if (lsleep != 0 && timo == 0)
1539 forkfsleep = 1;
1540 else
1541 forkfsleep = timo;
1542
1543 return (0);
1544 }
1545
1546 /*
1547 * sysctl helper routine for kern.root_partition
1548 */
1549 static int
1550 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1551 {
1552 int rootpart = DISKPART(rootdev);
1553 struct sysctlnode node = *rnode;
1554
1555 node.sysctl_data = &rootpart;
1556 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1557 }
1558
1559 /*
1560 * sysctl helper function for kern.drivers
1561 */
1562 static int
1563 sysctl_kern_drivers(SYSCTLFN_ARGS)
1564 {
1565 int error;
1566 size_t buflen;
1567 struct kinfo_drivers kd;
1568 char *start, *where;
1569 const char *dname;
1570 int i;
1571 extern struct devsw_conv *devsw_conv;
1572 extern int max_devsw_convs;
1573
1574 if (newp != NULL || namelen != 0)
1575 return (EINVAL);
1576
1577 start = where = oldp;
1578 buflen = *oldlenp;
1579 if (where == NULL) {
1580 *oldlenp = max_devsw_convs * sizeof kd;
1581 return 0;
1582 }
1583
1584 /*
1585 * An array of kinfo_drivers structures
1586 */
1587 error = 0;
1588 for (i = 0; i < max_devsw_convs; i++) {
1589 dname = devsw_conv[i].d_name;
1590 if (dname == NULL)
1591 continue;
1592 if (buflen < sizeof kd) {
1593 error = ENOMEM;
1594 break;
1595 }
1596 kd.d_bmajor = devsw_conv[i].d_bmajor;
1597 kd.d_cmajor = devsw_conv[i].d_cmajor;
1598 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1599 error = copyout(&kd, where, sizeof kd);
1600 if (error != 0)
1601 break;
1602 buflen -= sizeof kd;
1603 where += sizeof kd;
1604 }
1605 *oldlenp = where - start;
1606 return error;
1607 }
1608
1609 static int
1610 sysctl_doeproc(SYSCTLFN_ARGS)
1611 {
1612 struct eproc eproc;
1613 struct kinfo_proc2 kproc2;
1614 struct kinfo_proc *dp;
1615 struct proc *p;
1616 const struct proclist_desc *pd;
1617 char *where, *dp2;
1618 int type, op, arg;
1619 u_int elem_size, elem_count;
1620 size_t buflen, needed;
1621 int error;
1622
1623 if (namelen == 1 && name[0] == CTL_QUERY)
1624 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1625
1626 dp = oldp;
1627 dp2 = where = oldp;
1628 buflen = where != NULL ? *oldlenp : 0;
1629 error = 0;
1630 needed = 0;
1631 type = rnode->sysctl_num;
1632
1633 if (type == KERN_PROC) {
1634 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1635 return (EINVAL);
1636 op = name[0];
1637 if (op != KERN_PROC_ALL)
1638 arg = name[1];
1639 else
1640 arg = 0; /* Quell compiler warning */
1641 elem_size = elem_count = 0; /* Ditto */
1642 } else {
1643 if (namelen != 4)
1644 return (EINVAL);
1645 op = name[0];
1646 arg = name[1];
1647 elem_size = name[2];
1648 elem_count = name[3];
1649 }
1650
1651 proclist_lock_read();
1652
1653 pd = proclists;
1654 again:
1655 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1656 /*
1657 * Skip embryonic processes.
1658 */
1659 if (p->p_stat == SIDL)
1660 continue;
1661 /*
1662 * TODO - make more efficient (see notes below).
1663 * do by session.
