init_sysctl.c revision 1.63.4.7 1 /* $NetBSD: init_sysctl.c,v 1.63.4.7 2006/04/21 23:01:40 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.63.4.7 2006/04/21 23:01:40 elad Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "opt_verified_exec.h"
46 #include "pty.h"
47 #include "rnd.h"
48
49 #include <sys/types.h>
50 #include <sys/param.h>
51 #include <sys/sysctl.h>
52 #include <sys/errno.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/unistd.h>
56 #include <sys/disklabel.h>
57 #include <sys/rnd.h>
58 #include <sys/vnode.h>
59 #include <sys/mount.h>
60 #include <sys/namei.h>
61 #include <sys/msgbuf.h>
62 #include <dev/cons.h>
63 #include <sys/socketvar.h>
64 #include <sys/file.h>
65 #include <sys/filedesc.h>
66 #include <sys/tty.h>
67 #include <sys/malloc.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/exec.h>
71 #include <sys/conf.h>
72 #include <sys/device.h>
73 #ifdef VERIFIED_EXEC
74 #define VERIEXEC_NEED_NODE
75 #include <sys/verified_exec.h>
76 #endif /* VERIFIED_EXEC */
77 #include <sys/stat.h>
78
79 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
80 #include <sys/ipc.h>
81 #endif
82 #ifdef SYSVMSG
83 #include <sys/msg.h>
84 #endif
85 #ifdef SYSVSEM
86 #include <sys/sem.h>
87 #endif
88 #ifdef SYSVSHM
89 #include <sys/shm.h>
90 #endif
91
92 #include <machine/cpu.h>
93
94 /* XXX this should not be here */
95 int security_curtain = 0;
96 int security_setidcore_dump;
97 char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
98 uid_t security_setidcore_owner = 0;
99 gid_t security_setidcore_group = 0;
100 mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
101
102 /*
103 * try over estimating by 5 procs/lwps
104 */
105 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
106 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
107
108 #ifndef MULTIPROCESSOR
109 #define sysctl_ncpus() (1)
110 #else /* MULTIPROCESSOR */
111 #ifndef CPU_INFO_FOREACH
112 #define CPU_INFO_ITERATOR int
113 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
114 #endif
115 static int
116 sysctl_ncpus(void)
117 {
118 struct cpu_info *ci;
119 CPU_INFO_ITERATOR cii;
120
121 int ncpus = 0;
122 for (CPU_INFO_FOREACH(cii, ci))
123 ncpus++;
124 return (ncpus);
125 }
126 #endif /* MULTIPROCESSOR */
127
128 #ifdef DIAGNOSTIC
129 static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
130 #endif
131 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
132 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
133 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
134 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
135 static int sysctl_setlen(SYSCTLFN_PROTO);
136 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
137 static int sysctl_kern_file(SYSCTLFN_PROTO);
138 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
139 static int sysctl_msgbuf(SYSCTLFN_PROTO);
140 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
141 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
142 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
143 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
144 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
145 #if NPTY > 0
146 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
147 #endif /* NPTY > 0 */
148 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
149 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
150 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
151 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
152 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
153 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
154 static int sysctl_kern_file2(SYSCTLFN_PROTO);
155 #ifdef VERIFIED_EXEC
156 static int sysctl_kern_veriexec(SYSCTLFN_PROTO);
157 #endif
158 static int sysctl_security_setidcore(SYSCTLFN_PROTO);
159 static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
160 static int sysctl_kern_cpid(SYSCTLFN_PROTO);
161 static int sysctl_doeproc(SYSCTLFN_PROTO);
162 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
163 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
164 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
165 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
166
167 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
168 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
169 static void fill_file(struct kinfo_file *, const struct file *, struct proc *,
170 int);
171
172 /*
173 * ********************************************************************
174 * section 1: setup routines
175 * ********************************************************************
176 * these functions are stuffed into a link set for sysctl setup
177 * functions. they're never called or referenced from anywhere else.
178 * ********************************************************************
179 */
180
181 /*
182 * sets up the base nodes...
183 */
184 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
185 {
186
187 sysctl_createv(clog, 0, NULL, NULL,
188 CTLFLAG_PERMANENT,
189 CTLTYPE_NODE, "kern",
190 SYSCTL_DESCR("High kernel"),
191 NULL, 0, NULL, 0,
192 CTL_KERN, CTL_EOL);
193 sysctl_createv(clog, 0, NULL, NULL,
194 CTLFLAG_PERMANENT,
195 CTLTYPE_NODE, "vm",
196 SYSCTL_DESCR("Virtual memory"),
197 NULL, 0, NULL, 0,
198 CTL_VM, CTL_EOL);
199 sysctl_createv(clog, 0, NULL, NULL,
200 CTLFLAG_PERMANENT,
201 CTLTYPE_NODE, "vfs",
202 SYSCTL_DESCR("Filesystem"),
203 NULL, 0, NULL, 0,
204 CTL_VFS, CTL_EOL);
205 sysctl_createv(clog, 0, NULL, NULL,
206 CTLFLAG_PERMANENT,
207 CTLTYPE_NODE, "net",
208 SYSCTL_DESCR("Networking"),
209 NULL, 0, NULL, 0,
210 CTL_NET, CTL_EOL);
211 sysctl_createv(clog, 0, NULL, NULL,
212 CTLFLAG_PERMANENT,
213 CTLTYPE_NODE, "debug",
214 SYSCTL_DESCR("Debugging"),
215 NULL, 0, NULL, 0,
216 CTL_DEBUG, CTL_EOL);
217 sysctl_createv(clog, 0, NULL, NULL,
218 CTLFLAG_PERMANENT,
219 CTLTYPE_NODE, "hw",
220 SYSCTL_DESCR("Generic CPU, I/O"),
221 NULL, 0, NULL, 0,
222 CTL_HW, CTL_EOL);
223 sysctl_createv(clog, 0, NULL, NULL,
224 CTLFLAG_PERMANENT,
225 CTLTYPE_NODE, "machdep",
226 SYSCTL_DESCR("Machine dependent"),
227 NULL, 0, NULL, 0,
228 CTL_MACHDEP, CTL_EOL);
229 /*
230 * this node is inserted so that the sysctl nodes in libc can
231 * operate.
