init_sysctl.c revision 1.3 1 /* $NetBSD: init_sysctl.c,v 1.3 2003/12/06 09:36:34 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "opt_sysv.h"
40 #include "opt_multiprocessor.h"
41 #include "pty.h"
42 #include "rnd.h"
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/sysctl.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/unistd.h>
51 #include <sys/disklabel.h>
52 #include <sys/rnd.h>
53 #include <sys/vnode.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/msgbuf.h>
57 #include <dev/cons.h>
58 #include <sys/socketvar.h>
59 #include <sys/file.h>
60 #include <sys/tty.h>
61 #include <sys/malloc.h>
62 #include <sys/resource.h>
63 #include <sys/resourcevar.h>
64 #include <sys/exec.h>
65 #include <sys/conf.h>
66 #include <sys/device.h>
67
68 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
69 #include <sys/ipc.h>
70 #endif
71 #ifdef SYSVMSG
72 #include <sys/msg.h>
73 #endif
74 #ifdef SYSVSEM
75 #include <sys/sem.h>
76 #endif
77 #ifdef SYSVSHM
78 #include <sys/shm.h>
79 #endif
80
81 /*
82 * try over estimating by 5 procs/lwps
83 */
84 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
85 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
86
87 /*
88 * convert pointer to 64 int for struct kinfo_proc2
89 */
90 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
91
92 #ifndef MULTIPROCESSOR
93 #define sysctl_ncpus() (1)
94 #else /* MULTIPROCESSOR */
95 #ifndef CPU_INFO_FOREACH
96 #define CPU_INFO_ITERATOR int
97 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
98 #endif
99 static int
100 sysctl_ncpus(void)
101 {
102 struct cpu_info *ci;
103 CPU_INFO_ITERATOR cii;
104
105 int ncpus = 0;
106 for (CPU_INFO_FOREACH(cii, ci))
107 ncpus++;
108 return (ncpus);
109 }
110 #endif /* MULTIPROCESSOR */
111
112 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
113 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
114 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
115 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
116 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
117 static int sysctl_kern_file(SYSCTLFN_PROTO);
118 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
119 static int sysctl_msgbuf(SYSCTLFN_PROTO);
120 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
121 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
122 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
123 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
124 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
125 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
126 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
127 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
128 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
129 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
130 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
131 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
132 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
133 static int sysctl_doeproc(SYSCTLFN_PROTO);
134 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
135 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
136 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
137 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
138
139 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
140 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
141
142 /*
143 * ********************************************************************
144 * section 1: setup routines
145 * ********************************************************************
146 * these functions are stuffed into a link set for sysctl setup
147 * functions. they're never called or referenced from anywhere else.
148 * ********************************************************************
149 */
150
151 /*
152 * sets up the base nodes...
153 */
154 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
155 {
156
157 sysctl_createv(SYSCTL_PERMANENT,
158 CTLTYPE_NODE, "kern", NULL,
159 NULL, 0, NULL, 0,
160 CTL_KERN, CTL_EOL);
161 sysctl_createv(SYSCTL_PERMANENT,
162 CTLTYPE_NODE, "vm", NULL,
163 NULL, 0, NULL, 0,
164 CTL_VM, CTL_EOL);
165 sysctl_createv(SYSCTL_PERMANENT,
166 CTLTYPE_NODE, "vfs", NULL,
167 NULL, 0, NULL, 0,
168 CTL_VFS, CTL_EOL);
169 sysctl_createv(SYSCTL_PERMANENT,
170 CTLTYPE_NODE, "net", NULL,
171 NULL, 0, NULL, 0,
172 CTL_NET, CTL_EOL);
173 sysctl_createv(SYSCTL_PERMANENT,
174 CTLTYPE_NODE, "debug", NULL,
175 NULL, 0, NULL, 0,
176 CTL_DEBUG, CTL_EOL);
177 sysctl_createv(SYSCTL_PERMANENT,
178 CTLTYPE_NODE, "hw", NULL,
179 NULL, 0, NULL, 0,
180 CTL_HW, CTL_EOL);
181 sysctl_createv(SYSCTL_PERMANENT,
182 CTLTYPE_NODE, "machdep", NULL,
183 NULL, 0, NULL, 0,
184 CTL_MACHDEP, CTL_EOL);
185 /*
186 * this node is inserted so that the sysctl nodes in libc can
187 * operate.
188 */
189 sysctl_createv(SYSCTL_PERMANENT,
190 CTLTYPE_NODE, "user", NULL,
191 NULL, 0, NULL, 0,
192 CTL_USER, CTL_EOL);
193 sysctl_createv(SYSCTL_PERMANENT,
194 CTLTYPE_NODE, "ddb", NULL,
195 NULL, 0, NULL, 0,
196 CTL_DDB, CTL_EOL);
197 sysctl_createv(SYSCTL_PERMANENT,
198 CTLTYPE_NODE, "proc", NULL,
199 NULL, 0, NULL, 0,
200 CTL_PROC, CTL_EOL);
201 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
202 CTLTYPE_NODE, "vendor", NULL,
203 NULL, 0, NULL, 0,
204 CTL_VENDOR, CTL_EOL);
205 sysctl_createv(SYSCTL_PERMANENT,
206 CTLTYPE_NODE, "emul", NULL,
207 NULL, 0, NULL, 0,
208 CTL_EMUL, CTL_EOL);
209 }
210
211 /*
212 * this setup routine is a replacement for kern_sysctl()
213 */
214 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
215 {
216 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
217 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
218 extern int dumponpanic; /* defined in kern/subr_prf.c */
219
220 sysctl_createv(SYSCTL_PERMANENT,
221 CTLTYPE_NODE, "kern", NULL,
222 NULL, 0, NULL, 0,
223 CTL_KERN, CTL_EOL);
224
225 sysctl_createv(SYSCTL_PERMANENT,
226 CTLTYPE_STRING, "ostype", NULL,
227 NULL, 0, &ostype, 0,
228 CTL_KERN, KERN_OSTYPE, CTL_EOL);
229 sysctl_createv(SYSCTL_PERMANENT,
230 CTLTYPE_STRING, "osrelease", NULL,
231 NULL, 0, &osrelease, 0,
232 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
233 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
234 CTLTYPE_INT, "osrevision", NULL,
235 NULL, __NetBSD_Version__, NULL, 0,
236 CTL_KERN, KERN_OSREV, CTL_EOL);
237 sysctl_createv(SYSCTL_PERMANENT,
238 CTLTYPE_STRING, "version", NULL,
239 NULL, 0, &version, 0,
240 CTL_KERN, KERN_VERSION, CTL_EOL);
241 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
242 CTLTYPE_INT, "maxvnodes", NULL,
243 sysctl_kern_maxvnodes, 0, NULL, 0,
244 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
245 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
246 CTLTYPE_INT, "maxproc", NULL,
247 sysctl_kern_maxproc, 0, NULL, 0,
248 CTL_KERN, KERN_MAXPROC, CTL_EOL);
249 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
250 CTLTYPE_INT, "maxfiles", NULL,
251 NULL, 0, &maxfiles, 0,
252 CTL_KERN, KERN_MAXFILES, CTL_EOL);
253 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
254 CTLTYPE_INT, "argmax", NULL,
255 NULL, ARG_MAX, NULL, 0,
256 CTL_KERN, KERN_ARGMAX, CTL_EOL);
257 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
258 CTLTYPE_INT, "securelevel", NULL,
259 sysctl_kern_securelevel, 0, &securelevel, 0,
260 CTL_KERN, KERN_SECURELVL, CTL_EOL);
261 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
262 CTLTYPE_STRING, "hostname", NULL,
263 NULL, 0, &hostname, MAXHOSTNAMELEN,
264 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
265 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
266 CTLTYPE_INT, "hostid", NULL,
267 sysctl_kern_hostid, 0, NULL, 0,
268 CTL_KERN, KERN_HOSTID, CTL_EOL);
269 sysctl_createv(SYSCTL_PERMANENT,
270 CTLTYPE_STRUCT, "clockrate", NULL,
271 sysctl_kern_clockrate, 0, NULL,
272 sizeof(struct clockinfo),
273 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
274 sysctl_createv(SYSCTL_PERMANENT,
275 CTLTYPE_STRUCT, "vnode", NULL,
276 sysctl_kern_vnode, 0, NULL, 0,
277 CTL_KERN, KERN_VNODE, CTL_EOL);
278 sysctl_createv(SYSCTL_PERMANENT,
279 CTLTYPE_STRUCT, "file", NULL,
280 sysctl_kern_file, 0, NULL, 0,
281 CTL_KERN, KERN_FILE, CTL_EOL);
282 #ifndef GPROF
283 sysctl_createv(SYSCTL_PERMANENT,
284 CTLTYPE_NODE, "profiling", NULL,
285 sysctl_notavail, 0, NULL, 0,
286 CTL_KERN, KERN_PROF, CTL_EOL);
287 #endif
288 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
289 CTLTYPE_INT, "posix1version", NULL,
290 NULL, _POSIX_VERSION, NULL, 0,
291 CTL_KERN, KERN_POSIX1, CTL_EOL);
292 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
293 CTLTYPE_INT, "ngroups", NULL,
294 NULL, NGROUPS_MAX, NULL, 0,
295 CTL_KERN, KERN_NGROUPS, CTL_EOL);
296 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
297 CTLTYPE_INT, "job_control", NULL,
298 NULL, 1, NULL, 0,
299 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
300 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
301 CTLTYPE_INT, "saved_ids", NULL, NULL,
302 #ifdef _POSIX_SAVED_IDS
303 1,
304 #else /* _POSIX_SAVED_IDS */
305 0,
306 #endif /* _POSIX_SAVED_IDS */
307 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
308 sysctl_createv(SYSCTL_PERMANENT,
309 CTLTYPE_STRUCT, "boottime", NULL,
310 NULL, 0, &boottime, sizeof(boottime),
311 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
312 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
313 CTLTYPE_STRING, "domainname", NULL,
314 NULL, 0, &domainname, MAXHOSTNAMELEN,
315 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
316 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
317 CTLTYPE_INT, "maxpartitions", NULL,
318 NULL, MAXPARTITIONS, NULL, 0,