1664 */
1665 switch (op) {
1666
1667 case KERN_PROC_PID:
1668 /* could do this with just a lookup */
1669 if (p->p_pid != (pid_t)arg)
1670 continue;
1671 break;
1672
1673 case KERN_PROC_PGRP:
1674 /* could do this by traversing pgrp */
1675 if (p->p_pgrp->pg_id != (pid_t)arg)
1676 continue;
1677 break;
1678
1679 case KERN_PROC_SESSION:
1680 if (p->p_session->s_sid != (pid_t)arg)
1681 continue;
1682 break;
1683
1684 case KERN_PROC_TTY:
1685 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1686 if ((p->p_flag & P_CONTROLT) == 0 ||
1687 p->p_session->s_ttyp == NULL ||
1688 p->p_session->s_ttyvp != NULL)
1689 continue;
1690 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1691 p->p_session->s_ttyp == NULL) {
1692 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1693 continue;
1694 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1695 continue;
1696 break;
1697
1698 case KERN_PROC_UID:
1699 if (p->p_ucred->cr_uid != (uid_t)arg)
1700 continue;
1701 break;
1702
1703 case KERN_PROC_RUID:
1704 if (p->p_cred->p_ruid != (uid_t)arg)
1705 continue;
1706 break;
1707
1708 case KERN_PROC_GID:
1709 if (p->p_ucred->cr_gid != (uid_t)arg)
1710 continue;
1711 break;
1712
1713 case KERN_PROC_RGID:
1714 if (p->p_cred->p_rgid != (uid_t)arg)
1715 continue;
1716 break;
1717
1718 case KERN_PROC_ALL:
1719 /* allow everything */
1720 break;
1721
1722 default:
1723 error = EINVAL;
1724 goto cleanup;
1725 }
1726 if (type == KERN_PROC) {
1727 if (buflen >= sizeof(struct kinfo_proc)) {
1728 fill_eproc(p, &eproc);
1729 error = copyout(p, &dp->kp_proc,
1730 sizeof(struct proc));
1731 if (error)
1732 goto cleanup;
1733 error = copyout(&eproc, &dp->kp_eproc,
1734 sizeof(eproc));
1735 if (error)
1736 goto cleanup;
1737 dp++;
1738 buflen -= sizeof(struct kinfo_proc);
1739 }
1740 needed += sizeof(struct kinfo_proc);
1741 } else { /* KERN_PROC2 */
1742 if (buflen >= elem_size && elem_count > 0) {
1743 fill_kproc2(p, &kproc2);
1744 /*
1745 * Copy out elem_size, but not larger than
1746 * the size of a struct kinfo_proc2.
1747 */
1748 error = copyout(&kproc2, dp2,
1749 min(sizeof(kproc2), elem_size));
1750 if (error)
1751 goto cleanup;
1752 dp2 += elem_size;
1753 buflen -= elem_size;
1754 elem_count--;
1755 }
1756 needed += elem_size;
1757 }
1758 }
1759 pd++;
1760 if (pd->pd_list != NULL)
1761 goto again;
1762 proclist_unlock_read();
1763
1764 if (where != NULL) {
1765 if (type == KERN_PROC)
1766 *oldlenp = (char *)dp - where;
1767 else
1768 *oldlenp = dp2 - where;
1769 if (needed > *oldlenp)
1770 return (ENOMEM);
1771 } else {
1772 needed += KERN_PROCSLOP;
1773 *oldlenp = needed;
1774 }
1775 return (0);
1776 cleanup:
1777 proclist_unlock_read();
1778 return (error);
1779 }
1780
1781 /*
1782 * sysctl helper routine for kern.proc_args pseudo-subtree.
1783 */
1784 static int
1785 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1786 {
1787 struct ps_strings pss;
1788 struct proc *p, *up = l->l_proc;
1789 size_t len, upper_bound, xlen, i;
1790 struct uio auio;
1791 struct iovec aiov;
1792 vaddr_t argv;
1793 pid_t pid;
1794 int nargv, type, error;
1795 char *arg;
1796 char *tmp;
1797
1798 if (namelen == 1 && name[0] == CTL_QUERY)
1799 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1800
1801 if (newp != NULL || namelen != 2)
1802 return (EINVAL);
1803 pid = name[0];
1804 type = name[1];
1805
1806 switch (type) {
1807 case KERN_PROC_ARGV:
1808 case KERN_PROC_NARGV:
1809 case KERN_PROC_ENV:
1810 case KERN_PROC_NENV:
1811 /* ok */
1812 break;
1813 default:
1814 return (EINVAL);
1815 }
1816
1817 /* check pid */
1818 if ((p = pfind(pid)) == NULL)
1819 return (EINVAL);
1820
1821 /* only root or same user change look at the environment */
1822 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1823 if (up->p_ucred->cr_uid != 0) {
1824 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1825 up->p_cred->p_ruid != p->p_cred->p_svuid)
1826 return (EPERM);
1827 }
1828 }
1829
1830 if (oldp == NULL) {
1831 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1832 *oldlenp = sizeof (int);
1833 else
1834 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1835 return (0);
1836 }
1837
1838 /*
1839 * Zombies don't have a stack, so we can't read their psstrings.