232 */
233 sysctl_createv(clog, 0, NULL, NULL,
234 CTLFLAG_PERMANENT,
235 CTLTYPE_NODE, "user",
236 SYSCTL_DESCR("User-level"),
237 NULL, 0, NULL, 0,
238 CTL_USER, CTL_EOL);
239 sysctl_createv(clog, 0, NULL, NULL,
240 CTLFLAG_PERMANENT,
241 CTLTYPE_NODE, "ddb",
242 SYSCTL_DESCR("In-kernel debugger"),
243 NULL, 0, NULL, 0,
244 CTL_DDB, CTL_EOL);
245 sysctl_createv(clog, 0, NULL, NULL,
246 CTLFLAG_PERMANENT,
247 CTLTYPE_NODE, "proc",
248 SYSCTL_DESCR("Per-process"),
249 NULL, 0, NULL, 0,
250 CTL_PROC, CTL_EOL);
251 sysctl_createv(clog, 0, NULL, NULL,
252 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
253 CTLTYPE_NODE, "vendor",
254 SYSCTL_DESCR("Vendor specific"),
255 NULL, 0, NULL, 0,
256 CTL_VENDOR, CTL_EOL);
257 sysctl_createv(clog, 0, NULL, NULL,
258 CTLFLAG_PERMANENT,
259 CTLTYPE_NODE, "emul",
260 SYSCTL_DESCR("Emulation settings"),
261 NULL, 0, NULL, 0,
262 CTL_EMUL, CTL_EOL);
263 sysctl_createv(clog, 0, NULL, NULL,
264 CTLFLAG_PERMANENT,
265 CTLTYPE_NODE, "security",
266 SYSCTL_DESCR("Security"),
267 NULL, 0, NULL, 0,
268 CTL_SECURITY, CTL_EOL);
269 }
270
271 /*
272 * this setup routine is a replacement for kern_sysctl()
273 */
274 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
275 {
276 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
277 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
278 extern int dumponpanic; /* defined in kern/subr_prf.c */
279
280 sysctl_createv(clog, 0, NULL, NULL,
281 CTLFLAG_PERMANENT,
282 CTLTYPE_NODE, "kern", NULL,
283 NULL, 0, NULL, 0,
284 CTL_KERN, CTL_EOL);
285
286 sysctl_createv(clog, 0, NULL, NULL,
287 CTLFLAG_PERMANENT,
288 CTLTYPE_STRING, "ostype",
289 SYSCTL_DESCR("Operating system type"),
290 NULL, 0, &ostype, 0,
291 CTL_KERN, KERN_OSTYPE, CTL_EOL);
292 sysctl_createv(clog, 0, NULL, NULL,
293 CTLFLAG_PERMANENT,
294 CTLTYPE_STRING, "osrelease",
295 SYSCTL_DESCR("Operating system release"),
296 NULL, 0, &osrelease, 0,
297 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
298 sysctl_createv(clog, 0, NULL, NULL,
299 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
300 CTLTYPE_INT, "osrevision",
301 SYSCTL_DESCR("Operating system revision"),
302 NULL, __NetBSD_Version__, NULL, 0,
303 CTL_KERN, KERN_OSREV, CTL_EOL);
304 sysctl_createv(clog, 0, NULL, NULL,
305 CTLFLAG_PERMANENT,
306 CTLTYPE_STRING, "version",
307 SYSCTL_DESCR("Kernel version"),
308 NULL, 0, &version, 0,
309 CTL_KERN, KERN_VERSION, CTL_EOL);
310 sysctl_createv(clog, 0, NULL, NULL,
311 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
312 CTLTYPE_INT, "maxvnodes",
313 SYSCTL_DESCR("Maximum number of vnodes"),
314 sysctl_kern_maxvnodes, 0, NULL, 0,
315 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
316 sysctl_createv(clog, 0, NULL, NULL,
317 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
318 CTLTYPE_INT, "maxproc",
319 SYSCTL_DESCR("Maximum number of simultaneous processes"),
320 sysctl_kern_maxproc, 0, NULL, 0,
321 CTL_KERN, KERN_MAXPROC, CTL_EOL);
322 sysctl_createv(clog, 0, NULL, NULL,
323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
324 CTLTYPE_INT, "maxfiles",
325 SYSCTL_DESCR("Maximum number of open files"),
326 NULL, 0, &maxfiles, 0,
327 CTL_KERN, KERN_MAXFILES, CTL_EOL);
328 sysctl_createv(clog, 0, NULL, NULL,
329 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
330 CTLTYPE_INT, "argmax",
331 SYSCTL_DESCR("Maximum number of bytes of arguments to "
332 "execve(2)"),
333 NULL, ARG_MAX, NULL, 0,
334 CTL_KERN, KERN_ARGMAX, CTL_EOL);
335 sysctl_createv(clog, 0, NULL, NULL,
336 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
337 CTLTYPE_STRING, "hostname",
338 SYSCTL_DESCR("System hostname"),
339 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
340 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
341 sysctl_createv(clog, 0, NULL, NULL,
342 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
343 CTLTYPE_INT, "hostid",
344 SYSCTL_DESCR("System host ID number"),
345 sysctl_kern_hostid, 0, NULL, 0,
346 CTL_KERN, KERN_HOSTID, CTL_EOL);
347 sysctl_createv(clog, 0, NULL, NULL,
348 CTLFLAG_PERMANENT,
349 CTLTYPE_STRUCT, "clockrate",
350 SYSCTL_DESCR("Kernel clock rates"),
351 sysctl_kern_clockrate, 0, NULL,
352 sizeof(struct clockinfo),
353 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
354 sysctl_createv(clog, 0, NULL, NULL,
355 CTLFLAG_PERMANENT,
356 CTLTYPE_INT, "hardclock_ticks",
357 SYSCTL_DESCR("Number of hardclock ticks"),
358 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
359 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
360 sysctl_createv(clog, 0, NULL, NULL,
361 CTLFLAG_PERMANENT,
362 CTLTYPE_STRUCT, "vnode",
363 SYSCTL_DESCR("System vnode table"),
364 sysctl_kern_vnode, 0, NULL, 0,
365 CTL_KERN, KERN_VNODE, CTL_EOL);
366 sysctl_createv(clog, 0, NULL, NULL,
367 CTLFLAG_PERMANENT,
368 CTLTYPE_STRUCT, "file",
369 SYSCTL_DESCR("System open file table"),
370 sysctl_kern_file, 0, NULL, 0,
371 CTL_KERN, KERN_FILE, CTL_EOL);
372 #ifndef GPROF
373 sysctl_createv(clog, 0, NULL, NULL,
374 CTLFLAG_PERMANENT,
375 CTLTYPE_NODE, "profiling",
376 SYSCTL_DESCR("Profiling information (not available)"),
377 sysctl_notavail, 0, NULL, 0,
378 CTL_KERN, KERN_PROF, CTL_EOL);
379 #endif
380 sysctl_createv(clog, 0, NULL, NULL,
381 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
382 CTLTYPE_INT, "posix1version",
383 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
384 "with which the operating system attempts "
385 "to comply"),
386 NULL, _POSIX_VERSION, NULL, 0,
387 CTL_KERN, KERN_POSIX1, CTL_EOL);
388 sysctl_createv(clog, 0, NULL, NULL,
389 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
390 CTLTYPE_INT, "ngroups",
391 SYSCTL_DESCR("Maximum number of supplemental groups"),
392 NULL, NGROUPS_MAX, NULL, 0,
393 CTL_KERN, KERN_NGROUPS, CTL_EOL);
394 sysctl_createv(clog, 0, NULL, NULL,
395 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
396 CTLTYPE_INT, "job_control",
