init_sysctl.c revision 1.43 1 /* $NetBSD: init_sysctl.c,v 1.43 2005/06/09 02:19:59 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.43 2005/06/09 02:19:59 atatat Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "pty.h"
46 #include "rnd.h"
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/sysctl.h>
51 #include <sys/errno.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/unistd.h>
55 #include <sys/disklabel.h>
56 #include <sys/rnd.h>
57 #include <sys/vnode.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/msgbuf.h>
61 #include <dev/cons.h>
62 #include <sys/socketvar.h>
63 #include <sys/file.h>
64 #include <sys/filedesc.h>
65 #include <sys/tty.h>
66 #include <sys/malloc.h>
67 #include <sys/resource.h>
68 #include <sys/resourcevar.h>
69 #include <sys/exec.h>
70 #include <sys/conf.h>
71 #include <sys/device.h>
72 #define VERIEXEC_NEED_NODE
73 #include <sys/verified_exec.h>
74
75 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
76 #include <sys/ipc.h>
77 #endif
78 #ifdef SYSVMSG
79 #include <sys/msg.h>
80 #endif
81 #ifdef SYSVSEM
82 #include <sys/sem.h>
83 #endif
84 #ifdef SYSVSHM
85 #include <sys/shm.h>
86 #endif
87
88 #include <machine/cpu.h>
89
90 /*
91 * try over estimating by 5 procs/lwps
92 */
93 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
94 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
95
96 #ifndef MULTIPROCESSOR
97 #define sysctl_ncpus() (1)
98 #else /* MULTIPROCESSOR */
99 #ifndef CPU_INFO_FOREACH
100 #define CPU_INFO_ITERATOR int
101 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
102 #endif
103 static int
104 sysctl_ncpus(void)
105 {
106 struct cpu_info *ci;
107 CPU_INFO_ITERATOR cii;
108
109 int ncpus = 0;
110 for (CPU_INFO_FOREACH(cii, ci))
111 ncpus++;
112 return (ncpus);
113 }
114 #endif /* MULTIPROCESSOR */
115
116 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
117 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
118 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
119 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
120 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
121 static int sysctl_setlen(SYSCTLFN_PROTO);
122 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
123 static int sysctl_kern_file(SYSCTLFN_PROTO);
124 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
125 static int sysctl_msgbuf(SYSCTLFN_PROTO);
126 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
127 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
128 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
129 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
130 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
131 #if NPTY > 0
132 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
133 #endif /* NPTY > 0 */
134 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
135 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
136 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
137 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
138 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
139 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
140 static int sysctl_kern_file2(SYSCTLFN_PROTO);
141 #ifdef VERIFIED_EXEC
142 static int sysctl_kern_veriexec(SYSCTLFN_PROTO);
143 #endif
144 static int sysctl_doeproc(SYSCTLFN_PROTO);
145 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
146 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
147 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
148 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
149
150 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
151 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
152 static void fill_file(struct kinfo_file *, const struct file *, struct proc *,
153 int);
154
155 /*
156 * ********************************************************************
157 * section 1: setup routines
158 * ********************************************************************
159 * these functions are stuffed into a link set for sysctl setup
160 * functions. they're never called or referenced from anywhere else.
161 * ********************************************************************
162 */
163
164 /*
165 * sets up the base nodes...
166 */
167 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
168 {
169
170 sysctl_createv(clog, 0, NULL, NULL,
171 CTLFLAG_PERMANENT,
172 CTLTYPE_NODE, "kern",
173 SYSCTL_DESCR("High kernel"),
174 NULL, 0, NULL, 0,
175 CTL_KERN, CTL_EOL);
176 sysctl_createv(clog, 0, NULL, NULL,
177 CTLFLAG_PERMANENT,
178 CTLTYPE_NODE, "vm",
179 SYSCTL_DESCR("Virtual memory"),
180 NULL, 0, NULL, 0,
181 CTL_VM, CTL_EOL);
182 sysctl_createv(clog, 0, NULL, NULL,
183 CTLFLAG_PERMANENT,
184 CTLTYPE_NODE, "vfs",
185 SYSCTL_DESCR("Filesystem"),
186 NULL, 0, NULL, 0,
187 CTL_VFS, CTL_EOL);
188 sysctl_createv(clog, 0, NULL, NULL,
189 CTLFLAG_PERMANENT,
190 CTLTYPE_NODE, "net",
191 SYSCTL_DESCR("Networking"),
192 NULL, 0, NULL, 0,
193 CTL_NET, CTL_EOL);
194 sysctl_createv(clog, 0, NULL, NULL,
195 CTLFLAG_PERMANENT,
196 CTLTYPE_NODE, "debug",
197 SYSCTL_DESCR("Debugging"),
198 NULL, 0, NULL, 0,
199 CTL_DEBUG, CTL_EOL);
200 sysctl_createv(clog, 0, NULL, NULL,
201 CTLFLAG_PERMANENT,
202 CTLTYPE_NODE, "hw",
203 SYSCTL_DESCR("Generic CPU, I/O"),
204 NULL, 0, NULL, 0,
205 CTL_HW, CTL_EOL);
206 sysctl_createv(clog, 0, NULL, NULL,
207 CTLFLAG_PERMANENT,
208 CTLTYPE_NODE, "machdep",
209 SYSCTL_DESCR("Machine dependent"),
210 NULL, 0, NULL, 0,
211 CTL_MACHDEP, CTL_EOL);
212 /*
213 * this node is inserted so that the sysctl nodes in libc can
214 * operate.
215 */
216 sysctl_createv(clog, 0, NULL, NULL,
217 CTLFLAG_PERMANENT,
218 CTLTYPE_NODE, "user",
219 SYSCTL_DESCR("User-level"),
220 NULL, 0, NULL, 0,
221 CTL_USER, CTL_EOL);
222 sysctl_createv(clog, 0, NULL, NULL,
223 CTLFLAG_PERMANENT,
224 CTLTYPE_NODE, "ddb",
225 SYSCTL_DESCR("In-kernel debugger"),
226 NULL, 0, NULL, 0,
227 CTL_DDB, CTL_EOL);
228 sysctl_createv(clog, 0, NULL, NULL,
229 CTLFLAG_PERMANENT,
230 CTLTYPE_NODE, "proc",
231 SYSCTL_DESCR("Per-process"),
232 NULL, 0, NULL, 0,
233 CTL_PROC, CTL_EOL);
234 sysctl_createv(clog, 0, NULL, NULL,
235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
236 CTLTYPE_NODE, "vendor",
237 SYSCTL_DESCR("Vendor specific"),
238 NULL, 0, NULL, 0,
239 CTL_VENDOR, CTL_EOL);
240 sysctl_createv(clog, 0, NULL, NULL,
241 CTLFLAG_PERMANENT,
242 CTLTYPE_NODE, "emul",
243 SYSCTL_DESCR("Emulation settings"),
244 NULL, 0, NULL, 0,
245 CTL_EMUL, CTL_EOL);
246 }
247
248 /*
249 * this setup routine is a replacement for kern_sysctl()
250 */
251 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
252 {
253 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
254 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
255 extern int dumponpanic; /* defined in kern/subr_prf.c */
256
257 sysctl_createv(clog, 0, NULL, NULL,
258 CTLFLAG_PERMANENT,
259 CTLTYPE_NODE, "kern", NULL,
260 NULL, 0, NULL, 0,
261 CTL_KERN, CTL_EOL);
262
263 sysctl_createv(clog, 0, NULL, NULL,
264 CTLFLAG_PERMANENT,
265 CTLTYPE_STRING, "ostype",
266 SYSCTL_DESCR("Operating system type"),
267 NULL, 0, &ostype, 0,
268 CTL_KERN, KERN_OSTYPE, CTL_EOL);
269 sysctl_createv(clog, 0, NULL, NULL,
270 CTLFLAG_PERMANENT,
271 CTLTYPE_STRING, "osrelease",
272 SYSCTL_DESCR("Operating system release"),
273 NULL, 0, &osrelease, 0,
274 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
275 sysctl_createv(clog, 0, NULL, NULL,
276 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
277 CTLTYPE_INT, "osrevision",
278 SYSCTL_DESCR("Operating system revision"),
279 NULL, __NetBSD_Version__, NULL, 0,
280 CTL_KERN, KERN_OSREV, CTL_EOL);
281 sysctl_createv(clog, 0, NULL, NULL,
282 CTLFLAG_PERMANENT,
283 CTLTYPE_STRING, "version",
284 SYSCTL_DESCR("Kernel version"),
285 NULL, 0, &version, 0,
286 CTL_KERN, KERN_VERSION, CTL_EOL);
287 sysctl_createv(clog, 0, NULL, NULL,
288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
289 CTLTYPE_INT, "maxvnodes",
290 SYSCTL_DESCR("Maximum number of vnodes"),
291 sysctl_kern_maxvnodes, 0, NULL, 0,
292 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
293 sysctl_createv(clog, 0, NULL, NULL,
294 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
295 CTLTYPE_INT, "maxproc",
296 SYSCTL_DESCR("Maximum number of simultaneous processes"),
297 sysctl_kern_maxproc, 0, NULL, 0,
298 CTL_KERN, KERN_MAXPROC, CTL_EOL);
299 sysctl_createv(clog, 0, NULL, NULL,
300 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
301 CTLTYPE_INT, "maxfiles",
302 SYSCTL_DESCR("Maximum number of open files"),
303 NULL, 0, &maxfiles, 0,
304 CTL_KERN, KERN_MAXFILES, CTL_EOL);
305 sysctl_createv(clog, 0, NULL, NULL,
306 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
307 CTLTYPE_INT, "argmax",
308 SYSCTL_DESCR("Maximum number of bytes of arguments to "
309 "execve(2)"),
310 NULL, ARG_MAX, NULL, 0,
311 CTL_KERN, KERN_ARGMAX, CTL_EOL);
312 sysctl_createv(clog, 0, NULL, NULL,
313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
314 CTLTYPE_INT, "securelevel",
315 SYSCTL_DESCR("System security level"),
316 sysctl_kern_securelevel, 0, &securelevel, 0,
317 CTL_KERN, KERN_SECURELVL, CTL_EOL);
318 sysctl_createv(clog, 0, NULL, NULL,
319 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
320 CTLTYPE_STRING, "hostname",
321 SYSCTL_DESCR("System hostname"),
322 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
323 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
324 sysctl_createv(clog, 0, NULL, NULL,
325 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
326 CTLTYPE_INT, "hostid",
327 SYSCTL_DESCR("System host ID number"),
328 sysctl_kern_hostid, 0, NULL, 0,
329 CTL_KERN, KERN_HOSTID, CTL_EOL);
330 sysctl_createv(clog, 0, NULL, NULL,
331 CTLFLAG_PERMANENT,
332 CTLTYPE_STRUCT, "clockrate",
333 SYSCTL_DESCR("Kernel clock rates"),
334 sysctl_kern_clockrate, 0, NULL,
335 sizeof(struct clockinfo),
336 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
337 sysctl_createv(clog, 0, NULL, NULL,
338 CTLFLAG_PERMANENT,
339 CTLTYPE_STRUCT, "vnode",
340 SYSCTL_DESCR("System vnode table"),
341 sysctl_kern_vnode, 0, NULL, 0,
342 CTL_KERN, KERN_VNODE, CTL_EOL);
343 sysctl_createv(clog, 0, NULL, NULL,
344 CTLFLAG_PERMANENT,
345 CTLTYPE_STRUCT, "file",
346 SYSCTL_DESCR("System open file table"),
347 sysctl_kern_file, 0, NULL, 0,
348 CTL_KERN, KERN_FILE, CTL_EOL);
349 #ifndef GPROF
350 sysctl_createv(clog, 0, NULL, NULL,
351 CTLFLAG_PERMANENT,
352 CTLTYPE_NODE, "profiling",
353 SYSCTL_DESCR("Profiling information (not available)"),
354 sysctl_notavail, 0, NULL, 0,
355 CTL_KERN, KERN_PROF, CTL_EOL);
356 #endif
357 sysctl_createv(clog, 0, NULL, NULL,
358 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
359 CTLTYPE_INT, "posix1version",