319 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
320 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
321 CTLTYPE_INT, "rawpartition", NULL,
322 NULL, RAW_PART, NULL, 0,
323 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
324 sysctl_createv(SYSCTL_PERMANENT,
325 CTLTYPE_STRUCT, "timex", NULL,
326 sysctl_notavail, 0, NULL, 0,
327 CTL_KERN, KERN_TIMEX, CTL_EOL);
328 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
329 CTLTYPE_INT, "autonicetime", NULL,
330 sysctl_kern_autonice, 0, &autonicetime, 0,
331 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
332 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
333 CTLTYPE_INT, "autoniceval", NULL,
334 sysctl_kern_autonice, 0, &autoniceval, 0,
335 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
336 sysctl_createv(SYSCTL_PERMANENT,
337 CTLTYPE_INT, "rtc_offset", NULL,
338 NULL, 0, &rtc_offset, 0,
339 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
340 sysctl_createv(SYSCTL_PERMANENT,
341 CTLTYPE_STRING, "root_device", NULL,
342 sysctl_root_device, 0, NULL, 0,
343 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
344 sysctl_createv(SYSCTL_PERMANENT,
345 CTLTYPE_INT, "msgbufsize", NULL,
346 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
347 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
348 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
349 CTLTYPE_INT, "fsync", NULL,
350 NULL, 1, NULL, 0,
351 CTL_KERN, KERN_FSYNC, CTL_EOL);
352 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
353 CTLTYPE_INT, "sysvmsg", NULL, NULL,
354 #ifdef SYSVMSG
355 1,
356 #else /* SYSVMSG */
357 0,
358 #endif /* SYSVMSG */
359 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
360 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
361 CTLTYPE_INT, "sysvsem", NULL, NULL,
362 #ifdef SYSVSEM
363 1,
364 #else /* SYSVSEM */
365 0,
366 #endif /* SYSVSEM */
367 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
368 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
369 CTLTYPE_INT, "sysvshm", NULL, NULL,
370 #ifdef SYSVSHM
371 1,
372 #else /* SYSVSHM */
373 0,
374 #endif /* SYSVSHM */
375 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
376 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
377 CTLTYPE_INT, "synchronized_io", NULL,
378 NULL, 1, NULL, 0,
379 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
380 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
381 CTLTYPE_INT, "iov_max", NULL,
382 NULL, IOV_MAX, NULL, 0,
383 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
384 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
385 CTLTYPE_INT, "mapped_files", NULL,
386 NULL, 1, NULL, 0,
387 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
388 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
389 CTLTYPE_INT, "memlock", NULL,
390 NULL, 1, NULL, 0,
391 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
392 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
393 CTLTYPE_INT, "memlock_range", NULL,
394 NULL, 1, NULL, 0,
395 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
396 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
397 CTLTYPE_INT, "memory_protection", NULL,
398 NULL, 1, NULL, 0,
399 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
400 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
401 CTLTYPE_INT, "login_name_max", NULL,
402 NULL, LOGIN_NAME_MAX, NULL, 0,
403 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
404 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
405 CTLTYPE_STRING, "defcorename", NULL,
406 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
407 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
408 sysctl_createv(SYSCTL_PERMANENT,
409 CTLTYPE_INT, "logsigexit", NULL,
410 NULL, 0, &kern_logsigexit, 0,
411 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
412 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
413 CTLTYPE_INT, "fscale", NULL,
414 NULL, FSCALE, NULL, 0,
415 CTL_KERN, KERN_FSCALE, CTL_EOL);
416 sysctl_createv(SYSCTL_PERMANENT,
417 CTLTYPE_INT, "ccpu", NULL,
418 NULL, 0, &ccpu, 0,
419 CTL_KERN, KERN_CCPU, CTL_EOL);
420 sysctl_createv(SYSCTL_PERMANENT,
421 CTLTYPE_STRUCT, "cp_time", NULL,
422 sysctl_kern_cptime, 0, NULL, 0,
423 CTL_KERN, KERN_CP_TIME, CTL_EOL);
424 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
425 sysctl_createv(SYSCTL_PERMANENT,
426 CTLTYPE_STRUCT, "sysvipc_info", NULL,
427 sysctl_kern_sysvipc, 0, NULL, 0,
428 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
429 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
430 sysctl_createv(SYSCTL_PERMANENT,
431 CTLTYPE_INT, "msgbuf", NULL,
432 sysctl_msgbuf, 0, NULL, 0,
433 CTL_KERN, KERN_MSGBUF, CTL_EOL);
434 sysctl_createv(SYSCTL_PERMANENT,
435 CTLTYPE_STRUCT, "consdev", NULL,
436 sysctl_consdev, 0, NULL, sizeof(dev_t),
437 CTL_KERN, KERN_CONSDEV, CTL_EOL);
438 #if NPTY > 0
439 sysctl_createv(SYSCTL_PERMANENT,
440 CTLTYPE_INT, "maxptys", NULL,
441 sysctl_kern_maxptys, 0, NULL, 0,
442 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
443 #endif /* NPTY > 0 */
444 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
445 CTLTYPE_INT, "maxphys", NULL,
446 NULL, MAXPHYS, NULL, 0,
447 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
448 sysctl_createv(SYSCTL_PERMANENT,
449 CTLTYPE_INT, "sbmax", NULL,
450 sysctl_kern_sbmax, 0, NULL, 0,
451 CTL_KERN, KERN_SBMAX, CTL_EOL);
452 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
453 CTLTYPE_INT, "monotonic_clock", NULL,
454 /* XXX _POSIX_VERSION */
455 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
456 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
457 sysctl_createv(SYSCTL_PERMANENT,
458 CTLTYPE_INT, "urandom", NULL,
459 sysctl_kern_urnd, 0, NULL, 0,
460 CTL_KERN, KERN_URND, CTL_EOL);
461 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
462 CTLTYPE_INT, "labelsector", NULL,
463 NULL, LABELSECTOR, NULL, 0,
464 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
465 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
466 CTLTYPE_INT, "labeloffset", NULL,
467 NULL, LABELOFFSET, NULL, 0,
468 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
469 sysctl_createv(SYSCTL_PERMANENT,
470 CTLTYPE_NODE, "lwp", NULL,
471 sysctl_kern_lwp, 0, NULL, 0,
472 CTL_KERN, KERN_LWP, CTL_EOL);
473 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
474 CTLTYPE_INT, "forkfsleep", NULL,
475 sysctl_kern_forkfsleep, 0, NULL, 0,
476 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
477 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
478 CTLTYPE_INT, "posix_threads", NULL,
479 /* XXX _POSIX_VERSION */
480 NULL, _POSIX_THREADS, NULL, 0,
481 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
482 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
483 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
484 #ifdef P1003_1B_SEMAPHORE
485 200112,
486 #else /* P1003_1B_SEMAPHORE */
487 0,
488 #endif /* P1003_1B_SEMAPHORE */
489 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
490 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
491 CTLTYPE_INT, "posix_barriers", NULL,
492 /* XXX _POSIX_VERSION */
493 NULL, _POSIX_BARRIERS, NULL, 0,
494 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
495 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
496 CTLTYPE_INT, "posix_timers", NULL,
497 /* XXX _POSIX_VERSION */
498 NULL, _POSIX_TIMERS, NULL, 0,
499 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
500 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
501 CTLTYPE_INT, "posix_spin_locks", NULL,
502 /* XXX _POSIX_VERSION */
503 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
504 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
505 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
506 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
507 /* XXX _POSIX_VERSION */
508 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
509 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
510 sysctl_createv(SYSCTL_PERMANENT,
511 CTLTYPE_INT, "dump_on_panic", NULL,
512 NULL, 0, &dumponpanic, 0,
513 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
514 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
515 CTLTYPE_INT, "somaxkva", NULL,
516 sysctl_kern_somaxkva, 0, NULL, 0,
517 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
518 sysctl_createv(SYSCTL_PERMANENT,
519 CTLTYPE_INT, "root_partition", NULL,
520 sysctl_kern_root_partition, 0, NULL, 0,
521 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
522 sysctl_createv(SYSCTL_PERMANENT,
523 CTLTYPE_STRUCT, "drivers", NULL,
524 sysctl_kern_drivers, 0, NULL, 0,
525 CTL_KERN, KERN_DRIVERS, CTL_EOL);
526 }
527
528 SYSCTL_SETUP(sysctl_kern_proc_setup,
529 "sysctl kern.proc/proc2/proc_args subtree setup")
530 {
531
532 sysctl_createv(SYSCTL_PERMANENT,
533 CTLTYPE_NODE, "kern", NULL,
534 NULL, 0, NULL, 0,
535 CTL_KERN, CTL_EOL);
536
537 sysctl_createv(SYSCTL_PERMANENT,
538 CTLTYPE_NODE, "proc", NULL,
539 sysctl_doeproc, 0, NULL, 0,
540 CTL_KERN, KERN_PROC, CTL_EOL);
541 sysctl_createv(SYSCTL_PERMANENT,
542 CTLTYPE_NODE, "proc2", NULL,
543 sysctl_doeproc, 0, NULL, 0,
544 CTL_KERN, KERN_PROC2, CTL_EOL);
545 sysctl_createv(SYSCTL_PERMANENT,
546 CTLTYPE_NODE, "proc_args", NULL,
547 sysctl_kern_proc_args, 0, NULL, 0,
548 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
549
550 /*
551 "nodes" under these:
552
553 KERN_PROC_ALL
554 KERN_PROC_PID pid
555 KERN_PROC_PGRP pgrp
556 KERN_PROC_SESSION sess
557 KERN_PROC_TTY tty
558 KERN_PROC_UID uid
559 KERN_PROC_RUID uid
560 KERN_PROC_GID gid
561 KERN_PROC_RGID gid
562
563 all in all, probably not worth the effort...
