init_sysctl.c revision 1.6 1 /* $NetBSD: init_sysctl.c,v 1.6 2003/12/07 10:31:32 he Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "opt_sysv.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_posix.h"
42 #include "pty.h"
43 #include "rnd.h"
44
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/sysctl.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/unistd.h>
52 #include <sys/disklabel.h>
53 #include <sys/rnd.h>
54 #include <sys/vnode.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/msgbuf.h>
58 #include <dev/cons.h>
59 #include <sys/socketvar.h>
60 #include <sys/file.h>
61 #include <sys/tty.h>
62 #include <sys/malloc.h>
63 #include <sys/resource.h>
64 #include <sys/resourcevar.h>
65 #include <sys/exec.h>
66 #include <sys/conf.h>
67 #include <sys/device.h>
68
69 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
70 #include <sys/ipc.h>
71 #endif
72 #ifdef SYSVMSG
73 #include <sys/msg.h>
74 #endif
75 #ifdef SYSVSEM
76 #include <sys/sem.h>
77 #endif
78 #ifdef SYSVSHM
79 #include <sys/shm.h>
80 #endif
81
82 #include <machine/cpu.h>
83
84 /*
85 * try over estimating by 5 procs/lwps
86 */
87 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
88 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
89
90 /*
91 * convert pointer to 64 int for struct kinfo_proc2
92 */
93 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
94
95 #ifndef MULTIPROCESSOR
96 #define sysctl_ncpus() (1)
97 #else /* MULTIPROCESSOR */
98 #ifndef CPU_INFO_FOREACH
99 #define CPU_INFO_ITERATOR int
100 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
101 #endif
102 static int
103 sysctl_ncpus(void)
104 {
105 struct cpu_info *ci;
106 CPU_INFO_ITERATOR cii;
107
108 int ncpus = 0;
109 for (CPU_INFO_FOREACH(cii, ci))
110 ncpus++;
111 return (ncpus);
112 }
113 #endif /* MULTIPROCESSOR */
114
115 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
116 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
117 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
118 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
119 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
120 static int sysctl_kern_file(SYSCTLFN_PROTO);
121 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
122 static int sysctl_msgbuf(SYSCTLFN_PROTO);
123 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
124 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
125 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
126 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
127 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
128 #if NPTY > 0
129 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
130 #endif /* NPTY > 0 */
131 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
132 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
133 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
134 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
135 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
136 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
137 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
138 static int sysctl_doeproc(SYSCTLFN_PROTO);
139 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
140 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
141 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
142 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
143
144 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
145 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
146
147 /*
148 * ********************************************************************
149 * section 1: setup routines
150 * ********************************************************************
151 * these functions are stuffed into a link set for sysctl setup
152 * functions. they're never called or referenced from anywhere else.
153 * ********************************************************************
154 */
155
156 /*
157 * sets up the base nodes...
158 */
159 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
160 {
161
162 sysctl_createv(SYSCTL_PERMANENT,
163 CTLTYPE_NODE, "kern", NULL,
164 NULL, 0, NULL, 0,
165 CTL_KERN, CTL_EOL);
166 sysctl_createv(SYSCTL_PERMANENT,
167 CTLTYPE_NODE, "vm", NULL,
168 NULL, 0, NULL, 0,
169 CTL_VM, CTL_EOL);
170 sysctl_createv(SYSCTL_PERMANENT,
171 CTLTYPE_NODE, "vfs", NULL,
172 NULL, 0, NULL, 0,
173 CTL_VFS, CTL_EOL);
174 sysctl_createv(SYSCTL_PERMANENT,
175 CTLTYPE_NODE, "net", NULL,
176 NULL, 0, NULL, 0,
177 CTL_NET, CTL_EOL);
178 sysctl_createv(SYSCTL_PERMANENT,
179 CTLTYPE_NODE, "debug", NULL,
180 NULL, 0, NULL, 0,
181 CTL_DEBUG, CTL_EOL);
182 sysctl_createv(SYSCTL_PERMANENT,
183 CTLTYPE_NODE, "hw", NULL,
184 NULL, 0, NULL, 0,
185 CTL_HW, CTL_EOL);
186 sysctl_createv(SYSCTL_PERMANENT,
187 CTLTYPE_NODE, "machdep", NULL,
188 NULL, 0, NULL, 0,
189 CTL_MACHDEP, CTL_EOL);
190 /*
191 * this node is inserted so that the sysctl nodes in libc can
192 * operate.
193 */
194 sysctl_createv(SYSCTL_PERMANENT,
195 CTLTYPE_NODE, "user", NULL,
196 NULL, 0, NULL, 0,
197 CTL_USER, CTL_EOL);
198 sysctl_createv(SYSCTL_PERMANENT,
199 CTLTYPE_NODE, "ddb", NULL,
200 NULL, 0, NULL, 0,
201 CTL_DDB, CTL_EOL);
202 sysctl_createv(SYSCTL_PERMANENT,
203 CTLTYPE_NODE, "proc", NULL,
204 NULL, 0, NULL, 0,
205 CTL_PROC, CTL_EOL);
206 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
207 CTLTYPE_NODE, "vendor", NULL,
208 NULL, 0, NULL, 0,
209 CTL_VENDOR, CTL_EOL);
210 sysctl_createv(SYSCTL_PERMANENT,
211 CTLTYPE_NODE, "emul", NULL,
212 NULL, 0, NULL, 0,
213 CTL_EMUL, CTL_EOL);
214 }
215
216 /*
217 * this setup routine is a replacement for kern_sysctl()
218 */
219 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
220 {
221 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
222 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
223 extern int dumponpanic; /* defined in kern/subr_prf.c */
224
225 sysctl_createv(SYSCTL_PERMANENT,
226 CTLTYPE_NODE, "kern", NULL,
227 NULL, 0, NULL, 0,
228 CTL_KERN, CTL_EOL);
229
230 sysctl_createv(SYSCTL_PERMANENT,
231 CTLTYPE_STRING, "ostype", NULL,
232 NULL, 0, &ostype, 0,
233 CTL_KERN, KERN_OSTYPE, CTL_EOL);
234 sysctl_createv(SYSCTL_PERMANENT,
235 CTLTYPE_STRING, "osrelease", NULL,
236 NULL, 0, &osrelease, 0,
237 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
238 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
239 CTLTYPE_INT, "osrevision", NULL,
240 NULL, __NetBSD_Version__, NULL, 0,
241 CTL_KERN, KERN_OSREV, CTL_EOL);
242 sysctl_createv(SYSCTL_PERMANENT,
243 CTLTYPE_STRING, "version", NULL,
244 NULL, 0, &version, 0,
245 CTL_KERN, KERN_VERSION, CTL_EOL);
246 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
247 CTLTYPE_INT, "maxvnodes", NULL,
248 sysctl_kern_maxvnodes, 0, NULL, 0,
249 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
250 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
251 CTLTYPE_INT, "maxproc", NULL,
252 sysctl_kern_maxproc, 0, NULL, 0,
253 CTL_KERN, KERN_MAXPROC, CTL_EOL);
254 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
255 CTLTYPE_INT, "maxfiles", NULL,
256 NULL, 0, &maxfiles, 0,
257 CTL_KERN, KERN_MAXFILES, CTL_EOL);
258 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
259 CTLTYPE_INT, "argmax", NULL,
260 NULL, ARG_MAX, NULL, 0,
261 CTL_KERN, KERN_ARGMAX, CTL_EOL);
262 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
263 CTLTYPE_INT, "securelevel", NULL,
264 sysctl_kern_securelevel, 0, &securelevel, 0,
265 CTL_KERN, KERN_SECURELVL, CTL_EOL);
266 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
267 CTLTYPE_STRING, "hostname", NULL,
268 NULL, 0, &hostname, MAXHOSTNAMELEN,
269 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
270 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
271 CTLTYPE_INT, "hostid", NULL,
272 sysctl_kern_hostid, 0, NULL, 0,
273 CTL_KERN, KERN_HOSTID, CTL_EOL);
274 sysctl_createv(SYSCTL_PERMANENT,
275 CTLTYPE_STRUCT, "clockrate", NULL,
276 sysctl_kern_clockrate, 0, NULL,
277 sizeof(struct clockinfo),
278 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
279 sysctl_createv(SYSCTL_PERMANENT,
280 CTLTYPE_STRUCT, "vnode", NULL,
281 sysctl_kern_vnode, 0, NULL, 0,
282 CTL_KERN, KERN_VNODE, CTL_EOL);
283 sysctl_createv(SYSCTL_PERMANENT,
284 CTLTYPE_STRUCT, "file", NULL,
285 sysctl_kern_file, 0, NULL, 0,
286 CTL_KERN, KERN_FILE, CTL_EOL);
287 #ifndef GPROF
288 sysctl_createv(SYSCTL_PERMANENT,
289 CTLTYPE_NODE, "profiling", NULL,
290 sysctl_notavail, 0, NULL, 0,
291 CTL_KERN, KERN_PROF, CTL_EOL);
292 #endif
293 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
294 CTLTYPE_INT, "posix1version", NULL,
295 NULL, _POSIX_VERSION, NULL, 0,
296 CTL_KERN, KERN_POSIX1, CTL_EOL);
297 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
298 CTLTYPE_INT, "ngroups", NULL,
299 NULL, NGROUPS_MAX, NULL, 0,
300 CTL_KERN, KERN_NGROUPS, CTL_EOL);
301 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
302 CTLTYPE_INT, "job_control", NULL,
303 NULL, 1, NULL, 0,
304 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
305 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
306 CTLTYPE_INT, "saved_ids", NULL, NULL,
307 #ifdef _POSIX_SAVED_IDS
308 1,
309 #else /* _POSIX_SAVED_IDS */
310 0,
311 #endif /* _POSIX_SAVED_IDS */
312 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
313 sysctl_createv(SYSCTL_PERMANENT,
314 CTLTYPE_STRUCT, "boottime", NULL,
315 NULL, 0, &boottime, sizeof(boottime),
316 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
317 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
318 CTLTYPE_STRING, "domainname", NULL,
319 NULL, 0, &domainname, MAXHOSTNAMELEN,
320 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
321 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