360 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
361 "with which the operating system attempts "
362 "to comply"),
363 NULL, _POSIX_VERSION, NULL, 0,
364 CTL_KERN, KERN_POSIX1, CTL_EOL);
365 sysctl_createv(clog, 0, NULL, NULL,
366 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
367 CTLTYPE_INT, "ngroups",
368 SYSCTL_DESCR("Maximum number of supplemental groups"),
369 NULL, NGROUPS_MAX, NULL, 0,
370 CTL_KERN, KERN_NGROUPS, CTL_EOL);
371 sysctl_createv(clog, 0, NULL, NULL,
372 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
373 CTLTYPE_INT, "job_control",
374 SYSCTL_DESCR("Whether job control is available"),
375 NULL, 1, NULL, 0,
376 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
377 sysctl_createv(clog, 0, NULL, NULL,
378 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
379 CTLTYPE_INT, "saved_ids",
380 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
381 "available"), NULL,
382 #ifdef _POSIX_SAVED_IDS
383 1,
384 #else /* _POSIX_SAVED_IDS */
385 0,
386 #endif /* _POSIX_SAVED_IDS */
387 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
388 sysctl_createv(clog, 0, NULL, NULL,
389 CTLFLAG_PERMANENT,
390 CTLTYPE_STRUCT, "boottime",
391 SYSCTL_DESCR("System boot time"),
392 NULL, 0, &boottime, sizeof(boottime),
393 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
394 sysctl_createv(clog, 0, NULL, NULL,
395 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
396 CTLTYPE_STRING, "domainname",
397 SYSCTL_DESCR("YP domain name"),
398 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
399 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
400 sysctl_createv(clog, 0, NULL, NULL,
401 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
402 CTLTYPE_INT, "maxpartitions",
403 SYSCTL_DESCR("Maximum number of partitions allowed per "
404 "disk"),
405 NULL, MAXPARTITIONS, NULL, 0,
406 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
407 sysctl_createv(clog, 0, NULL, NULL,
408 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
409 CTLTYPE_INT, "rawpartition",
410 SYSCTL_DESCR("Raw partition of a disk"),
411 NULL, RAW_PART, NULL, 0,
412 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
413 sysctl_createv(clog, 0, NULL, NULL,
414 CTLFLAG_PERMANENT,
415 CTLTYPE_STRUCT, "timex", NULL,
416 sysctl_notavail, 0, NULL, 0,
417 CTL_KERN, KERN_TIMEX, CTL_EOL);
418 sysctl_createv(clog, 0, NULL, NULL,
419 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
420 CTLTYPE_INT, "autonicetime",
421 SYSCTL_DESCR("CPU clock seconds before non-root "
422 "process priority is lowered"),
423 sysctl_kern_autonice, 0, &autonicetime, 0,
424 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
425 sysctl_createv(clog, 0, NULL, NULL,
426 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
427 CTLTYPE_INT, "autoniceval",
428 SYSCTL_DESCR("Automatic reniced non-root process "
429 "priority"),
430 sysctl_kern_autonice, 0, &autoniceval, 0,
431 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
432 sysctl_createv(clog, 0, NULL, NULL,
433 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
434 CTLTYPE_INT, "rtc_offset",
435 SYSCTL_DESCR("Offset of real time clock from UTC in "
436 "minutes"),
437 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
438 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
439 sysctl_createv(clog, 0, NULL, NULL,
440 CTLFLAG_PERMANENT,
441 CTLTYPE_STRING, "root_device",
442 SYSCTL_DESCR("Name of the root device"),
443 sysctl_root_device, 0, NULL, 0,
444 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
445 sysctl_createv(clog, 0, NULL, NULL,
446 CTLFLAG_PERMANENT,
447 CTLTYPE_INT, "msgbufsize",
448 SYSCTL_DESCR("Size of the kernel message buffer"),
449 sysctl_msgbuf, 0, NULL, 0,
450 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
451 sysctl_createv(clog, 0, NULL, NULL,
452 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
453 CTLTYPE_INT, "fsync",
454 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
455 "Synchronization Option is available on "
456 "this system"),
457 NULL, 1, NULL, 0,
458 CTL_KERN, KERN_FSYNC, CTL_EOL);
459 sysctl_createv(clog, 0, NULL, NULL,
460 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
461 CTLTYPE_INT, "sysvmsg",
462 SYSCTL_DESCR("System V style message support available"),
463 NULL,
464 #ifdef SYSVMSG
465 1,
466 #else /* SYSVMSG */
467 0,
468 #endif /* SYSVMSG */
469 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
470 sysctl_createv(clog, 0, NULL, NULL,
471 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
472 CTLTYPE_INT, "sysvsem",
473 SYSCTL_DESCR("System V style semaphore support "
474 "available"), NULL,
475 #ifdef SYSVSEM
476 1,
477 #else /* SYSVSEM */
478 0,
479 #endif /* SYSVSEM */
480 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
481 sysctl_createv(clog, 0, NULL, NULL,
482 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
483 CTLTYPE_INT, "sysvshm",
484 SYSCTL_DESCR("System V style shared memory support "
485 "available"), NULL,
486 #ifdef SYSVSHM
487 1,
488 #else /* SYSVSHM */
489 0,
490 #endif /* SYSVSHM */
491 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
492 sysctl_createv(clog, 0, NULL, NULL,
493 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
494 CTLTYPE_INT, "synchronized_io",
495 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
496 "I/O Option is available on this system"),
497 NULL, 1, NULL, 0,
498 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
499 sysctl_createv(clog, 0, NULL, NULL,
500 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
501 CTLTYPE_INT, "iov_max",
502 SYSCTL_DESCR("Maximum number of iovec structures per "
503 "process"),
504 NULL, IOV_MAX, NULL, 0,
505 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
506 sysctl_createv(clog, 0, NULL, NULL,
507 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
508 CTLTYPE_INT, "mapped_files",
509 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
510 "Files Option is available on this system"),
511 NULL, 1, NULL, 0,
512 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
513 sysctl_createv(clog, 0, NULL, NULL,
514 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
515 CTLTYPE_INT, "memlock",
516 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
517 "Locking Option is available on this "
518 "system"),
519 NULL, 1, NULL, 0,
520 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
521 sysctl_createv(clog, 0, NULL, NULL,
522 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
523 CTLTYPE_INT, "memlock_range",
524 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
525 "Locking Option is available on this "
526 "system"),
527 NULL, 1, NULL, 0,
528 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
529 sysctl_createv(clog, 0, NULL, NULL,
530 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
531 CTLTYPE_INT, "memory_protection",
532 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
533 "Protection Option is available on this "
534 "system"),
535 NULL, 1, NULL, 0,
536 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
537 sysctl_createv(clog, 0, NULL, NULL,
538 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
539 CTLTYPE_INT, "login_name_max",
540 SYSCTL_DESCR("Maximum login name length"),
541 NULL, LOGIN_NAME_MAX, NULL, 0,
542 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
543 sysctl_createv(clog, 0, NULL, NULL,
544 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
545 CTLTYPE_STRING, "defcorename",
546 SYSCTL_DESCR("Default core file name"),
547 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
548 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
549 sysctl_createv(clog, 0, NULL, NULL,
550 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
551 CTLTYPE_INT, "logsigexit",
552 SYSCTL_DESCR("Log process exit when caused by signals"),
553 NULL, 0, &kern_logsigexit, 0,
554 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
555 sysctl_createv(clog, 0, NULL, NULL,
556 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
557 CTLTYPE_INT, "fscale",
558 SYSCTL_DESCR("Kernel fixed-point scale factor"),
559 NULL, FSCALE, NULL, 0,
560 CTL_KERN, KERN_FSCALE, CTL_EOL);
561 sysctl_createv(clog, 0, NULL, NULL,
562 CTLFLAG_PERMANENT,
563 CTLTYPE_INT, "ccpu",
564 SYSCTL_DESCR("Scheduler exponential decay value"),
565 NULL, 0, &ccpu, 0,
566 CTL_KERN, KERN_CCPU, CTL_EOL);
567 sysctl_createv(clog, 0, NULL, NULL,
568 CTLFLAG_PERMANENT,
569 CTLTYPE_STRUCT, "cp_time",
570 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
571 sysctl_kern_cptime, 0, NULL, 0,
572 CTL_KERN, KERN_CP_TIME, CTL_EOL);
573 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
574 sysctl_createv(clog, 0, NULL, NULL,
575 CTLFLAG_PERMANENT,
576 CTLTYPE_STRUCT, "sysvipc_info",
577 SYSCTL_DESCR("System V style IPC information"),
578 sysctl_kern_sysvipc, 0, NULL, 0,
579 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
580 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
581 sysctl_createv(clog, 0, NULL, NULL,
582 CTLFLAG_PERMANENT,
583 CTLTYPE_INT, "msgbuf",
584 SYSCTL_DESCR("Kernel message buffer"),
585 sysctl_msgbuf, 0, NULL, 0,
586 CTL_KERN, KERN_MSGBUF, CTL_EOL);
587 sysctl_createv(clog, 0, NULL, NULL,
588 CTLFLAG_PERMANENT,
589 CTLTYPE_STRUCT, "consdev",
590 SYSCTL_DESCR("Console device"),
591 sysctl_consdev, 0, NULL, sizeof(dev_t),
592 CTL_KERN, KERN_CONSDEV, CTL_EOL);
593 #if NPTY > 0
594 sysctl_createv(clog, 0, NULL, NULL,
595 CTLFLAG_PERMANENT,
596 CTLTYPE_INT, "maxptys",
597 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
598 sysctl_kern_maxptys, 0, NULL, 0,
599 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
600 #endif /* NPTY > 0 */
601 sysctl_createv(clog, 0, NULL, NULL,
602 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
603 CTLTYPE_INT, "maxphys",
604 SYSCTL_DESCR("Maximum raw I/O transfer size"),
605 NULL, MAXPHYS, NULL, 0,
606 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
607 sysctl_createv(clog, 0, NULL, NULL,
608 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
609 CTLTYPE_INT, "sbmax",
610 SYSCTL_DESCR("Maximum socket buffer size"),
611 sysctl_kern_sbmax, 0, NULL, 0,
612 CTL_KERN, KERN_SBMAX, CTL_EOL);
613 sysctl_createv(clog, 0, NULL, NULL,
614 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
615 CTLTYPE_INT, "monotonic_clock",
616 SYSCTL_DESCR("Implementation version of the POSIX "
617 "1003.1b Monotonic Clock Option"),
618 /* XXX _POSIX_VERSION */
619 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
620 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
621 sysctl_createv(clog, 0, NULL, NULL,
622 CTLFLAG_PERMANENT,
623 CTLTYPE_INT, "urandom",
624 SYSCTL_DESCR("Random integer value"),
625 sysctl_kern_urnd, 0, NULL, 0,
626 CTL_KERN, KERN_URND, CTL_EOL);