397 SYSCTL_DESCR("Whether job control is available"),
398 NULL, 1, NULL, 0,
399 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
400 sysctl_createv(clog, 0, NULL, NULL,
401 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
402 CTLTYPE_INT, "saved_ids",
403 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
404 "available"), NULL,
405 #ifdef _POSIX_SAVED_IDS
406 1,
407 #else /* _POSIX_SAVED_IDS */
408 0,
409 #endif /* _POSIX_SAVED_IDS */
410 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
411 sysctl_createv(clog, 0, NULL, NULL,
412 CTLFLAG_PERMANENT,
413 CTLTYPE_STRUCT, "boottime",
414 SYSCTL_DESCR("System boot time"),
415 NULL, 0, &boottime, sizeof(boottime),
416 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
417 sysctl_createv(clog, 0, NULL, NULL,
418 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
419 CTLTYPE_STRING, "domainname",
420 SYSCTL_DESCR("YP domain name"),
421 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
422 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
423 sysctl_createv(clog, 0, NULL, NULL,
424 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
425 CTLTYPE_INT, "maxpartitions",
426 SYSCTL_DESCR("Maximum number of partitions allowed per "
427 "disk"),
428 NULL, MAXPARTITIONS, NULL, 0,
429 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
430 sysctl_createv(clog, 0, NULL, NULL,
431 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
432 CTLTYPE_INT, "rawpartition",
433 SYSCTL_DESCR("Raw partition of a disk"),
434 NULL, RAW_PART, NULL, 0,
435 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
436 sysctl_createv(clog, 0, NULL, NULL,
437 CTLFLAG_PERMANENT,
438 CTLTYPE_STRUCT, "timex", NULL,
439 sysctl_notavail, 0, NULL, 0,
440 CTL_KERN, KERN_TIMEX, CTL_EOL);
441 sysctl_createv(clog, 0, NULL, NULL,
442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
443 CTLTYPE_INT, "autonicetime",
444 SYSCTL_DESCR("CPU clock seconds before non-root "
445 "process priority is lowered"),
446 sysctl_kern_autonice, 0, &autonicetime, 0,
447 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
448 sysctl_createv(clog, 0, NULL, NULL,
449 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
450 CTLTYPE_INT, "autoniceval",
451 SYSCTL_DESCR("Automatic reniced non-root process "
452 "priority"),
453 sysctl_kern_autonice, 0, &autoniceval, 0,
454 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
455 sysctl_createv(clog, 0, NULL, NULL,
456 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
457 CTLTYPE_INT, "rtc_offset",
458 SYSCTL_DESCR("Offset of real time clock from UTC in "
459 "minutes"),
460 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
461 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
462 sysctl_createv(clog, 0, NULL, NULL,
463 CTLFLAG_PERMANENT,
464 CTLTYPE_STRING, "root_device",
465 SYSCTL_DESCR("Name of the root device"),
466 sysctl_root_device, 0, NULL, 0,
467 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
468 sysctl_createv(clog, 0, NULL, NULL,
469 CTLFLAG_PERMANENT,
470 CTLTYPE_INT, "msgbufsize",
471 SYSCTL_DESCR("Size of the kernel message buffer"),
472 sysctl_msgbuf, 0, NULL, 0,
473 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
474 sysctl_createv(clog, 0, NULL, NULL,
475 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
476 CTLTYPE_INT, "fsync",
477 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
478 "Synchronization Option is available on "
479 "this system"),
480 NULL, 1, NULL, 0,
481 CTL_KERN, KERN_FSYNC, CTL_EOL);
482 sysctl_createv(clog, 0, NULL, NULL,
483 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
484 CTLTYPE_INT, "sysvmsg",
485 SYSCTL_DESCR("System V style message support available"),
486 NULL,
487 #ifdef SYSVMSG
488 1,
489 #else /* SYSVMSG */
490 0,
491 #endif /* SYSVMSG */
492 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
493 sysctl_createv(clog, 0, NULL, NULL,
494 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
495 CTLTYPE_INT, "sysvsem",
496 SYSCTL_DESCR("System V style semaphore support "
497 "available"), NULL,
498 #ifdef SYSVSEM
499 1,
500 #else /* SYSVSEM */
501 0,
502 #endif /* SYSVSEM */
503 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
504 sysctl_createv(clog, 0, NULL, NULL,
505 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
506 CTLTYPE_INT, "sysvshm",
507 SYSCTL_DESCR("System V style shared memory support "
508 "available"), NULL,
509 #ifdef SYSVSHM
510 1,
511 #else /* SYSVSHM */
512 0,
513 #endif /* SYSVSHM */
514 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
515 sysctl_createv(clog, 0, NULL, NULL,
516 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
517 CTLTYPE_INT, "synchronized_io",
518 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
519 "I/O Option is available on this system"),
520 NULL, 1, NULL, 0,
521 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
522 sysctl_createv(clog, 0, NULL, NULL,
523 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
524 CTLTYPE_INT, "iov_max",
525 SYSCTL_DESCR("Maximum number of iovec structures per "
526 "process"),
527 NULL, IOV_MAX, NULL, 0,
528 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
529 sysctl_createv(clog, 0, NULL, NULL,
530 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
531 CTLTYPE_INT, "mapped_files",
532 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
533 "Files Option is available on this system"),
534 NULL, 1, NULL, 0,
535 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
536 sysctl_createv(clog, 0, NULL, NULL,
537 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
538 CTLTYPE_INT, "memlock",
539 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
540 "Locking Option is available on this "
541 "system"),
542 NULL, 1, NULL, 0,
543 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
544 sysctl_createv(clog, 0, NULL, NULL,
545 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