322 CTLTYPE_INT, "maxpartitions", NULL,
323 NULL, MAXPARTITIONS, NULL, 0,
324 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
325 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
326 CTLTYPE_INT, "rawpartition", NULL,
327 NULL, RAW_PART, NULL, 0,
328 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
329 sysctl_createv(SYSCTL_PERMANENT,
330 CTLTYPE_STRUCT, "timex", NULL,
331 sysctl_notavail, 0, NULL, 0,
332 CTL_KERN, KERN_TIMEX, CTL_EOL);
333 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
334 CTLTYPE_INT, "autonicetime", NULL,
335 sysctl_kern_autonice, 0, &autonicetime, 0,
336 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
337 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
338 CTLTYPE_INT, "autoniceval", NULL,
339 sysctl_kern_autonice, 0, &autoniceval, 0,
340 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
341 sysctl_createv(SYSCTL_PERMANENT,
342 CTLTYPE_INT, "rtc_offset", NULL,
343 NULL, 0, &rtc_offset, 0,
344 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
345 sysctl_createv(SYSCTL_PERMANENT,
346 CTLTYPE_STRING, "root_device", NULL,
347 sysctl_root_device, 0, NULL, 0,
348 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
349 sysctl_createv(SYSCTL_PERMANENT,
350 CTLTYPE_INT, "msgbufsize", NULL,
351 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
352 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
353 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
354 CTLTYPE_INT, "fsync", NULL,
355 NULL, 1, NULL, 0,
356 CTL_KERN, KERN_FSYNC, CTL_EOL);
357 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
358 CTLTYPE_INT, "sysvmsg", NULL, NULL,
359 #ifdef SYSVMSG
360 1,
361 #else /* SYSVMSG */
362 0,
363 #endif /* SYSVMSG */
364 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
365 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
366 CTLTYPE_INT, "sysvsem", NULL, NULL,
367 #ifdef SYSVSEM
368 1,
369 #else /* SYSVSEM */
370 0,
371 #endif /* SYSVSEM */
372 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
373 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
374 CTLTYPE_INT, "sysvshm", NULL, NULL,
375 #ifdef SYSVSHM
376 1,
377 #else /* SYSVSHM */
378 0,
379 #endif /* SYSVSHM */
380 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
381 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
382 CTLTYPE_INT, "synchronized_io", NULL,
383 NULL, 1, NULL, 0,
384 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
385 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
386 CTLTYPE_INT, "iov_max", NULL,
387 NULL, IOV_MAX, NULL, 0,
388 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
389 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
390 CTLTYPE_INT, "mapped_files", NULL,
391 NULL, 1, NULL, 0,
392 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
393 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
394 CTLTYPE_INT, "memlock", NULL,
395 NULL, 1, NULL, 0,
396 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
397 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
398 CTLTYPE_INT, "memlock_range", NULL,
399 NULL, 1, NULL, 0,
400 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
401 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
402 CTLTYPE_INT, "memory_protection", NULL,
403 NULL, 1, NULL, 0,
404 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
405 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
406 CTLTYPE_INT, "login_name_max", NULL,
407 NULL, LOGIN_NAME_MAX, NULL, 0,
408 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
409 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
410 CTLTYPE_STRING, "defcorename", NULL,
411 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
412 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
413 sysctl_createv(SYSCTL_PERMANENT,
414 CTLTYPE_INT, "logsigexit", NULL,
415 NULL, 0, &kern_logsigexit, 0,
416 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
417 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
418 CTLTYPE_INT, "fscale", NULL,
419 NULL, FSCALE, NULL, 0,
420 CTL_KERN, KERN_FSCALE, CTL_EOL);
421 sysctl_createv(SYSCTL_PERMANENT,
422 CTLTYPE_INT, "ccpu", NULL,
423 NULL, 0, &ccpu, 0,
424 CTL_KERN, KERN_CCPU, CTL_EOL);
425 sysctl_createv(SYSCTL_PERMANENT,
426 CTLTYPE_STRUCT, "cp_time", NULL,
427 sysctl_kern_cptime, 0, NULL, 0,
428 CTL_KERN, KERN_CP_TIME, CTL_EOL);
429 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
430 sysctl_createv(SYSCTL_PERMANENT,
431 CTLTYPE_STRUCT, "sysvipc_info", NULL,
432 sysctl_kern_sysvipc, 0, NULL, 0,
433 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
434 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
435 sysctl_createv(SYSCTL_PERMANENT,
436 CTLTYPE_INT, "msgbuf", NULL,
437 sysctl_msgbuf, 0, NULL, 0,
438 CTL_KERN, KERN_MSGBUF, CTL_EOL);
439 sysctl_createv(SYSCTL_PERMANENT,
440 CTLTYPE_STRUCT, "consdev", NULL,
441 sysctl_consdev, 0, NULL, sizeof(dev_t),
442 CTL_KERN, KERN_CONSDEV, CTL_EOL);
443 #if NPTY > 0
444 sysctl_createv(SYSCTL_PERMANENT,
445 CTLTYPE_INT, "maxptys", NULL,
446 sysctl_kern_maxptys, 0, NULL, 0,
447 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
448 #endif /* NPTY > 0 */
449 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
450 CTLTYPE_INT, "maxphys", NULL,
451 NULL, MAXPHYS, NULL, 0,
452 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
453 sysctl_createv(SYSCTL_PERMANENT,
454 CTLTYPE_INT, "sbmax", NULL,
455 sysctl_kern_sbmax, 0, NULL, 0,
456 CTL_KERN, KERN_SBMAX, CTL_EOL);
457 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
458 CTLTYPE_INT, "monotonic_clock", NULL,
459 /* XXX _POSIX_VERSION */
460 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
461 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
462 sysctl_createv(SYSCTL_PERMANENT,
463 CTLTYPE_INT, "urandom", NULL,
464 sysctl_kern_urnd, 0, NULL, 0,
465 CTL_KERN, KERN_URND, CTL_EOL);
466 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
467 CTLTYPE_INT, "labelsector", NULL,
468 NULL, LABELSECTOR, NULL, 0,
469 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
470 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
471 CTLTYPE_INT, "labeloffset", NULL,
472 NULL, LABELOFFSET, NULL, 0,
473 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
474 sysctl_createv(SYSCTL_PERMANENT,
475 CTLTYPE_NODE, "lwp", NULL,
476 sysctl_kern_lwp, 0, NULL, 0,
477 CTL_KERN, KERN_LWP, CTL_EOL);
478 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
479 CTLTYPE_INT, "forkfsleep", NULL,
480 sysctl_kern_forkfsleep, 0, NULL, 0,
481 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
482 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
483 CTLTYPE_INT, "posix_threads", NULL,
484 /* XXX _POSIX_VERSION */
485 NULL, _POSIX_THREADS, NULL, 0,
486 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
487 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
488 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
489 #ifdef P1003_1B_SEMAPHORE
490 200112,
491 #else /* P1003_1B_SEMAPHORE */
492 0,
493 #endif /* P1003_1B_SEMAPHORE */
494 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
495 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
496 CTLTYPE_INT, "posix_barriers", NULL,
497 /* XXX _POSIX_VERSION */
498 NULL, _POSIX_BARRIERS, NULL, 0,
499 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
500 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
501 CTLTYPE_INT, "posix_timers", NULL,
502 /* XXX _POSIX_VERSION */
503 NULL, _POSIX_TIMERS, NULL, 0,
504 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
505 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
506 CTLTYPE_INT, "posix_spin_locks", NULL,
507 /* XXX _POSIX_VERSION */
508 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
509 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
510 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
511 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
512 /* XXX _POSIX_VERSION */
513 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
514 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
515 sysctl_createv(SYSCTL_PERMANENT,
516 CTLTYPE_INT, "dump_on_panic", NULL,
517 NULL, 0, &dumponpanic, 0,
518 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
519 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
520 CTLTYPE_INT, "somaxkva", NULL,
521 sysctl_kern_somaxkva, 0, NULL, 0,
522 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
523 sysctl_createv(SYSCTL_PERMANENT,
524 CTLTYPE_INT, "root_partition", NULL,
525 sysctl_kern_root_partition, 0, NULL, 0,
526 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
527 sysctl_createv(SYSCTL_PERMANENT,
528 CTLTYPE_STRUCT, "drivers", NULL,
529 sysctl_kern_drivers, 0, NULL, 0,
530 CTL_KERN, KERN_DRIVERS, CTL_EOL);
531 }
532
533 SYSCTL_SETUP(sysctl_kern_proc_setup,
534 "sysctl kern.proc/proc2/proc_args subtree setup")
535 {
536
537 sysctl_createv(SYSCTL_PERMANENT,
538 CTLTYPE_NODE, "kern", NULL,
539 NULL, 0, NULL, 0,
540 CTL_KERN, CTL_EOL);
541
542 sysctl_createv(SYSCTL_PERMANENT,
543 CTLTYPE_NODE, "proc", NULL,
544 sysctl_doeproc, 0, NULL, 0,
545 CTL_KERN, KERN_PROC, CTL_EOL);
546 sysctl_createv(SYSCTL_PERMANENT,
547 CTLTYPE_NODE, "proc2", NULL,
548 sysctl_doeproc, 0, NULL, 0,
549 CTL_KERN, KERN_PROC2, CTL_EOL);
550 sysctl_createv(SYSCTL_PERMANENT,
551 CTLTYPE_NODE, "proc_args", NULL,
552 sysctl_kern_proc_args, 0, NULL, 0,
553 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
554
555 /*
556 "nodes" under these:
557
558 KERN_PROC_ALL
559 KERN_PROC_PID pid
560 KERN_PROC_PGRP pgrp
561 KERN_PROC_SESSION sess
562 KERN_PROC_TTY tty
563 KERN_PROC_UID uid
564 KERN_PROC_RUID uid
565 KERN_PROC_GID gid
566 KERN_PROC_RGID gid
567
568 all in all, probably not worth the effort...