564 */
565 }
566
567 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
568 {
569 u_int u;
570 u_quad_t q;
571
572 sysctl_createv(SYSCTL_PERMANENT,
573 CTLTYPE_NODE, "hw", NULL,
574 NULL, 0, NULL, 0,
575 CTL_HW, CTL_EOL);
576
577 sysctl_createv(SYSCTL_PERMANENT,
578 CTLTYPE_STRING, "machine", NULL,
579 NULL, 0, machine, 0,
580 CTL_HW, HW_MACHINE, CTL_EOL);
581 sysctl_createv(SYSCTL_PERMANENT,
582 CTLTYPE_STRING, "model", NULL,
583 NULL, 0, cpu_model, 0,
584 CTL_HW, HW_MODEL, CTL_EOL);
585 sysctl_createv(SYSCTL_PERMANENT,
586 CTLTYPE_INT, "ncpu", NULL,
587 sysctl_hw_ncpu, 0, NULL, 0,
588 CTL_HW, HW_NCPU, CTL_EOL);
589 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
590 CTLTYPE_INT, "byteorder", NULL,
591 NULL, BYTE_ORDER, NULL, 0,
592 CTL_HW, HW_BYTEORDER, CTL_EOL);
593 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
594 UINT_MAX : physmem * PAGE_SIZE;
595 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
596 CTLTYPE_INT, "physmem", NULL,
597 NULL, u, NULL, 0,
598 CTL_HW, HW_PHYSMEM, CTL_EOL);
599 sysctl_createv(SYSCTL_PERMANENT,
600 CTLTYPE_INT, "usermem", NULL,
601 sysctl_hw_usermem, 0, NULL, 0,
602 CTL_HW, HW_USERMEM, CTL_EOL);
603 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
604 CTLTYPE_INT, "pagesize", NULL,
605 NULL, PAGE_SIZE, NULL, 0,
606 CTL_HW, HW_PAGESIZE, CTL_EOL);
607 sysctl_createv(SYSCTL_PERMANENT,
608 CTLTYPE_STRING, "disknames", NULL,
609 sysctl_hw_disknames, 0, NULL, 0,
610 CTL_HW, HW_DISKNAMES, CTL_EOL);
611 sysctl_createv(SYSCTL_PERMANENT,
612 CTLTYPE_STRUCT, "diskstats", NULL,
613 sysctl_hw_diskstats, 0, NULL, 0,
614 CTL_HW, HW_DISKSTATS, CTL_EOL);
615 sysctl_createv(SYSCTL_PERMANENT,
616 CTLTYPE_STRING, "machine_arch", NULL,
617 NULL, 0, machine_arch, 0,
618 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
619 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
620 CTLTYPE_INT, "alignbytes", NULL,
621 NULL, ALIGNBYTES, NULL, 0,
622 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
623 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
624 CTLTYPE_STRING, "cnmagic", NULL,
625 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
626 CTL_HW, HW_CNMAGIC, CTL_EOL);
627 q = (u_quad_t)physmem * PAGE_SIZE;
628 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
629 CTLTYPE_QUAD, "physmem64", NULL,
630 NULL, q, NULL, 0,
631 CTL_HW, HW_PHYSMEM64, CTL_EOL);
632 sysctl_createv(SYSCTL_PERMANENT,
633 CTLTYPE_QUAD, "usermem64", NULL,
634 sysctl_hw_usermem, 0, NULL, 0,
635 CTL_HW, HW_USERMEM64, CTL_EOL);
636 }
637
638 #ifdef DEBUG
639 /*
640 * Debugging related system variables.
641 */
642 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
643 struct ctldebug debug5, debug6, debug7, debug8, debug9;
644 struct ctldebug debug10, debug11, debug12, debug13, debug14;
645 struct ctldebug debug15, debug16, debug17, debug18, debug19;
646 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
647 &debug0, &debug1, &debug2, &debug3, &debug4,
648 &debug5, &debug6, &debug7, &debug8, &debug9,
649 &debug10, &debug11, &debug12, &debug13, &debug14,
650 &debug15, &debug16, &debug17, &debug18, &debug19,
651 };
652
653 /*
654 * this setup routine is a replacement for debug_sysctl()
655 *
656 * note that it creates several nodes per defined debug variable
657 */
658 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
659 {
660 struct ctldebug *cdp;
661 char nodename[20];
662 int i;
663
664 /*
665 * two ways here:
666 *
667 * the "old" way (debug.name -> value) which was emulated by
668 * the sysctl(8) binary
669 *
670 * the new way, which the sysctl(8) binary was actually using
671
672 node debug
673 node debug.0
674 string debug.0.name
675 int debug.0.value
676 int debug.name
677
678 */
679
680 sysctl_createv(SYSCTL_PERMANENT,
681 CTLTYPE_NODE, "debug", NULL,
682 NULL, 0, NULL, 0,
683 CTL_DEBUG, CTL_EOL);
684
685 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
686 cdp = debugvars[i];
687 if (cdp->debugname == NULL || cdp->debugvar == NULL)
688 continue;
689
690 snprintf(nodename, sizeof(nodename), "debug%d", i);
691 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
692 CTLTYPE_NODE, nodename, NULL,
693 NULL, 0, NULL, 0,
694 CTL_DEBUG, i, CTL_EOL);
695 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
696 CTLTYPE_STRING, "name", NULL,
697 NULL, 0, cdp->debugname, 0,
698 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
699 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
700 CTLTYPE_INT, "value", NULL,
701 NULL, 0, cdp->debugvar, 0,
702 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
703 sysctl_createv(SYSCTL_PERMANENT,
704 CTLTYPE_INT, cdp->debugname, NULL,
705 NULL, 0, cdp->debugvar, 0,
706 CTL_DEBUG, CTL_CREATE, CTL_EOL);
707 }
708 }
709 #endif /* DEBUG */
710
711 /*
712 * ********************************************************************
713 * section 2: private node-specific helper routines.
714 * ********************************************************************
715 */
716
717 /*
718 * sysctl helper routine for kern.maxvnodes. handles ensuring that
719 * new values never falls below desiredvnodes and then calls reinit
720 * routines that needs to adjust to the new value.
721 */
722 static int
723 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
724 {
725 int error, new_vnodes;
726 struct sysctlnode node;
727
728 new_vnodes = desiredvnodes;
729 node = *rnode;
730 node.sysctl_data = &new_vnodes;
731 error = sysctl_lookup(SYSCTLFN_CALL(&node));
732 if (error || newp == NULL)
733 return (error);
734
735 if (new_vnodes < desiredvnodes)
736 return (EINVAL);
737 desiredvnodes = new_vnodes;
738 vfs_reinit();
739 nchreinit();
740
741 return (0);
742 }
743
744 /*
745 * sysctl helper routine for kern.maxvnodes. ensures that the new
746 * values are not too low or too high.
747 */
748 static int
749 sysctl_kern_maxproc(SYSCTLFN_ARGS)
750 {
751 int error, nmaxproc;
752 struct sysctlnode node;
753
754 nmaxproc = maxproc;
755 node = *rnode;
756 node.sysctl_data = &nmaxproc;
757 error = sysctl_lookup(SYSCTLFN_CALL(&node));
758 if (error || newp == NULL)
759 return (error);
760
761 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
762 return (EINVAL);
763 #ifdef __HAVE_CPU_MAXPROC
764 if (nmaxproc > cpu_maxproc())
765 return (EINVAL);
766 #endif
767 maxproc = nmaxproc;
768
769 return (0);
770 }
771
772 /*
773 * sysctl helper routine for kern.securelevel. ensures that the value
774 * only rises unless the caller has pid 1 (assumed to be init).