546 CTLTYPE_INT, "memlock_range",
547 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
548 "Locking Option is available on this "
549 "system"),
550 NULL, 1, NULL, 0,
551 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
552 sysctl_createv(clog, 0, NULL, NULL,
553 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
554 CTLTYPE_INT, "memory_protection",
555 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
556 "Protection Option is available on this "
557 "system"),
558 NULL, 1, NULL, 0,
559 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
560 sysctl_createv(clog, 0, NULL, NULL,
561 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
562 CTLTYPE_INT, "login_name_max",
563 SYSCTL_DESCR("Maximum login name length"),
564 NULL, LOGIN_NAME_MAX, NULL, 0,
565 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
566 sysctl_createv(clog, 0, NULL, NULL,
567 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
568 CTLTYPE_STRING, "defcorename",
569 SYSCTL_DESCR("Default core file name"),
570 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
571 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
572 sysctl_createv(clog, 0, NULL, NULL,
573 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
574 CTLTYPE_INT, "logsigexit",
575 SYSCTL_DESCR("Log process exit when caused by signals"),
576 NULL, 0, &kern_logsigexit, 0,
577 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
578 sysctl_createv(clog, 0, NULL, NULL,
579 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
580 CTLTYPE_INT, "fscale",
581 SYSCTL_DESCR("Kernel fixed-point scale factor"),
582 NULL, FSCALE, NULL, 0,
583 CTL_KERN, KERN_FSCALE, CTL_EOL);
584 sysctl_createv(clog, 0, NULL, NULL,
585 CTLFLAG_PERMANENT,
586 CTLTYPE_INT, "ccpu",
587 SYSCTL_DESCR("Scheduler exponential decay value"),
588 NULL, 0, &ccpu, 0,
589 CTL_KERN, KERN_CCPU, CTL_EOL);
590 sysctl_createv(clog, 0, NULL, NULL,
591 CTLFLAG_PERMANENT,
592 CTLTYPE_STRUCT, "cp_time",
593 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
594 sysctl_kern_cptime, 0, NULL, 0,
595 CTL_KERN, KERN_CP_TIME, CTL_EOL);
596 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
597 sysctl_createv(clog, 0, NULL, NULL,
598 CTLFLAG_PERMANENT,
599 CTLTYPE_STRUCT, "sysvipc_info",
600 SYSCTL_DESCR("System V style IPC information"),
601 sysctl_kern_sysvipc, 0, NULL, 0,
602 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
603 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
604 sysctl_createv(clog, 0, NULL, NULL,
605 CTLFLAG_PERMANENT,
606 CTLTYPE_INT, "msgbuf",
607 SYSCTL_DESCR("Kernel message buffer"),
608 sysctl_msgbuf, 0, NULL, 0,
609 CTL_KERN, KERN_MSGBUF, CTL_EOL);
610 sysctl_createv(clog, 0, NULL, NULL,
611 CTLFLAG_PERMANENT,
612 CTLTYPE_STRUCT, "consdev",
613 SYSCTL_DESCR("Console device"),
614 sysctl_consdev, 0, NULL, sizeof(dev_t),
615 CTL_KERN, KERN_CONSDEV, CTL_EOL);
616 #if NPTY > 0
617 sysctl_createv(clog, 0, NULL, NULL,
618 CTLFLAG_PERMANENT,
619 CTLTYPE_INT, "maxptys",
620 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
621 sysctl_kern_maxptys, 0, NULL, 0,
622 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
623 #endif /* NPTY > 0 */
624 sysctl_createv(clog, 0, NULL, NULL,
625 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
626 CTLTYPE_INT, "maxphys",
627 SYSCTL_DESCR("Maximum raw I/O transfer size"),
628 NULL, MAXPHYS, NULL, 0,
629 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
630 sysctl_createv(clog, 0, NULL, NULL,
631 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
632 CTLTYPE_INT, "sbmax",
633 SYSCTL_DESCR("Maximum socket buffer size"),
634 sysctl_kern_sbmax, 0, NULL, 0,
635 CTL_KERN, KERN_SBMAX, CTL_EOL);
636 sysctl_createv(clog, 0, NULL, NULL,
637 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
638 CTLTYPE_INT, "monotonic_clock",
639 SYSCTL_DESCR("Implementation version of the POSIX "
640 "1003.1b Monotonic Clock Option"),
641 /* XXX _POSIX_VERSION */
642 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
643 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
644 sysctl_createv(clog, 0, NULL, NULL,
645 CTLFLAG_PERMANENT,
646 CTLTYPE_INT, "urandom",
647 SYSCTL_DESCR("Random integer value"),
648 sysctl_kern_urnd, 0, NULL, 0,
649 CTL_KERN, KERN_URND, CTL_EOL);
650 sysctl_createv(clog, 0, NULL, NULL,
651 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
652 CTLTYPE_INT, "labelsector",
653 SYSCTL_DESCR("Sector number containing the disklabel"),
654 NULL, LABELSECTOR, NULL, 0,
655 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
656 sysctl_createv(clog, 0, NULL, NULL,
657 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
658 CTLTYPE_INT, "labeloffset",
659 SYSCTL_DESCR("Offset of the disklabel within the "
660 "sector"),
661 NULL, LABELOFFSET, NULL, 0,
662 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
663 sysctl_createv(clog, 0, NULL, NULL,
664 CTLFLAG_PERMANENT,
665 CTLTYPE_NODE, "lwp",
666 SYSCTL_DESCR("System-wide LWP information"),
667 sysctl_kern_lwp, 0, NULL, 0,
668 CTL_KERN, KERN_LWP, CTL_EOL);
669 sysctl_createv(clog, 0, NULL, NULL,
670 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
671 CTLTYPE_INT, "forkfsleep",
672 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
673 "to process limits"),
674 sysctl_kern_forkfsleep, 0, NULL, 0,
675 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
676 sysctl_createv(clog, 0, NULL, NULL,
677 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
678 CTLTYPE_INT, "posix_threads",
679 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
680 "Threads option to which the system "
681 "attempts to conform"),
682 /* XXX _POSIX_VERSION */
683 NULL, _POSIX_THREADS, NULL, 0,
684 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
685 sysctl_createv(clog, 0, NULL, NULL,
686 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
687 CTLTYPE_INT, "posix_semaphores",
688 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
