init_sysctl.c revision 1.62 1 /* $NetBSD: init_sysctl.c,v 1.62 2006/02/04 12:09:50 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.62 2006/02/04 12:09:50 yamt Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "opt_verified_exec.h"
46 #include "pty.h"
47 #include "rnd.h"
48
49 #include <sys/types.h>
50 #include <sys/param.h>
51 #include <sys/sysctl.h>
52 #include <sys/errno.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/unistd.h>
56 #include <sys/disklabel.h>
57 #include <sys/rnd.h>
58 #include <sys/vnode.h>
59 #include <sys/mount.h>
60 #include <sys/namei.h>
61 #include <sys/msgbuf.h>
62 #include <dev/cons.h>
63 #include <sys/socketvar.h>
64 #include <sys/file.h>
65 #include <sys/filedesc.h>
66 #include <sys/tty.h>
67 #include <sys/malloc.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/exec.h>
71 #include <sys/conf.h>
72 #include <sys/device.h>
73 #ifdef VERIFIED_EXEC
74 #define VERIEXEC_NEED_NODE
75 #include <sys/verified_exec.h>
76 #endif /* VERIFIED_EXEC */
77 #include <sys/stat.h>
78
79 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
80 #include <sys/ipc.h>
81 #endif
82 #ifdef SYSVMSG
83 #include <sys/msg.h>
84 #endif
85 #ifdef SYSVSEM
86 #include <sys/sem.h>
87 #endif
88 #ifdef SYSVSHM
89 #include <sys/shm.h>
90 #endif
91
92 #include <machine/cpu.h>
93
94 /* XXX this should not be here */
95 int security_curtain = 0;
96 int security_setidcore_dump;
97 char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
98 uid_t security_setidcore_owner = 0;
99 gid_t security_setidcore_group = 0;
100 mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
101
102 /*
103 * try over estimating by 5 procs/lwps
104 */
105 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
106 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
107
108 #ifndef MULTIPROCESSOR
109 #define sysctl_ncpus() (1)
110 #else /* MULTIPROCESSOR */
111 #ifndef CPU_INFO_FOREACH
112 #define CPU_INFO_ITERATOR int
113 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
114 #endif
115 static int
116 sysctl_ncpus(void)
117 {
118 struct cpu_info *ci;
119 CPU_INFO_ITERATOR cii;
120
121 int ncpus = 0;
122 for (CPU_INFO_FOREACH(cii, ci))
123 ncpus++;
124 return (ncpus);
125 }
126 #endif /* MULTIPROCESSOR */
127
128 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
129 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
130 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
131 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
132 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
133 static int sysctl_setlen(SYSCTLFN_PROTO);
134 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
135 static int sysctl_kern_file(SYSCTLFN_PROTO);
136 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
137 static int sysctl_msgbuf(SYSCTLFN_PROTO);
138 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
139 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
140 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
141 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
142 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
143 #if NPTY > 0
144 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
145 #endif /* NPTY > 0 */
146 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
147 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
148 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
149 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
150 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
151 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
152 static int sysctl_kern_file2(SYSCTLFN_PROTO);
153 #ifdef VERIFIED_EXEC
154 static int sysctl_kern_veriexec(SYSCTLFN_PROTO);
155 #endif
156 static int sysctl_security_setidcore(SYSCTLFN_PROTO);
157 static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
158 static int sysctl_kern_cpid(SYSCTLFN_PROTO);
159 static int sysctl_doeproc(SYSCTLFN_PROTO);
160 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
161 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
162 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
163 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
164
165 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
166 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
167 static void fill_file(struct kinfo_file *, const struct file *, struct proc *,
168 int);
169
170 /*
171 * ********************************************************************
172 * section 1: setup routines
173 * ********************************************************************
174 * these functions are stuffed into a link set for sysctl setup
175 * functions. they're never called or referenced from anywhere else.
176 * ********************************************************************
177 */
178
179 /*
180 * sets up the base nodes...
181 */
182 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
183 {
184
185 sysctl_createv(clog, 0, NULL, NULL,
186 CTLFLAG_PERMANENT,
187 CTLTYPE_NODE, "kern",
188 SYSCTL_DESCR("High kernel"),
189 NULL, 0, NULL, 0,
190 CTL_KERN, CTL_EOL);
191 sysctl_createv(clog, 0, NULL, NULL,
192 CTLFLAG_PERMANENT,
193 CTLTYPE_NODE, "vm",
194 SYSCTL_DESCR("Virtual memory"),
195 NULL, 0, NULL, 0,
196 CTL_VM, CTL_EOL);
197 sysctl_createv(clog, 0, NULL, NULL,
198 CTLFLAG_PERMANENT,
199 CTLTYPE_NODE, "vfs",
200 SYSCTL_DESCR("Filesystem"),
201 NULL, 0, NULL, 0,
202 CTL_VFS, CTL_EOL);
203 sysctl_createv(clog, 0, NULL, NULL,
204 CTLFLAG_PERMANENT,
205 CTLTYPE_NODE, "net",
206 SYSCTL_DESCR("Networking"),
207 NULL, 0, NULL, 0,
208 CTL_NET, CTL_EOL);
209 sysctl_createv(clog, 0, NULL, NULL,
210 CTLFLAG_PERMANENT,
211 CTLTYPE_NODE, "debug",
212 SYSCTL_DESCR("Debugging"),
213 NULL, 0, NULL, 0,
214 CTL_DEBUG, CTL_EOL);
215 sysctl_createv(clog, 0, NULL, NULL,
216 CTLFLAG_PERMANENT,
217 CTLTYPE_NODE, "hw",
218 SYSCTL_DESCR("Generic CPU, I/O"),
219 NULL, 0, NULL, 0,
220 CTL_HW, CTL_EOL);
221 sysctl_createv(clog, 0, NULL, NULL,
222 CTLFLAG_PERMANENT,
223 CTLTYPE_NODE, "machdep",
224 SYSCTL_DESCR("Machine dependent"),
225 NULL, 0, NULL, 0,
226 CTL_MACHDEP, CTL_EOL);
227 /*
228 * this node is inserted so that the sysctl nodes in libc can
229 * operate.
230 */
231 sysctl_createv(clog, 0, NULL, NULL,
232 CTLFLAG_PERMANENT,
233 CTLTYPE_NODE, "user",
234 SYSCTL_DESCR("User-level"),
235 NULL, 0, NULL, 0,
236 CTL_USER, CTL_EOL);
237 sysctl_createv(clog, 0, NULL, NULL,
238 CTLFLAG_PERMANENT,
239 CTLTYPE_NODE, "ddb",
240 SYSCTL_DESCR("In-kernel debugger"),
241 NULL, 0, NULL, 0,
242 CTL_DDB, CTL_EOL);
243 sysctl_createv(clog, 0, NULL, NULL,
244 CTLFLAG_PERMANENT,
245 CTLTYPE_NODE, "proc",
246 SYSCTL_DESCR("Per-process"),
247 NULL, 0, NULL, 0,
248 CTL_PROC, CTL_EOL);
249 sysctl_createv(clog, 0, NULL, NULL,
250 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
251 CTLTYPE_NODE, "vendor",
252 SYSCTL_DESCR("Vendor specific"),
253 NULL, 0, NULL, 0,
254 CTL_VENDOR, CTL_EOL);
255 sysctl_createv(clog, 0, NULL, NULL,
256 CTLFLAG_PERMANENT,
257 CTLTYPE_NODE, "emul",
258 SYSCTL_DESCR("Emulation settings"),
259 NULL, 0, NULL, 0,
260 CTL_EMUL, CTL_EOL);
261 sysctl_createv(clog, 0, NULL, NULL,
262 CTLFLAG_PERMANENT,
263 CTLTYPE_NODE, "security",
264 SYSCTL_DESCR("Security"),
265 NULL, 0, NULL, 0,
266 CTL_SECURITY, CTL_EOL);
267 }
268
269 /*
270 * this setup routine is a replacement for kern_sysctl()
271 */
272 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
273 {
274 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
275 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
276 extern int dumponpanic; /* defined in kern/subr_prf.c */
277
278 sysctl_createv(clog, 0, NULL, NULL,
279 CTLFLAG_PERMANENT,
280 CTLTYPE_NODE, "kern", NULL,
281 NULL, 0, NULL, 0,
282 CTL_KERN, CTL_EOL);
283
284 sysctl_createv(clog, 0, NULL, NULL,
285 CTLFLAG_PERMANENT,
286 CTLTYPE_STRING, "ostype",
287 SYSCTL_DESCR("Operating system type"),
288 NULL, 0, &ostype, 0,
289 CTL_KERN, KERN_OSTYPE, CTL_EOL);
290 sysctl_createv(clog, 0, NULL, NULL,
291 CTLFLAG_PERMANENT,
292 CTLTYPE_STRING, "osrelease",
293 SYSCTL_DESCR("Operating system release"),
294 NULL, 0, &osrelease, 0,
295 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
296 sysctl_createv(clog, 0, NULL, NULL,
297 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
298 CTLTYPE_INT, "osrevision",
299 SYSCTL_DESCR("Operating system revision"),
300 NULL, __NetBSD_Version__, NULL, 0,
301 CTL_KERN, KERN_OSREV, CTL_EOL);
302 sysctl_createv(clog, 0, NULL, NULL,
303 CTLFLAG_PERMANENT,
304 CTLTYPE_STRING, "version",
305 SYSCTL_DESCR("Kernel version"),
306 NULL, 0, &version, 0,
307 CTL_KERN, KERN_VERSION, CTL_EOL);
308 sysctl_createv(clog, 0, NULL, NULL,
309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
310 CTLTYPE_INT, "maxvnodes",
311 SYSCTL_DESCR("Maximum number of vnodes"),
312 sysctl_kern_maxvnodes, 0, NULL, 0,
313 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
314 sysctl_createv(clog, 0, NULL, NULL,
315 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
316 CTLTYPE_INT, "maxproc",
317 SYSCTL_DESCR("Maximum number of simultaneous processes"),
318 sysctl_kern_maxproc, 0, NULL, 0,
319 CTL_KERN, KERN_MAXPROC, CTL_EOL);
320 sysctl_createv(clog, 0, NULL, NULL,
321 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
322 CTLTYPE_INT, "maxfiles",
323 SYSCTL_DESCR("Maximum number of open files"),
324 NULL, 0, &maxfiles, 0,
325 CTL_KERN, KERN_MAXFILES, CTL_EOL);
326 sysctl_createv(clog, 0, NULL, NULL,
327 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
328 CTLTYPE_INT, "argmax",
329 SYSCTL_DESCR("Maximum number of bytes of arguments to "
330 "execve(2)"),
331 NULL, ARG_MAX, NULL, 0,
332 CTL_KERN, KERN_ARGMAX, CTL_EOL);
333 sysctl_createv(clog, 0, NULL, NULL,
334 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
335 CTLTYPE_INT, "securelevel",
336 SYSCTL_DESCR("System security level"),
337 sysctl_kern_securelevel, 0, &securelevel, 0,
338 CTL_KERN, KERN_SECURELVL, CTL_EOL);
339 sysctl_createv(clog, 0, NULL, NULL,
340 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
341 CTLTYPE_STRING, "hostname",
342 SYSCTL_DESCR("System hostname"),
343 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
344 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
345 sysctl_createv(clog, 0, NULL, NULL,
346 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
347 CTLTYPE_INT, "hostid",
348 SYSCTL_DESCR("System host ID number"),
349 sysctl_kern_hostid, 0, NULL, 0,
350 CTL_KERN, KERN_HOSTID, CTL_EOL);
351 sysctl_createv(clog, 0, NULL, NULL,
352 CTLFLAG_PERMANENT,
353 CTLTYPE_STRUCT, "clockrate",
354 SYSCTL_DESCR("Kernel clock rates"),
355 sysctl_kern_clockrate, 0, NULL,
356 sizeof(struct clockinfo),
357 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
358 sysctl_createv(clog, 0, NULL, NULL,
359 CTLFLAG_PERMANENT,
360 CTLTYPE_INT, "hardclock_ticks",
361 SYSCTL_DESCR("Number of hardclock ticks"),
362 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
363 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
364 sysctl_createv(clog, 0, NULL, NULL,
365 CTLFLAG_PERMANENT,
366 CTLTYPE_STRUCT, "vnode",
367 SYSCTL_DESCR("System vnode table"),
368 sysctl_kern_vnode, 0, NULL, 0,