569 */
570 }
571
572 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
573 {
574 u_int u;
575 u_quad_t q;
576
577 sysctl_createv(SYSCTL_PERMANENT,
578 CTLTYPE_NODE, "hw", NULL,
579 NULL, 0, NULL, 0,
580 CTL_HW, CTL_EOL);
581
582 sysctl_createv(SYSCTL_PERMANENT,
583 CTLTYPE_STRING, "machine", NULL,
584 NULL, 0, machine, 0,
585 CTL_HW, HW_MACHINE, CTL_EOL);
586 sysctl_createv(SYSCTL_PERMANENT,
587 CTLTYPE_STRING, "model", NULL,
588 NULL, 0, cpu_model, 0,
589 CTL_HW, HW_MODEL, CTL_EOL);
590 sysctl_createv(SYSCTL_PERMANENT,
591 CTLTYPE_INT, "ncpu", NULL,
592 sysctl_hw_ncpu, 0, NULL, 0,
593 CTL_HW, HW_NCPU, CTL_EOL);
594 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
595 CTLTYPE_INT, "byteorder", NULL,
596 NULL, BYTE_ORDER, NULL, 0,
597 CTL_HW, HW_BYTEORDER, CTL_EOL);
598 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
599 UINT_MAX : physmem * PAGE_SIZE;
600 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
601 CTLTYPE_INT, "physmem", NULL,
602 NULL, u, NULL, 0,
603 CTL_HW, HW_PHYSMEM, CTL_EOL);
604 sysctl_createv(SYSCTL_PERMANENT,
605 CTLTYPE_INT, "usermem", NULL,
606 sysctl_hw_usermem, 0, NULL, 0,
607 CTL_HW, HW_USERMEM, CTL_EOL);
608 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
609 CTLTYPE_INT, "pagesize", NULL,
610 NULL, PAGE_SIZE, NULL, 0,
611 CTL_HW, HW_PAGESIZE, CTL_EOL);
612 sysctl_createv(SYSCTL_PERMANENT,
613 CTLTYPE_STRING, "disknames", NULL,
614 sysctl_hw_disknames, 0, NULL, 0,
615 CTL_HW, HW_DISKNAMES, CTL_EOL);
616 sysctl_createv(SYSCTL_PERMANENT,
617 CTLTYPE_STRUCT, "diskstats", NULL,
618 sysctl_hw_diskstats, 0, NULL, 0,
619 CTL_HW, HW_DISKSTATS, CTL_EOL);
620 sysctl_createv(SYSCTL_PERMANENT,
621 CTLTYPE_STRING, "machine_arch", NULL,
622 NULL, 0, machine_arch, 0,
623 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
624 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
625 CTLTYPE_INT, "alignbytes", NULL,
626 NULL, ALIGNBYTES, NULL, 0,
627 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
628 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
629 CTLTYPE_STRING, "cnmagic", NULL,
630 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
631 CTL_HW, HW_CNMAGIC, CTL_EOL);
632 q = (u_quad_t)physmem * PAGE_SIZE;
633 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
634 CTLTYPE_QUAD, "physmem64", NULL,
635 NULL, q, NULL, 0,
636 CTL_HW, HW_PHYSMEM64, CTL_EOL);
637 sysctl_createv(SYSCTL_PERMANENT,
638 CTLTYPE_QUAD, "usermem64", NULL,
639 sysctl_hw_usermem, 0, NULL, 0,
640 CTL_HW, HW_USERMEM64, CTL_EOL);
641 }
642
643 #ifdef DEBUG
644 /*
645 * Debugging related system variables.
646 */
647 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
648 struct ctldebug debug5, debug6, debug7, debug8, debug9;
649 struct ctldebug debug10, debug11, debug12, debug13, debug14;
650 struct ctldebug debug15, debug16, debug17, debug18, debug19;
651 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
652 &debug0, &debug1, &debug2, &debug3, &debug4,
653 &debug5, &debug6, &debug7, &debug8, &debug9,
654 &debug10, &debug11, &debug12, &debug13, &debug14,
655 &debug15, &debug16, &debug17, &debug18, &debug19,
656 };
657
658 /*
659 * this setup routine is a replacement for debug_sysctl()
660 *
661 * note that it creates several nodes per defined debug variable
662 */
663 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
664 {
665 struct ctldebug *cdp;
666 char nodename[20];
667 int i;
668
669 /*
670 * two ways here:
671 *
672 * the "old" way (debug.name -> value) which was emulated by
673 * the sysctl(8) binary
674 *
675 * the new way, which the sysctl(8) binary was actually using
676
677 node debug
678 node debug.0
679 string debug.0.name
680 int debug.0.value
681 int debug.name
682
683 */
684
685 sysctl_createv(SYSCTL_PERMANENT,
686 CTLTYPE_NODE, "debug", NULL,
687 NULL, 0, NULL, 0,
688 CTL_DEBUG, CTL_EOL);
689
690 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
691 cdp = debugvars[i];
692 if (cdp->debugname == NULL || cdp->debugvar == NULL)
693 continue;
694
695 snprintf(nodename, sizeof(nodename), "debug%d", i);
696 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
697 CTLTYPE_NODE, nodename, NULL,
698 NULL, 0, NULL, 0,
699 CTL_DEBUG, i, CTL_EOL);
700 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
701 CTLTYPE_STRING, "name", NULL,
702 NULL, 0, cdp->debugname, 0,
703 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
704 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
705 CTLTYPE_INT, "value", NULL,
706 NULL, 0, cdp->debugvar, 0,
707 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
708 sysctl_createv(SYSCTL_PERMANENT,
709 CTLTYPE_INT, cdp->debugname, NULL,
710 NULL, 0, cdp->debugvar, 0,
711 CTL_DEBUG, CTL_CREATE, CTL_EOL);
712 }
713 }
714 #endif /* DEBUG */
715
716 /*
717 * ********************************************************************
718 * section 2: private node-specific helper routines.
719 * ********************************************************************
720 */
721
722 /*
723 * sysctl helper routine for kern.maxvnodes. handles ensuring that
724 * new values never falls below desiredvnodes and then calls reinit
725 * routines that needs to adjust to the new value.
726 */
727 static int
728 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
729 {
730 int error, new_vnodes;
731 struct sysctlnode node;
732
733 new_vnodes = desiredvnodes;
734 node = *rnode;
735 node.sysctl_data = &new_vnodes;
736 error = sysctl_lookup(SYSCTLFN_CALL(&node));
737 if (error || newp == NULL)
738 return (error);
739
740 if (new_vnodes < desiredvnodes)
741 return (EINVAL);
742 desiredvnodes = new_vnodes;
743 vfs_reinit();
744 nchreinit();
745
746 return (0);
747 }
748
749 /*
750 * sysctl helper routine for kern.maxvnodes. ensures that the new
751 * values are not too low or too high.
752 */
753 static int
754 sysctl_kern_maxproc(SYSCTLFN_ARGS)
755 {
756 int error, nmaxproc;
757 struct sysctlnode node;
758
759 nmaxproc = maxproc;
760 node = *rnode;
761 node.sysctl_data = &nmaxproc;
762 error = sysctl_lookup(SYSCTLFN_CALL(&node));
763 if (error || newp == NULL)
764 return (error);
765
766 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
767 return (EINVAL);
768 #ifdef __HAVE_CPU_MAXPROC
769 if (nmaxproc > cpu_maxproc())
770 return (EINVAL);
771 #endif
772 maxproc = nmaxproc;
773
774 return (0);
775 }
776
777 /*
778 * sysctl helper routine for kern.securelevel. ensures that the value
779 * only rises unless the caller has pid 1 (assumed to be init).