627 sysctl_createv(clog, 0, NULL, NULL,
628 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
629 CTLTYPE_INT, "labelsector",
630 SYSCTL_DESCR("Sector number containing the disklabel"),
631 NULL, LABELSECTOR, NULL, 0,
632 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
633 sysctl_createv(clog, 0, NULL, NULL,
634 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
635 CTLTYPE_INT, "labeloffset",
636 SYSCTL_DESCR("Offset of the disklabel within the "
637 "sector"),
638 NULL, LABELOFFSET, NULL, 0,
639 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
640 sysctl_createv(clog, 0, NULL, NULL,
641 CTLFLAG_PERMANENT,
642 CTLTYPE_NODE, "lwp",
643 SYSCTL_DESCR("System-wide LWP information"),
644 sysctl_kern_lwp, 0, NULL, 0,
645 CTL_KERN, KERN_LWP, CTL_EOL);
646 sysctl_createv(clog, 0, NULL, NULL,
647 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
648 CTLTYPE_INT, "forkfsleep",
649 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
650 "to process limits"),
651 sysctl_kern_forkfsleep, 0, NULL, 0,
652 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
653 sysctl_createv(clog, 0, NULL, NULL,
654 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
655 CTLTYPE_INT, "posix_threads",
656 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
657 "Threads option to which the system "
658 "attempts to conform"),
659 /* XXX _POSIX_VERSION */
660 NULL, _POSIX_THREADS, NULL, 0,
661 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
662 sysctl_createv(clog, 0, NULL, NULL,
663 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
664 CTLTYPE_INT, "posix_semaphores",
665 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
666 "Semaphores option to which the system "
667 "attempts to conform"), NULL,
668 #ifdef P1003_1B_SEMAPHORE
669 200112,
670 #else /* P1003_1B_SEMAPHORE */
671 0,
672 #endif /* P1003_1B_SEMAPHORE */
673 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
674 sysctl_createv(clog, 0, NULL, NULL,
675 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
676 CTLTYPE_INT, "posix_barriers",
677 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
678 "Barriers option to which the system "
679 "attempts to conform"),
680 /* XXX _POSIX_VERSION */
681 NULL, _POSIX_BARRIERS, NULL, 0,
682 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
683 sysctl_createv(clog, 0, NULL, NULL,
684 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
685 CTLTYPE_INT, "posix_timers",
686 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
687 "Timers option to which the system "
688 "attempts to conform"),
689 /* XXX _POSIX_VERSION */
690 NULL, _POSIX_TIMERS, NULL, 0,
691 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
692 sysctl_createv(clog, 0, NULL, NULL,
693 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
694 CTLTYPE_INT, "posix_spin_locks",
695 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
696 "Locks option to which the system attempts "
697 "to conform"),
698 /* XXX _POSIX_VERSION */
699 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
700 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
701 sysctl_createv(clog, 0, NULL, NULL,
702 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
703 CTLTYPE_INT, "posix_reader_writer_locks",
704 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
705 "Read-Write Locks option to which the "
706 "system attempts to conform"),
707 /* XXX _POSIX_VERSION */
708 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
709 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
710 sysctl_createv(clog, 0, NULL, NULL,
711 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
712 CTLTYPE_INT, "dump_on_panic",
713 SYSCTL_DESCR("Perform a crash dump on system panic"),
714 NULL, 0, &dumponpanic, 0,
715 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
716 sysctl_createv(clog, 0, NULL, NULL,
717 CTLFLAG_PERMANENT,
718 CTLTYPE_INT, "root_partition",
719 SYSCTL_DESCR("Root partition on the root device"),
720 sysctl_kern_root_partition, 0, NULL, 0,
721 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
722 sysctl_createv(clog, 0, NULL, NULL,
723 CTLFLAG_PERMANENT,
724 CTLTYPE_STRUCT, "drivers",
725 SYSCTL_DESCR("List of all drivers with block and "
726 "character device numbers"),
727 sysctl_kern_drivers, 0, NULL, 0,
728 CTL_KERN, KERN_DRIVERS, CTL_EOL);
729 sysctl_createv(clog, 0, NULL, NULL,
730 CTLFLAG_PERMANENT,
731 CTLTYPE_STRUCT, "file2",
732 SYSCTL_DESCR("System open file table"),
733 sysctl_kern_file2, 0, NULL, 0,
734 CTL_KERN, KERN_FILE2, CTL_EOL);
735 #ifdef VERIFIED_EXEC
736 sysctl_createv(clog, 0, NULL, NULL,
737 CTLFLAG_PERMANENT,
738 CTLTYPE_NODE, "veriexec",
739 SYSCTL_DESCR("Verified Exec"),
740 NULL, 0, NULL, 0,
741 CTL_KERN, KERN_VERIEXEC, CTL_EOL);
742 sysctl_createv(clog, 0, NULL, NULL,
743 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
744 CTLTYPE_INT, "verbose",
745 SYSCTL_DESCR("Verified Exec verbose level"),
746 NULL, 0, &veriexec_verbose, 0,
747 CTL_KERN, KERN_VERIEXEC, VERIEXEC_VERBOSE,
748 CTL_EOL);
749 sysctl_createv(clog, 0, NULL, NULL,
750 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
751 CTLTYPE_INT, "strict",
752 SYSCTL_DESCR("Verified Exec strict level"),
753 sysctl_kern_veriexec, 0, NULL, 0,
754 CTL_KERN, KERN_VERIEXEC, VERIEXEC_STRICT, CTL_EOL);
755 sysctl_createv(clog, 0, NULL, NULL,
756 CTLFLAG_PERMANENT,
757 CTLTYPE_STRING, "algorithms",
758 SYSCTL_DESCR("Verified Exec supported hashing "
759 "algorithms"),
760 sysctl_kern_veriexec, 0, NULL, 0,
761 CTL_KERN, KERN_VERIEXEC, VERIEXEC_ALGORITHMS, CTL_EOL);
762 sysctl_createv(clog, 0, NULL, &veriexec_count_node,
763 CTLFLAG_PERMANENT,
764 CTLTYPE_NODE, "count",
765 SYSCTL_DESCR("Number of fingerprints on device(s)"),
766 NULL, 0, NULL, 0,
767 CTL_KERN, KERN_VERIEXEC, VERIEXEC_COUNT, CTL_EOL);
768 #endif /* VERIFIED_EXEC */
769 }
770
771 SYSCTL_SETUP(sysctl_kern_proc_setup,
772 "sysctl kern.proc/proc2/proc_args subtree setup")
773 {
774
775 sysctl_createv(clog, 0, NULL, NULL,
776 CTLFLAG_PERMANENT,
777 CTLTYPE_NODE, "kern", NULL,
778 NULL, 0, NULL, 0,
779 CTL_KERN, CTL_EOL);
780
781 sysctl_createv(clog, 0, NULL, NULL,
782 CTLFLAG_PERMANENT,
783 CTLTYPE_NODE, "proc",
784 SYSCTL_DESCR("System-wide process information"),
785 sysctl_doeproc, 0, NULL, 0,
786 CTL_KERN, KERN_PROC, CTL_EOL);
787 sysctl_createv(clog, 0, NULL, NULL,
788 CTLFLAG_PERMANENT,
789 CTLTYPE_NODE, "proc2",
790 SYSCTL_DESCR("Machine-independent process information"),
791 sysctl_doeproc, 0, NULL, 0,
792 CTL_KERN, KERN_PROC2, CTL_EOL);
793 sysctl_createv(clog, 0, NULL, NULL,
794 CTLFLAG_PERMANENT,
795 CTLTYPE_NODE, "proc_args",
796 SYSCTL_DESCR("Process argument information"),
797 sysctl_kern_proc_args, 0, NULL, 0,
798 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
799
800 /*
801 "nodes" under these:
802
803 KERN_PROC_ALL
804 KERN_PROC_PID pid
805 KERN_PROC_PGRP pgrp
806 KERN_PROC_SESSION sess
807 KERN_PROC_TTY tty
808 KERN_PROC_UID uid
809 KERN_PROC_RUID uid
810 KERN_PROC_GID gid
811 KERN_PROC_RGID gid
812
813 all in all, probably not worth the effort...
814 */
815 }
816
817 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
818 {
819 u_int u;
820 u_quad_t q;
821
822 sysctl_createv(clog, 0, NULL, NULL,
823 CTLFLAG_PERMANENT,
824 CTLTYPE_NODE, "hw", NULL,
825 NULL, 0, NULL, 0,
826 CTL_HW, CTL_EOL);
827
828 sysctl_createv(clog, 0, NULL, NULL,
829 CTLFLAG_PERMANENT,
830 CTLTYPE_STRING, "machine",
831 SYSCTL_DESCR("Machine class"),
832 NULL, 0, machine, 0,
833 CTL_HW, HW_MACHINE, CTL_EOL);
834 sysctl_createv(clog, 0, NULL, NULL,
835 CTLFLAG_PERMANENT,
836 CTLTYPE_STRING, "model",
837 SYSCTL_DESCR("Machine model"),
838 NULL, 0, cpu_model, 0,
839 CTL_HW, HW_MODEL, CTL_EOL);
840 sysctl_createv(clog, 0, NULL, NULL,
841 CTLFLAG_PERMANENT,
842 CTLTYPE_INT, "ncpu",
843 SYSCTL_DESCR("Number of active CPUs"),
844 sysctl_hw_ncpu, 0, NULL, 0,
845 CTL_HW, HW_NCPU, CTL_EOL);
846 sysctl_createv(clog, 0, NULL, NULL,
847 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
848 CTLTYPE_INT, "byteorder",
849 SYSCTL_DESCR("System byte order"),
850 NULL, BYTE_ORDER, NULL, 0,
851 CTL_HW, HW_BYTEORDER, CTL_EOL);
852 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
853 UINT_MAX : physmem * PAGE_SIZE;
854 sysctl_createv(clog, 0, NULL, NULL,
855 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
856 CTLTYPE_INT, "physmem",
857 SYSCTL_DESCR("Bytes of physical memory"),
858 NULL, u, NULL, 0,
859 CTL_HW, HW_PHYSMEM, CTL_EOL);
860 sysctl_createv(clog, 0, NULL, NULL,
861 CTLFLAG_PERMANENT,
862 CTLTYPE_INT, "usermem",
863 SYSCTL_DESCR("Bytes of non-kernel memory"),
864 sysctl_hw_usermem, 0, NULL, 0,
865 CTL_HW, HW_USERMEM, CTL_EOL);
866 sysctl_createv(clog, 0, NULL, NULL,
867 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
868 CTLTYPE_INT, "pagesize",
869 SYSCTL_DESCR("Software page size"),
870 NULL, PAGE_SIZE, NULL, 0,
871 CTL_HW, HW_PAGESIZE, CTL_EOL);
872 sysctl_createv(clog, 0, NULL, NULL,
873 CTLFLAG_PERMANENT,
874 CTLTYPE_STRING, "disknames",
875 SYSCTL_DESCR("List of disk devices present"),
876 sysctl_hw_disknames, 0, NULL, 0,
877 CTL_HW, HW_DISKNAMES, CTL_EOL);
878 sysctl_createv(clog, 0, NULL, NULL,
879 CTLFLAG_PERMANENT,
880 CTLTYPE_STRUCT, "diskstats",
881 SYSCTL_DESCR("Statistics on disk operation"),
882 sysctl_hw_diskstats, 0, NULL, 0,
883 CTL_HW, HW_DISKSTATS, CTL_EOL);
884 sysctl_createv(clog, 0, NULL, NULL,
885 CTLFLAG_PERMANENT,
886 CTLTYPE_STRING, "machine_arch",
887 SYSCTL_DESCR("Machine CPU class"),
888 NULL, 0, machine_arch, 0,
889 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
890 sysctl_createv(clog, 0, NULL, NULL,
891 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
892 CTLTYPE_INT, "alignbytes",
893 SYSCTL_DESCR("Alignment constraint for all possible "
894 "data types"),
895 NULL, ALIGNBYTES, NULL, 0,
896 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
897 sysctl_createv(clog, 0, NULL, NULL,
898 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
899 CTLTYPE_STRING, "cnmagic",
900 SYSCTL_DESCR("Console magic key sequence"),
901 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
902 CTL_HW, HW_CNMAGIC, CTL_EOL);
903 q = (u_quad_t)physmem * PAGE_SIZE;
904 sysctl_createv(clog, 0, NULL, NULL,
905 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
906 CTLTYPE_QUAD, "physmem64",
907 SYSCTL_DESCR("Bytes of physical memory"),
908 NULL, q, NULL, 0,
909 CTL_HW, HW_PHYSMEM64, CTL_EOL);
910 sysctl_createv(clog, 0, NULL, NULL,
911 CTLFLAG_PERMANENT,
912 CTLTYPE_QUAD, "usermem64",
913 SYSCTL_DESCR("Bytes of non-kernel memory"),
914 sysctl_hw_usermem, 0, NULL, 0,
915 CTL_HW, HW_USERMEM64, CTL_EOL);
916 }
917
918 #ifdef DEBUG
919 /*
920 * Debugging related system variables.