369 CTL_KERN, KERN_VNODE, CTL_EOL);
370 sysctl_createv(clog, 0, NULL, NULL,
371 CTLFLAG_PERMANENT,
372 CTLTYPE_STRUCT, "file",
373 SYSCTL_DESCR("System open file table"),
374 sysctl_kern_file, 0, NULL, 0,
375 CTL_KERN, KERN_FILE, CTL_EOL);
376 #ifndef GPROF
377 sysctl_createv(clog, 0, NULL, NULL,
378 CTLFLAG_PERMANENT,
379 CTLTYPE_NODE, "profiling",
380 SYSCTL_DESCR("Profiling information (not available)"),
381 sysctl_notavail, 0, NULL, 0,
382 CTL_KERN, KERN_PROF, CTL_EOL);
383 #endif
384 sysctl_createv(clog, 0, NULL, NULL,
385 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
386 CTLTYPE_INT, "posix1version",
387 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
388 "with which the operating system attempts "
389 "to comply"),
390 NULL, _POSIX_VERSION, NULL, 0,
391 CTL_KERN, KERN_POSIX1, CTL_EOL);
392 sysctl_createv(clog, 0, NULL, NULL,
393 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
394 CTLTYPE_INT, "ngroups",
395 SYSCTL_DESCR("Maximum number of supplemental groups"),
396 NULL, NGROUPS_MAX, NULL, 0,
397 CTL_KERN, KERN_NGROUPS, CTL_EOL);
398 sysctl_createv(clog, 0, NULL, NULL,
399 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
400 CTLTYPE_INT, "job_control",
401 SYSCTL_DESCR("Whether job control is available"),
402 NULL, 1, NULL, 0,
403 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
404 sysctl_createv(clog, 0, NULL, NULL,
405 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
406 CTLTYPE_INT, "saved_ids",
407 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
408 "available"), NULL,
409 #ifdef _POSIX_SAVED_IDS
410 1,
411 #else /* _POSIX_SAVED_IDS */
412 0,
413 #endif /* _POSIX_SAVED_IDS */
414 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
415 sysctl_createv(clog, 0, NULL, NULL,
416 CTLFLAG_PERMANENT,
417 CTLTYPE_STRUCT, "boottime",
418 SYSCTL_DESCR("System boot time"),
419 NULL, 0, &boottime, sizeof(boottime),
420 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
421 sysctl_createv(clog, 0, NULL, NULL,
422 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
423 CTLTYPE_STRING, "domainname",
424 SYSCTL_DESCR("YP domain name"),
425 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
426 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
427 sysctl_createv(clog, 0, NULL, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
429 CTLTYPE_INT, "maxpartitions",
430 SYSCTL_DESCR("Maximum number of partitions allowed per "
431 "disk"),
432 NULL, MAXPARTITIONS, NULL, 0,
433 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
434 sysctl_createv(clog, 0, NULL, NULL,
435 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
436 CTLTYPE_INT, "rawpartition",
437 SYSCTL_DESCR("Raw partition of a disk"),
438 NULL, RAW_PART, NULL, 0,
439 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
440 sysctl_createv(clog, 0, NULL, NULL,
441 CTLFLAG_PERMANENT,
442 CTLTYPE_STRUCT, "timex", NULL,
443 sysctl_notavail, 0, NULL, 0,
444 CTL_KERN, KERN_TIMEX, CTL_EOL);
445 sysctl_createv(clog, 0, NULL, NULL,
446 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
447 CTLTYPE_INT, "autonicetime",
448 SYSCTL_DESCR("CPU clock seconds before non-root "
449 "process priority is lowered"),
450 sysctl_kern_autonice, 0, &autonicetime, 0,
451 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
452 sysctl_createv(clog, 0, NULL, NULL,
453 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
454 CTLTYPE_INT, "autoniceval",
455 SYSCTL_DESCR("Automatic reniced non-root process "
456 "priority"),
457 sysctl_kern_autonice, 0, &autoniceval, 0,
458 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
459 sysctl_createv(clog, 0, NULL, NULL,
460 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
461 CTLTYPE_INT, "rtc_offset",
462 SYSCTL_DESCR("Offset of real time clock from UTC in "
463 "minutes"),
464 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
465 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
466 sysctl_createv(clog, 0, NULL, NULL,
467 CTLFLAG_PERMANENT,
468 CTLTYPE_STRING, "root_device",
469 SYSCTL_DESCR("Name of the root device"),
470 sysctl_root_device, 0, NULL, 0,
471 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
472 sysctl_createv(clog, 0, NULL, NULL,
473 CTLFLAG_PERMANENT,
474 CTLTYPE_INT, "msgbufsize",
475 SYSCTL_DESCR("Size of the kernel message buffer"),
476 sysctl_msgbuf, 0, NULL, 0,
477 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
478 sysctl_createv(clog, 0, NULL, NULL,
479 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
480 CTLTYPE_INT, "fsync",
481 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
482 "Synchronization Option is available on "
483 "this system"),
484 NULL, 1, NULL, 0,
485 CTL_KERN, KERN_FSYNC, CTL_EOL);
486 sysctl_createv(clog, 0, NULL, NULL,
487 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
488 CTLTYPE_INT, "sysvmsg",
489 SYSCTL_DESCR("System V style message support available"),
490 NULL,
491 #ifdef SYSVMSG
492 1,
493 #else /* SYSVMSG */
494 0,
495 #endif /* SYSVMSG */
496 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
497 sysctl_createv(clog, 0, NULL, NULL,
498 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
499 CTLTYPE_INT, "sysvsem",
500 SYSCTL_DESCR("System V style semaphore support "
501 "available"), NULL,
502 #ifdef SYSVSEM
503 1,
504 #else /* SYSVSEM */
505 0,
506 #endif /* SYSVSEM */
507 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
508 sysctl_createv(clog, 0, NULL, NULL,
509 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
510 CTLTYPE_INT, "sysvshm",
511 SYSCTL_DESCR("System V style shared memory support "
512 "available"), NULL,
513 #ifdef SYSVSHM
514 1,
515 #else /* SYSVSHM */
516 0,
517 #endif /* SYSVSHM */
518 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
519 sysctl_createv(clog, 0, NULL, NULL,
520 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
521 CTLTYPE_INT, "synchronized_io",
522 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
523 "I/O Option is available on this system"),
524 NULL, 1, NULL, 0,
525 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
526 sysctl_createv(clog, 0, NULL, NULL,
527 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
528 CTLTYPE_INT, "iov_max",
529 SYSCTL_DESCR("Maximum number of iovec structures per "
530 "process"),
531 NULL, IOV_MAX, NULL, 0,
532 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
533 sysctl_createv(clog, 0, NULL, NULL,
534 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
535 CTLTYPE_INT, "mapped_files",
536 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
537 "Files Option is available on this system"),
538 NULL, 1, NULL, 0,
539 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
540 sysctl_createv(clog, 0, NULL, NULL,
541 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
542 CTLTYPE_INT, "memlock",
543 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
544 "Locking Option is available on this "
545 "system"),
546 NULL, 1, NULL, 0,
547 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
548 sysctl_createv(clog, 0, NULL, NULL,
549 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
550 CTLTYPE_INT, "memlock_range",
551 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
552 "Locking Option is available on this "
553 "system"),
554 NULL, 1, NULL, 0,
555 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
556 sysctl_createv(clog, 0, NULL, NULL,
557 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
558 CTLTYPE_INT, "memory_protection",
559 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
560 "Protection Option is available on this "
561 "system"),
562 NULL, 1, NULL, 0,
563 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
564 sysctl_createv(clog, 0, NULL, NULL,
565 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
566 CTLTYPE_INT, "login_name_max",
567 SYSCTL_DESCR("Maximum login name length"),
568 NULL, LOGIN_NAME_MAX, NULL, 0,
569 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
570 sysctl_createv(clog, 0, NULL, NULL,
571 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
572 CTLTYPE_STRING, "defcorename",
573 SYSCTL_DESCR("Default core file name"),
574 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
575 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
576 sysctl_createv(clog, 0, NULL, NULL,
577 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
578 CTLTYPE_INT, "logsigexit",
579 SYSCTL_DESCR("Log process exit when caused by signals"),
580 NULL, 0, &kern_logsigexit, 0,
581 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
582 sysctl_createv(clog, 0, NULL, NULL,
583 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
584 CTLTYPE_INT, "fscale",
585 SYSCTL_DESCR("Kernel fixed-point scale factor"),
586 NULL, FSCALE, NULL, 0,
587 CTL_KERN, KERN_FSCALE, CTL_EOL);
588 sysctl_createv(clog, 0, NULL, NULL,
589 CTLFLAG_PERMANENT,
590 CTLTYPE_INT, "ccpu",
591 SYSCTL_DESCR("Scheduler exponential decay value"),
592 NULL, 0, &ccpu, 0,
593 CTL_KERN, KERN_CCPU, CTL_EOL);
594 sysctl_createv(clog, 0, NULL, NULL,
595 CTLFLAG_PERMANENT,
596 CTLTYPE_STRUCT, "cp_time",
597 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
598 sysctl_kern_cptime, 0, NULL, 0,
599 CTL_KERN, KERN_CP_TIME, CTL_EOL);
600 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
601 sysctl_createv(clog, 0, NULL, NULL,
602 CTLFLAG_PERMANENT,
603 CTLTYPE_STRUCT, "sysvipc_info",
604 SYSCTL_DESCR("System V style IPC information"),
605 sysctl_kern_sysvipc, 0, NULL, 0,
606 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
607 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
608 sysctl_createv(clog, 0, NULL, NULL,
609 CTLFLAG_PERMANENT,
610 CTLTYPE_INT, "msgbuf",
611 SYSCTL_DESCR("Kernel message buffer"),
612 sysctl_msgbuf, 0, NULL, 0,
613 CTL_KERN, KERN_MSGBUF, CTL_EOL);
614 sysctl_createv(clog, 0, NULL, NULL,
615 CTLFLAG_PERMANENT,
616 CTLTYPE_STRUCT, "consdev",
617 SYSCTL_DESCR("Console device"),
618 sysctl_consdev, 0, NULL, sizeof(dev_t),
619 CTL_KERN, KERN_CONSDEV, CTL_EOL);
620 #if NPTY > 0
621 sysctl_createv(clog, 0, NULL, NULL,
622 CTLFLAG_PERMANENT,
623 CTLTYPE_INT, "maxptys",
624 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
625 sysctl_kern_maxptys, 0, NULL, 0,
626 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
627 #endif /* NPTY > 0 */
628 sysctl_createv(clog, 0, NULL, NULL,
629 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
630 CTLTYPE_INT, "maxphys",
631 SYSCTL_DESCR("Maximum raw I/O transfer size"),
632 NULL, MAXPHYS, NULL, 0,
633 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
634 sysctl_createv(clog, 0, NULL, NULL,
635 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
636 CTLTYPE_INT, "sbmax",
637 SYSCTL_DESCR("Maximum socket buffer size"),
638 sysctl_kern_sbmax, 0, NULL, 0,
639 CTL_KERN, KERN_SBMAX, CTL_EOL);
640 sysctl_createv(clog, 0, NULL, NULL,
641 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
642 CTLTYPE_INT, "monotonic_clock",
643 SYSCTL_DESCR("Implementation version of the POSIX "
644 "1003.1b Monotonic Clock Option"),
645 /* XXX _POSIX_VERSION */
646 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
647 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