775 */
776 static int
777 sysctl_kern_securelevel(SYSCTLFN_ARGS)
778 {
779 int newsecurelevel, error;
780 struct sysctlnode node;
781
782 newsecurelevel = securelevel;
783 node = *rnode;
784 node.sysctl_data = &newsecurelevel;
785 error = sysctl_lookup(SYSCTLFN_CALL(&node));
786 if (error || newp == NULL)
787 return (error);
788
789 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
790 return (EPERM);
791 securelevel = newsecurelevel;
792
793 return (error);
794 }
795
796 /*
797 * sysctl helper function for kern.hostid. the hostid is a long, but
798 * we export it as an int, so we need to give it a little help.
799 */
800 static int
801 sysctl_kern_hostid(SYSCTLFN_ARGS)
802 {
803 int error, inthostid;
804 struct sysctlnode node;
805
806 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
807 node = *rnode;
808 node.sysctl_data = &inthostid;
809 error = sysctl_lookup(SYSCTLFN_CALL(&node));
810 if (error || newp == NULL)
811 return (error);
812
813 hostid = inthostid;
814
815 return (0);
816 }
817
818 /*
819 * sysctl helper routine for kern.clockrate. assembles a struct on
820 * the fly to be returned to the caller.
821 */
822 static int
823 sysctl_kern_clockrate(SYSCTLFN_ARGS)
824 {
825 struct clockinfo clkinfo;
826 struct sysctlnode node;
827
828 clkinfo.tick = tick;
829 clkinfo.tickadj = tickadj;
830 clkinfo.hz = hz;
831 clkinfo.profhz = profhz;
832 clkinfo.stathz = stathz ? stathz : hz;
833
834 node = *rnode;
835 node.sysctl_data = &clkinfo;
836 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
837 }
838
839
840 /*
841 * sysctl helper routine for kern.file pseudo-subtree.
842 */
843 static int
844 sysctl_kern_file(SYSCTLFN_ARGS)
845 {
846 int error;
847 size_t buflen;
848 struct file *fp;
849 char *start, *where;
850
851 start = where = oldp;
852 buflen = *oldlenp;
853 if (where == NULL) {
854 /*
855 * overestimate by 10 files
856 */
857 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
858 return (0);
859 }
860
861 /*
862 * first copyout filehead
863 */
864 if (buflen < sizeof(filehead)) {
865 *oldlenp = 0;
866 return (0);
867 }
868 error = copyout(&filehead, where, sizeof(filehead));
869 if (error)
870 return (error);
871 buflen -= sizeof(filehead);
872 where += sizeof(filehead);
873
874 /*
875 * followed by an array of file structures
876 */
877 LIST_FOREACH(fp, &filehead, f_list) {
878 if (buflen < sizeof(struct file)) {
879 *oldlenp = where - start;
880 return (ENOMEM);
881 }
882 error = copyout(fp, where, sizeof(struct file));
883 if (error)
884 return (error);
885 buflen -= sizeof(struct file);
886 where += sizeof(struct file);
887 }
888 *oldlenp = where - start;
889 return (0);
890 }
891
892 /*
893 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
894 * asserts that the assigned value is in the correct range.
895 */
896 static int
897 sysctl_kern_autonice(SYSCTLFN_ARGS)
898 {
899 int error, t = 0;
900 struct sysctlnode node;
901
902 node = *rnode;
903 t = *(int*)node.sysctl_data;
904 node.sysctl_data = &t;
905 error = sysctl_lookup(SYSCTLFN_CALL(&node));
906 if (error || newp == NULL)
907 return (error);
908
909 switch (node.sysctl_num) {
910 case KERN_AUTONICETIME:
911 if (t >= 0)
912 autonicetime = t;
913 break;
914 case KERN_AUTONICEVAL:
915 if (t < PRIO_MIN)
916 t = PRIO_MIN;
917 else if (t > PRIO_MAX)
918 t = PRIO_MAX;
919 autoniceval = t;
920 break;
921 }
922
923 return (0);
924 }
925
926 /*
927 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
928 * former it merely checks the the message buffer is set up. for the
929 * latter, it also copies out the data if necessary.
930 */
931 static int
932 sysctl_msgbuf(SYSCTLFN_ARGS)
933 {
934 char *where = oldp;
935 size_t len, maxlen;
936 long beg, end;
937 int error;
938
939 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
940 msgbufenabled = 0;
941 return (ENXIO);
942 }
943
944 switch (rnode->sysctl_num) {
945 case KERN_MSGBUFSIZE:
946 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
947 case KERN_MSGBUF:
948 break;
949 default:
950 return (EOPNOTSUPP);
951 }
952
953 if (newp != NULL)
954 return (EPERM);
955
956 if (oldp == NULL) {
957 /* always return full buffer size */
958 *oldlenp = msgbufp->msg_bufs;
959 return (0);
960 }
961
962 error = 0;
963 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
964
965 /*
966 * First, copy from the write pointer to the end of
967 * message buffer.
968 */
969 beg = msgbufp->msg_bufx;
970 end = msgbufp->msg_bufs;
971 while (maxlen > 0) {
972 len = MIN(end - beg, maxlen);
973 if (len == 0)
974 break;
975 error = copyout(&msgbufp->msg_bufc[beg], where, len);
976 if (error)
977 break;
978 where += len;
979 maxlen -= len;
980
981 /*
982 * ... then, copy from the beginning of message buffer to
983 * the write pointer.
984 */
985 beg = 0;
986 end = msgbufp->msg_bufx;
987 }
988
989 return (error);
990 }
991
992 /*
993 * sysctl helper routine for kern.defcorename. in the case of a new
994 * string being assigned, check that it's not a zero-length string.
995 * (XXX the check in -current doesn't work, but do we really care?)
996 */
997 static int
998 sysctl_kern_defcorename(SYSCTLFN_ARGS)
999 {
1000 int error;
1001 char newcorename[MAXPATHLEN];
1002 struct sysctlnode node;
1003
1004 node = *rnode;
1005 node.sysctl_data = &newcorename[0];
1006 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1007 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1008 if (error || newp == NULL)
1009 return (error);
1010
1011 /*
1012 * when sysctl_lookup() deals with a string, it's guaranteed
1013 * to come back nul terminated. so there. :)
1014 */
1015 if (strlen(newcorename) == 0)
1016 return (EINVAL);
1017
1018 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1019
1020 return (0);
1021 }
1022
1023 /*
1024 * sysctl helper routine for kern.cp_time node. adds up cpu time
1025 * across all cpus.
1026 */
1027 static int
1028 sysctl_kern_cptime(SYSCTLFN_ARGS)
1029 {
1030 struct sysctlnode node = *rnode;
1031 u_int64_t *cp_time = NULL;
1032 int error;
1033
1034 #ifdef MULTIPROCESSOR
1035 int n = sysctl_ncpus(), i;
1036 struct cpu_info *ci;
1037 CPU_INFO_ITERATOR cii;
1038
1039 /*
1040 * if you specifically pass a buffer that is the size of the
1041 * sum, or if you are probing for the size, you get the "sum"
1042 * of cp_time (and the size thereof) across all processors.
1043 *
1044 * alternately, you can pass an additional mib number and get
1045 * cp_time for that particular processor.
1046 */
1047 switch (namelen) {
1048 case 0:
1049 if (*oldlenp == sizeof(*cp_time) * CPUSTATES || oldp == NULL) {
1050 node.sysctl_size = sizeof(cp_time) * CPUSTATES;
1051 cp_time = malloc(node.sysctl_size,
1052 M_TEMP, M_WAITOK|M_CANFAIL);
1053 n = -1; /* SUM */
1054 }
1055 else {
1056 node.sysctl_size = n * sizeof(cp_time) * CPUSTATES;
1057 cp_time = malloc(node.sysctl_size,
1058 M_TEMP, M_WAITOK|M_CANFAIL);
1059 n = -2; /* ALL */
1060 }
1061 break;
1062 case 1:
1063 if (name[0] < 0 || name[0] >= n)
1064 return (EINVAL); /* ENOSUCHPROCESSOR */
1065 node.sysctl_size = sizeof(cp_time) * CPUSTATES;
1066 cp_time = malloc(node.sysctl_size,
1067 M_TEMP, M_WAITOK|M_CANFAIL);
1068 n = name[0];
1069 /*
1070 * adjust these so that sysctl_lookup() will be happy
1071 */
1072 name++;
1073 namelen--;
1074 default:
1075 return (EINVAL);
1076 }
1077
1078 if (cp_time == NULL)
1079 return (ENOMEM);
1080 node.sysctl_data = cp_time;
1081 memset(cp_time, 0, node.sysctl_size);
1082
1083 for (CPU_INFO_FOREACH(cii, ci)) {
1084 /*
1085 * doing a sum or doing just this processor
1086 */
1087 if (n == -1 || n == 0)
1088 for (i = 0; i < CPUSTATES; i++)
1089 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1090 /*
1091 * if a specific processor was requested and we just
1092 * did it, we're done here
1093 */
1094 if (n == 0)
1095 break;
1096 /*
1097 * if doing "all", skip to next cp_time set for next processor
1098 */
1099 if (n == -2)
1100 cp_time += CPUSTATES;
1101 /*
1102 * if we're doing a specific processor, we're one
1103 * processor closer
1104 */
1105 if (n > 0)
1106 n--;
1107 }
1108
1109 #else /* MULTIPROCESSOR */
1110 if (namelen == 1 && name[0] == 0) {
1111 name++;
1112 namelen--;
1113 }
1114 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1115 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1116 #endif /* MULTIPROCESSOR */
1117
1118 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1119 if (cp_time != NULL)
1120 free(cp_time, M_TEMP);
1121
1122 return (error);
1123 }
1124
1125 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1126 /*
1127 * sysctl helper routine for kern.sysvipc_info subtree.