780 */
781 static int
782 sysctl_kern_securelevel(SYSCTLFN_ARGS)
783 {
784 int newsecurelevel, error;
785 struct sysctlnode node;
786
787 newsecurelevel = securelevel;
788 node = *rnode;
789 node.sysctl_data = &newsecurelevel;
790 error = sysctl_lookup(SYSCTLFN_CALL(&node));
791 if (error || newp == NULL)
792 return (error);
793
794 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
795 return (EPERM);
796 securelevel = newsecurelevel;
797
798 return (error);
799 }
800
801 /*
802 * sysctl helper function for kern.hostid. the hostid is a long, but
803 * we export it as an int, so we need to give it a little help.
804 */
805 static int
806 sysctl_kern_hostid(SYSCTLFN_ARGS)
807 {
808 int error, inthostid;
809 struct sysctlnode node;
810
811 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
812 node = *rnode;
813 node.sysctl_data = &inthostid;
814 error = sysctl_lookup(SYSCTLFN_CALL(&node));
815 if (error || newp == NULL)
816 return (error);
817
818 hostid = inthostid;
819
820 return (0);
821 }
822
823 /*
824 * sysctl helper routine for kern.clockrate. assembles a struct on
825 * the fly to be returned to the caller.
826 */
827 static int
828 sysctl_kern_clockrate(SYSCTLFN_ARGS)
829 {
830 struct clockinfo clkinfo;
831 struct sysctlnode node;
832
833 clkinfo.tick = tick;
834 clkinfo.tickadj = tickadj;
835 clkinfo.hz = hz;
836 clkinfo.profhz = profhz;
837 clkinfo.stathz = stathz ? stathz : hz;
838
839 node = *rnode;
840 node.sysctl_data = &clkinfo;
841 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
842 }
843
844
845 /*
846 * sysctl helper routine for kern.file pseudo-subtree.
847 */
848 static int
849 sysctl_kern_file(SYSCTLFN_ARGS)
850 {
851 int error;
852 size_t buflen;
853 struct file *fp;
854 char *start, *where;
855
856 start = where = oldp;
857 buflen = *oldlenp;
858 if (where == NULL) {
859 /*
860 * overestimate by 10 files
861 */
862 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
863 return (0);
864 }
865
866 /*
867 * first copyout filehead
868 */
869 if (buflen < sizeof(filehead)) {
870 *oldlenp = 0;
871 return (0);
872 }
873 error = copyout(&filehead, where, sizeof(filehead));
874 if (error)
875 return (error);
876 buflen -= sizeof(filehead);
877 where += sizeof(filehead);
878
879 /*
880 * followed by an array of file structures
881 */
882 LIST_FOREACH(fp, &filehead, f_list) {
883 if (buflen < sizeof(struct file)) {
884 *oldlenp = where - start;
885 return (ENOMEM);
886 }
887 error = copyout(fp, where, sizeof(struct file));
888 if (error)
889 return (error);
890 buflen -= sizeof(struct file);
891 where += sizeof(struct file);
892 }
893 *oldlenp = where - start;
894 return (0);
895 }
896
897 /*
898 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
899 * asserts that the assigned value is in the correct range.
900 */
901 static int
902 sysctl_kern_autonice(SYSCTLFN_ARGS)
903 {
904 int error, t = 0;
905 struct sysctlnode node;
906
907 node = *rnode;
908 t = *(int*)node.sysctl_data;
909 node.sysctl_data = &t;
910 error = sysctl_lookup(SYSCTLFN_CALL(&node));
911 if (error || newp == NULL)
912 return (error);
913
914 switch (node.sysctl_num) {
915 case KERN_AUTONICETIME:
916 if (t >= 0)
917 autonicetime = t;
918 break;
919 case KERN_AUTONICEVAL:
920 if (t < PRIO_MIN)
921 t = PRIO_MIN;
922 else if (t > PRIO_MAX)
923 t = PRIO_MAX;
924 autoniceval = t;
925 break;
926 }
927
928 return (0);
929 }
930
931 /*
932 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
933 * former it merely checks the the message buffer is set up. for the
934 * latter, it also copies out the data if necessary.
935 */
936 static int
937 sysctl_msgbuf(SYSCTLFN_ARGS)
938 {
939 char *where = oldp;
940 size_t len, maxlen;
941 long beg, end;
942 int error;
943
944 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
945 msgbufenabled = 0;
946 return (ENXIO);
947 }
948
949 switch (rnode->sysctl_num) {
950 case KERN_MSGBUFSIZE:
951 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
952 case KERN_MSGBUF:
953 break;
954 default:
955 return (EOPNOTSUPP);
956 }
957
958 if (newp != NULL)
959 return (EPERM);
960
961 if (oldp == NULL) {
962 /* always return full buffer size */
963 *oldlenp = msgbufp->msg_bufs;
964 return (0);
965 }
966
967 error = 0;
968 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
969
970 /*
971 * First, copy from the write pointer to the end of
972 * message buffer.
973 */
974 beg = msgbufp->msg_bufx;
975 end = msgbufp->msg_bufs;
976 while (maxlen > 0) {
977 len = MIN(end - beg, maxlen);
978 if (len == 0)
979 break;
980 error = copyout(&msgbufp->msg_bufc[beg], where, len);
981 if (error)
982 break;
983 where += len;
984 maxlen -= len;
985
986 /*
987 * ... then, copy from the beginning of message buffer to
988 * the write pointer.
989 */
990 beg = 0;
991 end = msgbufp->msg_bufx;
992 }
993
994 return (error);
995 }
996
997 /*
998 * sysctl helper routine for kern.defcorename. in the case of a new
999 * string being assigned, check that it's not a zero-length string.
1000 * (XXX the check in -current doesn't work, but do we really care?)
1001 */
1002 static int
1003 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1004 {
1005 int error;
1006 char newcorename[MAXPATHLEN];
1007 struct sysctlnode node;
1008
1009 node = *rnode;
1010 node.sysctl_data = &newcorename[0];
1011 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1012 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1013 if (error || newp == NULL)
1014 return (error);
1015
1016 /*
1017 * when sysctl_lookup() deals with a string, it's guaranteed
1018 * to come back nul terminated. so there. :)
1019 */
1020 if (strlen(newcorename) == 0)
1021 return (EINVAL);
1022
1023 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1024
1025 return (0);
1026 }
1027
1028 /*
1029 * sysctl helper routine for kern.cp_time node. adds up cpu time
1030 * across all cpus.
1031 */
1032 static int
1033 sysctl_kern_cptime(SYSCTLFN_ARGS)
1034 {
1035 struct sysctlnode node = *rnode;
1036
1037 #ifndef MULTIPROCESSOR
1038
1039 if (namelen == 1 && name[0] == 0) {
1040 /*
1041 * you're allowed to ask for the zero'th processor
1042 */
1043 name++;
1044 namelen--;
1045 }
1046 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1047 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1048 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1049
1050 #else /* MULTIPROCESSOR */
1051
1052 u_int64_t *cp_time = NULL;
1053 int error, n = sysctl_ncpus(), i;
1054 struct cpu_info *ci;
1055 CPU_INFO_ITERATOR cii;
1056
1057 /*
1058 * if you specifically pass a buffer that is the size of the
1059 * sum, or if you are probing for the size, you get the "sum"
1060 * of cp_time (and the size thereof) across all processors.
1061 *
1062 * alternately, you can pass an additional mib number and get
1063 * cp_time for that particular processor.
1064 */
1065 switch (namelen) {
1066 case 0:
1067 if (*oldlenp == sizeof(u_int64_t) * CPUSTATES || oldp == NULL) {
1068 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1069 n = -1; /* SUM */
1070 }
1071 else {
1072 node.sysctl_size = n * sizeof(u_int64_t) * CPUSTATES;
1073 n = -2; /* ALL */
1074 }
1075 break;
1076 case 1:
1077 if (name[0] < 0 || name[0] >= n)
1078 return (EINVAL); /* ENOSUCHPROCESSOR */
1079 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1080 n = name[0];
1081 /*
1082 * adjust these so that sysctl_lookup() will be happy
1083 */
1084 name++;
1085 namelen--;
1086 default:
1087 return (EINVAL);
1088 }
1089
1090 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1091 if (cp_time == NULL)
1092 return (ENOMEM);
1093 node.sysctl_data = cp_time;
1094 memset(cp_time, 0, node.sysctl_size);
1095
1096 for (CPU_INFO_FOREACH(cii, ci)) {
1097 if (n <= 0)
1098 for (i = 0; i < CPUSTATES; i++)
1099 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1100 /*
1101 * if a specific processor was requested and we just
1102 * did it, we're done here
1103 */
1104 if (n == 0)
1105 break;
1106 /*
1107 * if doing "all", skip to next cp_time set for next processor
1108 */
1109 if (n == -2)
1110 cp_time += CPUSTATES;
1111 /*
1112 * if we're doing a specific processor, we're one
1113 * processor closer
1114 */
1115 if (n > 0)
1116 n--;
1117 }
1118
1119 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1120 free(node.sysctl_data, M_TEMP);
1121 return (error);
1122
1123 #endif /* MULTIPROCESSOR */
1124 }
1125
1126 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1127 /*
1128 * sysctl helper routine for kern.sysvipc_info subtree.