648 sysctl_createv(clog, 0, NULL, NULL,
649 CTLFLAG_PERMANENT,
650 CTLTYPE_INT, "urandom",
651 SYSCTL_DESCR("Random integer value"),
652 sysctl_kern_urnd, 0, NULL, 0,
653 CTL_KERN, KERN_URND, CTL_EOL);
654 sysctl_createv(clog, 0, NULL, NULL,
655 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
656 CTLTYPE_INT, "labelsector",
657 SYSCTL_DESCR("Sector number containing the disklabel"),
658 NULL, LABELSECTOR, NULL, 0,
659 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
660 sysctl_createv(clog, 0, NULL, NULL,
661 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
662 CTLTYPE_INT, "labeloffset",
663 SYSCTL_DESCR("Offset of the disklabel within the "
664 "sector"),
665 NULL, LABELOFFSET, NULL, 0,
666 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
667 sysctl_createv(clog, 0, NULL, NULL,
668 CTLFLAG_PERMANENT,
669 CTLTYPE_NODE, "lwp",
670 SYSCTL_DESCR("System-wide LWP information"),
671 sysctl_kern_lwp, 0, NULL, 0,
672 CTL_KERN, KERN_LWP, CTL_EOL);
673 sysctl_createv(clog, 0, NULL, NULL,
674 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
675 CTLTYPE_INT, "forkfsleep",
676 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
677 "to process limits"),
678 sysctl_kern_forkfsleep, 0, NULL, 0,
679 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
680 sysctl_createv(clog, 0, NULL, NULL,
681 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
682 CTLTYPE_INT, "posix_threads",
683 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
684 "Threads option to which the system "
685 "attempts to conform"),
686 /* XXX _POSIX_VERSION */
687 NULL, _POSIX_THREADS, NULL, 0,
688 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
689 sysctl_createv(clog, 0, NULL, NULL,
690 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
691 CTLTYPE_INT, "posix_semaphores",
692 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
693 "Semaphores option to which the system "
694 "attempts to conform"), NULL,
695 #ifdef P1003_1B_SEMAPHORE
696 200112,
697 #else /* P1003_1B_SEMAPHORE */
698 0,
699 #endif /* P1003_1B_SEMAPHORE */
700 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
701 sysctl_createv(clog, 0, NULL, NULL,
702 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
703 CTLTYPE_INT, "posix_barriers",
704 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
705 "Barriers option to which the system "
706 "attempts to conform"),
707 /* XXX _POSIX_VERSION */
708 NULL, _POSIX_BARRIERS, NULL, 0,
709 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
710 sysctl_createv(clog, 0, NULL, NULL,
711 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
712 CTLTYPE_INT, "posix_timers",
713 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
714 "Timers option to which the system "
715 "attempts to conform"),
716 /* XXX _POSIX_VERSION */
717 NULL, _POSIX_TIMERS, NULL, 0,
718 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
719 sysctl_createv(clog, 0, NULL, NULL,
720 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
721 CTLTYPE_INT, "posix_spin_locks",
722 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
723 "Locks option to which the system attempts "
724 "to conform"),
725 /* XXX _POSIX_VERSION */
726 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
727 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
728 sysctl_createv(clog, 0, NULL, NULL,
729 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
730 CTLTYPE_INT, "posix_reader_writer_locks",
731 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
732 "Read-Write Locks option to which the "
733 "system attempts to conform"),
734 /* XXX _POSIX_VERSION */
735 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
736 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
737 sysctl_createv(clog, 0, NULL, NULL,
738 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
739 CTLTYPE_INT, "dump_on_panic",
740 SYSCTL_DESCR("Perform a crash dump on system panic"),
741 NULL, 0, &dumponpanic, 0,
742 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
743 sysctl_createv(clog, 0, NULL, NULL,
744 CTLFLAG_PERMANENT,
745 CTLTYPE_INT, "root_partition",
746 SYSCTL_DESCR("Root partition on the root device"),
747 sysctl_kern_root_partition, 0, NULL, 0,
748 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
749 sysctl_createv(clog, 0, NULL, NULL,
750 CTLFLAG_PERMANENT,
751 CTLTYPE_STRUCT, "drivers",
752 SYSCTL_DESCR("List of all drivers with block and "
753 "character device numbers"),
754 sysctl_kern_drivers, 0, NULL, 0,
755 CTL_KERN, KERN_DRIVERS, CTL_EOL);
756 sysctl_createv(clog, 0, NULL, NULL,
757 CTLFLAG_PERMANENT,
758 CTLTYPE_STRUCT, "file2",
759 SYSCTL_DESCR("System open file table"),
760 sysctl_kern_file2, 0, NULL, 0,
761 CTL_KERN, KERN_FILE2, CTL_EOL);
762 #ifdef VERIFIED_EXEC
763 sysctl_createv(clog, 0, NULL, NULL,
764 CTLFLAG_PERMANENT,
765 CTLTYPE_NODE, "veriexec",
766 SYSCTL_DESCR("Verified Exec"),
767 NULL, 0, NULL, 0,
768 CTL_KERN, KERN_VERIEXEC, CTL_EOL);
769 sysctl_createv(clog, 0, NULL, NULL,
770 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
771 CTLTYPE_INT, "verbose",
772 SYSCTL_DESCR("Verified Exec verbose level"),
773 NULL, 0, &veriexec_verbose, 0,
774 CTL_KERN, KERN_VERIEXEC, VERIEXEC_VERBOSE,
775 CTL_EOL);
776 sysctl_createv(clog, 0, NULL, NULL,
777 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
778 CTLTYPE_INT, "strict",
779 SYSCTL_DESCR("Verified Exec strict level"),
780 sysctl_kern_veriexec, 0, NULL, 0,
781 CTL_KERN, KERN_VERIEXEC, VERIEXEC_STRICT, CTL_EOL);
782 sysctl_createv(clog, 0, NULL, NULL,
783 CTLFLAG_PERMANENT,
784 CTLTYPE_STRING, "algorithms",
785 SYSCTL_DESCR("Verified Exec supported hashing "
786 "algorithms"),
787 sysctl_kern_veriexec, 0, NULL, 0,
788 CTL_KERN, KERN_VERIEXEC, VERIEXEC_ALGORITHMS, CTL_EOL);
789 sysctl_createv(clog, 0, NULL, &veriexec_count_node,
790 CTLFLAG_PERMANENT,
791 CTLTYPE_NODE, "count",
792 SYSCTL_DESCR("Number of fingerprints on device(s)"),
793 NULL, 0, NULL, 0,
794 CTL_KERN, KERN_VERIEXEC, VERIEXEC_COUNT, CTL_EOL);
795 #endif /* VERIFIED_EXEC */
796 sysctl_createv(clog, 0, NULL, NULL,
797 CTLFLAG_PERMANENT,
798 CTLTYPE_STRUCT, "cp_id",
799 SYSCTL_DESCR("Mapping of CPU number to CPU id"),
800 sysctl_kern_cpid, 0, NULL, 0,
801 CTL_KERN, KERN_CP_ID, CTL_EOL);
802 }
803
804 SYSCTL_SETUP(sysctl_kern_proc_setup,
805 "sysctl kern.proc/proc2/proc_args subtree setup")
806 {
807
808 sysctl_createv(clog, 0, NULL, NULL,
809 CTLFLAG_PERMANENT,
810 CTLTYPE_NODE, "kern", NULL,
811 NULL, 0, NULL, 0,
812 CTL_KERN, CTL_EOL);
813
814 sysctl_createv(clog, 0, NULL, NULL,
815 CTLFLAG_PERMANENT,
816 CTLTYPE_NODE, "proc",
817 SYSCTL_DESCR("System-wide process information"),
818 sysctl_doeproc, 0, NULL, 0,
819 CTL_KERN, KERN_PROC, CTL_EOL);
820 sysctl_createv(clog, 0, NULL, NULL,
821 CTLFLAG_PERMANENT,
822 CTLTYPE_NODE, "proc2",
823 SYSCTL_DESCR("Machine-independent process information"),
824 sysctl_doeproc, 0, NULL, 0,
825 CTL_KERN, KERN_PROC2, CTL_EOL);
826 sysctl_createv(clog, 0, NULL, NULL,
827 CTLFLAG_PERMANENT,
828 CTLTYPE_NODE, "proc_args",
829 SYSCTL_DESCR("Process argument information"),
830 sysctl_kern_proc_args, 0, NULL, 0,
831 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
832
833 /*
834 "nodes" under these:
835
836 KERN_PROC_ALL
837 KERN_PROC_PID pid
838 KERN_PROC_PGRP pgrp
839 KERN_PROC_SESSION sess
840 KERN_PROC_TTY tty
841 KERN_PROC_UID uid
842 KERN_PROC_RUID uid
843 KERN_PROC_GID gid
844 KERN_PROC_RGID gid
845
846 all in all, probably not worth the effort...
847 */
848 }
849
850 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
851 {
852 u_int u;
853 u_quad_t q;
854
855 sysctl_createv(clog, 0, NULL, NULL,
856 CTLFLAG_PERMANENT,
857 CTLTYPE_NODE, "hw", NULL,
858 NULL, 0, NULL, 0,
859 CTL_HW, CTL_EOL);
860
861 sysctl_createv(clog, 0, NULL, NULL,
862 CTLFLAG_PERMANENT,
863 CTLTYPE_STRING, "machine",
864 SYSCTL_DESCR("Machine class"),
865 NULL, 0, machine, 0,
866 CTL_HW, HW_MACHINE, CTL_EOL);
867 sysctl_createv(clog, 0, NULL, NULL,
868 CTLFLAG_PERMANENT,
869 CTLTYPE_STRING, "model",
870 SYSCTL_DESCR("Machine model"),
871 NULL, 0, cpu_model, 0,
872 CTL_HW, HW_MODEL, CTL_EOL);
873 sysctl_createv(clog, 0, NULL, NULL,
874 CTLFLAG_PERMANENT,
875 CTLTYPE_INT, "ncpu",
876 SYSCTL_DESCR("Number of active CPUs"),
877 sysctl_hw_ncpu, 0, NULL, 0,
878 CTL_HW, HW_NCPU, CTL_EOL);
879 sysctl_createv(clog, 0, NULL, NULL,
880 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
881 CTLTYPE_INT, "byteorder",
882 SYSCTL_DESCR("System byte order"),
883 NULL, BYTE_ORDER, NULL, 0,
884 CTL_HW, HW_BYTEORDER, CTL_EOL);
885 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
886 UINT_MAX : physmem * PAGE_SIZE;
887 sysctl_createv(clog, 0, NULL, NULL,
888 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
889 CTLTYPE_INT, "physmem",
890 SYSCTL_DESCR("Bytes of physical memory"),
891 NULL, u, NULL, 0,
892 CTL_HW, HW_PHYSMEM, CTL_EOL);
893 sysctl_createv(clog, 0, NULL, NULL,
894 CTLFLAG_PERMANENT,
895 CTLTYPE_INT, "usermem",
896 SYSCTL_DESCR("Bytes of non-kernel memory"),
897 sysctl_hw_usermem, 0, NULL, 0,
898 CTL_HW, HW_USERMEM, CTL_EOL);
899 sysctl_createv(clog, 0, NULL, NULL,
900 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
901 CTLTYPE_INT, "pagesize",
902 SYSCTL_DESCR("Software page size"),
903 NULL, PAGE_SIZE, NULL, 0,
904 CTL_HW, HW_PAGESIZE, CTL_EOL);
905 sysctl_createv(clog, 0, NULL, NULL,
906 CTLFLAG_PERMANENT,
907 CTLTYPE_STRING, "disknames",
908 SYSCTL_DESCR("List of disk devices present"),
909 sysctl_hw_disknames, 0, NULL, 0,
910 CTL_HW, HW_DISKNAMES, CTL_EOL);
911 sysctl_createv(clog, 0, NULL, NULL,
912 CTLFLAG_PERMANENT,
913 CTLTYPE_STRUCT, "diskstats",
914 SYSCTL_DESCR("Statistics on disk operation"),
915 sysctl_hw_diskstats, 0, NULL, 0,
916 CTL_HW, HW_DISKSTATS, CTL_EOL);
917 sysctl_createv(clog, 0, NULL, NULL,
918 CTLFLAG_PERMANENT,
919 CTLTYPE_STRING, "machine_arch",
920 SYSCTL_DESCR("Machine CPU class"),
921 NULL, 0, machine_arch, 0,
922 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
923 sysctl_createv(clog, 0, NULL, NULL,
924 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
925 CTLTYPE_INT, "alignbytes",
926 SYSCTL_DESCR("Alignment constraint for all possible "
927 "data types"),
928 NULL, ALIGNBYTES, NULL, 0,
929 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
930 sysctl_createv(clog, 0, NULL, NULL,
931 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
932 CTLTYPE_STRING, "cnmagic",
933 SYSCTL_DESCR("Console magic key sequence"),
934 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
935 CTL_HW, HW_CNMAGIC, CTL_EOL);
936 q = (u_quad_t)physmem * PAGE_SIZE;
937 sysctl_createv(clog, 0, NULL, NULL,
938 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
939 CTLTYPE_QUAD, "physmem64",
940 SYSCTL_DESCR("Bytes of physical memory"),
941 NULL, q, NULL, 0,
942 CTL_HW, HW_PHYSMEM64, CTL_EOL);
943 sysctl_createv(clog, 0, NULL, NULL,
944 CTLFLAG_PERMANENT,
945 CTLTYPE_QUAD, "usermem64",
946 SYSCTL_DESCR("Bytes of non-kernel memory"),
947 sysctl_hw_usermem, 0, NULL, 0,
948 CTL_HW, HW_USERMEM64, CTL_EOL);
949 }
950
951 #ifdef DEBUG
952 /*
953 * Debugging related system variables.