689 "Semaphores option to which the system "
690 "attempts to conform"), NULL,
691 #ifdef P1003_1B_SEMAPHORE
692 200112,
693 #else /* P1003_1B_SEMAPHORE */
694 0,
695 #endif /* P1003_1B_SEMAPHORE */
696 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
697 sysctl_createv(clog, 0, NULL, NULL,
698 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
699 CTLTYPE_INT, "posix_barriers",
700 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
701 "Barriers option to which the system "
702 "attempts to conform"),
703 /* XXX _POSIX_VERSION */
704 NULL, _POSIX_BARRIERS, NULL, 0,
705 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
706 sysctl_createv(clog, 0, NULL, NULL,
707 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
708 CTLTYPE_INT, "posix_timers",
709 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
710 "Timers option to which the system "
711 "attempts to conform"),
712 /* XXX _POSIX_VERSION */
713 NULL, _POSIX_TIMERS, NULL, 0,
714 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
715 sysctl_createv(clog, 0, NULL, NULL,
716 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
717 CTLTYPE_INT, "posix_spin_locks",
718 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
719 "Locks option to which the system attempts "
720 "to conform"),
721 /* XXX _POSIX_VERSION */
722 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
723 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
724 sysctl_createv(clog, 0, NULL, NULL,
725 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
726 CTLTYPE_INT, "posix_reader_writer_locks",
727 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
728 "Read-Write Locks option to which the "
729 "system attempts to conform"),
730 /* XXX _POSIX_VERSION */
731 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
732 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
733 sysctl_createv(clog, 0, NULL, NULL,
734 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
735 CTLTYPE_INT, "dump_on_panic",
736 SYSCTL_DESCR("Perform a crash dump on system panic"),
737 NULL, 0, &dumponpanic, 0,
738 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
739 #ifdef DIAGNOSTIC
740 sysctl_createv(clog, 0, NULL, NULL,
741 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
742 CTLTYPE_INT, "panic_now",
743 SYSCTL_DESCR("Trigger a panic"),
744 sysctl_kern_trigger_panic, 0, NULL, 0,
745 CTL_KERN, CTL_CREATE, CTL_EOL);
746 #endif
747 sysctl_createv(clog, 0, NULL, NULL,
748 CTLFLAG_PERMANENT,
749 CTLTYPE_INT, "root_partition",
750 SYSCTL_DESCR("Root partition on the root device"),
751 sysctl_kern_root_partition, 0, NULL, 0,
752 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
753 sysctl_createv(clog, 0, NULL, NULL,
754 CTLFLAG_PERMANENT,
755 CTLTYPE_STRUCT, "drivers",
756 SYSCTL_DESCR("List of all drivers with block and "
757 "character device numbers"),
758 sysctl_kern_drivers, 0, NULL, 0,
759 CTL_KERN, KERN_DRIVERS, CTL_EOL);
760 sysctl_createv(clog, 0, NULL, NULL,
761 CTLFLAG_PERMANENT,
762 CTLTYPE_STRUCT, "file2",
763 SYSCTL_DESCR("System open file table"),
764 sysctl_kern_file2, 0, NULL, 0,
765 CTL_KERN, KERN_FILE2, CTL_EOL);
766 #ifdef VERIFIED_EXEC
767 sysctl_createv(clog, 0, NULL, NULL,
768 CTLFLAG_PERMANENT,
769 CTLTYPE_NODE, "veriexec",
770 SYSCTL_DESCR("Verified Exec"),
771 NULL, 0, NULL, 0,
772 CTL_KERN, KERN_VERIEXEC, CTL_EOL);
773 sysctl_createv(clog, 0, NULL, NULL,
774 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
775 CTLTYPE_INT, "verbose",
776 SYSCTL_DESCR("Verified Exec verbose level"),
777 NULL, 0, &veriexec_verbose, 0,
778 CTL_KERN, KERN_VERIEXEC, VERIEXEC_VERBOSE,
779 CTL_EOL);
780 sysctl_createv(clog, 0, NULL, NULL,
781 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
782 CTLTYPE_INT, "strict",
783 SYSCTL_DESCR("Verified Exec strict level"),
784 sysctl_kern_veriexec, 0, NULL, 0,
785 CTL_KERN, KERN_VERIEXEC, VERIEXEC_STRICT, CTL_EOL);
786 sysctl_createv(clog, 0, NULL, NULL,
787 CTLFLAG_PERMANENT,
788 CTLTYPE_STRING, "algorithms",
789 SYSCTL_DESCR("Verified Exec supported hashing "
790 "algorithms"),
791 sysctl_kern_veriexec, 0, NULL, 0,
792 CTL_KERN, KERN_VERIEXEC, VERIEXEC_ALGORITHMS, CTL_EOL);
793 sysctl_createv(clog, 0, NULL, &veriexec_count_node,
794 CTLFLAG_PERMANENT,
795 CTLTYPE_NODE, "count",
796 SYSCTL_DESCR("Number of fingerprints on device(s)"),
797 NULL, 0, NULL, 0,
798 CTL_KERN, KERN_VERIEXEC, VERIEXEC_COUNT, CTL_EOL);
799 #endif /* VERIFIED_EXEC */
800 sysctl_createv(clog, 0, NULL, NULL,
801 CTLFLAG_PERMANENT,
802 CTLTYPE_STRUCT, "cp_id",
803 SYSCTL_DESCR("Mapping of CPU number to CPU id"),
804 sysctl_kern_cpid, 0, NULL, 0,
805 CTL_KERN, KERN_CP_ID, CTL_EOL);
806 }
807
808 SYSCTL_SETUP(sysctl_kern_proc_setup,
809 "sysctl kern.proc/proc2/proc_args subtree setup")
810 {
811
812 sysctl_createv(clog, 0, NULL, NULL,
813 CTLFLAG_PERMANENT,
814 CTLTYPE_NODE, "kern", NULL,
815 NULL, 0, NULL, 0,
816 CTL_KERN, CTL_EOL);
817
818 sysctl_createv(clog, 0, NULL, NULL,
819 CTLFLAG_PERMANENT,
820 CTLTYPE_NODE, "proc",
821 SYSCTL_DESCR("System-wide process information"),
822 sysctl_doeproc, 0, NULL, 0,
823 CTL_KERN, KERN_PROC, CTL_EOL);
824 sysctl_createv(clog, 0, NULL, NULL,
825 CTLFLAG_PERMANENT,
826 CTLTYPE_NODE, "proc2",
827 SYSCTL_DESCR("Machine-independent process information"),
828 sysctl_doeproc, 0, NULL, 0,
829 CTL_KERN, KERN_PROC2, CTL_EOL);
830 sysctl_createv(clog, 0, NULL, NULL,
831 CTLFLAG_PERMANENT,
832 CTLTYPE_NODE, "proc_args",
833 SYSCTL_DESCR("Process argument information"),
834 sysctl_kern_proc_args, 0, NULL, 0,
835 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
836
837 /*
838 "nodes" under these:
839
840 KERN_PROC_ALL
841 KERN_PROC_PID pid
842 KERN_PROC_PGRP pgrp
843 KERN_PROC_SESSION sess
844 KERN_PROC_TTY tty
845 KERN_PROC_UID uid
846 KERN_PROC_RUID uid
847 KERN_PROC_GID gid
848 KERN_PROC_RGID gid
849
850 all in all, probably not worth the effort...