921 */
922 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
923 struct ctldebug debug5, debug6, debug7, debug8, debug9;
924 struct ctldebug debug10, debug11, debug12, debug13, debug14;
925 struct ctldebug debug15, debug16, debug17, debug18, debug19;
926 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
927 &debug0, &debug1, &debug2, &debug3, &debug4,
928 &debug5, &debug6, &debug7, &debug8, &debug9,
929 &debug10, &debug11, &debug12, &debug13, &debug14,
930 &debug15, &debug16, &debug17, &debug18, &debug19,
931 };
932
933 /*
934 * this setup routine is a replacement for debug_sysctl()
935 *
936 * note that it creates several nodes per defined debug variable
937 */
938 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
939 {
940 struct ctldebug *cdp;
941 char nodename[20];
942 int i;
943
944 /*
945 * two ways here:
946 *
947 * the "old" way (debug.name -> value) which was emulated by
948 * the sysctl(8) binary
949 *
950 * the new way, which the sysctl(8) binary was actually using
951
952 node debug
953 node debug.0
954 string debug.0.name
955 int debug.0.value
956 int debug.name
957
958 */
959
960 sysctl_createv(clog, 0, NULL, NULL,
961 CTLFLAG_PERMANENT,
962 CTLTYPE_NODE, "debug", NULL,
963 NULL, 0, NULL, 0,
964 CTL_DEBUG, CTL_EOL);
965
966 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
967 cdp = debugvars[i];
968 if (cdp->debugname == NULL || cdp->debugvar == NULL)
969 continue;
970
971 snprintf(nodename, sizeof(nodename), "debug%d", i);
972 sysctl_createv(clog, 0, NULL, NULL,
973 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
974 CTLTYPE_NODE, nodename, NULL,
975 NULL, 0, NULL, 0,
976 CTL_DEBUG, i, CTL_EOL);
977 sysctl_createv(clog, 0, NULL, NULL,
978 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
979 CTLTYPE_STRING, "name", NULL,
980 /*XXXUNCONST*/
981 NULL, 0, __UNCONST(cdp->debugname), 0,
982 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
983 sysctl_createv(clog, 0, NULL, NULL,
984 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
985 CTLTYPE_INT, "value", NULL,
986 NULL, 0, cdp->debugvar, 0,
987 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
988 sysctl_createv(clog, 0, NULL, NULL,
989 CTLFLAG_PERMANENT,
990 CTLTYPE_INT, cdp->debugname, NULL,
991 NULL, 0, cdp->debugvar, 0,
992 CTL_DEBUG, CTL_CREATE, CTL_EOL);
993 }
994 }
995 #endif /* DEBUG */
996
997 /*
998 * ********************************************************************
999 * section 2: private node-specific helper routines.
1000 * ********************************************************************
1001 */
1002
1003 /*
1004 * sysctl helper routine for kern.maxvnodes. drain vnodes if
1005 * new value is lower than desiredvnodes and then calls reinit
1006 * routines that needs to adjust to the new value.
1007 */
1008 static int
1009 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1010 {
1011 int error, new_vnodes, old_vnodes;
1012 struct sysctlnode node;
1013
1014 new_vnodes = desiredvnodes;
1015 node = *rnode;
1016 node.sysctl_data = &new_vnodes;
1017 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1018 if (error || newp == NULL)
1019 return (error);
1020
1021 old_vnodes = desiredvnodes;
1022 desiredvnodes = new_vnodes;
1023 if (new_vnodes < old_vnodes) {
1024 error = vfs_drainvnodes(new_vnodes, l->l_proc);
1025 if (error) {
1026 desiredvnodes = old_vnodes;
1027 return (error);
1028 }
1029 }
1030 vfs_reinit();
1031 nchreinit();
1032
1033 return (0);
1034 }
1035
1036 /*
1037 * sysctl helper routine for rtc_offset - set time after changes
1038 */
1039 static int
1040 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1041 {
1042 struct timeval tv, delta;
1043 int s, error, new_rtc_offset;
1044 struct sysctlnode node;
1045
1046 new_rtc_offset = rtc_offset;
1047 node = *rnode;
1048 node.sysctl_data = &new_rtc_offset;
1049 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1050 if (error || newp == NULL)
1051 return (error);
1052
1053 if (securelevel > 0)
1054 return (EPERM);
1055 if (rtc_offset == new_rtc_offset)
1056 return (0);
1057
1058 /* if we change the offset, adjust the time */
1059 s = splclock();
1060 tv = time;
1061 splx(s);
1062 delta.tv_sec = 60*(new_rtc_offset - rtc_offset);
1063 delta.tv_usec = 0;
1064 timeradd(&tv, &delta, &tv);
1065 rtc_offset = new_rtc_offset;
1066 settime(&tv);
1067
1068 return (0);
1069 }
1070
1071 /*
1072 * sysctl helper routine for kern.maxvnodes. ensures that the new
1073 * values are not too low or too high.
1074 */
1075 static int
1076 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1077 {
1078 int error, nmaxproc;
1079 struct sysctlnode node;
1080
1081 nmaxproc = maxproc;
1082 node = *rnode;
1083 node.sysctl_data = &nmaxproc;
1084 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1085 if (error || newp == NULL)
1086 return (error);
1087
1088 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1089 return (EINVAL);
1090 #ifdef __HAVE_CPU_MAXPROC
1091 if (nmaxproc > cpu_maxproc())
1092 return (EINVAL);
1093 #endif
1094 maxproc = nmaxproc;
1095
1096 return (0);
1097 }
1098
1099 /*
1100 * sysctl helper routine for kern.securelevel. ensures that the value
1101 * only rises unless the caller has pid 1 (assumed to be init).
1102 */
1103 static int
1104 sysctl_kern_securelevel(SYSCTLFN_ARGS)
1105 {
1106 int newsecurelevel, error;
1107 struct sysctlnode node;
1108
1109 newsecurelevel = securelevel;
1110 node = *rnode;
1111 node.sysctl_data = &newsecurelevel;
1112 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1113 if (error || newp == NULL)
1114 return (error);
1115
1116 if (newsecurelevel < securelevel && l && l->l_proc->p_pid != 1)
1117 return (EPERM);
1118 securelevel = newsecurelevel;
1119
1120 return (error);
1121 }
1122
1123 /*
1124 * sysctl helper function for kern.hostid. the hostid is a long, but
1125 * we export it as an int, so we need to give it a little help.
1126 */
1127 static int
1128 sysctl_kern_hostid(SYSCTLFN_ARGS)
1129 {
1130 int error, inthostid;
1131 struct sysctlnode node;
1132
1133 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1134 node = *rnode;
1135 node.sysctl_data = &inthostid;
1136 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1137 if (error || newp == NULL)
1138 return (error);
1139
1140 hostid = (unsigned)inthostid;
1141
1142 return (0);
1143 }
1144
1145 /*
1146 * sysctl helper function for kern.hostname and kern.domainnname.
1147 * resets the relevant recorded length when the underlying name is
1148 * changed.
1149 */
1150 static int
1151 sysctl_setlen(SYSCTLFN_ARGS)
1152 {
1153 int error;
1154
1155 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1156 if (error || newp == NULL)
1157 return (error);
1158
1159 switch (rnode->sysctl_num) {
1160 case KERN_HOSTNAME:
1161 hostnamelen = strlen((const char*)rnode->sysctl_data);
1162 break;
1163 case KERN_DOMAINNAME:
1164 domainnamelen = strlen((const char*)rnode->sysctl_data);
1165 break;
1166 }
1167
1168 return (0);
1169 }
1170
1171 /*
1172 * sysctl helper routine for kern.clockrate. assembles a struct on
1173 * the fly to be returned to the caller.
1174 */
1175 static int
1176 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1177 {
1178 struct clockinfo clkinfo;
1179 struct sysctlnode node;
1180
1181 clkinfo.tick = tick;
1182 clkinfo.tickadj = tickadj;
1183 clkinfo.hz = hz;
1184 clkinfo.profhz = profhz;
1185 clkinfo.stathz = stathz ? stathz : hz;
1186
1187 node = *rnode;
1188 node.sysctl_data = &clkinfo;
1189 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1190 }
1191
1192
1193 /*
1194 * sysctl helper routine for kern.file pseudo-subtree.
1195 */
1196 static int
1197 sysctl_kern_file(SYSCTLFN_ARGS)
1198 {
1199 int error;
1200 size_t buflen;
1201 struct file *fp;
1202 char *start, *where;
1203
1204 start = where = oldp;
1205 buflen = *oldlenp;
1206 if (where == NULL) {
1207 /*
1208 * overestimate by 10 files
1209 */
1210 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1211 return (0);
1212 }
1213
1214 /*
1215 * first copyout filehead
1216 */
1217 if (buflen < sizeof(filehead)) {
1218 *oldlenp = 0;
1219 return (0);
1220 }
1221 error = copyout(&filehead, where, sizeof(filehead));
1222 if (error)
1223 return (error);
1224 buflen -= sizeof(filehead);
1225 where += sizeof(filehead);
1226
1227 /*
1228 * followed by an array of file structures
1229 */
1230 LIST_FOREACH(fp, &filehead, f_list) {
1231 if (buflen < sizeof(struct file)) {
1232 *oldlenp = where - start;
1233 return (ENOMEM);
1234 }
1235 error = copyout(fp, where, sizeof(struct file));
1236 if (error)
1237 return (error);
1238 buflen -= sizeof(struct file);
1239 where += sizeof(struct file);
1240 }
1241 *oldlenp = where - start;
1242 return (0);
1243 }
1244
1245 /*
1246 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
1247 * asserts that the assigned value is in the correct range.
1248 */
1249 static int
1250 sysctl_kern_autonice(SYSCTLFN_ARGS)
1251 {
1252 int error, t = 0;
1253 struct sysctlnode node;
1254
1255 node = *rnode;
1256 t = *(int*)node.sysctl_data;
1257 node.sysctl_data = &t;
1258 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1259 if (error || newp == NULL)
1260 return (error);
1261
1262 switch (node.sysctl_num) {
1263 case KERN_AUTONICETIME:
1264 if (t >= 0)
1265 autonicetime = t;
1266 break;
1267 case KERN_AUTONICEVAL:
1268 if (t < PRIO_MIN)
1269 t = PRIO_MIN;
1270 else if (t > PRIO_MAX)
1271 t = PRIO_MAX;
1272 autoniceval = t;
1273 break;
1274 }
1275
1276 return (0);
1277 }
1278
1279 /*
1280 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
1281 * former it merely checks the message buffer is set up. for the latter,
1282 * it also copies out the data if necessary.