954 */
955 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
956 struct ctldebug debug5, debug6, debug7, debug8, debug9;
957 struct ctldebug debug10, debug11, debug12, debug13, debug14;
958 struct ctldebug debug15, debug16, debug17, debug18, debug19;
959 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
960 &debug0, &debug1, &debug2, &debug3, &debug4,
961 &debug5, &debug6, &debug7, &debug8, &debug9,
962 &debug10, &debug11, &debug12, &debug13, &debug14,
963 &debug15, &debug16, &debug17, &debug18, &debug19,
964 };
965
966 /*
967 * this setup routine is a replacement for debug_sysctl()
968 *
969 * note that it creates several nodes per defined debug variable
970 */
971 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
972 {
973 struct ctldebug *cdp;
974 char nodename[20];
975 int i;
976
977 /*
978 * two ways here:
979 *
980 * the "old" way (debug.name -> value) which was emulated by
981 * the sysctl(8) binary
982 *
983 * the new way, which the sysctl(8) binary was actually using
984
985 node debug
986 node debug.0
987 string debug.0.name
988 int debug.0.value
989 int debug.name
990
991 */
992
993 sysctl_createv(clog, 0, NULL, NULL,
994 CTLFLAG_PERMANENT,
995 CTLTYPE_NODE, "debug", NULL,
996 NULL, 0, NULL, 0,
997 CTL_DEBUG, CTL_EOL);
998
999 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
1000 cdp = debugvars[i];
1001 if (cdp->debugname == NULL || cdp->debugvar == NULL)
1002 continue;
1003
1004 snprintf(nodename, sizeof(nodename), "debug%d", i);
1005 sysctl_createv(clog, 0, NULL, NULL,
1006 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1007 CTLTYPE_NODE, nodename, NULL,
1008 NULL, 0, NULL, 0,
1009 CTL_DEBUG, i, CTL_EOL);
1010 sysctl_createv(clog, 0, NULL, NULL,
1011 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1012 CTLTYPE_STRING, "name", NULL,
1013 /*XXXUNCONST*/
1014 NULL, 0, __UNCONST(cdp->debugname), 0,
1015 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
1016 sysctl_createv(clog, 0, NULL, NULL,
1017 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1018 CTLTYPE_INT, "value", NULL,
1019 NULL, 0, cdp->debugvar, 0,
1020 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
1021 sysctl_createv(clog, 0, NULL, NULL,
1022 CTLFLAG_PERMANENT,
1023 CTLTYPE_INT, cdp->debugname, NULL,
1024 NULL, 0, cdp->debugvar, 0,
1025 CTL_DEBUG, CTL_CREATE, CTL_EOL);
1026 }
1027 }
1028 #endif /* DEBUG */
1029
1030 SYSCTL_SETUP(sysctl_security_setup, "sysctl security subtree setup")
1031 {
1032 const struct sysctlnode *rnode = NULL;
1033
1034 sysctl_createv(clog, 0, NULL, &rnode,
1035 CTLFLAG_PERMANENT,
1036 CTLTYPE_NODE, "security", NULL,
1037 NULL, 0, NULL, 0,
1038 CTL_SECURITY, CTL_EOL);
1039
1040 sysctl_createv(clog, 0, &rnode, NULL,
1041 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1042 CTLTYPE_INT, "curtain",
1043 SYSCTL_DESCR("Curtain information about objects"
1044 " to users not owning them."),
1045 NULL, 0, &security_curtain, 0,
1046 CTL_CREATE, CTL_EOL);
1047
1048 sysctl_createv(clog, 0, &rnode, &rnode,
1049 CTLFLAG_PERMANENT,
1050 CTLTYPE_NODE, "setid_core",
1051 SYSCTL_DESCR("Set-id processes' coredump settings."),
1052 NULL, 0, NULL, 0,
1053 CTL_CREATE, CTL_EOL);
1054 sysctl_createv(clog, 0, &rnode, NULL,
1055 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1056 CTLTYPE_INT, "dump",
1057 SYSCTL_DESCR("Allow set-id processes to dump core."),
1058 sysctl_security_setidcore, 0, &security_setidcore_dump,
1059 sizeof(security_setidcore_dump),
1060 CTL_CREATE, CTL_EOL);
1061 sysctl_createv(clog, 0, &rnode, NULL,
1062 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1063 CTLTYPE_STRING, "path",
1064 SYSCTL_DESCR("Path pattern for set-id coredumps."),
1065 sysctl_security_setidcorename, 0,
1066 &security_setidcore_path,
1067 sizeof(security_setidcore_path),
1068 CTL_CREATE, CTL_EOL);
1069 sysctl_createv(clog, 0, &rnode, NULL,
1070 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1071 CTLTYPE_INT, "owner",
1072 SYSCTL_DESCR("Owner id for set-id processes' cores."),
1073 sysctl_security_setidcore, 0, &security_setidcore_owner,
1074 0,
1075 CTL_CREATE, CTL_EOL);
1076 sysctl_createv(clog, 0, &rnode, NULL,
1077 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1078 CTLTYPE_INT, "group",
1079 SYSCTL_DESCR("Group id for set-id processes' cores."),
1080 sysctl_security_setidcore, 0, &security_setidcore_group,
1081 0,
1082 CTL_CREATE, CTL_EOL);
1083 sysctl_createv(clog, 0, &rnode, NULL,
1084 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1085 CTLTYPE_INT, "mode",
1086 SYSCTL_DESCR("Mode for set-id processes' cores."),
1087 sysctl_security_setidcore, 0, &security_setidcore_mode,
1088 0,
1089 CTL_CREATE, CTL_EOL);
1090 }
1091
1092 /*
1093 * ********************************************************************
1094 * section 2: private node-specific helper routines.
1095 * ********************************************************************
1096 */
1097
1098 /*
1099 * sysctl helper routine for kern.maxvnodes. drain vnodes if
1100 * new value is lower than desiredvnodes and then calls reinit
1101 * routines that needs to adjust to the new value.
1102 */
1103 static int
1104 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1105 {
1106 int error, new_vnodes, old_vnodes;
1107 struct sysctlnode node;
1108
1109 new_vnodes = desiredvnodes;
1110 node = *rnode;
1111 node.sysctl_data = &new_vnodes;
1112 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1113 if (error || newp == NULL)
1114 return (error);
1115
1116 old_vnodes = desiredvnodes;
1117 desiredvnodes = new_vnodes;
1118 if (new_vnodes < old_vnodes) {
1119 error = vfs_drainvnodes(new_vnodes, l);
1120 if (error) {
1121 desiredvnodes = old_vnodes;
1122 return (error);
1123 }
1124 }
1125 vfs_reinit();
1126 nchreinit();
1127
1128 return (0);
1129 }
1130
1131 /*
1132 * sysctl helper routine for rtc_offset - set time after changes
1133 */
1134 static int
1135 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1136 {
1137 struct timespec ts, delta;
1138 int error, new_rtc_offset;
1139 struct sysctlnode node;
1140
1141 new_rtc_offset = rtc_offset;
1142 node = *rnode;
1143 node.sysctl_data = &new_rtc_offset;
1144 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1145 if (error || newp == NULL)
1146 return (error);
1147
1148 if (securelevel > 0)
1149 return (EPERM);
1150 if (rtc_offset == new_rtc_offset)
1151 return (0);
1152
1153 /* if we change the offset, adjust the time */
1154 nanotime(&ts);
1155 delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
1156 delta.tv_nsec = 0;
1157 timespecadd(&ts, &delta, &ts);
1158 rtc_offset = new_rtc_offset;
1159 settime(l->l_proc, &ts);
1160
1161 return (0);
1162 }
1163
1164 /*
1165 * sysctl helper routine for kern.maxproc. ensures that the new
1166 * values are not too low or too high.
1167 */
1168 static int
1169 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1170 {
1171 int error, nmaxproc;
1172 struct sysctlnode node;
1173
1174 nmaxproc = maxproc;
1175 node = *rnode;
1176 node.sysctl_data = &nmaxproc;
1177 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1178 if (error || newp == NULL)
1179 return (error);
1180
1181 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1182 return (EINVAL);
1183 #ifdef __HAVE_CPU_MAXPROC
1184 if (nmaxproc > cpu_maxproc())
1185 return (EINVAL);
1186 #endif
1187 maxproc = nmaxproc;
1188
1189 return (0);
1190 }
1191
1192 /*
1193 * sysctl helper routine for kern.securelevel. ensures that the value
1194 * only rises unless the caller has pid 1 (assumed to be init).
1195 */
1196 static int
1197 sysctl_kern_securelevel(SYSCTLFN_ARGS)
1198 {
1199 int newsecurelevel, error;
1200 struct sysctlnode node;
1201
1202 newsecurelevel = securelevel;
1203 node = *rnode;
1204 node.sysctl_data = &newsecurelevel;
1205 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1206 if (error || newp == NULL)
1207 return (error);
1208
1209 if (newsecurelevel < securelevel && l && l->l_proc->p_pid != 1)
1210 return (EPERM);
1211 securelevel = newsecurelevel;
1212
1213 return (error);
1214 }
1215
1216 /*
1217 * sysctl helper function for kern.hostid. the hostid is a long, but
1218 * we export it as an int, so we need to give it a little help.
1219 */
1220 static int
1221 sysctl_kern_hostid(SYSCTLFN_ARGS)
1222 {
1223 int error, inthostid;
1224 struct sysctlnode node;
1225
1226 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1227 node = *rnode;
1228 node.sysctl_data = &inthostid;
1229 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1230 if (error || newp == NULL)
1231 return (error);
1232
1233 hostid = (unsigned)inthostid;
1234
1235 return (0);
1236 }
1237
1238 /*
1239 * sysctl helper function for kern.hostname and kern.domainnname.
1240 * resets the relevant recorded length when the underlying name is
1241 * changed.
1242 */
1243 static int
1244 sysctl_setlen(SYSCTLFN_ARGS)
1245 {
1246 int error;
1247
1248 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1249 if (error || newp == NULL)
1250 return (error);
1251
1252 switch (rnode->sysctl_num) {
1253 case KERN_HOSTNAME:
1254 hostnamelen = strlen((const char*)rnode->sysctl_data);
1255 break;
1256 case KERN_DOMAINNAME:
1257 domainnamelen = strlen((const char*)rnode->sysctl_data);
1258 break;
1259 }
1260
1261 return (0);
1262 }
1263
1264 /*
1265 * sysctl helper routine for kern.clockrate. assembles a struct on
1266 * the fly to be returned to the caller.
1267 */
1268 static int
1269 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1270 {
1271 struct clockinfo clkinfo;
1272 struct sysctlnode node;
1273
1274 clkinfo.tick = tick;
1275 clkinfo.tickadj = tickadj;
1276 clkinfo.hz = hz;
1277 clkinfo.profhz = profhz;
1278 clkinfo.stathz = stathz ? stathz : hz;
1279
1280 node = *rnode;
1281 node.sysctl_data = &clkinfo;
1282 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1283 }
1284
1285
1286 /*
1287 * sysctl helper routine for kern.file pseudo-subtree.
1288 */
1289 static int
1290 sysctl_kern_file(SYSCTLFN_ARGS)
1291 {
1292 int error;
1293 size_t buflen;
1294 struct file *fp;
1295 char *start, *where;
1296
1297 start = where = oldp;
1298 buflen = *oldlenp;
1299 if (where == NULL) {
1300 /*
1301 * overestimate by 10 files
1302 */
1303 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1304 return (0);
1305 }
1306
1307 /*
1308 * first copyout filehead
1309 */
1310 if (buflen < sizeof(filehead)) {
1311 *oldlenp = 0;
1312 return (0);
1313 }
1314 error = copyout(&filehead, where, sizeof(filehead));
1315 if (error)
1316 return (error);
1317 buflen -= sizeof(filehead);
1318 where += sizeof(filehead);
1319
1320 /*
1321 * followed by an array of file structures
1322 */
1323 LIST_FOREACH(fp, &filehead, f_list) {
1324 if (CURTAIN(l->l_proc->p_ucred->cr_uid, fp->f_cred->cr_uid))
1325 continue;
1326 if (buflen < sizeof(struct file)) {
1327 *oldlenp = where - start;
1328 return (ENOMEM);
1329 }
1330 error = copyout(fp, where, sizeof(struct file));
1331 if (error)
1332 return (error);
1333 buflen -= sizeof(struct file);
1334 where += sizeof(struct file);
1335 }
1336 *oldlenp = where - start;
1337 return (0);
1338 }
1339
1340 /*
1341 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
1342 * asserts that the assigned value is in the correct range.
1343 */
1344 static int
1345 sysctl_kern_autonice(SYSCTLFN_ARGS)
1346 {
1347 int error, t = 0;
1348 struct sysctlnode node;
1349
1350 node = *rnode;
1351 t = *(int*)node.sysctl_data;
1352 node.sysctl_data = &t;
1353 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1354 if (error || newp == NULL)
1355 return (error);
1356
1357 switch (node.sysctl_num) {
1358 case KERN_AUTONICETIME:
1359 if (t >= 0)
1360 autonicetime = t;
1361 break;
1362 case KERN_AUTONICEVAL:
1363 if (t < PRIO_MIN)
1364 t = PRIO_MIN;
1365 else if (t > PRIO_MAX)
1366 t = PRIO_MAX;
1367 autoniceval = t;
1368 break;
1369 }
1370
1371 return (0);
1372 }
1373
1374 /*
1375 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
1376 * former it merely checks the message buffer is set up. for the latter,
1377 * it also copies out the data if necessary.
1378 */
1379 static int
1380 sysctl_msgbuf(SYSCTLFN_ARGS)
1381 {
1382 char *where = oldp;
1383 size_t len, maxlen;
1384 long beg, end;
1385 int error;
1386
1387 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1388 msgbufenabled = 0;
1389 return (ENXIO);
1390 }
1391
1392 switch (rnode->sysctl_num) {
1393 case KERN_MSGBUFSIZE: {
1394 struct sysctlnode node = *rnode;
1395 int msg_bufs = (int)msgbufp->msg_bufs;
1396 node.sysctl_data = &msg_bufs;
1397 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1398 }
1399 case KERN_MSGBUF:
1400 break;
1401 default:
1402 return (EOPNOTSUPP);
1403 }
1404
1405 if (newp != NULL)
1406 return (EPERM);
1407
1408 if (oldp == NULL) {
1409 /* always return full buffer size */
1410 *oldlenp = msgbufp->msg_bufs;
1411 return (0);
1412 }
1413
1414 error = 0;
1415 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1416
1417 /*
1418 * First, copy from the write pointer to the end of
1419 * message buffer.