1128 */
1129
1130 #define FILL_PERM(src, dst) do { \
1131 (dst)._key = (src)._key; \
1132 (dst).uid = (src).uid; \
1133 (dst).gid = (src).gid; \
1134 (dst).cuid = (src).cuid; \
1135 (dst).cgid = (src).cgid; \
1136 (dst).mode = (src).mode; \
1137 (dst)._seq = (src)._seq; \
1138 } while (/*CONSTCOND*/ 0);
1139 #define FILL_MSG(src, dst) do { \
1140 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1141 (dst).msg_qnum = (src).msg_qnum; \
1142 (dst).msg_qbytes = (src).msg_qbytes; \
1143 (dst)._msg_cbytes = (src)._msg_cbytes; \
1144 (dst).msg_lspid = (src).msg_lspid; \
1145 (dst).msg_lrpid = (src).msg_lrpid; \
1146 (dst).msg_stime = (src).msg_stime; \
1147 (dst).msg_rtime = (src).msg_rtime; \
1148 (dst).msg_ctime = (src).msg_ctime; \
1149 } while (/*CONSTCOND*/ 0)
1150 #define FILL_SEM(src, dst) do { \
1151 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1152 (dst).sem_nsems = (src).sem_nsems; \
1153 (dst).sem_otime = (src).sem_otime; \
1154 (dst).sem_ctime = (src).sem_ctime; \
1155 } while (/*CONSTCOND*/ 0)
1156 #define FILL_SHM(src, dst) do { \
1157 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1158 (dst).shm_segsz = (src).shm_segsz; \
1159 (dst).shm_lpid = (src).shm_lpid; \
1160 (dst).shm_cpid = (src).shm_cpid; \
1161 (dst).shm_atime = (src).shm_atime; \
1162 (dst).shm_dtime = (src).shm_dtime; \
1163 (dst).shm_ctime = (src).shm_ctime; \
1164 (dst).shm_nattch = (src).shm_nattch; \
1165 } while (/*CONSTCOND*/ 0)
1166
1167 static int
1168 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1169 {
1170 void *where = oldp;
1171 size_t *sizep = oldlenp;
1172 #ifdef SYSVMSG
1173 struct msg_sysctl_info *msgsi = NULL;
1174 #endif
1175 #ifdef SYSVSEM
1176 struct sem_sysctl_info *semsi = NULL;
1177 #endif
1178 #ifdef SYSVSHM
1179 struct shm_sysctl_info *shmsi = NULL;
1180 #endif
1181 size_t infosize, dssize, tsize, buflen;
1182 void *buf = NULL;
1183 char *start;
1184 int32_t nds;
1185 int i, error, ret;
1186
1187 if (namelen != 1)
1188 return (EINVAL);
1189
1190 start = where;
1191 buflen = *sizep;
1192
1193 switch (*name) {
1194 case KERN_SYSVIPC_MSG_INFO:
1195 #ifdef SYSVMSG
1196 infosize = sizeof(msgsi->msginfo);
1197 nds = msginfo.msgmni;
1198 dssize = sizeof(msgsi->msgids[0]);
1199 break;
1200 #else
1201 return (EINVAL);
1202 #endif
1203 case KERN_SYSVIPC_SEM_INFO:
1204 #ifdef SYSVSEM
1205 infosize = sizeof(semsi->seminfo);
1206 nds = seminfo.semmni;
1207 dssize = sizeof(semsi->semids[0]);
1208 break;
1209 #else
1210 return (EINVAL);
1211 #endif
1212 case KERN_SYSVIPC_SHM_INFO:
1213 #ifdef SYSVSHM
1214 infosize = sizeof(shmsi->shminfo);
1215 nds = shminfo.shmmni;
1216 dssize = sizeof(shmsi->shmids[0]);
1217 break;
1218 #else
1219 return (EINVAL);
1220 #endif
1221 default:
1222 return (EINVAL);
1223 }
1224 /*
1225 * Round infosize to 64 bit boundary if requesting more than just
1226 * the info structure or getting the total data size.
1227 */
1228 if (where == NULL || *sizep > infosize)
1229 infosize = ((infosize + 7) / 8) * 8;
1230 tsize = infosize + nds * dssize;
1231
1232 /* Return just the total size required. */
1233 if (where == NULL) {
1234 *sizep = tsize;
1235 return (0);
1236 }
1237
1238 /* Not enough room for even the info struct. */
1239 if (buflen < infosize) {
1240 *sizep = 0;
1241 return (ENOMEM);
1242 }
1243 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1244 memset(buf, 0, min(tsize, buflen));
1245
1246 switch (*name) {
1247 #ifdef SYSVMSG
1248 case KERN_SYSVIPC_MSG_INFO:
1249 msgsi = (struct msg_sysctl_info *)buf;
1250 msgsi->msginfo = msginfo;
1251 break;
1252 #endif
1253 #ifdef SYSVSEM
1254 case KERN_SYSVIPC_SEM_INFO:
1255 semsi = (struct sem_sysctl_info *)buf;
1256 semsi->seminfo = seminfo;
1257 break;
1258 #endif
1259 #ifdef SYSVSHM
1260 case KERN_SYSVIPC_SHM_INFO:
1261 shmsi = (struct shm_sysctl_info *)buf;
1262 shmsi->shminfo = shminfo;
1263 break;
1264 #endif
1265 }
1266 buflen -= infosize;
1267
1268 ret = 0;
1269 if (buflen > 0) {
1270 /* Fill in the IPC data structures. */
1271 for (i = 0; i < nds; i++) {
1272 if (buflen < dssize) {
1273 ret = ENOMEM;
1274 break;
1275 }
1276 switch (*name) {
1277 #ifdef SYSVMSG
1278 case KERN_SYSVIPC_MSG_INFO:
1279 FILL_MSG(msqids[i], msgsi->msgids[i]);
1280 break;
1281 #endif
1282 #ifdef SYSVSEM
1283 case KERN_SYSVIPC_SEM_INFO:
1284 FILL_SEM(sema[i], semsi->semids[i]);
1285 break;
1286 #endif
1287 #ifdef SYSVSHM
1288 case KERN_SYSVIPC_SHM_INFO:
1289 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1290 break;
1291 #endif
1292 }
1293 buflen -= dssize;
1294 }
1295 }
1296 *sizep -= buflen;
1297 error = copyout(buf, start, *sizep);
1298 /* If copyout succeeded, use return code set earlier. */
1299 if (error == 0)
1300 error = ret;
1301 if (buf)
1302 free(buf, M_TEMP);
1303 return (error);
1304 }
1305
1306 #undef FILL_PERM
1307 #undef FILL_MSG
1308 #undef FILL_SEM
1309 #undef FILL_SHM
1310
1311 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1312
1313 #if NPTY > 0
1314 /*
1315 * sysctl helper routine for kern.maxptys. ensures that any new value
1316 * is acceptable to the pty subsystem.
1317 */
1318 static int
1319 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1320 {
1321 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1322 int error, max;
1323 struct sysctlnode node;
1324
1325 /* get current value of maxptys */
1326 max = pty_maxptys(0, 0);
1327
1328 node = *rnode;
1329 node.sysctl_data = &max;
1330 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1331 if (error || newp == NULL)
1332 return (error);
1333
1334 if (max != pty_maxptys(max, 1))
1335 return (EINVAL);
1336
1337 return (0);
1338 }
1339 #endif /* NPTY > 0 */
1340
1341 /*
1342 * sysctl helper routine for kern.sbmax. basically just ensures that
1343 * any new value is not too small.
1344 */
1345 static int
1346 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1347 {
1348 int error, new_sbmax;
1349 struct sysctlnode node;
1350
1351 new_sbmax = sb_max;
1352 node = *rnode;
1353 node.sysctl_data = &new_sbmax;
1354 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1355 if (error || newp == NULL)
1356 return (error);
1357
1358 error = sb_max_set(new_sbmax);
1359
1360 return (error);
1361 }
1362
1363 /*
1364 * sysctl helper routine for kern.urandom node. picks a random number
1365 * for you.
1366 */
1367 static int
1368 sysctl_kern_urnd(SYSCTLFN_ARGS)
1369 {
1370 #if NRND > 0
1371 int v;
1372
1373 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1374 struct sysctlnode node = *rnode;
1375 node.sysctl_data = &v;
1376 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1377 }
1378 else
1379 return (EIO); /*XXX*/
1380 #else
1381 return (EOPNOTSUPP);
1382 #endif
1383 }
1384
1385 /*
1386 * sysctl helper routine to do kern.lwp.* work.