1283 */
1284 static int
1285 sysctl_msgbuf(SYSCTLFN_ARGS)
1286 {
1287 char *where = oldp;
1288 size_t len, maxlen;
1289 long beg, end;
1290 int error;
1291
1292 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1293 msgbufenabled = 0;
1294 return (ENXIO);
1295 }
1296
1297 switch (rnode->sysctl_num) {
1298 case KERN_MSGBUFSIZE: {
1299 struct sysctlnode node = *rnode;
1300 int msg_bufs = (int)msgbufp->msg_bufs;
1301 node.sysctl_data = &msg_bufs;
1302 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1303 }
1304 case KERN_MSGBUF:
1305 break;
1306 default:
1307 return (EOPNOTSUPP);
1308 }
1309
1310 if (newp != NULL)
1311 return (EPERM);
1312
1313 if (oldp == NULL) {
1314 /* always return full buffer size */
1315 *oldlenp = msgbufp->msg_bufs;
1316 return (0);
1317 }
1318
1319 error = 0;
1320 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1321
1322 /*
1323 * First, copy from the write pointer to the end of
1324 * message buffer.
1325 */
1326 beg = msgbufp->msg_bufx;
1327 end = msgbufp->msg_bufs;
1328 while (maxlen > 0) {
1329 len = MIN(end - beg, maxlen);
1330 if (len == 0)
1331 break;
1332 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1333 if (error)
1334 break;
1335 where += len;
1336 maxlen -= len;
1337
1338 /*
1339 * ... then, copy from the beginning of message buffer to
1340 * the write pointer.
1341 */
1342 beg = 0;
1343 end = msgbufp->msg_bufx;
1344 }
1345
1346 return (error);
1347 }
1348
1349 /*
1350 * sysctl helper routine for kern.defcorename. in the case of a new
1351 * string being assigned, check that it's not a zero-length string.
1352 * (XXX the check in -current doesn't work, but do we really care?)
1353 */
1354 static int
1355 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1356 {
1357 int error;
1358 char newcorename[MAXPATHLEN];
1359 struct sysctlnode node;
1360
1361 node = *rnode;
1362 node.sysctl_data = &newcorename[0];
1363 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1364 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1365 if (error || newp == NULL)
1366 return (error);
1367
1368 /*
1369 * when sysctl_lookup() deals with a string, it's guaranteed
1370 * to come back nul terminated. so there. :)
1371 */
1372 if (strlen(newcorename) == 0)
1373 return (EINVAL);
1374
1375 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1376
1377 return (0);
1378 }
1379
1380 /*
1381 * sysctl helper routine for kern.cp_time node. adds up cpu time
1382 * across all cpus.
1383 */
1384 static int
1385 sysctl_kern_cptime(SYSCTLFN_ARGS)
1386 {
1387 struct sysctlnode node = *rnode;
1388
1389 #ifndef MULTIPROCESSOR
1390
1391 if (namelen == 1) {
1392 if (name[0] != 0)
1393 return (ENOENT);
1394 /*
1395 * you're allowed to ask for the zero'th processor
1396 */
1397 name++;
1398 namelen--;
1399 }
1400 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1401 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1402 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1403
1404 #else /* MULTIPROCESSOR */
1405
1406 u_int64_t *cp_time = NULL;
1407 int error, n = sysctl_ncpus(), i;
1408 struct cpu_info *ci;
1409 CPU_INFO_ITERATOR cii;
1410
1411 /*
1412 * if you specifically pass a buffer that is the size of the
1413 * sum, or if you are probing for the size, you get the "sum"
1414 * of cp_time (and the size thereof) across all processors.
1415 *
1416 * alternately, you can pass an additional mib number and get
1417 * cp_time for that particular processor.
1418 */
1419 switch (namelen) {
1420 case 0:
1421 if (*oldlenp == sizeof(u_int64_t) * CPUSTATES || oldp == NULL) {
1422 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1423 n = -1; /* SUM */
1424 }
1425 else {
1426 node.sysctl_size = n * sizeof(u_int64_t) * CPUSTATES;
1427 n = -2; /* ALL */
1428 }
1429 break;
1430 case 1:
1431 if (name[0] < 0 || name[0] >= n)
1432 return (ENOENT); /* ENOSUCHPROCESSOR */
1433 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1434 n = name[0];
1435 /*
1436 * adjust these so that sysctl_lookup() will be happy
1437 */
1438 name++;
1439 namelen--;
1440 break;
1441 default:
1442 return (EINVAL);
1443 }
1444
1445 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1446 if (cp_time == NULL)
1447 return (ENOMEM);
1448 node.sysctl_data = cp_time;
1449 memset(cp_time, 0, node.sysctl_size);
1450
1451 for (CPU_INFO_FOREACH(cii, ci)) {
1452 if (n <= 0)
1453 for (i = 0; i < CPUSTATES; i++)
1454 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1455 /*
1456 * if a specific processor was requested and we just
1457 * did it, we're done here
1458 */
1459 if (n == 0)
1460 break;
1461 /*
1462 * if doing "all", skip to next cp_time set for next processor
1463 */
1464 if (n == -2)
1465 cp_time += CPUSTATES;
1466 /*
1467 * if we're doing a specific processor, we're one
1468 * processor closer
1469 */
1470 if (n > 0)
1471 n--;
1472 }
1473
1474 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1475 free(node.sysctl_data, M_TEMP);
1476 return (error);
1477
1478 #endif /* MULTIPROCESSOR */
1479 }
1480
1481 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1482 /*
1483 * sysctl helper routine for kern.sysvipc_info subtree.
1484 */
1485
1486 #define FILL_PERM(src, dst) do { \
1487 (dst)._key = (src)._key; \
1488 (dst).uid = (src).uid; \
1489 (dst).gid = (src).gid; \
1490 (dst).cuid = (src).cuid; \
1491 (dst).cgid = (src).cgid; \
1492 (dst).mode = (src).mode; \
1493 (dst)._seq = (src)._seq; \
1494 } while (/*CONSTCOND*/ 0);
1495 #define FILL_MSG(src, dst) do { \
1496 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1497 (dst).msg_qnum = (src).msg_qnum; \
1498 (dst).msg_qbytes = (src).msg_qbytes; \
1499 (dst)._msg_cbytes = (src)._msg_cbytes; \
1500 (dst).msg_lspid = (src).msg_lspid; \
1501 (dst).msg_lrpid = (src).msg_lrpid; \
1502 (dst).msg_stime = (src).msg_stime; \
1503 (dst).msg_rtime = (src).msg_rtime; \
1504 (dst).msg_ctime = (src).msg_ctime; \
1505 } while (/*CONSTCOND*/ 0)
1506 #define FILL_SEM(src, dst) do { \
1507 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1508 (dst).sem_nsems = (src).sem_nsems; \
1509 (dst).sem_otime = (src).sem_otime; \
1510 (dst).sem_ctime = (src).sem_ctime; \
1511 } while (/*CONSTCOND*/ 0)
1512 #define FILL_SHM(src, dst) do { \
1513 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1514 (dst).shm_segsz = (src).shm_segsz; \
1515 (dst).shm_lpid = (src).shm_lpid; \
1516 (dst).shm_cpid = (src).shm_cpid; \
1517 (dst).shm_atime = (src).shm_atime; \
1518 (dst).shm_dtime = (src).shm_dtime; \
1519 (dst).shm_ctime = (src).shm_ctime; \
1520 (dst).shm_nattch = (src).shm_nattch; \
1521 } while (/*CONSTCOND*/ 0)
1522
1523 static int
1524 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1525 {
1526 void *where = oldp;
1527 size_t *sizep = oldlenp;
1528 #ifdef SYSVMSG
1529 struct msg_sysctl_info *msgsi = NULL;
1530 #endif
1531 #ifdef SYSVSEM
1532 struct sem_sysctl_info *semsi = NULL;
1533 #endif
1534 #ifdef SYSVSHM
1535 struct shm_sysctl_info *shmsi = NULL;
1536 #endif
1537 size_t infosize, dssize, tsize, buflen;
1538 void *bf = NULL;
1539 char *start;
1540 int32_t nds;
1541 int i, error, ret;
1542
1543 if (namelen != 1)
1544 return (EINVAL);
1545
1546 start = where;
1547 buflen = *sizep;
1548
1549 switch (*name) {
1550 case KERN_SYSVIPC_MSG_INFO:
1551 #ifdef SYSVMSG
1552 infosize = sizeof(msgsi->msginfo);
1553 nds = msginfo.msgmni;
1554 dssize = sizeof(msgsi->msgids[0]);
1555 break;
1556 #else
1557 return (EINVAL);
1558 #endif
1559 case KERN_SYSVIPC_SEM_INFO:
1560 #ifdef SYSVSEM
1561 infosize = sizeof(semsi->seminfo);
1562 nds = seminfo.semmni;
1563 dssize = sizeof(semsi->semids[0]);
1564 break;
1565 #else
1566 return (EINVAL);
1567 #endif
1568 case KERN_SYSVIPC_SHM_INFO:
1569 #ifdef SYSVSHM
1570 infosize = sizeof(shmsi->shminfo);
1571 nds = shminfo.shmmni;
1572 dssize = sizeof(shmsi->shmids[0]);
1573 break;
1574 #else
1575 return (EINVAL);
1576 #endif
1577 default:
1578 return (EINVAL);
1579 }
1580 /*
1581 * Round infosize to 64 bit boundary if requesting more than just
1582 * the info structure or getting the total data size.
1583 */
1584 if (where == NULL || *sizep > infosize)
1585 infosize = ((infosize + 7) / 8) * 8;
1586 tsize = infosize + nds * dssize;
1587
1588 /* Return just the total size required. */
1589 if (where == NULL) {
1590 *sizep = tsize;
1591 return (0);
1592 }
1593
1594 /* Not enough room for even the info struct. */
1595 if (buflen < infosize) {
1596 *sizep = 0;
1597 return (ENOMEM);
1598 }
1599 bf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1600 memset(bf, 0, min(tsize, buflen));
1601
1602 switch (*name) {
1603 #ifdef SYSVMSG
1604 case KERN_SYSVIPC_MSG_INFO:
1605 msgsi = (struct msg_sysctl_info *)bf;
1606 msgsi->msginfo = msginfo;
1607 break;
1608 #endif
1609 #ifdef SYSVSEM
1610 case KERN_SYSVIPC_SEM_INFO:
1611 semsi = (struct sem_sysctl_info *)bf;
1612 semsi->seminfo = seminfo;
1613 break;
1614 #endif
1615 #ifdef SYSVSHM
1616 case KERN_SYSVIPC_SHM_INFO:
1617 shmsi = (struct shm_sysctl_info *)bf;
1618 shmsi->shminfo = shminfo;
1619 break;
1620 #endif
1621 }
1622 buflen -= infosize;
1623
1624 ret = 0;
1625 if (buflen > 0) {
1626 /* Fill in the IPC data structures. */
1627 for (i = 0; i < nds; i++) {
1628 if (buflen < dssize) {
1629 ret = ENOMEM;
1630 break;
1631 }
1632 switch (*name) {
1633 #ifdef SYSVMSG
1634 case KERN_SYSVIPC_MSG_INFO:
1635 FILL_MSG(msqids[i], msgsi->msgids[i]);
1636 break;
1637 #endif
1638 #ifdef SYSVSEM
1639 case KERN_SYSVIPC_SEM_INFO:
1640 FILL_SEM(sema[i], semsi->semids[i]);
1641 break;
1642 #endif
1643 #ifdef SYSVSHM
1644 case KERN_SYSVIPC_SHM_INFO:
1645 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1646 break;
1647 #endif
1648 }
1649 buflen -= dssize;
1650 }
1651 }
1652 *sizep -= buflen;
1653 error = copyout(bf, start, *sizep);
1654 /* If copyout succeeded, use return code set earlier. */
1655 if (error == 0)
1656 error = ret;
1657 if (bf)
1658 free(bf, M_TEMP);
1659 return (error);
1660 }
1661
1662 #undef FILL_PERM
1663 #undef FILL_MSG
1664 #undef FILL_SEM
1665 #undef FILL_SHM
1666
1667 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1668
1669 #if NPTY > 0
1670 /*
1671 * sysctl helper routine for kern.maxptys. ensures that any new value
1672 * is acceptable to the pty subsystem.