1420 */
1421 beg = msgbufp->msg_bufx;
1422 end = msgbufp->msg_bufs;
1423 while (maxlen > 0) {
1424 len = MIN(end - beg, maxlen);
1425 if (len == 0)
1426 break;
1427 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1428 if (error)
1429 break;
1430 where += len;
1431 maxlen -= len;
1432
1433 /*
1434 * ... then, copy from the beginning of message buffer to
1435 * the write pointer.
1436 */
1437 beg = 0;
1438 end = msgbufp->msg_bufx;
1439 }
1440
1441 return (error);
1442 }
1443
1444 /*
1445 * sysctl helper routine for kern.defcorename. in the case of a new
1446 * string being assigned, check that it's not a zero-length string.
1447 * (XXX the check in -current doesn't work, but do we really care?)
1448 */
1449 static int
1450 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1451 {
1452 int error;
1453 char *newcorename;
1454 struct sysctlnode node;
1455
1456 newcorename = PNBUF_GET();
1457 node = *rnode;
1458 node.sysctl_data = &newcorename[0];
1459 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1460 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1461 if (error || newp == NULL) {
1462 goto done;
1463 }
1464
1465 /*
1466 * when sysctl_lookup() deals with a string, it's guaranteed
1467 * to come back nul terminated. so there. :)
1468 */
1469 if (strlen(newcorename) == 0) {
1470 error = EINVAL;
1471 } else {
1472 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1473 error = 0;
1474 }
1475 done:
1476 PNBUF_PUT(newcorename);
1477 return error;
1478 }
1479
1480 /*
1481 * sysctl helper routine for kern.cp_time node. adds up cpu time
1482 * across all cpus.
1483 */
1484 static int
1485 sysctl_kern_cptime(SYSCTLFN_ARGS)
1486 {
1487 struct sysctlnode node = *rnode;
1488
1489 #ifndef MULTIPROCESSOR
1490
1491 if (namelen == 1) {
1492 if (name[0] != 0)
1493 return (ENOENT);
1494 /*
1495 * you're allowed to ask for the zero'th processor
1496 */
1497 name++;
1498 namelen--;
1499 }
1500 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1501 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1502 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1503
1504 #else /* MULTIPROCESSOR */
1505
1506 uint64_t *cp_time = NULL;
1507 int error, n = sysctl_ncpus(), i;
1508 struct cpu_info *ci;
1509 CPU_INFO_ITERATOR cii;
1510
1511 /*
1512 * if you specifically pass a buffer that is the size of the
1513 * sum, or if you are probing for the size, you get the "sum"
1514 * of cp_time (and the size thereof) across all processors.
1515 *
1516 * alternately, you can pass an additional mib number and get
1517 * cp_time for that particular processor.
1518 */
1519 switch (namelen) {
1520 case 0:
1521 if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
1522 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1523 n = -1; /* SUM */
1524 }
1525 else {
1526 node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
1527 n = -2; /* ALL */
1528 }
1529 break;
1530 case 1:
1531 if (name[0] < 0 || name[0] >= n)
1532 return (ENOENT); /* ENOSUCHPROCESSOR */
1533 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1534 n = name[0];
1535 /*
1536 * adjust these so that sysctl_lookup() will be happy
1537 */
1538 name++;
1539 namelen--;
1540 break;
1541 default:
1542 return (EINVAL);
1543 }
1544
1545 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1546 if (cp_time == NULL)
1547 return (ENOMEM);
1548 node.sysctl_data = cp_time;
1549 memset(cp_time, 0, node.sysctl_size);
1550
1551 for (CPU_INFO_FOREACH(cii, ci)) {
1552 if (n <= 0)
1553 for (i = 0; i < CPUSTATES; i++)
1554 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1555 /*
1556 * if a specific processor was requested and we just
1557 * did it, we're done here
1558 */
1559 if (n == 0)
1560 break;
1561 /*
1562 * if doing "all", skip to next cp_time set for next processor
1563 */
1564 if (n == -2)
1565 cp_time += CPUSTATES;
1566 /*
1567 * if we're doing a specific processor, we're one
1568 * processor closer
1569 */
1570 if (n > 0)
1571 n--;
1572 }
1573
1574 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1575 free(node.sysctl_data, M_TEMP);
1576 return (error);
1577
1578 #endif /* MULTIPROCESSOR */
1579 }
1580
1581 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1582 /*
1583 * sysctl helper routine for kern.sysvipc_info subtree.
1584 */
1585
1586 #define FILL_PERM(src, dst) do { \
1587 (dst)._key = (src)._key; \
1588 (dst).uid = (src).uid; \
1589 (dst).gid = (src).gid; \
1590 (dst).cuid = (src).cuid; \
1591 (dst).cgid = (src).cgid; \
1592 (dst).mode = (src).mode; \
1593 (dst)._seq = (src)._seq; \
1594 } while (/*CONSTCOND*/ 0);
1595 #define FILL_MSG(src, dst) do { \
1596 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1597 (dst).msg_qnum = (src).msg_qnum; \
1598 (dst).msg_qbytes = (src).msg_qbytes; \
1599 (dst)._msg_cbytes = (src)._msg_cbytes; \
1600 (dst).msg_lspid = (src).msg_lspid; \
1601 (dst).msg_lrpid = (src).msg_lrpid; \
1602 (dst).msg_stime = (src).msg_stime; \
1603 (dst).msg_rtime = (src).msg_rtime; \
1604 (dst).msg_ctime = (src).msg_ctime; \
1605 } while (/*CONSTCOND*/ 0)
1606 #define FILL_SEM(src, dst) do { \
1607 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1608 (dst).sem_nsems = (src).sem_nsems; \
1609 (dst).sem_otime = (src).sem_otime; \
1610 (dst).sem_ctime = (src).sem_ctime; \
1611 } while (/*CONSTCOND*/ 0)
1612 #define FILL_SHM(src, dst) do { \
1613 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1614 (dst).shm_segsz = (src).shm_segsz; \
1615 (dst).shm_lpid = (src).shm_lpid; \
1616 (dst).shm_cpid = (src).shm_cpid; \
1617 (dst).shm_atime = (src).shm_atime; \
1618 (dst).shm_dtime = (src).shm_dtime; \
1619 (dst).shm_ctime = (src).shm_ctime; \
1620 (dst).shm_nattch = (src).shm_nattch; \
1621 } while (/*CONSTCOND*/ 0)
1622
1623 static int
1624 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1625 {
1626 void *where = oldp;
1627 size_t *sizep = oldlenp;
1628 #ifdef SYSVMSG
1629 struct msg_sysctl_info *msgsi = NULL;
1630 #endif
1631 #ifdef SYSVSEM
1632 struct sem_sysctl_info *semsi = NULL;
1633 #endif
1634 #ifdef SYSVSHM
1635 struct shm_sysctl_info *shmsi = NULL;
1636 #endif
1637 size_t infosize, dssize, tsize, buflen;
1638 void *bf = NULL;
1639 char *start;
1640 int32_t nds;
1641 int i, error, ret;
1642
1643 if (namelen != 1)
1644 return (EINVAL);
1645
1646 start = where;
1647 buflen = *sizep;
1648
1649 switch (*name) {
1650 case KERN_SYSVIPC_MSG_INFO:
1651 #ifdef SYSVMSG
1652 infosize = sizeof(msgsi->msginfo);
1653 nds = msginfo.msgmni;
1654 dssize = sizeof(msgsi->msgids[0]);
1655 break;
1656 #else
1657 return (EINVAL);
1658 #endif
1659 case KERN_SYSVIPC_SEM_INFO:
1660 #ifdef SYSVSEM
1661 infosize = sizeof(semsi->seminfo);
1662 nds = seminfo.semmni;
1663 dssize = sizeof(semsi->semids[0]);
1664 break;
1665 #else
1666 return (EINVAL);
1667 #endif
1668 case KERN_SYSVIPC_SHM_INFO:
1669 #ifdef SYSVSHM
1670 infosize = sizeof(shmsi->shminfo);
1671 nds = shminfo.shmmni;
1672 dssize = sizeof(shmsi->shmids[0]);
1673 break;
1674 #else
1675 return (EINVAL);
1676 #endif
1677 default:
1678 return (EINVAL);
1679 }
1680 /*
1681 * Round infosize to 64 bit boundary if requesting more than just
1682 * the info structure or getting the total data size.
1683 */
1684 if (where == NULL || *sizep > infosize)
1685 infosize = ((infosize + 7) / 8) * 8;
1686 tsize = infosize + nds * dssize;
1687
1688 /* Return just the total size required. */
1689 if (where == NULL) {
1690 *sizep = tsize;
1691 return (0);
1692 }
1693
1694 /* Not enough room for even the info struct. */
1695 if (buflen < infosize) {
1696 *sizep = 0;
1697 return (ENOMEM);
1698 }
1699 bf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1700 memset(bf, 0, min(tsize, buflen));
1701
1702 switch (*name) {
1703 #ifdef SYSVMSG
1704 case KERN_SYSVIPC_MSG_INFO:
1705 msgsi = (struct msg_sysctl_info *)bf;
1706 msgsi->msginfo = msginfo;
1707 break;
1708 #endif
1709 #ifdef SYSVSEM
1710 case KERN_SYSVIPC_SEM_INFO:
1711 semsi = (struct sem_sysctl_info *)bf;
1712 semsi->seminfo = seminfo;
1713 break;
1714 #endif
1715 #ifdef SYSVSHM
1716 case KERN_SYSVIPC_SHM_INFO:
1717 shmsi = (struct shm_sysctl_info *)bf;
1718 shmsi->shminfo = shminfo;
1719 break;
1720 #endif
1721 }
1722 buflen -= infosize;
1723
1724 ret = 0;
1725 if (buflen > 0) {
1726 /* Fill in the IPC data structures. */
1727 for (i = 0; i < nds; i++) {
1728 if (buflen < dssize) {
1729 ret = ENOMEM;
1730 break;
1731 }
1732 switch (*name) {
1733 #ifdef SYSVMSG
1734 case KERN_SYSVIPC_MSG_INFO:
1735 FILL_MSG(msqids[i], msgsi->msgids[i]);
1736 break;
1737 #endif
1738 #ifdef SYSVSEM
1739 case KERN_SYSVIPC_SEM_INFO:
1740 FILL_SEM(sema[i], semsi->semids[i]);
1741 break;
1742 #endif
1743 #ifdef SYSVSHM
1744 case KERN_SYSVIPC_SHM_INFO:
1745 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1746 break;
1747 #endif
1748 }
1749 buflen -= dssize;
1750 }
1751 }
1752 *sizep -= buflen;
1753 error = copyout(bf, start, *sizep);
1754 /* If copyout succeeded, use return code set earlier. */
1755 if (error == 0)
1756 error = ret;
1757 if (bf)
1758 free(bf, M_TEMP);
1759 return (error);
1760 }
1761
1762 #undef FILL_PERM
1763 #undef FILL_MSG
1764 #undef FILL_SEM
1765 #undef FILL_SHM
1766
1767 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1768
1769 #if NPTY > 0
1770 /*
1771 * sysctl helper routine for kern.maxptys. ensures that any new value
1772 * is acceptable to the pty subsystem.
1773 */
1774 static int
1775 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1776 {
1777 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1778 int error, xmax;
1779 struct sysctlnode node;
1780
1781 /* get current value of maxptys */
1782 xmax = pty_maxptys(0, 0);
1783
1784 node = *rnode;
1785 node.sysctl_data = &xmax;
1786 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1787 if (error || newp == NULL)
1788 return (error);
1789
1790 if (xmax != pty_maxptys(xmax, 1))
1791 return (EINVAL);
1792
1793 return (0);
1794 }
1795 #endif /* NPTY > 0 */
1796
1797 /*
1798 * sysctl helper routine for kern.sbmax. basically just ensures that
1799 * any new value is not too small.
1800 */
1801 static int
1802 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1803 {
1804 int error, new_sbmax;
1805 struct sysctlnode node;
1806
1807 new_sbmax = sb_max;
1808 node = *rnode;
1809 node.sysctl_data = &new_sbmax;
1810 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1811 if (error || newp == NULL)
1812 return (error);
1813
1814 error = sb_max_set(new_sbmax);
1815
1816 return (error);
1817 }
1818
1819 /*
1820 * sysctl helper routine for kern.urandom node. picks a random number
1821 * for you.
1822 */
1823 static int
1824 sysctl_kern_urnd(SYSCTLFN_ARGS)
1825 {
1826 #if NRND > 0
1827 int v;
1828
1829 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1830 struct sysctlnode node = *rnode;
1831 node.sysctl_data = &v;
1832 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1833 }
1834 else
1835 return (EIO); /*XXX*/
1836 #else
1837 return (EOPNOTSUPP);
1838 #endif
1839 }
1840
1841 /*
1842 * sysctl helper routine to do kern.lwp.* work.