1840 * System processes also don't have a user stack.
1841 */
1842 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1843 return (EINVAL);
1844
1845 /*
1846 * Lock the process down in memory.
1847 */
1848 /* XXXCDC: how should locking work here? */
1849 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1850 return (EFAULT);
1851
1852 p->p_vmspace->vm_refcnt++; /* XXX */
1853
1854 /*
1855 * Allocate a temporary buffer to hold the arguments.
1856 */
1857 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1858
1859 /*
1860 * Read in the ps_strings structure.
1861 */
1862 aiov.iov_base = &pss;
1863 aiov.iov_len = sizeof(pss);
1864 auio.uio_iov = &aiov;
1865 auio.uio_iovcnt = 1;
1866 auio.uio_offset = (vaddr_t)p->p_psstr;
1867 auio.uio_resid = sizeof(pss);
1868 auio.uio_segflg = UIO_SYSSPACE;
1869 auio.uio_rw = UIO_READ;
1870 auio.uio_procp = NULL;
1871 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1872 if (error)
1873 goto done;
1874
1875 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1876 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1877 else
1878 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1879 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1880 error = copyout(&nargv, oldp, sizeof(nargv));
1881 *oldlenp = sizeof(nargv);
1882 goto done;
1883 }
1884 /*
1885 * Now read the address of the argument vector.
1886 */
1887 switch (type) {
1888 case KERN_PROC_ARGV:
1889 /* XXX compat32 stuff here */
1890 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1891 break;
1892 case KERN_PROC_ENV:
1893 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1894 break;
1895 default:
1896 return (EINVAL);
1897 }
1898 auio.uio_offset = (off_t)(long)tmp;
1899 aiov.iov_base = &argv;
1900 aiov.iov_len = sizeof(argv);
1901 auio.uio_iov = &aiov;
1902 auio.uio_iovcnt = 1;
1903 auio.uio_resid = sizeof(argv);
1904 auio.uio_segflg = UIO_SYSSPACE;
1905 auio.uio_rw = UIO_READ;
1906 auio.uio_procp = NULL;
1907 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1908 if (error)
1909 goto done;
1910
1911 /*
1912 * Now copy in the actual argument vector, one page at a time,
1913 * since we don't know how long the vector is (though, we do
1914 * know how many NUL-terminated strings are in the vector).
1915 */
1916 len = 0;
1917 upper_bound = *oldlenp;
1918 for (; nargv != 0 && len < upper_bound; len += xlen) {
1919 aiov.iov_base = arg;
1920 aiov.iov_len = PAGE_SIZE;
1921 auio.uio_iov = &aiov;
1922 auio.uio_iovcnt = 1;
1923 auio.uio_offset = argv + len;
1924 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1925 auio.uio_resid = xlen;
1926 auio.uio_segflg = UIO_SYSSPACE;
1927 auio.uio_rw = UIO_READ;
1928 auio.uio_procp = NULL;
1929 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1930 if (error)
1931 goto done;
1932
1933 for (i = 0; i < xlen && nargv != 0; i++) {
1934 if (arg[i] == '\0')
1935 nargv--; /* one full string */
1936 }
1937
1938 /*
1939 * Make sure we don't copyout past the end of the user's
1940 * buffer.
1941 */
1942 if (len + i > upper_bound)
1943 i = upper_bound - len;
1944
1945 error = copyout(arg, (char *)oldp + len, i);
1946 if (error)
1947 break;
1948
1949 if (nargv == 0) {
1950 len += i;
1951 break;
1952 }
1953 }
1954 *oldlenp = len;
1955
1956 done:
1957 uvmspace_free(p->p_vmspace);
1958
1959 free(arg, M_TEMP);
1960 return (error);
1961 }
1962
1963 /*
1964 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1965 * calculate on the fly taking into account integer overflow and the
1966 * current wired count.