851 */
852 }
853
854 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
855 {
856 u_int u;
857 u_quad_t q;
858
859 sysctl_createv(clog, 0, NULL, NULL,
860 CTLFLAG_PERMANENT,
861 CTLTYPE_NODE, "hw", NULL,
862 NULL, 0, NULL, 0,
863 CTL_HW, CTL_EOL);
864
865 sysctl_createv(clog, 0, NULL, NULL,
866 CTLFLAG_PERMANENT,
867 CTLTYPE_STRING, "machine",
868 SYSCTL_DESCR("Machine class"),
869 NULL, 0, machine, 0,
870 CTL_HW, HW_MACHINE, CTL_EOL);
871 sysctl_createv(clog, 0, NULL, NULL,
872 CTLFLAG_PERMANENT,
873 CTLTYPE_STRING, "model",
874 SYSCTL_DESCR("Machine model"),
875 NULL, 0, cpu_model, 0,
876 CTL_HW, HW_MODEL, CTL_EOL);
877 sysctl_createv(clog, 0, NULL, NULL,
878 CTLFLAG_PERMANENT,
879 CTLTYPE_INT, "ncpu",
880 SYSCTL_DESCR("Number of active CPUs"),
881 sysctl_hw_ncpu, 0, NULL, 0,
882 CTL_HW, HW_NCPU, CTL_EOL);
883 sysctl_createv(clog, 0, NULL, NULL,
884 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
885 CTLTYPE_INT, "byteorder",
886 SYSCTL_DESCR("System byte order"),
887 NULL, BYTE_ORDER, NULL, 0,
888 CTL_HW, HW_BYTEORDER, CTL_EOL);
889 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
890 UINT_MAX : physmem * PAGE_SIZE;
891 sysctl_createv(clog, 0, NULL, NULL,
892 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
893 CTLTYPE_INT, "physmem",
894 SYSCTL_DESCR("Bytes of physical memory"),
895 NULL, u, NULL, 0,
896 CTL_HW, HW_PHYSMEM, CTL_EOL);
897 sysctl_createv(clog, 0, NULL, NULL,
898 CTLFLAG_PERMANENT,
899 CTLTYPE_INT, "usermem",
900 SYSCTL_DESCR("Bytes of non-kernel memory"),
901 sysctl_hw_usermem, 0, NULL, 0,
902 CTL_HW, HW_USERMEM, CTL_EOL);
903 sysctl_createv(clog, 0, NULL, NULL,
904 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
905 CTLTYPE_INT, "pagesize",
906 SYSCTL_DESCR("Software page size"),
907 NULL, PAGE_SIZE, NULL, 0,
908 CTL_HW, HW_PAGESIZE, CTL_EOL);
909 sysctl_createv(clog, 0, NULL, NULL,
910 CTLFLAG_PERMANENT,
911 CTLTYPE_STRING, "machine_arch",
912 SYSCTL_DESCR("Machine CPU class"),
913 NULL, 0, machine_arch, 0,
914 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
915 sysctl_createv(clog, 0, NULL, NULL,
916 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
917 CTLTYPE_INT, "alignbytes",
918 SYSCTL_DESCR("Alignment constraint for all possible "
919 "data types"),
920 NULL, ALIGNBYTES, NULL, 0,
921 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
922 sysctl_createv(clog, 0, NULL, NULL,
923 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
924 CTLTYPE_STRING, "cnmagic",
925 SYSCTL_DESCR("Console magic key sequence"),
926 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
927 CTL_HW, HW_CNMAGIC, CTL_EOL);
928 q = (u_quad_t)physmem * PAGE_SIZE;
929 sysctl_createv(clog, 0, NULL, NULL,
930 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
931 CTLTYPE_QUAD, "physmem64",
932 SYSCTL_DESCR("Bytes of physical memory"),
933 NULL, q, NULL, 0,
934 CTL_HW, HW_PHYSMEM64, CTL_EOL);
935 sysctl_createv(clog, 0, NULL, NULL,
936 CTLFLAG_PERMANENT,
937 CTLTYPE_QUAD, "usermem64",
938 SYSCTL_DESCR("Bytes of non-kernel memory"),
939 sysctl_hw_usermem, 0, NULL, 0,
940 CTL_HW, HW_USERMEM64, CTL_EOL);
941 }
942
943 #ifdef DEBUG
944 /*
945 * Debugging related system variables.