1843 */
1844 static int
1845 sysctl_kern_lwp(SYSCTLFN_ARGS)
1846 {
1847 struct kinfo_lwp klwp;
1848 struct proc *p;
1849 struct lwp *l2;
1850 char *where, *dp;
1851 int pid, elem_size, elem_count;
1852 int buflen, needed, error;
1853
1854 if (namelen == 1 && name[0] == CTL_QUERY)
1855 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1856
1857 dp = where = oldp;
1858 buflen = where != NULL ? *oldlenp : 0;
1859 error = needed = 0;
1860
1861 if (newp != NULL || namelen != 3)
1862 return (EINVAL);
1863 pid = name[0];
1864 elem_size = name[1];
1865 elem_count = name[2];
1866
1867 p = pfind(pid);
1868 if (p == NULL)
1869 return (ESRCH);
1870 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1871 if (buflen >= elem_size && elem_count > 0) {
1872 fill_lwp(l2, &klwp);
1873 /*
1874 * Copy out elem_size, but not larger than
1875 * the size of a struct kinfo_proc2.
1876 */
1877 error = copyout(&klwp, dp,
1878 min(sizeof(klwp), elem_size));
1879 if (error)
1880 goto cleanup;
1881 dp += elem_size;
1882 buflen -= elem_size;
1883 elem_count--;
1884 }
1885 needed += elem_size;
1886 }
1887
1888 if (where != NULL) {
1889 *oldlenp = dp - where;
1890 if (needed > *oldlenp)
1891 return (ENOMEM);
1892 } else {
1893 needed += KERN_LWPSLOP;
1894 *oldlenp = needed;
1895 }
1896 return (0);
1897 cleanup:
1898 return (error);
1899 }
1900
1901 /*
1902 * sysctl helper routine for kern.forkfsleep node. ensures that the
1903 * given value is not too large or two small, and is at least one
1904 * timer tick if not zero.
1905 */
1906 static int
1907 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1908 {
1909 /* userland sees value in ms, internally is in ticks */
1910 extern int forkfsleep; /* defined in kern/kern_fork.c */
1911 int error, timo, lsleep;
1912 struct sysctlnode node;
1913
1914 lsleep = forkfsleep * 1000 / hz;
1915 node = *rnode;
1916 node.sysctl_data = &lsleep;
1917 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1918 if (error || newp == NULL)
1919 return (error);
1920
1921 /* refuse negative values, and overly 'long time' */
1922 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1923 return (EINVAL);
1924
1925 timo = mstohz(lsleep);
1926
1927 /* if the interval is >0 ms && <1 tick, use 1 tick */
1928 if (lsleep != 0 && timo == 0)
1929 forkfsleep = 1;
1930 else
1931 forkfsleep = timo;
1932
1933 return (0);
1934 }
1935
1936 /*
1937 * sysctl helper routine for kern.root_partition
1938 */
1939 static int
1940 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1941 {
1942 int rootpart = DISKPART(rootdev);
1943 struct sysctlnode node = *rnode;
1944
1945 node.sysctl_data = &rootpart;
1946 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1947 }
1948
1949 /*
1950 * sysctl helper function for kern.drivers
1951 */
1952 static int
1953 sysctl_kern_drivers(SYSCTLFN_ARGS)
1954 {
1955 int error;
1956 size_t buflen;
1957 struct kinfo_drivers kd;
1958 char *start, *where;
1959 const char *dname;
1960 int i;
1961 extern struct devsw_conv *devsw_conv;
1962 extern int max_devsw_convs;
1963
1964 if (newp != NULL || namelen != 0)
1965 return (EINVAL);
1966
1967 start = where = oldp;
1968 buflen = *oldlenp;
1969 if (where == NULL) {
1970 *oldlenp = max_devsw_convs * sizeof kd;
1971 return 0;
1972 }
1973
1974 /*
1975 * An array of kinfo_drivers structures
1976 */
1977 error = 0;
1978 for (i = 0; i < max_devsw_convs; i++) {
1979 dname = devsw_conv[i].d_name;
1980 if (dname == NULL)
1981 continue;
1982 if (buflen < sizeof kd) {
1983 error = ENOMEM;
1984 break;
1985 }
1986 memset(&kd, 0, sizeof(kd));
1987 kd.d_bmajor = devsw_conv[i].d_bmajor;
1988 kd.d_cmajor = devsw_conv[i].d_cmajor;
1989 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1990 error = copyout(&kd, where, sizeof kd);
1991 if (error != 0)
1992 break;
1993 buflen -= sizeof kd;
1994 where += sizeof kd;
1995 }
1996 *oldlenp = where - start;
1997 return error;
1998 }
1999
2000 /*
2001 * sysctl helper function for kern.file2
2002 */
2003 static int
2004 sysctl_kern_file2(SYSCTLFN_ARGS)
2005 {
2006 struct proc *p;
2007 struct file *fp;
2008 struct filedesc *fd;
2009 struct kinfo_file kf;
2010 char *dp;
2011 u_int i, op;
2012 size_t len, needed, elem_size, out_size;
2013 int error, arg, elem_count;
2014
2015 if (namelen == 1 && name[0] == CTL_QUERY)
2016 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2017
2018 if (namelen != 4)
2019 return (EINVAL);
2020
2021 error = 0;
2022 dp = oldp;
2023 len = (oldp != NULL) ? *oldlenp : 0;
2024 op = name[0];
2025 arg = name[1];
2026 elem_size = name[2];
2027 elem_count = name[3];
2028 out_size = MIN(sizeof(kf), elem_size);
2029 needed = 0;
2030
2031 if (elem_size < 1 || elem_count < 0)
2032 return (EINVAL);
2033
2034 switch (op) {
2035 case KERN_FILE_BYFILE:
2036 /*
2037 * doesn't use arg so it must be zero
2038 */
2039 if (arg != 0)
2040 return (EINVAL);
2041 LIST_FOREACH(fp, &filehead, f_list) {
2042 if (CURTAIN(l->l_proc->p_ucred->cr_uid,
2043 fp->f_cred->cr_uid))
2044 continue;
2045 if (len >= elem_size && elem_count > 0) {
2046 fill_file(&kf, fp, NULL, 0);
2047 error = copyout(&kf, dp, out_size);
2048 if (error)
2049 break;
2050 dp += elem_size;
2051 len -= elem_size;
2052 }
2053 if (elem_count > 0) {
2054 needed += elem_size;
2055 if (elem_count != INT_MAX)
2056 elem_count--;
2057 }
2058 }
2059 break;
2060 case KERN_FILE_BYPID:
2061 if (arg < -1)
2062 /* -1 means all processes */
2063 return (EINVAL);
2064 proclist_lock_read();
2065 PROCLIST_FOREACH(p, &allproc) {
2066 if (p->p_stat == SIDL)
2067 /* skip embryonic processes */
2068 continue;
2069 if (CURTAIN(l->l_proc->p_ucred->cr_uid,
2070 p->p_ucred->cr_uid))
2071 continue;
2072 if (arg > 0 && p->p_pid != arg)
2073 /* pick only the one we want */
2074 /* XXX want 0 to mean "kernel files" */
2075 continue;
2076 fd = p->p_fd;
2077 for (i = 0; i < fd->fd_nfiles; i++) {
2078 fp = fd->fd_ofiles[i];
2079 if (fp == NULL || !FILE_IS_USABLE(fp))
2080 continue;
2081 if (len >= elem_size && elem_count > 0) {
2082 fill_file(&kf, fd->fd_ofiles[i],
2083 p, i);
2084 error = copyout(&kf, dp, out_size);
2085 if (error)
2086 break;
2087 dp += elem_size;
2088 len -= elem_size;
2089 }
2090 if (elem_count > 0) {
2091 needed += elem_size;
2092 if (elem_count != INT_MAX)
2093 elem_count--;
2094 }
2095 }
2096 }
2097 proclist_unlock_read();
2098 break;
2099 default:
2100 return (EINVAL);
2101 }
2102
2103 if (oldp == NULL)
2104 needed += KERN_FILESLOP * elem_size;
2105 *oldlenp = needed;
2106
2107 return (error);
2108 }
2109
2110 static void
2111 fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i)
2112 {
2113
2114 memset(kp, 0, sizeof(*kp));
2115
2116 kp->ki_fileaddr = PTRTOUINT64(fp);
2117 kp->ki_flag = fp->f_flag;
2118 kp->ki_iflags = fp->f_iflags;
2119 kp->ki_ftype = fp->f_type;
2120 kp->ki_count = fp->f_count;
2121 kp->ki_msgcount = fp->f_msgcount;
2122 kp->ki_usecount = fp->f_usecount;
2123 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2124 kp->ki_fuid = fp->f_cred->cr_uid;
2125 kp->ki_fgid = fp->f_cred->cr_gid;
2126 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2127 kp->ki_foffset = fp->f_offset;
2128 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2129
2130 /* vnode information to glue this file to something */
2131 if (fp->f_type == DTYPE_VNODE) {
2132 struct vnode *vp = (struct vnode *)fp->f_data;
2133
2134 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2135 kp->ki_vsize = vp->v_size;
2136 kp->ki_vtype = vp->v_type;
2137 kp->ki_vtag = vp->v_tag;
2138 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2139 }
2140
2141 /* process information when retrieved via KERN_FILE_BYPID */
2142 if (p) {
2143 kp->ki_pid = p->p_pid;
2144 kp->ki_fd = i;
2145 kp->ki_ofileflags = p->p_fd->fd_ofileflags[i];
2146 }
2147 }
2148
2149 static int
2150 sysctl_doeproc(SYSCTLFN_ARGS)
2151 {
2152 struct eproc eproc;
2153 struct kinfo_proc2 kproc2;
2154 struct kinfo_proc *dp;
2155 struct proc *p;
2156 const struct proclist_desc *pd;
2157 char *where, *dp2;
2158 int type, op, arg;
2159 u_int elem_size, elem_count;
2160 size_t buflen, needed;
2161 int error;
2162
2163 if (namelen == 1 && name[0] == CTL_QUERY)
2164 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2165
2166 dp = oldp;
2167 dp2 = where = oldp;
2168 buflen = where != NULL ? *oldlenp : 0;
2169 error = 0;
2170 needed = 0;
2171 type = rnode->sysctl_num;
2172
2173 if (type == KERN_PROC) {
2174 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
2175 return (EINVAL);
2176 op = name[0];
2177 if (op != KERN_PROC_ALL)
2178 arg = name[1];
2179 else
2180 arg = 0; /* Quell compiler warning */
2181 elem_size = elem_count = 0; /* Ditto */
2182 } else {
2183 if (namelen != 4)
2184 return (EINVAL);
2185 op = name[0];
2186 arg = name[1];
2187 elem_size = name[2];
2188 elem_count = name[3];
2189 }
2190
2191 proclist_lock_read();
2192
2193 pd = proclists;
2194 again:
2195 PROCLIST_FOREACH(p, pd->pd_list) {
2196 /*
2197 * Skip embryonic processes.
2198 */
2199 if (p->p_stat == SIDL)
2200 continue;
2201
2202 if (CURTAIN(l->l_proc->p_ucred->cr_uid, p->p_ucred->cr_uid))
2203 continue;
2204
2205 /*
2206 * TODO - make more efficient (see notes below).
2207 * do by session.
2208 */
2209 switch (op) {
2210
2211 case KERN_PROC_PID:
2212 /* could do this with just a lookup */
2213 if (p->p_pid != (pid_t)arg)
2214 continue;
2215 break;
2216
2217 case KERN_PROC_PGRP:
2218 /* could do this by traversing pgrp */
2219 if (p->p_pgrp->pg_id != (pid_t)arg)
2220 continue;
2221 break;
2222
2223 case KERN_PROC_SESSION:
2224 if (p->p_session->s_sid != (pid_t)arg)
2225 continue;
2226 break;
2227
2228 case KERN_PROC_TTY:
2229 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2230 if ((p->p_flag & P_CONTROLT) == 0 ||
2231 p->p_session->s_ttyp == NULL ||
2232 p->p_session->s_ttyvp != NULL)
2233 continue;
2234 } else if ((p->p_flag & P_CONTROLT) == 0 ||
2235 p->p_session->s_ttyp == NULL) {
2236 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
2237 continue;
2238 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
2239 continue;
2240 break;
2241
2242 case KERN_PROC_UID:
2243 if (p->p_ucred->cr_uid != (uid_t)arg)
2244 continue;
2245 break;
2246
2247 case KERN_PROC_RUID:
2248 if (p->p_cred->p_ruid != (uid_t)arg)
2249 continue;
2250 break;
2251
2252 case KERN_PROC_GID:
2253 if (p->p_ucred->cr_gid != (uid_t)arg)
2254 continue;
2255 break;
2256
2257 case KERN_PROC_RGID:
2258 if (p->p_cred->p_rgid != (uid_t)arg)
2259 continue;
2260 break;
2261
2262 case KERN_PROC_ALL:
2263 /* allow everything */
2264 break;
2265
2266 default:
2267 error = EINVAL;
2268 goto cleanup;
2269 }
2270 if (type == KERN_PROC) {
2271 if (buflen >= sizeof(struct kinfo_proc)) {
2272 fill_eproc(p, &eproc);
2273 error = copyout(p, &dp->kp_proc,
2274 sizeof(struct proc));
2275 if (error)
2276 goto cleanup;
2277 error = copyout(&eproc, &dp->kp_eproc,
2278 sizeof(eproc));
2279 if (error)
2280 goto cleanup;
2281 dp++;
2282 buflen -= sizeof(struct kinfo_proc);
2283 }
2284 needed += sizeof(struct kinfo_proc);
2285 } else { /* KERN_PROC2 */
2286 if (buflen >= elem_size && elem_count > 0) {
2287 fill_kproc2(p, &kproc2);
2288 /*
2289 * Copy out elem_size, but not larger than
2290 * the size of a struct kinfo_proc2.