1129 */
1130
1131 #define FILL_PERM(src, dst) do { \
1132 (dst)._key = (src)._key; \
1133 (dst).uid = (src).uid; \
1134 (dst).gid = (src).gid; \
1135 (dst).cuid = (src).cuid; \
1136 (dst).cgid = (src).cgid; \
1137 (dst).mode = (src).mode; \
1138 (dst)._seq = (src)._seq; \
1139 } while (/*CONSTCOND*/ 0);
1140 #define FILL_MSG(src, dst) do { \
1141 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1142 (dst).msg_qnum = (src).msg_qnum; \
1143 (dst).msg_qbytes = (src).msg_qbytes; \
1144 (dst)._msg_cbytes = (src)._msg_cbytes; \
1145 (dst).msg_lspid = (src).msg_lspid; \
1146 (dst).msg_lrpid = (src).msg_lrpid; \
1147 (dst).msg_stime = (src).msg_stime; \
1148 (dst).msg_rtime = (src).msg_rtime; \
1149 (dst).msg_ctime = (src).msg_ctime; \
1150 } while (/*CONSTCOND*/ 0)
1151 #define FILL_SEM(src, dst) do { \
1152 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1153 (dst).sem_nsems = (src).sem_nsems; \
1154 (dst).sem_otime = (src).sem_otime; \
1155 (dst).sem_ctime = (src).sem_ctime; \
1156 } while (/*CONSTCOND*/ 0)
1157 #define FILL_SHM(src, dst) do { \
1158 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1159 (dst).shm_segsz = (src).shm_segsz; \
1160 (dst).shm_lpid = (src).shm_lpid; \
1161 (dst).shm_cpid = (src).shm_cpid; \
1162 (dst).shm_atime = (src).shm_atime; \
1163 (dst).shm_dtime = (src).shm_dtime; \
1164 (dst).shm_ctime = (src).shm_ctime; \
1165 (dst).shm_nattch = (src).shm_nattch; \
1166 } while (/*CONSTCOND*/ 0)
1167
1168 static int
1169 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1170 {
1171 void *where = oldp;
1172 size_t *sizep = oldlenp;
1173 #ifdef SYSVMSG
1174 struct msg_sysctl_info *msgsi = NULL;
1175 #endif
1176 #ifdef SYSVSEM
1177 struct sem_sysctl_info *semsi = NULL;
1178 #endif
1179 #ifdef SYSVSHM
1180 struct shm_sysctl_info *shmsi = NULL;
1181 #endif
1182 size_t infosize, dssize, tsize, buflen;
1183 void *buf = NULL;
1184 char *start;
1185 int32_t nds;
1186 int i, error, ret;
1187
1188 if (namelen != 1)
1189 return (EINVAL);
1190
1191 start = where;
1192 buflen = *sizep;
1193
1194 switch (*name) {
1195 case KERN_SYSVIPC_MSG_INFO:
1196 #ifdef SYSVMSG
1197 infosize = sizeof(msgsi->msginfo);
1198 nds = msginfo.msgmni;
1199 dssize = sizeof(msgsi->msgids[0]);
1200 break;
1201 #else
1202 return (EINVAL);
1203 #endif
1204 case KERN_SYSVIPC_SEM_INFO:
1205 #ifdef SYSVSEM
1206 infosize = sizeof(semsi->seminfo);
1207 nds = seminfo.semmni;
1208 dssize = sizeof(semsi->semids[0]);
1209 break;
1210 #else
1211 return (EINVAL);
1212 #endif
1213 case KERN_SYSVIPC_SHM_INFO:
1214 #ifdef SYSVSHM
1215 infosize = sizeof(shmsi->shminfo);
1216 nds = shminfo.shmmni;
1217 dssize = sizeof(shmsi->shmids[0]);
1218 break;
1219 #else
1220 return (EINVAL);
1221 #endif
1222 default:
1223 return (EINVAL);
1224 }
1225 /*
1226 * Round infosize to 64 bit boundary if requesting more than just
1227 * the info structure or getting the total data size.
1228 */
1229 if (where == NULL || *sizep > infosize)
1230 infosize = ((infosize + 7) / 8) * 8;
1231 tsize = infosize + nds * dssize;
1232
1233 /* Return just the total size required. */
1234 if (where == NULL) {
1235 *sizep = tsize;
1236 return (0);
1237 }
1238
1239 /* Not enough room for even the info struct. */
1240 if (buflen < infosize) {
1241 *sizep = 0;
1242 return (ENOMEM);
1243 }
1244 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1245 memset(buf, 0, min(tsize, buflen));
1246
1247 switch (*name) {
1248 #ifdef SYSVMSG
1249 case KERN_SYSVIPC_MSG_INFO:
1250 msgsi = (struct msg_sysctl_info *)buf;
1251 msgsi->msginfo = msginfo;
1252 break;
1253 #endif
1254 #ifdef SYSVSEM
1255 case KERN_SYSVIPC_SEM_INFO:
1256 semsi = (struct sem_sysctl_info *)buf;
1257 semsi->seminfo = seminfo;
1258 break;
1259 #endif
1260 #ifdef SYSVSHM
1261 case KERN_SYSVIPC_SHM_INFO:
1262 shmsi = (struct shm_sysctl_info *)buf;
1263 shmsi->shminfo = shminfo;
1264 break;
1265 #endif
1266 }
1267 buflen -= infosize;
1268
1269 ret = 0;
1270 if (buflen > 0) {
1271 /* Fill in the IPC data structures. */
1272 for (i = 0; i < nds; i++) {
1273 if (buflen < dssize) {
1274 ret = ENOMEM;
1275 break;
1276 }
1277 switch (*name) {
1278 #ifdef SYSVMSG
1279 case KERN_SYSVIPC_MSG_INFO:
1280 FILL_MSG(msqids[i], msgsi->msgids[i]);
1281 break;
1282 #endif
1283 #ifdef SYSVSEM
1284 case KERN_SYSVIPC_SEM_INFO:
1285 FILL_SEM(sema[i], semsi->semids[i]);
1286 break;
1287 #endif
1288 #ifdef SYSVSHM
1289 case KERN_SYSVIPC_SHM_INFO:
1290 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1291 break;
1292 #endif
1293 }
1294 buflen -= dssize;
1295 }
1296 }
1297 *sizep -= buflen;
1298 error = copyout(buf, start, *sizep);
1299 /* If copyout succeeded, use return code set earlier. */
1300 if (error == 0)
1301 error = ret;
1302 if (buf)
1303 free(buf, M_TEMP);
1304 return (error);
1305 }
1306
1307 #undef FILL_PERM
1308 #undef FILL_MSG
1309 #undef FILL_SEM
1310 #undef FILL_SHM
1311
1312 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1313
1314 #if NPTY > 0
1315 /*
1316 * sysctl helper routine for kern.maxptys. ensures that any new value
1317 * is acceptable to the pty subsystem.
1318 */
1319 static int
1320 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1321 {
1322 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1323 int error, max;
1324 struct sysctlnode node;
1325
1326 /* get current value of maxptys */
1327 max = pty_maxptys(0, 0);
1328
1329 node = *rnode;
1330 node.sysctl_data = &max;
1331 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1332 if (error || newp == NULL)
1333 return (error);
1334
1335 if (max != pty_maxptys(max, 1))
1336 return (EINVAL);
1337
1338 return (0);
1339 }
1340 #endif /* NPTY > 0 */
1341
1342 /*
1343 * sysctl helper routine for kern.sbmax. basically just ensures that
1344 * any new value is not too small.
1345 */
1346 static int
1347 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1348 {
1349 int error, new_sbmax;
1350 struct sysctlnode node;
1351
1352 new_sbmax = sb_max;
1353 node = *rnode;
1354 node.sysctl_data = &new_sbmax;
1355 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1356 if (error || newp == NULL)
1357 return (error);
1358
1359 error = sb_max_set(new_sbmax);
1360
1361 return (error);
1362 }
1363
1364 /*
1365 * sysctl helper routine for kern.urandom node. picks a random number
1366 * for you.
1367 */
1368 static int
1369 sysctl_kern_urnd(SYSCTLFN_ARGS)
1370 {
1371 #if NRND > 0
1372 int v;
1373
1374 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1375 struct sysctlnode node = *rnode;
1376 node.sysctl_data = &v;
1377 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1378 }
1379 else
1380 return (EIO); /*XXX*/
1381 #else
1382 return (EOPNOTSUPP);
1383 #endif
1384 }
1385
1386 /*
1387 * sysctl helper routine to do kern.lwp.* work.
1388 */
1389 static int
1390 sysctl_kern_lwp(SYSCTLFN_ARGS)
1391 {
1392 struct kinfo_lwp klwp;
1393 struct proc *p;
1394 struct lwp *l2;
1395 char *where, *dp;
1396 int pid, elem_size, elem_count;
1397 int buflen, needed, error;
1398
1399 dp = where = oldp;
1400 buflen = where != NULL ? *oldlenp : 0;
1401 error = needed = 0;
1402
1403 if (newp != NULL || namelen != 4)
1404 return (EINVAL);
1405 pid = name[1];
1406 elem_size = name[2];
1407 elem_count = name[3];
1408
1409 p = pfind(pid);
1410 if (p == NULL)
1411 return (ESRCH);
1412 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1413 if (buflen >= elem_size && elem_count > 0) {
1414 fill_lwp(l2, &klwp);
1415 /*
1416 * Copy out elem_size, but not larger than
1417 * the size of a struct kinfo_proc2.