1387 */
1388 static int
1389 sysctl_kern_lwp(SYSCTLFN_ARGS)
1390 {
1391 struct kinfo_lwp klwp;
1392 struct proc *p;
1393 struct lwp *l2;
1394 char *where, *dp;
1395 int pid, elem_size, elem_count;
1396 int buflen, needed, error;
1397
1398 dp = where = oldp;
1399 buflen = where != NULL ? *oldlenp : 0;
1400 error = needed = 0;
1401
1402 if (newp != NULL || namelen != 4)
1403 return (EINVAL);
1404 pid = name[1];
1405 elem_size = name[2];
1406 elem_count = name[3];
1407
1408 p = pfind(pid);
1409 if (p == NULL)
1410 return (ESRCH);
1411 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1412 if (buflen >= elem_size && elem_count > 0) {
1413 fill_lwp(l2, &klwp);
1414 /*
1415 * Copy out elem_size, but not larger than
1416 * the size of a struct kinfo_proc2.
1417 */
1418 error = copyout(&klwp, dp,
1419 min(sizeof(klwp), elem_size));
1420 if (error)
1421 goto cleanup;
1422 dp += elem_size;
1423 buflen -= elem_size;
1424 elem_count--;
1425 }
1426 needed += elem_size;
1427 }
1428
1429 if (where != NULL) {
1430 *oldlenp = dp - where;
1431 if (needed > *oldlenp)
1432 return (ENOMEM);
1433 } else {
1434 needed += KERN_PROCSLOP;
1435 *oldlenp = needed;
1436 }
1437 return (0);
1438 cleanup:
1439 return (error);
1440 }
1441
1442 /*
1443 * sysctl helper routine for kern.forkfsleep node. ensures that the
1444 * given value is not too large or two small, and is at least one
1445 * timer tick if not zero.
1446 */
1447 static int
1448 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1449 {
1450 /* userland sees value in ms, internally is in ticks */
1451 extern int forkfsleep; /* defined in kern/kern_fork.c */
1452 int error, timo, lsleep;
1453 struct sysctlnode node;
1454
1455 lsleep = forkfsleep * 1000 / hz;
1456 node = *rnode;
1457 node.sysctl_data = &lsleep;
1458 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1459 if (error || newp == NULL)
1460 return (error);
1461
1462 /* refuse negative values, and overly 'long time' */
1463 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1464 return (EINVAL);
1465
1466 timo = mstohz(lsleep);
1467
1468 /* if the interval is >0 ms && <1 tick, use 1 tick */
1469 if (lsleep != 0 && timo == 0)
1470 forkfsleep = 1;
1471 else
1472 forkfsleep = timo;
1473
1474 return (0);
1475 }
1476
1477 /*
1478 * sysctl helper routine for kern.somaxkva. ensures that the given
1479 * value is not too small.
1480 * (XXX should we maybe make sure it's not too large as well?)
1481 */
1482 static int
1483 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1484 {
1485 int error, new_somaxkva;
1486 struct sysctlnode node;
1487
1488 new_somaxkva = somaxkva;
1489 node = *rnode;
1490 node.sysctl_data = &new_somaxkva;
1491 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1492 if (error || newp == NULL)
1493 return (error);
1494
1495 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1496 return (EINVAL);
1497 somaxkva = new_somaxkva;
1498
1499 return (error);
1500 }
1501
1502 /*
1503 * sysctl helper routine for kern.root_partition
1504 */
1505 static int
1506 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1507 {
1508 int rootpart = DISKPART(rootdev);
1509 struct sysctlnode node = *rnode;
1510
1511 node.sysctl_data = &rootpart;
1512 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1513 }
1514
1515 /*
1516 * sysctl helper function for kern.drivers
1517 */
1518 static int
1519 sysctl_kern_drivers(SYSCTLFN_ARGS)
1520 {
1521 int error;
1522 size_t buflen;
1523 struct kinfo_drivers kd;
1524 char *start, *where;
1525 const char *dname;
1526 int i;
1527 extern struct devsw_conv *devsw_conv;
1528 extern int max_devsw_convs;
1529
1530 if (newp != NULL || namelen != 0)
1531 return (EINVAL);
1532
1533 start = where = oldp;
1534 buflen = *oldlenp;
1535 if (where == NULL) {
1536 *oldlenp = max_devsw_convs * sizeof kd;
1537 return 0;
1538 }
1539
1540 /*
1541 * An array of kinfo_drivers structures
1542 */
1543 error = 0;
1544 for (i = 0; i < max_devsw_convs; i++) {
1545 dname = devsw_conv[i].d_name;
1546 if (dname == NULL)
1547 continue;
1548 if (buflen < sizeof kd) {
1549 error = ENOMEM;
1550 break;
1551 }
1552 kd.d_bmajor = devsw_conv[i].d_bmajor;
1553 kd.d_cmajor = devsw_conv[i].d_cmajor;
1554 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1555 error = copyout(&kd, where, sizeof kd);
1556 if (error != 0)
1557 break;
1558 buflen -= sizeof kd;
1559 where += sizeof kd;
1560 }
1561 *oldlenp = where - start;
1562 return error;
1563 }
1564
1565 static int
1566 sysctl_doeproc(SYSCTLFN_ARGS)
1567 {
1568 struct eproc eproc;
1569 struct kinfo_proc2 kproc2;
1570 struct kinfo_proc *dp;
1571 struct proc *p;
1572 const struct proclist_desc *pd;
1573 char *where, *dp2;
1574 int type, op, arg;
1575 u_int elem_size, elem_count;
1576 size_t buflen, needed;
1577 int error;
1578
1579 dp = oldp;
1580 dp2 = where = oldp;
1581 buflen = where != NULL ? *oldlenp : 0;
1582 error = 0;
1583 needed = 0;
1584 type = rnode->sysctl_num;
1585
1586 if (type == KERN_PROC) {
1587 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1588 return (EINVAL);
1589 op = name[0];
1590 if (op != KERN_PROC_ALL)
1591 arg = name[1];
1592 else
1593 arg = 0; /* Quell compiler warning */
1594 elem_size = elem_count = 0; /* Ditto */
1595 } else {
1596 if (namelen != 4)
1597 return (EINVAL);
1598 op = name[0];
1599 arg = name[1];
1600 elem_size = name[2];
1601 elem_count = name[3];
1602 }
1603
1604 proclist_lock_read();
1605
1606 pd = proclists;
1607 again:
1608 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1609 /*
1610 * Skip embryonic processes.
1611 */
1612 if (p->p_stat == SIDL)
1613 continue;
1614 /*
1615 * TODO - make more efficient (see notes below).
1616 * do by session.
1617 */
1618 switch (op) {
1619
1620 case KERN_PROC_PID:
1621 /* could do this with just a lookup */
1622 if (p->p_pid != (pid_t)arg)
1623 continue;
1624 break;
1625
1626 case KERN_PROC_PGRP:
1627 /* could do this by traversing pgrp */
1628 if (p->p_pgrp->pg_id != (pid_t)arg)
1629 continue;
1630 break;
1631
1632 case KERN_PROC_SESSION:
1633 if (p->p_session->s_sid != (pid_t)arg)
1634 continue;
1635 break;
1636
1637 case KERN_PROC_TTY:
1638 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1639 if ((p->p_flag & P_CONTROLT) == 0 ||
1640 p->p_session->s_ttyp == NULL ||
1641 p->p_session->s_ttyvp != NULL)
1642 continue;
1643 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1644 p->p_session->s_ttyp == NULL) {
1645 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1646 continue;
1647 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1648 continue;
1649 break;
1650
1651 case KERN_PROC_UID:
1652 if (p->p_ucred->cr_uid != (uid_t)arg)
1653 continue;
1654 break;
1655
1656 case KERN_PROC_RUID:
1657 if (p->p_cred->p_ruid != (uid_t)arg)
1658 continue;
1659 break;
1660
1661 case KERN_PROC_GID:
1662 if (p->p_ucred->cr_gid != (uid_t)arg)
1663 continue;
1664 break;
1665
1666 case KERN_PROC_RGID:
1667 if (p->p_cred->p_rgid != (uid_t)arg)
1668 continue;
1669 break;
1670
1671 case KERN_PROC_ALL:
1672 /* allow everything */
1673 break;
1674
1675 default:
1676 error = EINVAL;
1677 goto cleanup;
1678 }
1679 if (type == KERN_PROC) {
1680 if (buflen >= sizeof(struct kinfo_proc)) {
1681 fill_eproc(p, &eproc);
1682 error = copyout(p, &dp->kp_proc,
1683 sizeof(struct proc));
1684 if (error)
1685 goto cleanup;
1686 error = copyout(&eproc, &dp->kp_eproc,
1687 sizeof(eproc));
1688 if (error)
1689 goto cleanup;
1690 dp++;
1691 buflen -= sizeof(struct kinfo_proc);
1692 }
1693 needed += sizeof(struct kinfo_proc);
1694 } else { /* KERN_PROC2 */
1695 if (buflen >= elem_size && elem_count > 0) {
1696 fill_kproc2(p, &kproc2);
1697 /*
1698 * Copy out elem_size, but not larger than
1699 * the size of a struct kinfo_proc2.