946 */
947 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
948 struct ctldebug debug5, debug6, debug7, debug8, debug9;
949 struct ctldebug debug10, debug11, debug12, debug13, debug14;
950 struct ctldebug debug15, debug16, debug17, debug18, debug19;
951 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
952 &debug0, &debug1, &debug2, &debug3, &debug4,
953 &debug5, &debug6, &debug7, &debug8, &debug9,
954 &debug10, &debug11, &debug12, &debug13, &debug14,
955 &debug15, &debug16, &debug17, &debug18, &debug19,
956 };
957
958 /*
959 * this setup routine is a replacement for debug_sysctl()
960 *
961 * note that it creates several nodes per defined debug variable
962 */
963 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
964 {
965 struct ctldebug *cdp;
966 char nodename[20];
967 int i;
968
969 /*
970 * two ways here:
971 *
972 * the "old" way (debug.name -> value) which was emulated by
973 * the sysctl(8) binary
974 *
975 * the new way, which the sysctl(8) binary was actually using
976
977 node debug
978 node debug.0
979 string debug.0.name
980 int debug.0.value
981 int debug.name
982
983 */
984
985 sysctl_createv(clog, 0, NULL, NULL,
986 CTLFLAG_PERMANENT,
987 CTLTYPE_NODE, "debug", NULL,
988 NULL, 0, NULL, 0,
989 CTL_DEBUG, CTL_EOL);
990
991 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
992 cdp = debugvars[i];
993 if (cdp->debugname == NULL || cdp->debugvar == NULL)
994 continue;
995
996 snprintf(nodename, sizeof(nodename), "debug%d", i);
997 sysctl_createv(clog, 0, NULL, NULL,
998 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
999 CTLTYPE_NODE, nodename, NULL,
1000 NULL, 0, NULL, 0,
1001 CTL_DEBUG, i, CTL_EOL);
1002 sysctl_createv(clog, 0, NULL, NULL,
1003 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1004 CTLTYPE_STRING, "name", NULL,
1005 /*XXXUNCONST*/
1006 NULL, 0, __UNCONST(cdp->debugname), 0,
1007 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
1008 sysctl_createv(clog, 0, NULL, NULL,
1009 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1010 CTLTYPE_INT, "value", NULL,
1011 NULL, 0, cdp->debugvar, 0,
1012 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
1013 sysctl_createv(clog, 0, NULL, NULL,
1014 CTLFLAG_PERMANENT,
1015 CTLTYPE_INT, cdp->debugname, NULL,
1016 NULL, 0, cdp->debugvar, 0,
1017 CTL_DEBUG, CTL_CREATE, CTL_EOL);
1018 }
1019 }
1020 #endif /* DEBUG */
1021
1022 SYSCTL_SETUP(sysctl_security_setup, "sysctl security subtree setup")
1023 {
1024 const struct sysctlnode *rnode = NULL;
1025
1026 sysctl_createv(clog, 0, NULL, &rnode,
1027 CTLFLAG_PERMANENT,
1028 CTLTYPE_NODE, "security", NULL,
1029 NULL, 0, NULL, 0,
1030 CTL_SECURITY, CTL_EOL);
1031
1032 sysctl_createv(clog, 0, &rnode, NULL,
1033 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1034 CTLTYPE_INT, "curtain",
1035 SYSCTL_DESCR("Curtain information about objects"
1036 " to users not owning them."),
1037 NULL, 0, &security_curtain, 0,
1038 CTL_CREATE, CTL_EOL);
1039
1040 sysctl_createv(clog, 0, &rnode, &rnode,
1041 CTLFLAG_PERMANENT,
1042 CTLTYPE_NODE, "setid_core",
1043 SYSCTL_DESCR("Set-id processes' coredump settings."),
1044 NULL, 0, NULL, 0,
1045 CTL_CREATE, CTL_EOL);
1046 sysctl_createv(clog, 0, &rnode, NULL,
1047 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1048 CTLTYPE_INT, "dump",
1049 SYSCTL_DESCR("Allow set-id processes to dump core."),
1050 sysctl_security_setidcore, 0, &security_setidcore_dump,
1051 sizeof(security_setidcore_dump),
1052 CTL_CREATE, CTL_EOL);
1053 sysctl_createv(clog, 0, &rnode, NULL,
1054 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1055 CTLTYPE_STRING, "path",
1056 SYSCTL_DESCR("Path pattern for set-id coredumps."),
1057 sysctl_security_setidcorename, 0,
1058 &security_setidcore_path,
1059 sizeof(security_setidcore_path),
1060 CTL_CREATE, CTL_EOL);
1061 sysctl_createv(clog, 0, &rnode, NULL,
1062 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1063 CTLTYPE_INT, "owner",
1064 SYSCTL_DESCR("Owner id for set-id processes' cores."),
1065 sysctl_security_setidcore, 0, &security_setidcore_owner,
1066 0,
1067 CTL_CREATE, CTL_EOL);
1068 sysctl_createv(clog, 0, &rnode, NULL,
1069 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1070 CTLTYPE_INT, "group",
1071 SYSCTL_DESCR("Group id for set-id processes' cores."),
1072 sysctl_security_setidcore, 0, &security_setidcore_group,
1073 0,
1074 CTL_CREATE, CTL_EOL);
1075 sysctl_createv(clog, 0, &rnode, NULL,
1076 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1077 CTLTYPE_INT, "mode",
1078 SYSCTL_DESCR("Mode for set-id processes' cores."),
1079 sysctl_security_setidcore, 0, &security_setidcore_mode,
1080 0,
1081 CTL_CREATE, CTL_EOL);
1082 }
1083
1084 /*
1085 * ********************************************************************
1086 * section 2: private node-specific helper routines.
1087 * ********************************************************************
1088 */
1089
1090 #ifdef DIAGNOSTIC
1091 static int
1092 sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
1093 {
1094 int newtrig, error;
1095 struct sysctlnode node;
1096
1097 newtrig = 0;
1098 node = *rnode;
1099 node.sysctl_data = &newtrig;
1100 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1101 if (error || newp == NULL)
1102 return (error);
1103
1104 if (newtrig != 0)
1105 panic("Panic triggered");
1106
1107 return (error);
1108 }
1109 #endif
1110
1111 /*
1112 * sysctl helper routine for kern.maxvnodes. drain vnodes if
1113 * new value is lower than desiredvnodes and then calls reinit
1114 * routines that needs to adjust to the new value.