1418 */
1419 error = copyout(&klwp, dp,
1420 min(sizeof(klwp), elem_size));
1421 if (error)
1422 goto cleanup;
1423 dp += elem_size;
1424 buflen -= elem_size;
1425 elem_count--;
1426 }
1427 needed += elem_size;
1428 }
1429
1430 if (where != NULL) {
1431 *oldlenp = dp - where;
1432 if (needed > *oldlenp)
1433 return (ENOMEM);
1434 } else {
1435 needed += KERN_PROCSLOP;
1436 *oldlenp = needed;
1437 }
1438 return (0);
1439 cleanup:
1440 return (error);
1441 }
1442
1443 /*
1444 * sysctl helper routine for kern.forkfsleep node. ensures that the
1445 * given value is not too large or two small, and is at least one
1446 * timer tick if not zero.
1447 */
1448 static int
1449 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1450 {
1451 /* userland sees value in ms, internally is in ticks */
1452 extern int forkfsleep; /* defined in kern/kern_fork.c */
1453 int error, timo, lsleep;
1454 struct sysctlnode node;
1455
1456 lsleep = forkfsleep * 1000 / hz;
1457 node = *rnode;
1458 node.sysctl_data = &lsleep;
1459 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1460 if (error || newp == NULL)
1461 return (error);
1462
1463 /* refuse negative values, and overly 'long time' */
1464 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1465 return (EINVAL);
1466
1467 timo = mstohz(lsleep);
1468
1469 /* if the interval is >0 ms && <1 tick, use 1 tick */
1470 if (lsleep != 0 && timo == 0)
1471 forkfsleep = 1;
1472 else
1473 forkfsleep = timo;
1474
1475 return (0);
1476 }
1477
1478 /*
1479 * sysctl helper routine for kern.somaxkva. ensures that the given
1480 * value is not too small.
1481 * (XXX should we maybe make sure it's not too large as well?)
1482 */
1483 static int
1484 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1485 {
1486 int error, new_somaxkva;
1487 struct sysctlnode node;
1488
1489 new_somaxkva = somaxkva;
1490 node = *rnode;
1491 node.sysctl_data = &new_somaxkva;
1492 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1493 if (error || newp == NULL)
1494 return (error);
1495
1496 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1497 return (EINVAL);
1498 somaxkva = new_somaxkva;
1499
1500 return (error);
1501 }
1502
1503 /*
1504 * sysctl helper routine for kern.root_partition
1505 */
1506 static int
1507 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1508 {
1509 int rootpart = DISKPART(rootdev);
1510 struct sysctlnode node = *rnode;
1511
1512 node.sysctl_data = &rootpart;
1513 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1514 }
1515
1516 /*
1517 * sysctl helper function for kern.drivers
1518 */
1519 static int
1520 sysctl_kern_drivers(SYSCTLFN_ARGS)
1521 {
1522 int error;
1523 size_t buflen;
1524 struct kinfo_drivers kd;
1525 char *start, *where;
1526 const char *dname;
1527 int i;
1528 extern struct devsw_conv *devsw_conv;
1529 extern int max_devsw_convs;
1530
1531 if (newp != NULL || namelen != 0)
1532 return (EINVAL);
1533
1534 start = where = oldp;
1535 buflen = *oldlenp;
1536 if (where == NULL) {
1537 *oldlenp = max_devsw_convs * sizeof kd;
1538 return 0;
1539 }
1540
1541 /*
1542 * An array of kinfo_drivers structures
1543 */
1544 error = 0;
1545 for (i = 0; i < max_devsw_convs; i++) {
1546 dname = devsw_conv[i].d_name;
1547 if (dname == NULL)
1548 continue;
1549 if (buflen < sizeof kd) {
1550 error = ENOMEM;
1551 break;
1552 }
1553 kd.d_bmajor = devsw_conv[i].d_bmajor;
1554 kd.d_cmajor = devsw_conv[i].d_cmajor;
1555 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1556 error = copyout(&kd, where, sizeof kd);
1557 if (error != 0)
1558 break;
1559 buflen -= sizeof kd;
1560 where += sizeof kd;
1561 }
1562 *oldlenp = where - start;
1563 return error;
1564 }
1565
1566 static int
1567 sysctl_doeproc(SYSCTLFN_ARGS)
1568 {
1569 struct eproc eproc;
1570 struct kinfo_proc2 kproc2;
1571 struct kinfo_proc *dp;
1572 struct proc *p;
1573 const struct proclist_desc *pd;
1574 char *where, *dp2;
1575 int type, op, arg;
1576 u_int elem_size, elem_count;
1577 size_t buflen, needed;
1578 int error;
1579
1580 dp = oldp;
1581 dp2 = where = oldp;
1582 buflen = where != NULL ? *oldlenp : 0;
1583 error = 0;
1584 needed = 0;
1585 type = rnode->sysctl_num;
1586
1587 if (type == KERN_PROC) {
1588 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1589 return (EINVAL);
1590 op = name[0];
1591 if (op != KERN_PROC_ALL)
1592 arg = name[1];
1593 else
1594 arg = 0; /* Quell compiler warning */
1595 elem_size = elem_count = 0; /* Ditto */
1596 } else {
1597 if (namelen != 4)
1598 return (EINVAL);
1599 op = name[0];
1600 arg = name[1];
1601 elem_size = name[2];
1602 elem_count = name[3];
1603 }
1604
1605 proclist_lock_read();
1606
1607 pd = proclists;
1608 again:
1609 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1610 /*
1611 * Skip embryonic processes.
1612 */
1613 if (p->p_stat == SIDL)
1614 continue;
1615 /*
1616 * TODO - make more efficient (see notes below).
1617 * do by session.
1618 */
1619 switch (op) {
1620
1621 case KERN_PROC_PID:
1622 /* could do this with just a lookup */
1623 if (p->p_pid != (pid_t)arg)
1624 continue;
1625 break;
1626
1627 case KERN_PROC_PGRP:
1628 /* could do this by traversing pgrp */
1629 if (p->p_pgrp->pg_id != (pid_t)arg)
1630 continue;
1631 break;
1632
1633 case KERN_PROC_SESSION:
1634 if (p->p_session->s_sid != (pid_t)arg)
1635 continue;
1636 break;
1637
1638 case KERN_PROC_TTY:
1639 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1640 if ((p->p_flag & P_CONTROLT) == 0 ||
1641 p->p_session->s_ttyp == NULL ||
1642 p->p_session->s_ttyvp != NULL)
1643 continue;
1644 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1645 p->p_session->s_ttyp == NULL) {
1646 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1647 continue;
1648 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1649 continue;
1650 break;
1651
1652 case KERN_PROC_UID:
1653 if (p->p_ucred->cr_uid != (uid_t)arg)
1654 continue;
1655 break;
1656
1657 case KERN_PROC_RUID:
1658 if (p->p_cred->p_ruid != (uid_t)arg)
1659 continue;
1660 break;
1661
1662 case KERN_PROC_GID:
1663 if (p->p_ucred->cr_gid != (uid_t)arg)
1664 continue;
1665 break;
1666
1667 case KERN_PROC_RGID:
1668 if (p->p_cred->p_rgid != (uid_t)arg)
1669 continue;
1670 break;
1671
1672 case KERN_PROC_ALL:
1673 /* allow everything */
1674 break;
1675
1676 default:
1677 error = EINVAL;
1678 goto cleanup;
1679 }
1680 if (type == KERN_PROC) {
1681 if (buflen >= sizeof(struct kinfo_proc)) {
1682 fill_eproc(p, &eproc);
1683 error = copyout(p, &dp->kp_proc,
1684 sizeof(struct proc));
1685 if (error)
1686 goto cleanup;
1687 error = copyout(&eproc, &dp->kp_eproc,
1688 sizeof(eproc));
1689 if (error)
1690 goto cleanup;
1691 dp++;
1692 buflen -= sizeof(struct kinfo_proc);
1693 }
1694 needed += sizeof(struct kinfo_proc);
1695 } else { /* KERN_PROC2 */
1696 if (buflen >= elem_size && elem_count > 0) {
1697 fill_kproc2(p, &kproc2);
1698 /*
1699 * Copy out elem_size, but not larger than
1700 * the size of a struct kinfo_proc2.
1701 */
1702 error = copyout(&kproc2, dp2,
1703 min(sizeof(kproc2), elem_size));
1704 if (error)
1705 goto cleanup;
1706 dp2 += elem_size;
1707 buflen -= elem_size;
1708 elem_count--;
1709 }
1710 needed += elem_size;
1711 }
1712 }
1713 pd++;
1714 if (pd->pd_list != NULL)
1715 goto again;
1716 proclist_unlock_read();
1717
1718 if (where != NULL) {
1719 if (type == KERN_PROC)
1720 *oldlenp = (char *)dp - where;
1721 else
1722 *oldlenp = dp2 - where;
1723 if (needed > *oldlenp)
1724 return (ENOMEM);
1725 } else {
1726 needed += KERN_PROCSLOP;
1727 *oldlenp = needed;
1728 }
1729 return (0);
1730 cleanup:
1731 proclist_unlock_read();
1732 return (error);
1733 }
1734
1735 /*
1736 * sysctl helper routine for kern.proc_args pseudo-subtree.