1700 */
1701 error = copyout(&kproc2, dp2,
1702 min(sizeof(kproc2), elem_size));
1703 if (error)
1704 goto cleanup;
1705 dp2 += elem_size;
1706 buflen -= elem_size;
1707 elem_count--;
1708 }
1709 needed += elem_size;
1710 }
1711 }
1712 pd++;
1713 if (pd->pd_list != NULL)
1714 goto again;
1715 proclist_unlock_read();
1716
1717 if (where != NULL) {
1718 if (type == KERN_PROC)
1719 *oldlenp = (char *)dp - where;
1720 else
1721 *oldlenp = dp2 - where;
1722 if (needed > *oldlenp)
1723 return (ENOMEM);
1724 } else {
1725 needed += KERN_PROCSLOP;
1726 *oldlenp = needed;
1727 }
1728 return (0);
1729 cleanup:
1730 proclist_unlock_read();
1731 return (error);
1732 }
1733
1734 /*
1735 * sysctl helper routine for kern.proc_args pseudo-subtree.
1736 */
1737 static int
1738 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1739 {
1740 struct ps_strings pss;
1741 struct proc *p, *up = l->l_proc;
1742 size_t len, upper_bound, xlen, i;
1743 struct uio auio;
1744 struct iovec aiov;
1745 vaddr_t argv;
1746 pid_t pid;
1747 int nargv, type, error;
1748 char *arg;
1749 char *tmp;
1750
1751 if (newp != NULL || namelen != 2)
1752 return (EINVAL);
1753 pid = name[0];
1754 type = name[1];
1755
1756 switch (type) {
1757 case KERN_PROC_ARGV:
1758 case KERN_PROC_NARGV:
1759 case KERN_PROC_ENV:
1760 case KERN_PROC_NENV:
1761 /* ok */
1762 break;
1763 default:
1764 return (EINVAL);
1765 }
1766
1767 /* check pid */
1768 if ((p = pfind(pid)) == NULL)
1769 return (EINVAL);
1770
1771 /* only root or same user change look at the environment */
1772 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1773 if (up->p_ucred->cr_uid != 0) {
1774 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1775 up->p_cred->p_ruid != p->p_cred->p_svuid)
1776 return (EPERM);
1777 }
1778 }
1779
1780 if (oldp == NULL) {
1781 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1782 *oldlenp = sizeof (int);
1783 else
1784 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1785 return (0);
1786 }
1787
1788 /*
1789 * Zombies don't have a stack, so we can't read their psstrings.
1790 * System processes also don't have a user stack.
1791 */
1792 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1793 return (EINVAL);
1794
1795 /*
1796 * Lock the process down in memory.
1797 */
1798 /* XXXCDC: how should locking work here? */
1799 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1800 return (EFAULT);
1801
1802 p->p_vmspace->vm_refcnt++; /* XXX */
1803
1804 /*
1805 * Allocate a temporary buffer to hold the arguments.
1806 */
1807 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1808
1809 /*
1810 * Read in the ps_strings structure.
1811 */
1812 aiov.iov_base = &pss;
1813 aiov.iov_len = sizeof(pss);
1814 auio.uio_iov = &aiov;
1815 auio.uio_iovcnt = 1;
1816 auio.uio_offset = (vaddr_t)p->p_psstr;
1817 auio.uio_resid = sizeof(pss);
1818 auio.uio_segflg = UIO_SYSSPACE;
1819 auio.uio_rw = UIO_READ;
1820 auio.uio_procp = NULL;
1821 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1822 if (error)
1823 goto done;
1824
1825 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1826 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1827 else
1828 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1829 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1830 error = copyout(&nargv, oldp, sizeof(nargv));
1831 *oldlenp = sizeof(nargv);
1832 goto done;
1833 }
1834 /*
1835 * Now read the address of the argument vector.
1836 */
1837 switch (type) {
1838 case KERN_PROC_ARGV:
1839 /* XXX compat32 stuff here */
1840 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1841 break;
1842 case KERN_PROC_ENV:
1843 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1844 break;
1845 default:
1846 return (EINVAL);
1847 }
1848 auio.uio_offset = (off_t)(long)tmp;
1849 aiov.iov_base = &argv;
1850 aiov.iov_len = sizeof(argv);
1851 auio.uio_iov = &aiov;
1852 auio.uio_iovcnt = 1;
1853 auio.uio_resid = sizeof(argv);
1854 auio.uio_segflg = UIO_SYSSPACE;
1855 auio.uio_rw = UIO_READ;
1856 auio.uio_procp = NULL;
1857 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1858 if (error)
1859 goto done;
1860
1861 /*
1862 * Now copy in the actual argument vector, one page at a time,
1863 * since we don't know how long the vector is (though, we do
1864 * know how many NUL-terminated strings are in the vector).
1865 */
1866 len = 0;
1867 upper_bound = *oldlenp;
1868 for (; nargv != 0 && len < upper_bound; len += xlen) {
1869 aiov.iov_base = arg;
1870 aiov.iov_len = PAGE_SIZE;
1871 auio.uio_iov = &aiov;
1872 auio.uio_iovcnt = 1;
1873 auio.uio_offset = argv + len;
1874 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1875 auio.uio_resid = xlen;
1876 auio.uio_segflg = UIO_SYSSPACE;
1877 auio.uio_rw = UIO_READ;
1878 auio.uio_procp = NULL;
1879 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1880 if (error)
1881 goto done;
1882
1883 for (i = 0; i < xlen && nargv != 0; i++) {
1884 if (arg[i] == '\0')
1885 nargv--; /* one full string */
1886 }
1887
1888 /*
1889 * Make sure we don't copyout past the end of the user's
1890 * buffer.
1891 */
1892 if (len + i > upper_bound)
1893 i = upper_bound - len;
1894
1895 error = copyout(arg, (char *)oldp + len, i);
1896 if (error)
1897 break;
1898
1899 if (nargv == 0) {
1900 len += i;
1901 break;
1902 }
1903 }
1904 *oldlenp = len;
1905
1906 done:
1907 uvmspace_free(p->p_vmspace);
1908
1909 free(arg, M_TEMP);
1910 return (error);
1911 }
1912
1913 /*
1914 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1915 * calculate on the fly taking into account integer overflow and the
1916 * current wired count.
1917 */
1918 static int
1919 sysctl_hw_usermem(SYSCTLFN_ARGS)
1920 {
1921 u_int ui;
1922 u_quad_t uq;
1923 struct sysctlnode node;
1924
1925 node = *rnode;
1926 switch (rnode->sysctl_num) {
1927 case HW_USERMEM:
1928 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
1929 ui = UINT_MAX;
1930 else
1931 ui *= PAGE_SIZE;
1932 node.sysctl_data = &ui;
1933 break;
1934 case HW_USERMEM64:
1935 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
1936 node.sysctl_data = &uq;
1937 break;
1938 default:
1939 return (EINVAL);
1940 }
1941
1942 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1943 }
1944
1945 /*
1946 * sysctl helper routine for kern.cnmagic node. pulls the old value
1947 * out, encoded, and stuffs the new value in for decoding.
1948 */
1949 static int
1950 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
1951 {
1952 char magic[CNS_LEN];
1953 int error;
1954 struct sysctlnode node;
1955
1956 if (oldp)
1957 cn_get_magic(magic, CNS_LEN);
1958 node = *rnode;
1959 node.sysctl_data = &magic[0];
1960 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1961 if (error || newp == NULL)
1962 return (error);
1963
1964 return (cn_set_magic(magic));
1965 }
1966
1967 static int
1968 sysctl_hw_ncpu(SYSCTLFN_ARGS)
1969 {
1970 int ncpu;
1971 struct sysctlnode node;
1972
1973 ncpu = sysctl_ncpus();
1974 node = *rnode;
1975 node.sysctl_data = &ncpu;
1976
1977 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1978 }
1979
1980
1981 /*
1982 * ********************************************************************
1983 * section 3: public helper routines that are used for more than one
1984 * node
1985 * ********************************************************************
1986 */
1987
1988 /*
1989 * sysctl helper routine for the kern.root_device node and some ports'
1990 * machdep.root_device nodes.
1991 */
1992 int
1993 sysctl_root_device(SYSCTLFN_ARGS)
1994 {
1995 struct sysctlnode node;
1996
1997 node = *rnode;
1998 node.sysctl_data = root_device->dv_xname;
1999 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2000 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2001 }
2002
2003 /*
2004 * sysctl helper routine for kern.consdev, dependent on the current
2005 * state of the console. also used for machdep.console_device on some
2006 * ports.
2007 */
2008 int
2009 sysctl_consdev(SYSCTLFN_ARGS)
2010 {
2011 dev_t consdev;
2012 struct sysctlnode node;
2013
2014 if (cn_tab != NULL)
2015 consdev = cn_tab->cn_dev;
2016 else
2017 consdev = NODEV;
2018 node = *rnode;
2019 node.sysctl_data = &consdev;
2020 node.sysctl_size = sizeof(consdev);
2021 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2022 }
2023
2024 /*
2025 * ********************************************************************
2026 * section 4: support for some helpers
2027 * ********************************************************************
2028 */
2029
2030 /*
2031 * Fill in a kinfo_proc2 structure for the specified process.