1967 */
1968 static int
1969 sysctl_hw_usermem(SYSCTLFN_ARGS)
1970 {
1971 u_int ui;
1972 u_quad_t uq;
1973 struct sysctlnode node;
1974
1975 node = *rnode;
1976 switch (rnode->sysctl_num) {
1977 case HW_USERMEM:
1978 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
1979 ui = UINT_MAX;
1980 else
1981 ui *= PAGE_SIZE;
1982 node.sysctl_data = &ui;
1983 break;
1984 case HW_USERMEM64:
1985 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
1986 node.sysctl_data = &uq;
1987 break;
1988 default:
1989 return (EINVAL);
1990 }
1991
1992 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1993 }
1994
1995 /*
1996 * sysctl helper routine for kern.cnmagic node. pulls the old value
1997 * out, encoded, and stuffs the new value in for decoding.
1998 */
1999 static int
2000 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2001 {
2002 char magic[CNS_LEN];
2003 int error;
2004 struct sysctlnode node;
2005
2006 if (oldp)
2007 cn_get_magic(magic, CNS_LEN);
2008 node = *rnode;
2009 node.sysctl_data = &magic[0];
2010 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2011 if (error || newp == NULL)
2012 return (error);
2013
2014 return (cn_set_magic(magic));
2015 }
2016
2017 static int
2018 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2019 {
2020 int ncpu;
2021 struct sysctlnode node;
2022
2023 ncpu = sysctl_ncpus();
2024 node = *rnode;
2025 node.sysctl_data = &ncpu;
2026
2027 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2028 }
2029
2030
2031 /*
2032 * ********************************************************************
2033 * section 3: public helper routines that are used for more than one
2034 * node
2035 * ********************************************************************
2036 */
2037
2038 /*
2039 * sysctl helper routine for the kern.root_device node and some ports'
2040 * machdep.root_device nodes.
2041 */
2042 int
2043 sysctl_root_device(SYSCTLFN_ARGS)
2044 {
2045 struct sysctlnode node;
2046
2047 node = *rnode;
2048 node.sysctl_data = root_device->dv_xname;
2049 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2050 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2051 }
2052
2053 /*
2054 * sysctl helper routine for kern.consdev, dependent on the current
2055 * state of the console. also used for machdep.console_device on some
2056 * ports.
2057 */
2058 int
2059 sysctl_consdev(SYSCTLFN_ARGS)
2060 {
2061 dev_t consdev;
2062 struct sysctlnode node;
2063
2064 if (cn_tab != NULL)
2065 consdev = cn_tab->cn_dev;
2066 else
2067 consdev = NODEV;
2068 node = *rnode;
2069 node.sysctl_data = &consdev;
2070 node.sysctl_size = sizeof(consdev);
2071 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2072 }
2073
2074 /*
2075 * ********************************************************************
2076 * section 4: support for some helpers
2077 * ********************************************************************
2078 */
2079
2080 /*
2081 * Fill in a kinfo_proc2 structure for the specified process.
2082 */
2083 static void
2084 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2085 {
2086 struct tty *tp;
2087 struct lwp *l;
2088 struct timeval ut, st;
2089
2090 memset(ki, 0, sizeof(*ki));
2091
2092 ki->p_paddr = PTRTOUINT64(p);
2093 ki->p_fd = PTRTOUINT64(p->p_fd);
2094 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2095 ki->p_stats = PTRTOUINT64(p->p_stats);
2096 ki->p_limit = PTRTOUINT64(p->p_limit);
2097 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2098 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2099 ki->p_sess = PTRTOUINT64(p->p_session);
2100 ki->p_tsess = 0; /* may be changed if controlling tty below */
2101 ki->p_ru = PTRTOUINT64(p->p_ru);
2102
2103 ki->p_eflag = 0;
2104 ki->p_exitsig = p->p_exitsig;
2105 ki->p_flag = p->p_flag;
2106
2107 ki->p_pid = p->p_pid;
2108 if (p->p_pptr)
2109 ki->p_ppid = p->p_pptr->p_pid;
2110 else
2111 ki->p_ppid = 0;
2112 ki->p_sid = p->p_session->s_sid;
2113 ki->p__pgid = p->p_pgrp->pg_id;
2114
2115 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2116
2117 ki->p_uid = p->p_ucred->cr_uid;
2118 ki->p_ruid = p->p_cred->p_ruid;
2119 ki->p_gid = p->p_ucred->cr_gid;
2120 ki->p_rgid = p->p_cred->p_rgid;
2121 ki->p_svuid = p->p_cred->p_svuid;
2122 ki->p_svgid = p->p_cred->p_svgid;
2123
2124 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2125 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2126 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2127