2291 */
2292 error = copyout(&kproc2, dp2,
2293 min(sizeof(kproc2), elem_size));
2294 if (error)
2295 goto cleanup;
2296 dp2 += elem_size;
2297 buflen -= elem_size;
2298 elem_count--;
2299 }
2300 needed += elem_size;
2301 }
2302 }
2303 pd++;
2304 if (pd->pd_list != NULL)
2305 goto again;
2306 proclist_unlock_read();
2307
2308 if (where != NULL) {
2309 if (type == KERN_PROC)
2310 *oldlenp = (char *)dp - where;
2311 else
2312 *oldlenp = dp2 - where;
2313 if (needed > *oldlenp)
2314 return (ENOMEM);
2315 } else {
2316 needed += KERN_PROCSLOP;
2317 *oldlenp = needed;
2318 }
2319 return (0);
2320 cleanup:
2321 proclist_unlock_read();
2322 return (error);
2323 }
2324
2325 /*
2326 * sysctl helper routine for kern.proc_args pseudo-subtree.
2327 */
2328 static int
2329 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2330 {
2331 struct ps_strings pss;
2332 struct proc *p, *up = l->l_proc;
2333 size_t len, upper_bound, xlen, i;
2334 struct uio auio;
2335 struct iovec aiov;
2336 vaddr_t argv;
2337 pid_t pid;
2338 int nargv, type, error;
2339 char *arg;
2340 char *tmp;
2341 struct vmspace *vmspace;
2342 vaddr_t psstr_addr;
2343 vaddr_t offsetn;
2344 vaddr_t offsetv;
2345
2346 if (namelen == 1 && name[0] == CTL_QUERY)
2347 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2348
2349 if (newp != NULL || namelen != 2)
2350 return (EINVAL);
2351 pid = name[0];
2352 type = name[1];
2353
2354 switch (type) {
2355 case KERN_PROC_ARGV:
2356 case KERN_PROC_NARGV:
2357 case KERN_PROC_ENV:
2358 case KERN_PROC_NENV:
2359 /* ok */
2360 break;
2361 default:
2362 return (EINVAL);
2363 }
2364
2365 proclist_lock_read();
2366
2367 /* check pid */
2368 if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
2369 error = EINVAL;
2370 goto out_locked;
2371 }
2372
2373 if (CURTAIN(l->l_proc->p_ucred->cr_uid, p->p_ucred->cr_uid)) {
2374 error = EPERM;
2375 goto out_locked;
2376 }
2377
2378 /* only root or same user change look at the environment */
2379 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2380 if (up->p_ucred->cr_uid != 0) {
2381 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
2382 up->p_cred->p_ruid != p->p_cred->p_svuid) {
2383 error = EPERM;
2384 goto out_locked;
2385 }
2386 }
2387 }
2388
2389 if (oldp == NULL) {
2390 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2391 *oldlenp = sizeof (int);
2392 else
2393 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2394 error = 0;
2395 goto out_locked;
2396 }
2397
2398 /*
2399 * Zombies don't have a stack, so we can't read their psstrings.
2400 * System processes also don't have a user stack.
2401 */
2402 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0) {
2403 error = EINVAL;
2404 goto out_locked;
2405 }
2406
2407 /*
2408 * Lock the process down in memory.
2409 */
2410 /* XXXCDC: how should locking work here? */
2411 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1)) {
2412 error = EFAULT;
2413 goto out_locked;
2414 }
2415
2416 psstr_addr = (vaddr_t)p->p_psstr;
2417 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
2418 offsetn = p->p_psnargv;
2419 offsetv = p->p_psargv;
2420 } else {
2421 offsetn = p->p_psnenv;
2422 offsetv = p->p_psenv;
2423 }
2424 vmspace = p->p_vmspace;
2425 vmspace->vm_refcnt++; /* XXX */
2426
2427 proclist_unlock_read();
2428
2429 /*
2430 * Allocate a temporary buffer to hold the arguments.
2431 */
2432 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2433
2434 /*
2435 * Read in the ps_strings structure.
2436 */
2437 aiov.iov_base = &pss;
2438 aiov.iov_len = sizeof(pss);
2439 auio.uio_iov = &aiov;
2440 auio.uio_iovcnt = 1;
2441 auio.uio_offset = psstr_addr;
2442 auio.uio_resid = sizeof(pss);
2443 auio.uio_segflg = UIO_SYSSPACE;
2444 auio.uio_rw = UIO_READ;
2445 auio.uio_lwp = NULL;
2446 error = uvm_io(&vmspace->vm_map, &auio);
2447 if (error)
2448 goto done;
2449
2450 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
2451 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2452 error = copyout(&nargv, oldp, sizeof(nargv));
2453 *oldlenp = sizeof(nargv);
2454 goto done;
2455 }
2456 /*
2457 * Now read the address of the argument vector.
2458 */
2459 switch (type) {
2460 case KERN_PROC_ARGV:
2461 /* XXX compat32 stuff here */
2462 /* FALLTHROUGH */
2463 case KERN_PROC_ENV:
2464 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
2465 break;
2466 default:
2467 return (EINVAL);
2468 }
2469 auio.uio_offset = (off_t)(unsigned long)tmp;
2470 aiov.iov_base = &argv;
2471 aiov.iov_len = sizeof(argv);
2472 auio.uio_iov = &aiov;
2473 auio.uio_iovcnt = 1;
2474 auio.uio_resid = sizeof(argv);
2475 auio.uio_segflg = UIO_SYSSPACE;
2476 auio.uio_rw = UIO_READ;
2477 auio.uio_lwp = NULL;
2478 error = uvm_io(&vmspace->vm_map, &auio);
2479 if (error)
2480 goto done;
2481
2482 /*
2483 * Now copy in the actual argument vector, one page at a time,
2484 * since we don't know how long the vector is (though, we do
2485 * know how many NUL-terminated strings are in the vector).
2486 */
2487 len = 0;
2488 upper_bound = *oldlenp;
2489 for (; nargv != 0 && len < upper_bound; len += xlen) {
2490 aiov.iov_base = arg;
2491 aiov.iov_len = PAGE_SIZE;
2492 auio.uio_iov = &aiov;
2493 auio.uio_iovcnt = 1;
2494 auio.uio_offset = argv + len;
2495 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
2496 auio.uio_resid = xlen;
2497 auio.uio_segflg = UIO_SYSSPACE;
2498 auio.uio_rw = UIO_READ;
2499 auio.uio_lwp = NULL;
2500 error = uvm_io(&vmspace->vm_map, &auio);
2501 if (error)
2502 goto done;
2503
2504 for (i = 0; i < xlen && nargv != 0; i++) {
2505 if (arg[i] == '\0')
2506 nargv--; /* one full string */
2507 }
2508
2509 /*
2510 * Make sure we don't copyout past the end of the user's
2511 * buffer.
2512 */
2513 if (len + i > upper_bound)
2514 i = upper_bound - len;
2515
2516 error = copyout(arg, (char *)oldp + len, i);
2517 if (error)
2518 break;
2519
2520 if (nargv == 0) {
2521 len += i;
2522 break;
2523 }
2524 }
2525 *oldlenp = len;
2526
2527 done:
2528 uvmspace_free(vmspace);
2529
2530 free(arg, M_TEMP);
2531 return error;
2532
2533 out_locked:
2534 proclist_unlock_read();
2535 return error;
2536 }
2537
2538 /*
2539 * Sysctl helper routine for Verified Exec.
2540 */
2541 #ifdef VERIFIED_EXEC
2542 static int
2543 sysctl_kern_veriexec(SYSCTLFN_ARGS)
2544 {
2545 int newval, error;
2546 int *var = NULL, raise_only = 0;
2547 struct sysctlnode node;
2548
2549 node = *rnode;
2550
2551 switch (rnode->sysctl_num) {
2552 case VERIEXEC_STRICT:
2553 raise_only = 1;
2554 var = &veriexec_strict;
2555 break;
2556 case VERIEXEC_ALGORITHMS:
2557 node.sysctl_data = veriexec_fp_names;
2558 node.sysctl_size = strlen(veriexec_fp_names) + 1;
2559 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2560 default:
2561 return (EINVAL);
2562 }
2563
2564 newval = *var;
2565
2566 node.sysctl_data = &newval;
2567 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2568 if (error || newp == NULL) {
2569 return (error);
2570 }
2571
2572 if (raise_only && (newval < *var))
2573 return (EPERM);
2574
2575 *var = newval;
2576
2577 return (error);
2578 }
2579 #endif /* VERIFIED_EXEC */
2580
2581 static int
2582 sysctl_security_setidcore(SYSCTLFN_ARGS)
2583 {
2584 int newsize, error;
2585 struct sysctlnode node;
2586
2587 node = *rnode;
2588 node.sysctl_data = &newsize;
2589 newsize = *(int *)rnode->sysctl_data;
2590 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2591 if (error || newp == NULL)
2592 return error;
2593
2594 if (securelevel > 0)
2595 return (EPERM);
2596
2597 *(int *)rnode->sysctl_data = newsize;
2598
2599 return 0;
2600 }
2601
2602 static int
2603 sysctl_security_setidcorename(SYSCTLFN_ARGS)
2604 {
2605 int error;
2606 char newsetidcorename[MAXPATHLEN];
2607 struct sysctlnode node;
2608
2609 node = *rnode;
2610 node.sysctl_data = &newsetidcorename[0];
2611 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
2612 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2613 if (error || newp == NULL)
2614 return (error);
2615
2616 if (securelevel > 0)
2617 return (EPERM);
2618
2619 if (strlen(newsetidcorename) == 0)
2620 return (EINVAL);
2621
2622 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
2623
2624 return (0);
2625 }
2626
2627 /*
2628 * sysctl helper routine for kern.cp_id node. maps cpus to their
2629 * cpuids.
2630 */
2631 static int
2632 sysctl_kern_cpid(SYSCTLFN_ARGS)
2633 {
2634 struct sysctlnode node = *rnode;
2635
2636 #ifndef MULTIPROCESSOR
2637 uint64_t id;
2638
2639 if (namelen == 1) {
2640 if (name[0] != 0)
2641 return (ENOENT);
2642 /*
2643 * you're allowed to ask for the zero'th processor
2644 */
2645 name++;
2646 namelen--;
2647 }
2648 node.sysctl_data = &id;
2649 node.sysctl_size = sizeof(id);
2650 id = cpu_number();
2651 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2652
2653 #else /* MULTIPROCESSOR */
2654 uint64_t *cp_id = NULL;
2655 int error, n = sysctl_ncpus();
2656 struct cpu_info *ci;
2657 CPU_INFO_ITERATOR cii;
2658
2659 /*
2660 * here you may either retrieve a single cpu id or the whole
2661 * set. the size you get back when probing depends on what
2662 * you ask for.
2663 */
2664 switch (namelen) {
2665 case 0:
2666 node.sysctl_size = n * sizeof(uint64_t);
2667 n = -2; /* ALL */
2668 break;
2669 case 1:
2670 if (name[0] < 0 || name[0] >= n)
2671 return (ENOENT); /* ENOSUCHPROCESSOR */
2672 node.sysctl_size = sizeof(uint64_t);
2673 n = name[0];
2674 /*
2675 * adjust these so that sysctl_lookup() will be happy
2676 */
2677 name++;
2678 namelen--;
2679 break;
2680 default:
2681 return (EINVAL);
2682 }
2683
2684 cp_id = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
2685 if (cp_id == NULL)
2686 return (ENOMEM);
2687 node.sysctl_data = cp_id;
2688 memset(cp_id, 0, node.sysctl_size);
2689
2690 for (CPU_INFO_FOREACH(cii, ci)) {
2691 if (n <= 0)
2692 cp_id[0] = ci->ci_cpuid;
2693 /*
2694 * if a specific processor was requested and we just
2695 * did it, we're done here
2696 */
2697 if (n == 0)
2698 break;
2699 /*
2700 * if doing "all", skip to next cp_id slot for next processor
2701 */
2702 if (n == -2)
2703 cp_id++;
2704 /*
2705 * if we're doing a specific processor, we're one
2706 * processor closer
2707 */
2708 if (n > 0)
2709 n--;
2710 }
2711
2712 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2713 free(node.sysctl_data, M_TEMP);
2714 return (error);
2715
2716 #endif /* MULTIPROCESSOR */
2717 }
2718
2719 /*
2720 * sysctl helper routine for hw.usermem and hw.usermem64. values are
2721 * calculate on the fly taking into account integer overflow and the
2722 * current wired count.