1673 */
1674 static int
1675 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1676 {
1677 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1678 int error, xmax;
1679 struct sysctlnode node;
1680
1681 /* get current value of maxptys */
1682 xmax = pty_maxptys(0, 0);
1683
1684 node = *rnode;
1685 node.sysctl_data = &xmax;
1686 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1687 if (error || newp == NULL)
1688 return (error);
1689
1690 if (xmax != pty_maxptys(xmax, 1))
1691 return (EINVAL);
1692
1693 return (0);
1694 }
1695 #endif /* NPTY > 0 */
1696
1697 /*
1698 * sysctl helper routine for kern.sbmax. basically just ensures that
1699 * any new value is not too small.
1700 */
1701 static int
1702 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1703 {
1704 int error, new_sbmax;
1705 struct sysctlnode node;
1706
1707 new_sbmax = sb_max;
1708 node = *rnode;
1709 node.sysctl_data = &new_sbmax;
1710 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1711 if (error || newp == NULL)
1712 return (error);
1713
1714 error = sb_max_set(new_sbmax);
1715
1716 return (error);
1717 }
1718
1719 /*
1720 * sysctl helper routine for kern.urandom node. picks a random number
1721 * for you.
1722 */
1723 static int
1724 sysctl_kern_urnd(SYSCTLFN_ARGS)
1725 {
1726 #if NRND > 0
1727 int v;
1728
1729 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1730 struct sysctlnode node = *rnode;
1731 node.sysctl_data = &v;
1732 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1733 }
1734 else
1735 return (EIO); /*XXX*/
1736 #else
1737 return (EOPNOTSUPP);
1738 #endif
1739 }
1740
1741 /*
1742 * sysctl helper routine to do kern.lwp.* work.
1743 */
1744 static int
1745 sysctl_kern_lwp(SYSCTLFN_ARGS)
1746 {
1747 struct kinfo_lwp klwp;
1748 struct proc *p;
1749 struct lwp *l2;
1750 char *where, *dp;
1751 int pid, elem_size, elem_count;
1752 int buflen, needed, error;
1753
1754 if (namelen == 1 && name[0] == CTL_QUERY)
1755 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1756
1757 dp = where = oldp;
1758 buflen = where != NULL ? *oldlenp : 0;
1759 error = needed = 0;
1760
1761 if (newp != NULL || namelen != 3)
1762 return (EINVAL);
1763 pid = name[0];
1764 elem_size = name[1];
1765 elem_count = name[2];
1766
1767 p = pfind(pid);
1768 if (p == NULL)
1769 return (ESRCH);
1770 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1771 if (buflen >= elem_size && elem_count > 0) {
1772 fill_lwp(l2, &klwp);
1773 /*
1774 * Copy out elem_size, but not larger than
1775 * the size of a struct kinfo_proc2.
1776 */
1777 error = copyout(&klwp, dp,
1778 min(sizeof(klwp), elem_size));
1779 if (error)
1780 goto cleanup;
1781 dp += elem_size;
1782 buflen -= elem_size;
1783 elem_count--;
1784 }
1785 needed += elem_size;
1786 }
1787
1788 if (where != NULL) {
1789 *oldlenp = dp - where;
1790 if (needed > *oldlenp)
1791 return (ENOMEM);
1792 } else {
1793 needed += KERN_LWPSLOP;
1794 *oldlenp = needed;
1795 }
1796 return (0);
1797 cleanup:
1798 return (error);
1799 }
1800
1801 /*
1802 * sysctl helper routine for kern.forkfsleep node. ensures that the
1803 * given value is not too large or two small, and is at least one
1804 * timer tick if not zero.
1805 */
1806 static int
1807 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1808 {
1809 /* userland sees value in ms, internally is in ticks */
1810 extern int forkfsleep; /* defined in kern/kern_fork.c */
1811 int error, timo, lsleep;
1812 struct sysctlnode node;
1813
1814 lsleep = forkfsleep * 1000 / hz;
1815 node = *rnode;
1816 node.sysctl_data = &lsleep;
1817 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1818 if (error || newp == NULL)
1819 return (error);
1820
1821 /* refuse negative values, and overly 'long time' */
1822 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1823 return (EINVAL);
1824
1825 timo = mstohz(lsleep);
1826
1827 /* if the interval is >0 ms && <1 tick, use 1 tick */
1828 if (lsleep != 0 && timo == 0)
1829 forkfsleep = 1;
1830 else
1831 forkfsleep = timo;
1832
1833 return (0);
1834 }
1835
1836 /*
1837 * sysctl helper routine for kern.root_partition
1838 */
1839 static int
1840 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1841 {
1842 int rootpart = DISKPART(rootdev);
1843 struct sysctlnode node = *rnode;
1844
1845 node.sysctl_data = &rootpart;
1846 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1847 }
1848
1849 /*
1850 * sysctl helper function for kern.drivers
1851 */
1852 static int
1853 sysctl_kern_drivers(SYSCTLFN_ARGS)
1854 {
1855 int error;
1856 size_t buflen;
1857 struct kinfo_drivers kd;
1858 char *start, *where;
1859 const char *dname;
1860 int i;
1861 extern struct devsw_conv *devsw_conv;
1862 extern int max_devsw_convs;
1863
1864 if (newp != NULL || namelen != 0)
1865 return (EINVAL);
1866
1867 start = where = oldp;
1868 buflen = *oldlenp;
1869 if (where == NULL) {
1870 *oldlenp = max_devsw_convs * sizeof kd;
1871 return 0;
1872 }
1873
1874 /*
1875 * An array of kinfo_drivers structures
1876 */
1877 error = 0;
1878 for (i = 0; i < max_devsw_convs; i++) {
1879 dname = devsw_conv[i].d_name;
1880 if (dname == NULL)
1881 continue;
1882 if (buflen < sizeof kd) {
1883 error = ENOMEM;
1884 break;
1885 }
1886 memset(&kd, 0, sizeof(kd));
1887 kd.d_bmajor = devsw_conv[i].d_bmajor;
1888 kd.d_cmajor = devsw_conv[i].d_cmajor;
1889 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1890 error = copyout(&kd, where, sizeof kd);
1891 if (error != 0)
1892 break;
1893 buflen -= sizeof kd;
1894 where += sizeof kd;
1895 }
1896 *oldlenp = where - start;
1897 return error;
1898 }
1899
1900 /*
1901 * sysctl helper function for kern.file2
1902 */
1903 static int
1904 sysctl_kern_file2(SYSCTLFN_ARGS)
1905 {
1906 struct proc *p;
1907 struct file *fp;
1908 struct filedesc *fd;
1909 struct kinfo_file kf;
1910 char *dp;
1911 u_int i, op;
1912 size_t len, needed, elem_size, out_size;
1913 int error, arg, elem_count;
1914
1915 if (namelen == 1 && name[0] == CTL_QUERY)
1916 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1917
1918 if (namelen != 4)
1919 return (EINVAL);
1920
1921 error = 0;
1922 dp = oldp;
1923 len = (oldp != NULL) ? *oldlenp : 0;
1924 op = name[0];
1925 arg = name[1];
1926 elem_size = name[2];
1927 elem_count = name[3];
1928 out_size = MIN(sizeof(kf), elem_size);
1929 needed = 0;
1930
1931 if (elem_size < 1 || elem_count < 0)
1932 return (EINVAL);
1933
1934 switch (op) {
1935 case KERN_FILE_BYFILE:
1936 /*
1937 * doesn't use arg so it must be zero
1938 */
1939 if (arg != 0)
1940 return (EINVAL);
1941 LIST_FOREACH(fp, &filehead, f_list) {
1942 if (len >= elem_size && elem_count > 0) {
1943 fill_file(&kf, fp, NULL, 0);
1944 error = copyout(&kf, dp, out_size);
1945 if (error)
1946 break;
1947 dp += elem_size;
1948 len -= elem_size;
1949 }
1950 if (elem_count > 0) {
1951 needed += elem_size;
1952 if (elem_count != INT_MAX)
1953 elem_count--;
1954 }
1955 }
1956 break;
1957 case KERN_FILE_BYPID:
1958 if (arg < -1)
1959 /* -1 means all processes */
1960 return (EINVAL);
1961 proclist_lock_read();
1962 PROCLIST_FOREACH(p, &allproc) {
1963 if (p->p_stat == SIDL)
1964 /* skip embryonic processes */
1965 continue;
1966 if (arg > 0 && p->p_pid != arg)
1967 /* pick only the one we want */
1968 /* XXX want 0 to mean "kernel files" */
1969 continue;
1970 fd = p->p_fd;
1971 for (i = 0; i < fd->fd_nfiles; i++) {
1972 fp = fd->fd_ofiles[i];
1973 if (fp == NULL || !FILE_IS_USABLE(fp))
1974 continue;
1975 if (len >= elem_size && elem_count > 0) {
1976 fill_file(&kf, fd->fd_ofiles[i],
1977 p, i);
1978 error = copyout(&kf, dp, out_size);
1979 if (error)
1980 break;
1981 dp += elem_size;
1982 len -= elem_size;
1983 }
1984 if (elem_count > 0) {
1985 needed += elem_size;
1986 if (elem_count != INT_MAX)
1987 elem_count--;
1988 }
1989 }
1990 }
1991 proclist_unlock_read();
1992 break;
1993 default:
1994 return (EINVAL);
1995 }
1996
1997 if (oldp == NULL)
1998 needed += KERN_FILESLOP * elem_size;
1999 *oldlenp = needed;
2000
2001 return (error);
2002 }
2003
2004 static void
2005 fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i)
2006 {
2007
2008 memset(kp, 0, sizeof(*kp));
2009
2010 kp->ki_fileaddr = PTRTOUINT64(fp);
2011 kp->ki_flag = fp->f_flag;
2012 kp->ki_iflags = fp->f_iflags;
2013 kp->ki_ftype = fp->f_type;
2014 kp->ki_count = fp->f_count;
2015 kp->ki_msgcount = fp->f_msgcount;
2016 kp->ki_usecount = fp->f_usecount;
2017 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2018 kp->ki_fuid = fp->f_cred->cr_uid;
2019 kp->ki_fgid = fp->f_cred->cr_gid;
2020 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2021 kp->ki_foffset = fp->f_offset;
2022 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2023
2024 /* vnode information to glue this file to something */
2025 if (fp->f_type == DTYPE_VNODE) {
2026 struct vnode *vp = (struct vnode *)fp->f_data;
2027
2028 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2029 kp->ki_vsize = vp->v_size;
2030 kp->ki_vtype = vp->v_type;
2031 kp->ki_vtag = vp->v_tag;
2032 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2033 }
2034
2035 /* process information when retrieved via KERN_FILE_BYPID */
2036 if (p) {
2037 kp->ki_pid = p->p_pid;
2038 kp->ki_fd = i;
2039 kp->ki_ofileflags = p->p_fd->fd_ofileflags[i];
2040 }
2041 }
2042
2043 static int
2044 sysctl_doeproc(SYSCTLFN_ARGS)
2045 {
2046 struct eproc eproc;
2047 struct kinfo_proc2 kproc2;
2048 struct kinfo_proc *dp;
2049 struct proc *p;
2050 const struct proclist_desc *pd;
2051 char *where, *dp2;
2052 int type, op, arg;
2053 u_int elem_size, elem_count;
2054 size_t buflen, needed;
2055 int error;
2056
2057 if (namelen == 1 && name[0] == CTL_QUERY)
2058 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2059
2060 dp = oldp;
2061 dp2 = where = oldp;
2062 buflen = where != NULL ? *oldlenp : 0;
2063 error = 0;
2064 needed = 0;
2065 type = rnode->sysctl_num;
2066
2067 if (type == KERN_PROC) {
2068 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
2069 return (EINVAL);
2070 op = name[0];
2071 if (op != KERN_PROC_ALL)
2072 arg = name[1];
2073 else
2074 arg = 0; /* Quell compiler warning */
2075 elem_size = elem_count = 0; /* Ditto */
2076 } else {
2077 if (namelen != 4)
2078 return (EINVAL);
2079 op = name[0];
2080 arg = name[1];
2081 elem_size = name[2];
2082 elem_count = name[3];
2083 }
2084
2085 proclist_lock_read();
2086
2087 pd = proclists;
2088 again:
2089 PROCLIST_FOREACH(p, pd->pd_list) {
2090 /*
2091 * Skip embryonic processes.