1737 */
1738 static int
1739 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1740 {
1741 struct ps_strings pss;
1742 struct proc *p, *up = l->l_proc;
1743 size_t len, upper_bound, xlen, i;
1744 struct uio auio;
1745 struct iovec aiov;
1746 vaddr_t argv;
1747 pid_t pid;
1748 int nargv, type, error;
1749 char *arg;
1750 char *tmp;
1751
1752 if (newp != NULL || namelen != 2)
1753 return (EINVAL);
1754 pid = name[0];
1755 type = name[1];
1756
1757 switch (type) {
1758 case KERN_PROC_ARGV:
1759 case KERN_PROC_NARGV:
1760 case KERN_PROC_ENV:
1761 case KERN_PROC_NENV:
1762 /* ok */
1763 break;
1764 default:
1765 return (EINVAL);
1766 }
1767
1768 /* check pid */
1769 if ((p = pfind(pid)) == NULL)
1770 return (EINVAL);
1771
1772 /* only root or same user change look at the environment */
1773 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1774 if (up->p_ucred->cr_uid != 0) {
1775 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1776 up->p_cred->p_ruid != p->p_cred->p_svuid)
1777 return (EPERM);
1778 }
1779 }
1780
1781 if (oldp == NULL) {
1782 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1783 *oldlenp = sizeof (int);
1784 else
1785 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1786 return (0);
1787 }
1788
1789 /*
1790 * Zombies don't have a stack, so we can't read their psstrings.
1791 * System processes also don't have a user stack.
1792 */
1793 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1794 return (EINVAL);
1795
1796 /*
1797 * Lock the process down in memory.
1798 */
1799 /* XXXCDC: how should locking work here? */
1800 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1801 return (EFAULT);
1802
1803 p->p_vmspace->vm_refcnt++; /* XXX */
1804
1805 /*
1806 * Allocate a temporary buffer to hold the arguments.
1807 */
1808 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1809
1810 /*
1811 * Read in the ps_strings structure.
1812 */
1813 aiov.iov_base = &pss;
1814 aiov.iov_len = sizeof(pss);
1815 auio.uio_iov = &aiov;
1816 auio.uio_iovcnt = 1;
1817 auio.uio_offset = (vaddr_t)p->p_psstr;
1818 auio.uio_resid = sizeof(pss);
1819 auio.uio_segflg = UIO_SYSSPACE;
1820 auio.uio_rw = UIO_READ;
1821 auio.uio_procp = NULL;
1822 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1823 if (error)
1824 goto done;
1825
1826 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1827 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1828 else
1829 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1830 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1831 error = copyout(&nargv, oldp, sizeof(nargv));
1832 *oldlenp = sizeof(nargv);
1833 goto done;
1834 }
1835 /*
1836 * Now read the address of the argument vector.
1837 */
1838 switch (type) {
1839 case KERN_PROC_ARGV:
1840 /* XXX compat32 stuff here */
1841 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1842 break;
1843 case KERN_PROC_ENV:
1844 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1845 break;
1846 default:
1847 return (EINVAL);
1848 }
1849 auio.uio_offset = (off_t)(long)tmp;
1850 aiov.iov_base = &argv;
1851 aiov.iov_len = sizeof(argv);
1852 auio.uio_iov = &aiov;
1853 auio.uio_iovcnt = 1;
1854 auio.uio_resid = sizeof(argv);
1855 auio.uio_segflg = UIO_SYSSPACE;
1856 auio.uio_rw = UIO_READ;
1857 auio.uio_procp = NULL;
1858 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1859 if (error)
1860 goto done;
1861
1862 /*
1863 * Now copy in the actual argument vector, one page at a time,
1864 * since we don't know how long the vector is (though, we do
1865 * know how many NUL-terminated strings are in the vector).
1866 */
1867 len = 0;
1868 upper_bound = *oldlenp;
1869 for (; nargv != 0 && len < upper_bound; len += xlen) {
1870 aiov.iov_base = arg;
1871 aiov.iov_len = PAGE_SIZE;
1872 auio.uio_iov = &aiov;
1873 auio.uio_iovcnt = 1;
1874 auio.uio_offset = argv + len;
1875 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1876 auio.uio_resid = xlen;
1877 auio.uio_segflg = UIO_SYSSPACE;
1878 auio.uio_rw = UIO_READ;
1879 auio.uio_procp = NULL;
1880 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1881 if (error)
1882 goto done;
1883
1884 for (i = 0; i < xlen && nargv != 0; i++) {
1885 if (arg[i] == '\0')
1886 nargv--; /* one full string */
1887 }
1888
1889 /*
1890 * Make sure we don't copyout past the end of the user's
1891 * buffer.
1892 */
1893 if (len + i > upper_bound)
1894 i = upper_bound - len;
1895
1896 error = copyout(arg, (char *)oldp + len, i);
1897 if (error)
1898 break;
1899
1900 if (nargv == 0) {
1901 len += i;
1902 break;
1903 }
1904 }
1905 *oldlenp = len;
1906
1907 done:
1908 uvmspace_free(p->p_vmspace);
1909
1910 free(arg, M_TEMP);
1911 return (error);
1912 }
1913
1914 /*
1915 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1916 * calculate on the fly taking into account integer overflow and the
1917 * current wired count.
1918 */
1919 static int
1920 sysctl_hw_usermem(SYSCTLFN_ARGS)
1921 {
1922 u_int ui;
1923 u_quad_t uq;
1924 struct sysctlnode node;
1925
1926 node = *rnode;
1927 switch (rnode->sysctl_num) {
1928 case HW_USERMEM:
1929 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
1930 ui = UINT_MAX;
1931 else
1932 ui *= PAGE_SIZE;
1933 node.sysctl_data = &ui;
1934 break;
1935 case HW_USERMEM64:
1936 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
1937 node.sysctl_data = &uq;
1938 break;
1939 default:
1940 return (EINVAL);
1941 }
1942
1943 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1944 }
1945
1946 /*
1947 * sysctl helper routine for kern.cnmagic node. pulls the old value
1948 * out, encoded, and stuffs the new value in for decoding.
1949 */
1950 static int
1951 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
1952 {
1953 char magic[CNS_LEN];
1954 int error;
1955 struct sysctlnode node;
1956
1957 if (oldp)
1958 cn_get_magic(magic, CNS_LEN);
1959 node = *rnode;
1960 node.sysctl_data = &magic[0];
1961 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1962 if (error || newp == NULL)
1963 return (error);
1964
1965 return (cn_set_magic(magic));
1966 }
1967
1968 static int
1969 sysctl_hw_ncpu(SYSCTLFN_ARGS)
1970 {
1971 int ncpu;
1972 struct sysctlnode node;
1973
1974 ncpu = sysctl_ncpus();
1975 node = *rnode;
1976 node.sysctl_data = &ncpu;
1977
1978 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1979 }
1980
1981
1982 /*
1983 * ********************************************************************
1984 * section 3: public helper routines that are used for more than one
1985 * node
1986 * ********************************************************************
1987 */
1988
1989 /*
1990 * sysctl helper routine for the kern.root_device node and some ports'
1991 * machdep.root_device nodes.
1992 */
1993 int
1994 sysctl_root_device(SYSCTLFN_ARGS)
1995 {
1996 struct sysctlnode node;
1997
1998 node = *rnode;
1999 node.sysctl_data = root_device->dv_xname;
2000 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2001 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2002 }
2003
2004 /*
2005 * sysctl helper routine for kern.consdev, dependent on the current
2006 * state of the console. also used for machdep.console_device on some
2007 * ports.
2008 */
2009 int
2010 sysctl_consdev(SYSCTLFN_ARGS)
2011 {
2012 dev_t consdev;
2013 struct sysctlnode node;
2014
2015 if (cn_tab != NULL)
2016 consdev = cn_tab->cn_dev;
2017 else
2018 consdev = NODEV;
2019 node = *rnode;
2020 node.sysctl_data = &consdev;
2021 node.sysctl_size = sizeof(consdev);
2022 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2023 }
2024
2025 /*
2026 * ********************************************************************
2027 * section 4: support for some helpers
2028 * ********************************************************************
2029 */
2030
2031 /*
2032 * Fill in a kinfo_proc2 structure for the specified process.