2128 ki->p_jobc = p->p_pgrp->pg_jobc;
2129 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2130 ki->p_tdev = tp->t_dev;
2131 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2132 ki->p_tsess = PTRTOUINT64(tp->t_session);
2133 } else {
2134 ki->p_tdev = NODEV;
2135 }
2136
2137 ki->p_estcpu = p->p_estcpu;
2138 ki->p_rtime_sec = p->p_rtime.tv_sec;
2139 ki->p_rtime_usec = p->p_rtime.tv_usec;
2140 ki->p_cpticks = p->p_cpticks;
2141 ki->p_pctcpu = p->p_pctcpu;
2142
2143 ki->p_uticks = p->p_uticks;
2144 ki->p_sticks = p->p_sticks;
2145 ki->p_iticks = p->p_iticks;
2146
2147 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2148 ki->p_traceflag = p->p_traceflag;
2149
2150
2151 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2152 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2153 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2154 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2155
2156 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2157 ki->p_realstat = p->p_stat;
2158 ki->p_nice = p->p_nice;
2159
2160 ki->p_xstat = p->p_xstat;
2161 ki->p_acflag = p->p_acflag;
2162
2163 strncpy(ki->p_comm, p->p_comm,
2164 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2165
2166 strncpy(ki->p_login, p->p_session->s_login,
2167 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2168
2169 ki->p_nlwps = p->p_nlwps;
2170 ki->p_nrlwps = p->p_nrlwps;
2171 ki->p_realflag = p->p_flag;
2172
2173 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2174 ki->p_vm_rssize = 0;
2175 ki->p_vm_tsize = 0;
2176 ki->p_vm_dsize = 0;
2177 ki->p_vm_ssize = 0;
2178 l = NULL;
2179 } else {
2180 struct vmspace *vm = p->p_vmspace;
2181
2182 ki->p_vm_rssize = vm_resident_count(vm);
2183 ki->p_vm_tsize = vm->vm_tsize;
2184 ki->p_vm_dsize = vm->vm_dsize;
2185 ki->p_vm_ssize = vm->vm_ssize;
2186
2187 /* Pick a "representative" LWP */
2188 l = proc_representative_lwp(p);
2189 ki->p_forw = PTRTOUINT64(l->l_forw);
2190 ki->p_back = PTRTOUINT64(l->l_back);
2191 ki->p_addr = PTRTOUINT64(l->l_addr);
2192 ki->p_stat = l->l_stat;
2193 ki->p_flag |= l->l_flag;
2194 ki->p_swtime = l->l_swtime;
2195 ki->p_slptime = l->l_slptime;
2196 if (l->l_stat == LSONPROC) {
2197 KDASSERT(l->l_cpu != NULL);
2198 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2199 } else
2200 ki->p_schedflags = 0;
2201 ki->p_holdcnt = l->l_holdcnt;
2202 ki->p_priority = l->l_priority;
2203 ki->p_usrpri = l->l_usrpri;
2204 if (l->l_wmesg)
2205 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2206 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2207
2208 }
2209
2210 if (p->p_session->s_ttyvp)
2211 ki->p_eflag |= EPROC_CTTY;
2212 if (SESS_LEADER(p))
2213 ki->p_eflag |= EPROC_SLEADER;
2214
2215 /* XXX Is this double check necessary? */
2216 if (P_ZOMBIE(p)) {
2217 ki->p_uvalid = 0;
2218 } else {
2219 ki->p_uvalid = 1;
2220
2221 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2222 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2223
2224 calcru(p, &ut, &st, 0);
2225 ki->p_uutime_sec = ut.tv_sec;
2226 ki->p_uutime_usec = ut.tv_usec;
2227 ki->p_ustime_sec = st.tv_sec;
2228 ki->p_ustime_usec = st.tv_usec;
2229
2230 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2231 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2232 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2233 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2234 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2235 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2236 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2237 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2238 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2239 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2240 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2241 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2242 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2243 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2244
2245 timeradd(&p->p_stats->p_cru.ru_utime,
2246 &p->p_stats->p_cru.ru_stime, &ut);
2247 ki->p_uctime_sec = ut.tv_sec;
2248 ki->p_uctime_usec = ut.tv_usec;
2249 }
2250 #ifdef MULTIPROCESSOR
2251 if (l && l->l_cpu != NULL)
2252 ki->p_cpuid = l->l_cpu->ci_cpuid;
2253 else
2254 #endif
2255 ki->p_cpuid = KI_NOCPU;
2256 }
2257
2258 /*
2259 * Fill in a kinfo_lwp structure for the specified lwp.