2092 */
2093 if (p->p_stat == SIDL)
2094 continue;
2095 /*
2096 * TODO - make more efficient (see notes below).
2097 * do by session.
2098 */
2099 switch (op) {
2100
2101 case KERN_PROC_PID:
2102 /* could do this with just a lookup */
2103 if (p->p_pid != (pid_t)arg)
2104 continue;
2105 break;
2106
2107 case KERN_PROC_PGRP:
2108 /* could do this by traversing pgrp */
2109 if (p->p_pgrp->pg_id != (pid_t)arg)
2110 continue;
2111 break;
2112
2113 case KERN_PROC_SESSION:
2114 if (p->p_session->s_sid != (pid_t)arg)
2115 continue;
2116 break;
2117
2118 case KERN_PROC_TTY:
2119 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2120 if ((p->p_flag & P_CONTROLT) == 0 ||
2121 p->p_session->s_ttyp == NULL ||
2122 p->p_session->s_ttyvp != NULL)
2123 continue;
2124 } else if ((p->p_flag & P_CONTROLT) == 0 ||
2125 p->p_session->s_ttyp == NULL) {
2126 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
2127 continue;
2128 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
2129 continue;
2130 break;
2131
2132 case KERN_PROC_UID:
2133 if (p->p_ucred->cr_uid != (uid_t)arg)
2134 continue;
2135 break;
2136
2137 case KERN_PROC_RUID:
2138 if (p->p_cred->p_ruid != (uid_t)arg)
2139 continue;
2140 break;
2141
2142 case KERN_PROC_GID:
2143 if (p->p_ucred->cr_gid != (uid_t)arg)
2144 continue;
2145 break;
2146
2147 case KERN_PROC_RGID:
2148 if (p->p_cred->p_rgid != (uid_t)arg)
2149 continue;
2150 break;
2151
2152 case KERN_PROC_ALL:
2153 /* allow everything */
2154 break;
2155
2156 default:
2157 error = EINVAL;
2158 goto cleanup;
2159 }
2160 if (type == KERN_PROC) {
2161 if (buflen >= sizeof(struct kinfo_proc)) {
2162 fill_eproc(p, &eproc);
2163 error = copyout(p, &dp->kp_proc,
2164 sizeof(struct proc));
2165 if (error)
2166 goto cleanup;
2167 error = copyout(&eproc, &dp->kp_eproc,
2168 sizeof(eproc));
2169 if (error)
2170 goto cleanup;
2171 dp++;
2172 buflen -= sizeof(struct kinfo_proc);
2173 }
2174 needed += sizeof(struct kinfo_proc);
2175 } else { /* KERN_PROC2 */
2176 if (buflen >= elem_size && elem_count > 0) {
2177 fill_kproc2(p, &kproc2);
2178 /*
2179 * Copy out elem_size, but not larger than
2180 * the size of a struct kinfo_proc2.
2181 */
2182 error = copyout(&kproc2, dp2,
2183 min(sizeof(kproc2), elem_size));
2184 if (error)
2185 goto cleanup;
2186 dp2 += elem_size;
2187 buflen -= elem_size;
2188 elem_count--;
2189 }
2190 needed += elem_size;
2191 }
2192 }
2193 pd++;
2194 if (pd->pd_list != NULL)
2195 goto again;
2196 proclist_unlock_read();
2197
2198 if (where != NULL) {
2199 if (type == KERN_PROC)
2200 *oldlenp = (char *)dp - where;
2201 else
2202 *oldlenp = dp2 - where;
2203 if (needed > *oldlenp)
2204 return (ENOMEM);
2205 } else {
2206 needed += KERN_PROCSLOP;
2207 *oldlenp = needed;
2208 }
2209 return (0);
2210 cleanup:
2211 proclist_unlock_read();
2212 return (error);
2213 }
2214
2215 /*
2216 * sysctl helper routine for kern.proc_args pseudo-subtree.
2217 */
2218 static int
2219 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2220 {
2221 struct ps_strings pss;
2222 struct proc *p, *up = l->l_proc;
2223 size_t len, upper_bound, xlen, i;
2224 struct uio auio;
2225 struct iovec aiov;
2226 vaddr_t argv;
2227 pid_t pid;
2228 int nargv, type, error;
2229 char *arg;
2230 char *tmp;
2231
2232 if (namelen == 1 && name[0] == CTL_QUERY)
2233 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2234
2235 if (newp != NULL || namelen != 2)
2236 return (EINVAL);
2237 pid = name[0];
2238 type = name[1];
2239
2240 switch (type) {
2241 case KERN_PROC_ARGV:
2242 case KERN_PROC_NARGV:
2243 case KERN_PROC_ENV:
2244 case KERN_PROC_NENV:
2245 /* ok */
2246 break;
2247 default:
2248 return (EINVAL);
2249 }
2250
2251 /* check pid */
2252 if ((p = pfind(pid)) == NULL)
2253 return (EINVAL);
2254
2255 /* only root or same user change look at the environment */
2256 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2257 if (up->p_ucred->cr_uid != 0) {
2258 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
2259 up->p_cred->p_ruid != p->p_cred->p_svuid)
2260 return (EPERM);
2261 }
2262 }
2263
2264 if (oldp == NULL) {
2265 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2266 *oldlenp = sizeof (int);
2267 else
2268 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2269 return (0);
2270 }
2271
2272 /*
2273 * Zombies don't have a stack, so we can't read their psstrings.
2274 * System processes also don't have a user stack.
2275 */
2276 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
2277 return (EINVAL);
2278
2279 /*
2280 * Lock the process down in memory.
2281 */
2282 /* XXXCDC: how should locking work here? */
2283 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
2284 return (EFAULT);
2285
2286 p->p_vmspace->vm_refcnt++; /* XXX */
2287
2288 /*
2289 * Allocate a temporary buffer to hold the arguments.
2290 */
2291 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2292
2293 /*
2294 * Read in the ps_strings structure.
2295 */
2296 aiov.iov_base = &pss;
2297 aiov.iov_len = sizeof(pss);
2298 auio.uio_iov = &aiov;
2299 auio.uio_iovcnt = 1;
2300 auio.uio_offset = (vaddr_t)p->p_psstr;
2301 auio.uio_resid = sizeof(pss);
2302 auio.uio_segflg = UIO_SYSSPACE;
2303 auio.uio_rw = UIO_READ;
2304 auio.uio_procp = NULL;
2305 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2306 if (error)
2307 goto done;
2308
2309 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2310 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
2311 else
2312 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
2313 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2314 error = copyout(&nargv, oldp, sizeof(nargv));
2315 *oldlenp = sizeof(nargv);
2316 goto done;
2317 }
2318 /*
2319 * Now read the address of the argument vector.
2320 */
2321 switch (type) {
2322 case KERN_PROC_ARGV:
2323 /* XXX compat32 stuff here */
2324 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
2325 break;
2326 case KERN_PROC_ENV:
2327 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
2328 break;
2329 default:
2330 return (EINVAL);
2331 }
2332 auio.uio_offset = (off_t)(unsigned long)tmp;
2333 aiov.iov_base = &argv;
2334 aiov.iov_len = sizeof(argv);
2335 auio.uio_iov = &aiov;
2336 auio.uio_iovcnt = 1;
2337 auio.uio_resid = sizeof(argv);
2338 auio.uio_segflg = UIO_SYSSPACE;
2339 auio.uio_rw = UIO_READ;
2340 auio.uio_procp = NULL;
2341 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2342 if (error)
2343 goto done;
2344
2345 /*
2346 * Now copy in the actual argument vector, one page at a time,
2347 * since we don't know how long the vector is (though, we do
2348 * know how many NUL-terminated strings are in the vector).
2349 */
2350 len = 0;
2351 upper_bound = *oldlenp;
2352 for (; nargv != 0 && len < upper_bound; len += xlen) {
2353 aiov.iov_base = arg;
2354 aiov.iov_len = PAGE_SIZE;
2355 auio.uio_iov = &aiov;
2356 auio.uio_iovcnt = 1;
2357 auio.uio_offset = argv + len;
2358 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
2359 auio.uio_resid = xlen;
2360 auio.uio_segflg = UIO_SYSSPACE;
2361 auio.uio_rw = UIO_READ;
2362 auio.uio_procp = NULL;
2363 error = uvm_io(&p->p_vmspace->vm_map, &auio);
2364 if (error)
2365 goto done;
2366
2367 for (i = 0; i < xlen && nargv != 0; i++) {
2368 if (arg[i] == '\0')
2369 nargv--; /* one full string */
2370 }
2371
2372 /*
2373 * Make sure we don't copyout past the end of the user's
2374 * buffer.
2375 */
2376 if (len + i > upper_bound)
2377 i = upper_bound - len;
2378
2379 error = copyout(arg, (char *)oldp + len, i);
2380 if (error)
2381 break;
2382
2383 if (nargv == 0) {
2384 len += i;
2385 break;
2386 }
2387 }
2388 *oldlenp = len;
2389
2390 done:
2391 uvmspace_free(p->p_vmspace);
2392
2393 free(arg, M_TEMP);
2394 return (error);
2395 }
2396
2397 /*
2398 * Sysctl helper routine for Verified Exec.
2399 */
2400 #ifdef VERIFIED_EXEC
2401 static int
2402 sysctl_kern_veriexec(SYSCTLFN_ARGS)
2403 {
2404 int newval, error;
2405 int *var = NULL, raise_only = 0;
2406 struct sysctlnode node;
2407
2408 node = *rnode;
2409
2410 switch (rnode->sysctl_num) {
2411 case VERIEXEC_STRICT:
2412 raise_only = 1;
2413 var = &veriexec_strict;
2414 break;
2415 case VERIEXEC_ALGORITHMS:
2416 node.sysctl_data = veriexec_fp_names;
2417 node.sysctl_size = strlen(veriexec_fp_names) + 1;
2418 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2419 default:
2420 return (EINVAL);
2421 }
2422
2423 if (raise_only && (*var != 0) && (securelevel > 0))
2424 return (EPERM);
2425
2426 newval = *var;
2427
2428 node.sysctl_data = &newval;
2429 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2430 if (error || newp == NULL) {
2431 return (error);
2432 }
2433
2434 *var = newval;
2435
2436 return (error);
2437 }
2438 #endif /* VERIFIED_EXEC */
2439
2440 /*
2441 * sysctl helper routine for hw.usermem and hw.usermem64. values are
2442 * calculate on the fly taking into account integer overflow and the
2443 * current wired count.
2444 */
2445 static int
2446 sysctl_hw_usermem(SYSCTLFN_ARGS)
2447 {
2448 u_int ui;
2449 u_quad_t uq;
2450 struct sysctlnode node;
2451
2452 node = *rnode;
2453 switch (rnode->sysctl_num) {
2454 case HW_USERMEM:
2455 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2456 ui = UINT_MAX;
2457 else
2458 ui *= PAGE_SIZE;
2459 node.sysctl_data = &ui;
2460 break;
2461 case HW_USERMEM64:
2462 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2463 node.sysctl_data = &uq;
2464 break;
2465 default:
2466 return (EINVAL);
2467 }
2468
2469 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2470 }
2471
2472 /*
2473 * sysctl helper routine for kern.cnmagic node. pulls the old value
2474 * out, encoded, and stuffs the new value in for decoding.