2723 */
2724 static int
2725 sysctl_hw_usermem(SYSCTLFN_ARGS)
2726 {
2727 u_int ui;
2728 u_quad_t uq;
2729 struct sysctlnode node;
2730
2731 node = *rnode;
2732 switch (rnode->sysctl_num) {
2733 case HW_USERMEM:
2734 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2735 ui = UINT_MAX;
2736 else
2737 ui *= PAGE_SIZE;
2738 node.sysctl_data = &ui;
2739 break;
2740 case HW_USERMEM64:
2741 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2742 node.sysctl_data = &uq;
2743 break;
2744 default:
2745 return (EINVAL);
2746 }
2747
2748 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2749 }
2750
2751 /*
2752 * sysctl helper routine for kern.cnmagic node. pulls the old value
2753 * out, encoded, and stuffs the new value in for decoding.
2754 */
2755 static int
2756 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2757 {
2758 char magic[CNS_LEN];
2759 int error;
2760 struct sysctlnode node;
2761
2762 if (oldp)
2763 cn_get_magic(magic, CNS_LEN);
2764 node = *rnode;
2765 node.sysctl_data = &magic[0];
2766 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2767 if (error || newp == NULL)
2768 return (error);
2769
2770 return (cn_set_magic(magic));
2771 }
2772
2773 static int
2774 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2775 {
2776 int ncpu;
2777 struct sysctlnode node;
2778
2779 ncpu = sysctl_ncpus();
2780 node = *rnode;
2781 node.sysctl_data = &ncpu;
2782
2783 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2784 }
2785
2786
2787 /*
2788 * ********************************************************************
2789 * section 3: public helper routines that are used for more than one
2790 * node
2791 * ********************************************************************
2792 */
2793
2794 /*
2795 * sysctl helper routine for the kern.root_device node and some ports'
2796 * machdep.root_device nodes.
2797 */
2798 int
2799 sysctl_root_device(SYSCTLFN_ARGS)
2800 {
2801 struct sysctlnode node;
2802
2803 node = *rnode;
2804 node.sysctl_data = root_device->dv_xname;
2805 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2806 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2807 }
2808
2809 /*
2810 * sysctl helper routine for kern.consdev, dependent on the current
2811 * state of the console. also used for machdep.console_device on some
2812 * ports.
2813 */
2814 int
2815 sysctl_consdev(SYSCTLFN_ARGS)
2816 {
2817 dev_t consdev;
2818 struct sysctlnode node;
2819
2820 if (cn_tab != NULL)
2821 consdev = cn_tab->cn_dev;
2822 else
2823 consdev = NODEV;
2824 node = *rnode;
2825 node.sysctl_data = &consdev;
2826 node.sysctl_size = sizeof(consdev);
2827 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2828 }
2829
2830 /*
2831 * ********************************************************************
2832 * section 4: support for some helpers
2833 * ********************************************************************
2834 */
2835
2836 /*
2837 * Fill in a kinfo_proc2 structure for the specified process.
2838 */
2839 static void
2840 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2841 {
2842 struct tty *tp;
2843 struct lwp *l;
2844 struct timeval ut, st;
2845
2846 memset(ki, 0, sizeof(*ki));
2847
2848 ki->p_paddr = PTRTOUINT64(p);
2849 ki->p_fd = PTRTOUINT64(p->p_fd);
2850 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2851 ki->p_stats = PTRTOUINT64(p->p_stats);
2852 ki->p_limit = PTRTOUINT64(p->p_limit);
2853 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2854 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2855 ki->p_sess = PTRTOUINT64(p->p_session);
2856 ki->p_tsess = 0; /* may be changed if controlling tty below */
2857 ki->p_ru = PTRTOUINT64(p->p_ru);
2858
2859 ki->p_eflag = 0;
2860 ki->p_exitsig = p->p_exitsig;
2861 ki->p_flag = p->p_flag;
2862
2863 ki->p_pid = p->p_pid;
2864 if (p->p_pptr)
2865 ki->p_ppid = p->p_pptr->p_pid;
2866 else
2867 ki->p_ppid = 0;
2868 ki->p_sid = p->p_session->s_sid;
2869 ki->p__pgid = p->p_pgrp->pg_id;
2870
2871 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2872
2873 ki->p_uid = p->p_ucred->cr_uid;
2874 ki->p_ruid = p->p_cred->p_ruid;
2875 ki->p_gid = p->p_ucred->cr_gid;
2876 ki->p_rgid = p->p_cred->p_rgid;
2877 ki->p_svuid = p->p_cred->p_svuid;
2878 ki->p_svgid = p->p_cred->p_svgid;
2879
2880 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2881 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2882 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2883
2884 ki->p_jobc = p->p_pgrp->pg_jobc;
2885 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2886 ki->p_tdev = tp->t_dev;
2887 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2888 ki->p_tsess = PTRTOUINT64(tp->t_session);
2889 } else {
2890 ki->p_tdev = NODEV;
2891 }
2892
2893 ki->p_estcpu = p->p_estcpu;
2894 ki->p_rtime_sec = p->p_rtime.tv_sec;
2895 ki->p_rtime_usec = p->p_rtime.tv_usec;
2896 ki->p_cpticks = p->p_cpticks;
2897 ki->p_pctcpu = p->p_pctcpu;
2898
2899 ki->p_uticks = p->p_uticks;
2900 ki->p_sticks = p->p_sticks;
2901 ki->p_iticks = p->p_iticks;
2902
2903 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2904 ki->p_traceflag = p->p_traceflag;
2905
2906
2907 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2908 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2909 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2910 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2911
2912 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2913 ki->p_realstat = p->p_stat;
2914 ki->p_nice = p->p_nice;
2915
2916 ki->p_xstat = p->p_xstat;
2917 ki->p_acflag = p->p_acflag;
2918
2919 strncpy(ki->p_comm, p->p_comm,
2920 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2921
2922 strncpy(ki->p_login, p->p_session->s_login,
2923 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2924
2925 ki->p_nlwps = p->p_nlwps;
2926 ki->p_nrlwps = p->p_nrlwps;
2927 ki->p_realflag = p->p_flag;
2928
2929 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2930 ki->p_vm_rssize = 0;
2931 ki->p_vm_tsize = 0;
2932 ki->p_vm_dsize = 0;
2933 ki->p_vm_ssize = 0;
2934 l = NULL;
2935 } else {
2936 struct vmspace *vm = p->p_vmspace;
2937
2938 ki->p_vm_rssize = vm_resident_count(vm);
2939 ki->p_vm_tsize = vm->vm_tsize;
2940 ki->p_vm_dsize = vm->vm_dsize;
2941 ki->p_vm_ssize = vm->vm_ssize;
2942
2943 /* Pick a "representative" LWP */
2944 l = proc_representative_lwp(p);
2945 ki->p_forw = PTRTOUINT64(l->l_forw);
2946 ki->p_back = PTRTOUINT64(l->l_back);
2947 ki->p_addr = PTRTOUINT64(l->l_addr);
2948 ki->p_stat = l->l_stat;
2949 ki->p_flag |= l->l_flag;
2950 ki->p_swtime = l->l_swtime;
2951 ki->p_slptime = l->l_slptime;
2952 if (l->l_stat == LSONPROC) {
2953 KDASSERT(l->l_cpu != NULL);
2954 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2955 } else
2956 ki->p_schedflags = 0;
2957 ki->p_holdcnt = l->l_holdcnt;
2958 ki->p_priority = l->l_priority;
2959 ki->p_usrpri = l->l_usrpri;
2960 if (l->l_wmesg)
2961 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2962 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2963
2964 }
2965
2966 if (p->p_session->s_ttyvp)
2967 ki->p_eflag |= EPROC_CTTY;
2968 if (SESS_LEADER(p))
2969 ki->p_eflag |= EPROC_SLEADER;
2970
2971 /* XXX Is this double check necessary? */
2972 if (P_ZOMBIE(p)) {
2973 ki->p_uvalid = 0;
2974 } else {
2975 ki->p_uvalid = 1;
2976
2977 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2978 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2979
2980 calcru(p, &ut, &st, 0);
2981 ki->p_uutime_sec = ut.tv_sec;
2982 ki->p_uutime_usec = ut.tv_usec;
2983 ki->p_ustime_sec = st.tv_sec;
2984 ki->p_ustime_usec = st.tv_usec;
2985
2986 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2987 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2988 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2989 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2990 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2991 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2992 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2993 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2994 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2995 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2996 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2997 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2998 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2999 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
3000
3001 timeradd(&p->p_stats->p_cru.ru_utime,
3002 &p->p_stats->p_cru.ru_stime, &ut);
3003 ki->p_uctime_sec = ut.tv_sec;
3004 ki->p_uctime_usec = ut.tv_usec;
3005 }
3006 #ifdef MULTIPROCESSOR
3007 if (l && l->l_cpu != NULL)
3008 ki->p_cpuid = l->l_cpu->ci_cpuid;
3009 else
3010 #endif
3011 ki->p_cpuid = KI_NOCPU;
3012 }
3013
3014 /*
3015 * Fill in a kinfo_lwp structure for the specified lwp.
3016 */
3017 static void
3018 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
3019 {
3020
3021 kl->l_forw = PTRTOUINT64(l->l_forw);
3022 kl->l_back = PTRTOUINT64(l->l_back);
3023 kl->l_laddr = PTRTOUINT64(l);
3024 kl->l_addr = PTRTOUINT64(l->l_addr);
3025 kl->l_stat = l->l_stat;
3026 kl->l_lid = l->l_lid;
3027 kl->l_flag = l->l_flag;
3028
3029 kl->l_swtime = l->l_swtime;
3030 kl->l_slptime = l->l_slptime;
3031 if (l->l_stat == LSONPROC) {
3032 KDASSERT(l->l_cpu != NULL);
3033 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3034 } else
3035 kl->l_schedflags = 0;
3036 kl->l_holdcnt = l->l_holdcnt;
3037 kl->l_priority = l->l_priority;
3038 kl->l_usrpri = l->l_usrpri;
3039 if (l->l_wmesg)
3040 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
3041 kl->l_wchan = PTRTOUINT64(l->l_wchan);
3042 #ifdef MULTIPROCESSOR
3043 if (l->l_cpu != NULL)
3044 kl->l_cpuid = l->l_cpu->ci_cpuid;
3045 else
3046 #endif
3047 kl->l_cpuid = KI_NOCPU;
3048 }
3049
3050 /*
3051 * Fill in an eproc structure for the specified process.
3052 */
3053 void
3054 fill_eproc(struct proc *p, struct eproc *ep)
3055 {
3056 struct tty *tp;
3057 struct lwp *l;
3058
3059 ep->e_paddr = p;
3060 ep->e_sess = p->p_session;
3061 ep->e_pcred = *p->p_cred;
3062 ep->e_ucred = *p->p_ucred;
3063 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
3064 ep->e_vm.vm_rssize = 0;
3065 ep->e_vm.vm_tsize = 0;
3066 ep->e_vm.vm_dsize = 0;
3067 ep->e_vm.vm_ssize = 0;
3068 /* ep->e_vm.vm_pmap = XXX; */
3069 } else {
3070 struct vmspace *vm = p->p_vmspace;
3071
3072 ep->e_vm.vm_rssize = vm_resident_count(vm);
3073 ep->e_vm.vm_tsize = vm->vm_tsize;
3074 ep->e_vm.vm_dsize = vm->vm_dsize;
3075 ep->e_vm.vm_ssize = vm->vm_ssize;
3076
3077 /* Pick a "representative" LWP */
3078 l = proc_representative_lwp(p);
3079
3080 if (l->l_wmesg)
3081 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
3082 }
3083 if (p->p_pptr)
3084 ep->e_ppid = p->p_pptr->p_pid;
3085 else
3086 ep->e_ppid = 0;
3087 ep->e_pgid = p->p_pgrp->pg_id;
3088 ep->e_sid = ep->e_sess->s_sid;
3089 ep->e_jobc = p->p_pgrp->pg_jobc;
3090 if ((p->p_flag & P_CONTROLT) &&
3091 (tp = ep->e_sess->s_ttyp)) {
3092 ep->e_tdev = tp->t_dev;
3093 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3094 ep->e_tsess = tp->t_session;
3095 } else
3096 ep->e_tdev = NODEV;
3097
3098 ep->e_xsize = ep->e_xrssize = 0;
3099 ep->e_xccount = ep->e_xswrss = 0;
3100 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
3101 if (SESS_LEADER(p))
3102 ep->e_flag |= EPROC_SLEADER;
3103 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
3104 }
3105