2032 */
2033 static void
2034 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2035 {
2036 struct tty *tp;
2037 struct lwp *l;
2038 struct timeval ut, st;
2039
2040 memset(ki, 0, sizeof(*ki));
2041
2042 ki->p_paddr = PTRTOINT64(p);
2043 ki->p_fd = PTRTOINT64(p->p_fd);
2044 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2045 ki->p_stats = PTRTOINT64(p->p_stats);
2046 ki->p_limit = PTRTOINT64(p->p_limit);
2047 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2048 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2049 ki->p_sess = PTRTOINT64(p->p_session);
2050 ki->p_tsess = 0; /* may be changed if controlling tty below */
2051 ki->p_ru = PTRTOINT64(p->p_ru);
2052
2053 ki->p_eflag = 0;
2054 ki->p_exitsig = p->p_exitsig;
2055 ki->p_flag = p->p_flag;
2056
2057 ki->p_pid = p->p_pid;
2058 if (p->p_pptr)
2059 ki->p_ppid = p->p_pptr->p_pid;
2060 else
2061 ki->p_ppid = 0;
2062 ki->p_sid = p->p_session->s_sid;
2063 ki->p__pgid = p->p_pgrp->pg_id;
2064
2065 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2066
2067 ki->p_uid = p->p_ucred->cr_uid;
2068 ki->p_ruid = p->p_cred->p_ruid;
2069 ki->p_gid = p->p_ucred->cr_gid;
2070 ki->p_rgid = p->p_cred->p_rgid;
2071 ki->p_svuid = p->p_cred->p_svuid;
2072 ki->p_svgid = p->p_cred->p_svgid;
2073
2074 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2075 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2076 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2077
2078 ki->p_jobc = p->p_pgrp->pg_jobc;
2079 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2080 ki->p_tdev = tp->t_dev;
2081 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2082 ki->p_tsess = PTRTOINT64(tp->t_session);
2083 } else {
2084 ki->p_tdev = NODEV;
2085 }
2086
2087 ki->p_estcpu = p->p_estcpu;
2088 ki->p_rtime_sec = p->p_rtime.tv_sec;
2089 ki->p_rtime_usec = p->p_rtime.tv_usec;
2090 ki->p_cpticks = p->p_cpticks;
2091 ki->p_pctcpu = p->p_pctcpu;
2092
2093 ki->p_uticks = p->p_uticks;
2094 ki->p_sticks = p->p_sticks;
2095 ki->p_iticks = p->p_iticks;
2096
2097 ki->p_tracep = PTRTOINT64(p->p_tracep);
2098 ki->p_traceflag = p->p_traceflag;
2099
2100
2101 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2102 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2103 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2104 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2105
2106 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2107 ki->p_realstat = p->p_stat;
2108 ki->p_nice = p->p_nice;
2109
2110 ki->p_xstat = p->p_xstat;
2111 ki->p_acflag = p->p_acflag;
2112
2113 strncpy(ki->p_comm, p->p_comm,
2114 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2115
2116 strncpy(ki->p_login, p->p_session->s_login,
2117 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2118
2119 ki->p_nlwps = p->p_nlwps;
2120 ki->p_nrlwps = p->p_nrlwps;
2121 ki->p_realflag = p->p_flag;
2122
2123 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2124 ki->p_vm_rssize = 0;
2125 ki->p_vm_tsize = 0;
2126 ki->p_vm_dsize = 0;
2127 ki->p_vm_ssize = 0;
2128 l = NULL;
2129 } else {
2130 struct vmspace *vm = p->p_vmspace;
2131
2132 ki->p_vm_rssize = vm_resident_count(vm);
2133 ki->p_vm_tsize = vm->vm_tsize;
2134 ki->p_vm_dsize = vm->vm_dsize;
2135 ki->p_vm_ssize = vm->vm_ssize;
2136
2137 /* Pick a "representative" LWP */
2138 l = proc_representative_lwp(p);
2139 ki->p_forw = PTRTOINT64(l->l_forw);
2140 ki->p_back = PTRTOINT64(l->l_back);
2141 ki->p_addr = PTRTOINT64(l->l_addr);
2142 ki->p_stat = l->l_stat;
2143 ki->p_flag |= l->l_flag;
2144 ki->p_swtime = l->l_swtime;
2145 ki->p_slptime = l->l_slptime;
2146 if (l->l_stat == LSONPROC) {
2147 KDASSERT(l->l_cpu != NULL);
2148 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2149 } else
2150 ki->p_schedflags = 0;
2151 ki->p_holdcnt = l->l_holdcnt;
2152 ki->p_priority = l->l_priority;
2153 ki->p_usrpri = l->l_usrpri;
2154 if (l->l_wmesg)
2155 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2156 ki->p_wchan = PTRTOINT64(l->l_wchan);
2157
2158 }
2159
2160 if (p->p_session->s_ttyvp)
2161 ki->p_eflag |= EPROC_CTTY;
2162 if (SESS_LEADER(p))
2163 ki->p_eflag |= EPROC_SLEADER;
2164
2165 /* XXX Is this double check necessary? */
2166 if (P_ZOMBIE(p)) {
2167 ki->p_uvalid = 0;
2168 } else {
2169 ki->p_uvalid = 1;
2170
2171 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2172 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2173
2174 calcru(p, &ut, &st, 0);
2175 ki->p_uutime_sec = ut.tv_sec;
2176 ki->p_uutime_usec = ut.tv_usec;
2177 ki->p_ustime_sec = st.tv_sec;
2178 ki->p_ustime_usec = st.tv_usec;
2179
2180 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2181 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2182 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2183 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2184 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2185 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2186 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2187 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2188 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2189 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2190 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2191 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2192 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2193 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2194
2195 timeradd(&p->p_stats->p_cru.ru_utime,
2196 &p->p_stats->p_cru.ru_stime, &ut);
2197 ki->p_uctime_sec = ut.tv_sec;
2198 ki->p_uctime_usec = ut.tv_usec;
2199 }
2200 #ifdef MULTIPROCESSOR
2201 if (l && l->l_cpu != NULL)
2202 ki->p_cpuid = l->l_cpu->ci_cpuid;
2203 else
2204 #endif
2205 ki->p_cpuid = KI_NOCPU;
2206 }
2207
2208 /*
2209 * Fill in a kinfo_lwp structure for the specified lwp.
2210 */
2211 static void
2212 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2213 {
2214
2215 kl->l_forw = PTRTOINT64(l->l_forw);
2216 kl->l_back = PTRTOINT64(l->l_back);
2217 kl->l_laddr = PTRTOINT64(l);
2218 kl->l_addr = PTRTOINT64(l->l_addr);
2219 kl->l_stat = l->l_stat;
2220 kl->l_lid = l->l_lid;
2221 kl->l_flag = l->l_flag;
2222
2223 kl->l_swtime = l->l_swtime;
2224 kl->l_slptime = l->l_slptime;
2225 if (l->l_stat == LSONPROC) {
2226 KDASSERT(l->l_cpu != NULL);
2227 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2228 } else
2229 kl->l_schedflags = 0;
2230 kl->l_holdcnt = l->l_holdcnt;
2231 kl->l_priority = l->l_priority;
2232 kl->l_usrpri = l->l_usrpri;
2233 if (l->l_wmesg)
2234 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2235 kl->l_wchan = PTRTOINT64(l->l_wchan);
2236 #ifdef MULTIPROCESSOR
2237 if (l->l_cpu != NULL)
2238 kl->l_cpuid = l->l_cpu->ci_cpuid;
2239 else
2240 #endif
2241 kl->l_cpuid = KI_NOCPU;
2242 }
2243
2244 /*
2245 * Fill in an eproc structure for the specified process.
2246 */
2247 void
2248 fill_eproc(struct proc *p, struct eproc *ep)
2249 {
2250 struct tty *tp;
2251 struct lwp *l;
2252
2253 ep->e_paddr = p;
2254 ep->e_sess = p->p_session;
2255 ep->e_pcred = *p->p_cred;
2256 ep->e_ucred = *p->p_ucred;
2257 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2258 ep->e_vm.vm_rssize = 0;
2259 ep->e_vm.vm_tsize = 0;
2260 ep->e_vm.vm_dsize = 0;
2261 ep->e_vm.vm_ssize = 0;
2262 /* ep->e_vm.vm_pmap = XXX; */
2263 } else {
2264 struct vmspace *vm = p->p_vmspace;
2265
2266 ep->e_vm.vm_rssize = vm_resident_count(vm);
2267 ep->e_vm.vm_tsize = vm->vm_tsize;
2268 ep->e_vm.vm_dsize = vm->vm_dsize;
2269 ep->e_vm.vm_ssize = vm->vm_ssize;
2270
2271 /* Pick a "representative" LWP */
2272 l = proc_representative_lwp(p);
2273
2274 if (l->l_wmesg)
2275 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2276 }
2277 if (p->p_pptr)
2278 ep->e_ppid = p->p_pptr->p_pid;
2279 else
2280 ep->e_ppid = 0;
2281 ep->e_pgid = p->p_pgrp->pg_id;
2282 ep->e_sid = ep->e_sess->s_sid;
2283 ep->e_jobc = p->p_pgrp->pg_jobc;
2284 if ((p->p_flag & P_CONTROLT) &&
2285 (tp = ep->e_sess->s_ttyp)) {
2286 ep->e_tdev = tp->t_dev;
2287 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2288 ep->e_tsess = tp->t_session;
2289 } else
2290 ep->e_tdev = NODEV;
2291
2292 ep->e_xsize = ep->e_xrssize = 0;
2293 ep->e_xccount = ep->e_xswrss = 0;
2294 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2295 if (SESS_LEADER(p))
2296 ep->e_flag |= EPROC_SLEADER;
2297 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2298 }
2299