2260 */
2261 static void
2262 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2263 {
2264
2265 kl->l_forw = PTRTOUINT64(l->l_forw);
2266 kl->l_back = PTRTOUINT64(l->l_back);
2267 kl->l_laddr = PTRTOUINT64(l);
2268 kl->l_addr = PTRTOUINT64(l->l_addr);
2269 kl->l_stat = l->l_stat;
2270 kl->l_lid = l->l_lid;
2271 kl->l_flag = l->l_flag;
2272
2273 kl->l_swtime = l->l_swtime;
2274 kl->l_slptime = l->l_slptime;
2275 if (l->l_stat == LSONPROC) {
2276 KDASSERT(l->l_cpu != NULL);
2277 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2278 } else
2279 kl->l_schedflags = 0;
2280 kl->l_holdcnt = l->l_holdcnt;
2281 kl->l_priority = l->l_priority;
2282 kl->l_usrpri = l->l_usrpri;
2283 if (l->l_wmesg)
2284 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2285 kl->l_wchan = PTRTOUINT64(l->l_wchan);
2286 #ifdef MULTIPROCESSOR
2287 if (l->l_cpu != NULL)
2288 kl->l_cpuid = l->l_cpu->ci_cpuid;
2289 else
2290 #endif
2291 kl->l_cpuid = KI_NOCPU;
2292 }
2293
2294 /*
2295 * Fill in an eproc structure for the specified process.
2296 */
2297 void
2298 fill_eproc(struct proc *p, struct eproc *ep)
2299 {
2300 struct tty *tp;
2301 struct lwp *l;
2302
2303 ep->e_paddr = p;
2304 ep->e_sess = p->p_session;
2305 ep->e_pcred = *p->p_cred;
2306 ep->e_ucred = *p->p_ucred;
2307 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2308 ep->e_vm.vm_rssize = 0;
2309 ep->e_vm.vm_tsize = 0;
2310 ep->e_vm.vm_dsize = 0;
2311 ep->e_vm.vm_ssize = 0;
2312 /* ep->e_vm.vm_pmap = XXX; */
2313 } else {
2314 struct vmspace *vm = p->p_vmspace;
2315
2316 ep->e_vm.vm_rssize = vm_resident_count(vm);
2317 ep->e_vm.vm_tsize = vm->vm_tsize;
2318 ep->e_vm.vm_dsize = vm->vm_dsize;
2319 ep->e_vm.vm_ssize = vm->vm_ssize;
2320
2321 /* Pick a "representative" LWP */
2322 l = proc_representative_lwp(p);
2323
2324 if (l->l_wmesg)
2325 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2326 }
2327 if (p->p_pptr)
2328 ep->e_ppid = p->p_pptr->p_pid;
2329 else
2330 ep->e_ppid = 0;
2331 ep->e_pgid = p->p_pgrp->pg_id;
2332 ep->e_sid = ep->e_sess->s_sid;
2333 ep->e_jobc = p->p_pgrp->pg_jobc;
2334 if ((p->p_flag & P_CONTROLT) &&
2335 (tp = ep->e_sess->s_ttyp)) {
2336 ep->e_tdev = tp->t_dev;
2337 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2338 ep->e_tsess = tp->t_session;
2339 } else
2340 ep->e_tdev = NODEV;
2341
2342 ep->e_xsize = ep->e_xrssize = 0;
2343 ep->e_xccount = ep->e_xswrss = 0;
2344 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2345 if (SESS_LEADER(p))
2346 ep->e_flag |= EPROC_SLEADER;
2347 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2348 }
2349