2475 */
2476 static int
2477 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2478 {
2479 char magic[CNS_LEN];
2480 int error;
2481 struct sysctlnode node;
2482
2483 if (oldp)
2484 cn_get_magic(magic, CNS_LEN);
2485 node = *rnode;
2486 node.sysctl_data = &magic[0];
2487 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2488 if (error || newp == NULL)
2489 return (error);
2490
2491 return (cn_set_magic(magic));
2492 }
2493
2494 static int
2495 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2496 {
2497 int ncpu;
2498 struct sysctlnode node;
2499
2500 ncpu = sysctl_ncpus();
2501 node = *rnode;
2502 node.sysctl_data = &ncpu;
2503
2504 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2505 }
2506
2507
2508 /*
2509 * ********************************************************************
2510 * section 3: public helper routines that are used for more than one
2511 * node
2512 * ********************************************************************
2513 */
2514
2515 /*
2516 * sysctl helper routine for the kern.root_device node and some ports'
2517 * machdep.root_device nodes.
2518 */
2519 int
2520 sysctl_root_device(SYSCTLFN_ARGS)
2521 {
2522 struct sysctlnode node;
2523
2524 node = *rnode;
2525 node.sysctl_data = root_device->dv_xname;
2526 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2527 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2528 }
2529
2530 /*
2531 * sysctl helper routine for kern.consdev, dependent on the current
2532 * state of the console. also used for machdep.console_device on some
2533 * ports.
2534 */
2535 int
2536 sysctl_consdev(SYSCTLFN_ARGS)
2537 {
2538 dev_t consdev;
2539 struct sysctlnode node;
2540
2541 if (cn_tab != NULL)
2542 consdev = cn_tab->cn_dev;
2543 else
2544 consdev = NODEV;
2545 node = *rnode;
2546 node.sysctl_data = &consdev;
2547 node.sysctl_size = sizeof(consdev);
2548 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2549 }
2550
2551 /*
2552 * ********************************************************************
2553 * section 4: support for some helpers
2554 * ********************************************************************
2555 */
2556
2557 /*
2558 * Fill in a kinfo_proc2 structure for the specified process.
2559 */
2560 static void
2561 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2562 {
2563 struct tty *tp;
2564 struct lwp *l;
2565 struct timeval ut, st;
2566
2567 memset(ki, 0, sizeof(*ki));
2568
2569 ki->p_paddr = PTRTOUINT64(p);
2570 ki->p_fd = PTRTOUINT64(p->p_fd);
2571 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2572 ki->p_stats = PTRTOUINT64(p->p_stats);
2573 ki->p_limit = PTRTOUINT64(p->p_limit);
2574 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2575 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2576 ki->p_sess = PTRTOUINT64(p->p_session);
2577 ki->p_tsess = 0; /* may be changed if controlling tty below */
2578 ki->p_ru = PTRTOUINT64(p->p_ru);
2579
2580 ki->p_eflag = 0;
2581 ki->p_exitsig = p->p_exitsig;
2582 ki->p_flag = p->p_flag;
2583
2584 ki->p_pid = p->p_pid;
2585 if (p->p_pptr)
2586 ki->p_ppid = p->p_pptr->p_pid;
2587 else
2588 ki->p_ppid = 0;
2589 ki->p_sid = p->p_session->s_sid;
2590 ki->p__pgid = p->p_pgrp->pg_id;
2591
2592 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2593
2594 ki->p_uid = p->p_ucred->cr_uid;
2595 ki->p_ruid = p->p_cred->p_ruid;
2596 ki->p_gid = p->p_ucred->cr_gid;
2597 ki->p_rgid = p->p_cred->p_rgid;
2598 ki->p_svuid = p->p_cred->p_svuid;
2599 ki->p_svgid = p->p_cred->p_svgid;
2600
2601 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2602 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2603 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2604
2605 ki->p_jobc = p->p_pgrp->pg_jobc;
2606 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2607 ki->p_tdev = tp->t_dev;
2608 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2609 ki->p_tsess = PTRTOUINT64(tp->t_session);
2610 } else {
2611 ki->p_tdev = NODEV;
2612 }
2613
2614 ki->p_estcpu = p->p_estcpu;
2615 ki->p_rtime_sec = p->p_rtime.tv_sec;
2616 ki->p_rtime_usec = p->p_rtime.tv_usec;
2617 ki->p_cpticks = p->p_cpticks;
2618 ki->p_pctcpu = p->p_pctcpu;
2619
2620 ki->p_uticks = p->p_uticks;
2621 ki->p_sticks = p->p_sticks;
2622 ki->p_iticks = p->p_iticks;
2623
2624 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2625 ki->p_traceflag = p->p_traceflag;
2626
2627
2628 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2629 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2630 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2631 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2632
2633 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2634 ki->p_realstat = p->p_stat;
2635 ki->p_nice = p->p_nice;
2636
2637 ki->p_xstat = p->p_xstat;
2638 ki->p_acflag = p->p_acflag;
2639
2640 strncpy(ki->p_comm, p->p_comm,
2641 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2642
2643 strncpy(ki->p_login, p->p_session->s_login,
2644 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2645
2646 ki->p_nlwps = p->p_nlwps;
2647 ki->p_nrlwps = p->p_nrlwps;
2648 ki->p_realflag = p->p_flag;
2649
2650 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2651 ki->p_vm_rssize = 0;
2652 ki->p_vm_tsize = 0;
2653 ki->p_vm_dsize = 0;
2654 ki->p_vm_ssize = 0;
2655 l = NULL;
2656 } else {
2657 struct vmspace *vm = p->p_vmspace;
2658
2659 ki->p_vm_rssize = vm_resident_count(vm);
2660 ki->p_vm_tsize = vm->vm_tsize;
2661 ki->p_vm_dsize = vm->vm_dsize;
2662 ki->p_vm_ssize = vm->vm_ssize;
2663
2664 /* Pick a "representative" LWP */
2665 l = proc_representative_lwp(p);
2666 ki->p_forw = PTRTOUINT64(l->l_forw);
2667 ki->p_back = PTRTOUINT64(l->l_back);
2668 ki->p_addr = PTRTOUINT64(l->l_addr);
2669 ki->p_stat = l->l_stat;
2670 ki->p_flag |= l->l_flag;
2671 ki->p_swtime = l->l_swtime;
2672 ki->p_slptime = l->l_slptime;
2673 if (l->l_stat == LSONPROC) {
2674 KDASSERT(l->l_cpu != NULL);
2675 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2676 } else
2677 ki->p_schedflags = 0;
2678 ki->p_holdcnt = l->l_holdcnt;
2679 ki->p_priority = l->l_priority;
2680 ki->p_usrpri = l->l_usrpri;
2681 if (l->l_wmesg)
2682 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2683 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2684
2685 }
2686
2687 if (p->p_session->s_ttyvp)
2688 ki->p_eflag |= EPROC_CTTY;
2689 if (SESS_LEADER(p))
2690 ki->p_eflag |= EPROC_SLEADER;
2691
2692 /* XXX Is this double check necessary? */
2693 if (P_ZOMBIE(p)) {
2694 ki->p_uvalid = 0;
2695 } else {
2696 ki->p_uvalid = 1;
2697
2698 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2699 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2700
2701 calcru(p, &ut, &st, 0);
2702 ki->p_uutime_sec = ut.tv_sec;
2703 ki->p_uutime_usec = ut.tv_usec;
2704 ki->p_ustime_sec = st.tv_sec;
2705 ki->p_ustime_usec = st.tv_usec;
2706
2707 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2708 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2709 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2710 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2711 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2712 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2713 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2714 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2715 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2716 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2717 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2718 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2719 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2720 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2721
2722 timeradd(&p->p_stats->p_cru.ru_utime,
2723 &p->p_stats->p_cru.ru_stime, &ut);
2724 ki->p_uctime_sec = ut.tv_sec;
2725 ki->p_uctime_usec = ut.tv_usec;
2726 }
2727 #ifdef MULTIPROCESSOR
2728 if (l && l->l_cpu != NULL)
2729 ki->p_cpuid = l->l_cpu->ci_cpuid;
2730 else
2731 #endif
2732 ki->p_cpuid = KI_NOCPU;
2733 }
2734
2735 /*
2736 * Fill in a kinfo_lwp structure for the specified lwp.
2737 */
2738 static void
2739 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2740 {
2741
2742 kl->l_forw = PTRTOUINT64(l->l_forw);
2743 kl->l_back = PTRTOUINT64(l->l_back);
2744 kl->l_laddr = PTRTOUINT64(l);
2745 kl->l_addr = PTRTOUINT64(l->l_addr);
2746 kl->l_stat = l->l_stat;
2747 kl->l_lid = l->l_lid;
2748 kl->l_flag = l->l_flag;
2749
2750 kl->l_swtime = l->l_swtime;
2751 kl->l_slptime = l->l_slptime;
2752 if (l->l_stat == LSONPROC) {
2753 KDASSERT(l->l_cpu != NULL);
2754 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2755 } else
2756 kl->l_schedflags = 0;
2757 kl->l_holdcnt = l->l_holdcnt;
2758 kl->l_priority = l->l_priority;
2759 kl->l_usrpri = l->l_usrpri;
2760 if (l->l_wmesg)
2761 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2762 kl->l_wchan = PTRTOUINT64(l->l_wchan);
2763 #ifdef MULTIPROCESSOR
2764 if (l->l_cpu != NULL)
2765 kl->l_cpuid = l->l_cpu->ci_cpuid;
2766 else
2767 #endif
2768 kl->l_cpuid = KI_NOCPU;
2769 }
2770
2771 /*
2772 * Fill in an eproc structure for the specified process.
2773 */
2774 void
2775 fill_eproc(struct proc *p, struct eproc *ep)
2776 {
2777 struct tty *tp;
2778 struct lwp *l;
2779
2780 ep->e_paddr = p;
2781 ep->e_sess = p->p_session;
2782 ep->e_pcred = *p->p_cred;
2783 ep->e_ucred = *p->p_ucred;
2784 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2785 ep->e_vm.vm_rssize = 0;
2786 ep->e_vm.vm_tsize = 0;
2787 ep->e_vm.vm_dsize = 0;
2788 ep->e_vm.vm_ssize = 0;
2789 /* ep->e_vm.vm_pmap = XXX; */
2790 } else {
2791 struct vmspace *vm = p->p_vmspace;
2792
2793 ep->e_vm.vm_rssize = vm_resident_count(vm);
2794 ep->e_vm.vm_tsize = vm->vm_tsize;
2795 ep->e_vm.vm_dsize = vm->vm_dsize;
2796 ep->e_vm.vm_ssize = vm->vm_ssize;
2797
2798 /* Pick a "representative" LWP */
2799 l = proc_representative_lwp(p);
2800
2801 if (l->l_wmesg)
2802 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2803 }
2804 if (p->p_pptr)
2805 ep->e_ppid = p->p_pptr->p_pid;
2806 else
2807 ep->e_ppid = 0;
2808 ep->e_pgid = p->p_pgrp->pg_id;
2809 ep->e_sid = ep->e_sess->s_sid;
2810 ep->e_jobc = p->p_pgrp->pg_jobc;
2811 if ((p->p_flag & P_CONTROLT) &&
2812 (tp = ep->e_sess->s_ttyp)) {
2813 ep->e_tdev = tp->t_dev;
2814 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2815 ep->e_tsess = tp->t_session;
2816 } else
2817 ep->e_tdev = NODEV;
2818
2819 ep->e_xsize = ep->e_xrssize = 0;
2820 ep->e_xccount = ep->e_xswrss = 0;
2821 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2822 if (SESS_LEADER(p))
2823 ep->e_flag |= EPROC_SLEADER;
2824 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2825 }
2826