2033 */
2034 static void
2035 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2036 {
2037 struct tty *tp;
2038 struct lwp *l;
2039 struct timeval ut, st;
2040
2041 memset(ki, 0, sizeof(*ki));
2042
2043 ki->p_paddr = PTRTOINT64(p);
2044 ki->p_fd = PTRTOINT64(p->p_fd);
2045 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2046 ki->p_stats = PTRTOINT64(p->p_stats);
2047 ki->p_limit = PTRTOINT64(p->p_limit);
2048 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2049 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2050 ki->p_sess = PTRTOINT64(p->p_session);
2051 ki->p_tsess = 0; /* may be changed if controlling tty below */
2052 ki->p_ru = PTRTOINT64(p->p_ru);
2053
2054 ki->p_eflag = 0;
2055 ki->p_exitsig = p->p_exitsig;
2056 ki->p_flag = p->p_flag;
2057
2058 ki->p_pid = p->p_pid;
2059 if (p->p_pptr)
2060 ki->p_ppid = p->p_pptr->p_pid;
2061 else
2062 ki->p_ppid = 0;
2063 ki->p_sid = p->p_session->s_sid;
2064 ki->p__pgid = p->p_pgrp->pg_id;
2065
2066 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2067
2068 ki->p_uid = p->p_ucred->cr_uid;
2069 ki->p_ruid = p->p_cred->p_ruid;
2070 ki->p_gid = p->p_ucred->cr_gid;
2071 ki->p_rgid = p->p_cred->p_rgid;
2072 ki->p_svuid = p->p_cred->p_svuid;
2073 ki->p_svgid = p->p_cred->p_svgid;
2074
2075 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2076 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2077 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2078
2079 ki->p_jobc = p->p_pgrp->pg_jobc;
2080 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2081 ki->p_tdev = tp->t_dev;
2082 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2083 ki->p_tsess = PTRTOINT64(tp->t_session);
2084 } else {
2085 ki->p_tdev = NODEV;
2086 }
2087
2088 ki->p_estcpu = p->p_estcpu;
2089 ki->p_rtime_sec = p->p_rtime.tv_sec;
2090 ki->p_rtime_usec = p->p_rtime.tv_usec;
2091 ki->p_cpticks = p->p_cpticks;
2092 ki->p_pctcpu = p->p_pctcpu;
2093
2094 ki->p_uticks = p->p_uticks;
2095 ki->p_sticks = p->p_sticks;
2096 ki->p_iticks = p->p_iticks;
2097
2098 ki->p_tracep = PTRTOINT64(p->p_tracep);
2099 ki->p_traceflag = p->p_traceflag;
2100
2101
2102 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2103 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2104 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2105 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2106
2107 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2108 ki->p_realstat = p->p_stat;
2109 ki->p_nice = p->p_nice;
2110
2111 ki->p_xstat = p->p_xstat;
2112 ki->p_acflag = p->p_acflag;
2113
2114 strncpy(ki->p_comm, p->p_comm,
2115 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2116
2117 strncpy(ki->p_login, p->p_session->s_login,
2118 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2119
2120 ki->p_nlwps = p->p_nlwps;
2121 ki->p_nrlwps = p->p_nrlwps;
2122 ki->p_realflag = p->p_flag;
2123
2124 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2125 ki->p_vm_rssize = 0;
2126 ki->p_vm_tsize = 0;
2127 ki->p_vm_dsize = 0;
2128 ki->p_vm_ssize = 0;
2129 l = NULL;
2130 } else {
2131 struct vmspace *vm = p->p_vmspace;
2132
2133 ki->p_vm_rssize = vm_resident_count(vm);
2134 ki->p_vm_tsize = vm->vm_tsize;
2135 ki->p_vm_dsize = vm->vm_dsize;
2136 ki->p_vm_ssize = vm->vm_ssize;
2137
2138 /* Pick a "representative" LWP */
2139 l = proc_representative_lwp(p);
2140 ki->p_forw = PTRTOINT64(l->l_forw);
2141 ki->p_back = PTRTOINT64(l->l_back);
2142 ki->p_addr = PTRTOINT64(l->l_addr);
2143 ki->p_stat = l->l_stat;
2144 ki->p_flag |= l->l_flag;
2145 ki->p_swtime = l->l_swtime;
2146 ki->p_slptime = l->l_slptime;
2147 if (l->l_stat == LSONPROC) {
2148 KDASSERT(l->l_cpu != NULL);
2149 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2150 } else
2151 ki->p_schedflags = 0;
2152 ki->p_holdcnt = l->l_holdcnt;
2153 ki->p_priority = l->l_priority;
2154 ki->p_usrpri = l->l_usrpri;
2155 if (l->l_wmesg)
2156 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2157 ki->p_wchan = PTRTOINT64(l->l_wchan);
2158
2159 }
2160
2161 if (p->p_session->s_ttyvp)
2162 ki->p_eflag |= EPROC_CTTY;
2163 if (SESS_LEADER(p))
2164 ki->p_eflag |= EPROC_SLEADER;
2165
2166 /* XXX Is this double check necessary? */
2167 if (P_ZOMBIE(p)) {
2168 ki->p_uvalid = 0;
2169 } else {
2170 ki->p_uvalid = 1;
2171
2172 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2173 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2174
2175 calcru(p, &ut, &st, 0);
2176 ki->p_uutime_sec = ut.tv_sec;
2177 ki->p_uutime_usec = ut.tv_usec;
2178 ki->p_ustime_sec = st.tv_sec;
2179 ki->p_ustime_usec = st.tv_usec;
2180
2181 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2182 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2183 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2184 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2185 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2186 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2187 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2188 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2189 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2190 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2191 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2192 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2193 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2194 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2195
2196 timeradd(&p->p_stats->p_cru.ru_utime,
2197 &p->p_stats->p_cru.ru_stime, &ut);
2198 ki->p_uctime_sec = ut.tv_sec;
2199 ki->p_uctime_usec = ut.tv_usec;
2200 }
2201 #ifdef MULTIPROCESSOR
2202 if (l && l->l_cpu != NULL)
2203 ki->p_cpuid = l->l_cpu->ci_cpuid;
2204 else
2205 #endif
2206 ki->p_cpuid = KI_NOCPU;
2207 }
2208
2209 /*
2210 * Fill in a kinfo_lwp structure for the specified lwp.
2211 */
2212 static void
2213 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2214 {
2215
2216 kl->l_forw = PTRTOINT64(l->l_forw);
2217 kl->l_back = PTRTOINT64(l->l_back);
2218 kl->l_laddr = PTRTOINT64(l);
2219 kl->l_addr = PTRTOINT64(l->l_addr);
2220 kl->l_stat = l->l_stat;
2221 kl->l_lid = l->l_lid;
2222 kl->l_flag = l->l_flag;
2223
2224 kl->l_swtime = l->l_swtime;
2225 kl->l_slptime = l->l_slptime;
2226 if (l->l_stat == LSONPROC) {
2227 KDASSERT(l->l_cpu != NULL);
2228 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2229 } else
2230 kl->l_schedflags = 0;
2231 kl->l_holdcnt = l->l_holdcnt;
2232 kl->l_priority = l->l_priority;
2233 kl->l_usrpri = l->l_usrpri;
2234 if (l->l_wmesg)
2235 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2236 kl->l_wchan = PTRTOINT64(l->l_wchan);
2237 #ifdef MULTIPROCESSOR
2238 if (l->l_cpu != NULL)
2239 kl->l_cpuid = l->l_cpu->ci_cpuid;
2240 else
2241 #endif
2242 kl->l_cpuid = KI_NOCPU;
2243 }
2244
2245 /*
2246 * Fill in an eproc structure for the specified process.
2247 */
2248 void
2249 fill_eproc(struct proc *p, struct eproc *ep)
2250 {
2251 struct tty *tp;
2252 struct lwp *l;
2253
2254 ep->e_paddr = p;
2255 ep->e_sess = p->p_session;
2256 ep->e_pcred = *p->p_cred;
2257 ep->e_ucred = *p->p_ucred;
2258 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2259 ep->e_vm.vm_rssize = 0;
2260 ep->e_vm.vm_tsize = 0;
2261 ep->e_vm.vm_dsize = 0;
2262 ep->e_vm.vm_ssize = 0;
2263 /* ep->e_vm.vm_pmap = XXX; */
2264 } else {
2265 struct vmspace *vm = p->p_vmspace;
2266
2267 ep->e_vm.vm_rssize = vm_resident_count(vm);
2268 ep->e_vm.vm_tsize = vm->vm_tsize;
2269 ep->e_vm.vm_dsize = vm->vm_dsize;
2270 ep->e_vm.vm_ssize = vm->vm_ssize;
2271
2272 /* Pick a "representative" LWP */
2273 l = proc_representative_lwp(p);
2274
2275 if (l->l_wmesg)
2276 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2277 }
2278 if (p->p_pptr)
2279 ep->e_ppid = p->p_pptr->p_pid;
2280 else
2281 ep->e_ppid = 0;
2282 ep->e_pgid = p->p_pgrp->pg_id;
2283 ep->e_sid = ep->e_sess->s_sid;
2284 ep->e_jobc = p->p_pgrp->pg_jobc;
2285 if ((p->p_flag & P_CONTROLT) &&
2286 (tp = ep->e_sess->s_ttyp)) {
2287 ep->e_tdev = tp->t_dev;
2288 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2289 ep->e_tsess = tp->t_session;
2290 } else
2291 ep->e_tdev = NODEV;
2292
2293 ep->e_xsize = ep->e_xrssize = 0;
2294 ep->e_xccount = ep->e_xswrss = 0;
2295 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2296 if (SESS_LEADER(p))
2297 ep->e_flag |= EPROC_SLEADER;
2298 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2299 }
2300