1115 */
1116 static int
1117 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1118 {
1119 int error, new_vnodes, old_vnodes;
1120 struct sysctlnode node;
1121
1122 new_vnodes = desiredvnodes;
1123 node = *rnode;
1124 node.sysctl_data = &new_vnodes;
1125 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1126 if (error || newp == NULL)
1127 return (error);
1128
1129 old_vnodes = desiredvnodes;
1130 desiredvnodes = new_vnodes;
1131 if (new_vnodes < old_vnodes) {
1132 error = vfs_drainvnodes(new_vnodes, l);
1133 if (error) {
1134 desiredvnodes = old_vnodes;
1135 return (error);
1136 }
1137 }
1138 vfs_reinit();
1139 nchreinit();
1140
1141 return (0);
1142 }
1143
1144 /*
1145 * sysctl helper routine for rtc_offset - set time after changes
1146 */
1147 static int
1148 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1149 {
1150 struct timespec ts, delta;
1151 int error, new_rtc_offset;
1152 struct sysctlnode node;
1153
1154 new_rtc_offset = rtc_offset;
1155 node = *rnode;
1156 node.sysctl_data = &new_rtc_offset;
1157 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1158 if (error || newp == NULL)
1159 return (error);
1160
1161 if (securelevel > 0)
1162 return (EPERM);
1163 if (rtc_offset == new_rtc_offset)
1164 return (0);
1165
1166 /* if we change the offset, adjust the time */
1167 nanotime(&ts);
1168 delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
1169 delta.tv_nsec = 0;
1170 timespecadd(&ts, &delta, &ts);
1171 rtc_offset = new_rtc_offset;
1172 settime(l->l_proc, &ts);
1173
1174 return (0);
1175 }
1176
1177 /*
1178 * sysctl helper routine for kern.maxproc. ensures that the new
1179 * values are not too low or too high.
1180 */
1181 static int
1182 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1183 {
1184 int error, nmaxproc;
1185 struct sysctlnode node;
1186
1187 nmaxproc = maxproc;
1188 node = *rnode;
1189 node.sysctl_data = &nmaxproc;
1190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1191 if (error || newp == NULL)
1192 return (error);
1193
1194 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1195 return (EINVAL);
1196 #ifdef __HAVE_CPU_MAXPROC
1197 if (nmaxproc > cpu_maxproc())
1198 return (EINVAL);
1199 #endif
1200 maxproc = nmaxproc;
1201
1202 return (0);
1203 }
1204
1205 /*
1206 * sysctl helper function for kern.hostid. the hostid is a long, but
1207 * we export it as an int, so we need to give it a little help.
1208 */
1209 static int
1210 sysctl_kern_hostid(SYSCTLFN_ARGS)
1211 {
1212 int error, inthostid;
1213 struct sysctlnode node;
1214
1215 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1216 node = *rnode;
1217 node.sysctl_data = &inthostid;
1218 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1219 if (error || newp == NULL)
1220 return (error);
1221
1222 hostid = (unsigned)inthostid;
1223
1224 return (0);
1225 }
1226
1227 /*
1228 * sysctl helper function for kern.hostname and kern.domainnname.
1229 * resets the relevant recorded length when the underlying name is
1230 * changed.
1231 */
1232 static int
1233 sysctl_setlen(SYSCTLFN_ARGS)
1234 {
1235 int error;
1236
1237 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1238 if (error || newp == NULL)
1239 return (error);
1240
1241 switch (rnode->sysctl_num) {
1242 case KERN_HOSTNAME:
1243 hostnamelen = strlen((const char*)rnode->sysctl_data);
1244 break;
1245 case KERN_DOMAINNAME:
1246 domainnamelen = strlen((const char*)rnode->sysctl_data);
1247 break;
1248 }
1249
1250 return (0);
1251 }
1252
1253 /*
1254 * sysctl helper routine for kern.clockrate. assembles a struct on
1255 * the fly to be returned to the caller.
1256 */
1257 static int
1258 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1259 {
1260 struct clockinfo clkinfo;
1261 struct sysctlnode node;
1262
1263 clkinfo.tick = tick;
1264 clkinfo.tickadj = tickadj;
1265 clkinfo.hz = hz;
1266 clkinfo.profhz = profhz;
1267 clkinfo.stathz = stathz ? stathz : hz;
1268
1269 node = *rnode;
1270 node.sysctl_data = &clkinfo;
1271 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1272 }
1273
1274
1275 /*
1276 * sysctl helper routine for kern.file pseudo-subtree.
1277 */
1278 static int
1279 sysctl_kern_file(SYSCTLFN_ARGS)
1280 {
1281 int error;
1282 size_t buflen;
1283 struct file *fp;
1284 char *start, *where;
1285
1286 start = where = oldp;
1287 buflen = *oldlenp;
1288 if (where == NULL) {
1289 /*
1290 * overestimate by 10 files
1291 */
1292 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1293 return (0);
1294 }
1295
1296 /*
1297 * first copyout filehead
1298 */
1299 if (buflen < sizeof(filehead)) {
1300 *oldlenp = 0;
1301 return (0);
1302 }
1303 error = copyout(&filehead, where, sizeof(filehead));
1304 if (error)
1305 return (error);
1306 buflen -= sizeof(filehead);
1307 where += sizeof(filehead);
1308
1309 /*
1310 * followed by an array of file structures
1311 */
1312 LIST_FOREACH(fp, &filehead, f_list) {
1313 if (kauth_authorize_process(l->l_proc->p_cred,
1314 KAUTH_PROCESS_CANSEE, l->l_proc, fp->f_cred, NULL,
1315 NULL) != 0)
1316 continue;
1317 if (buflen < sizeof(struct file)) {
1318 *oldlenp = where - start;
1319 return (ENOMEM);
1320 }
1321 error = copyout(fp, where, sizeof(struct file));
1322 if (error)
1323 return (error);
1324 buflen -= sizeof(struct file);
1325 where += sizeof(struct file);
1326 }
1327 *oldlenp = where - start;
1328 return (0);
1329 }
1330
1331 /*
1332 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
1333 * asserts that the assigned value is in the correct range.
1334 */
1335 static int
1336 sysctl_kern_autonice(SYSCTLFN_ARGS)
1337 {
1338 int error, t = 0;
1339 struct sysctlnode node;
1340
1341 node = *rnode;
1342 t = *(int*)node.sysctl_data;
1343 node.sysctl_data = &t;
1344 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1345 if (error || newp == NULL)
1346 return (error);
1347
1348 switch (node.sysctl_num) {
1349 case KERN_AUTONICETIME:
1350 if (t >= 0)
1351 autonicetime = t;
1352 break;
1353 case KERN_AUTONICEVAL:
1354 if (t < PRIO_MIN)
1355 t = PRIO_MIN;
1356 else if (t > PRIO_MAX)
1357 t = PRIO_MAX;
1358 autoniceval = t;
1359 break;
1360 }
1361
1362 return (0);
1363 }
1364
1365 /*
1366 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
1367 * former it merely checks the message buffer is set up. for the latter,
1368 * it also copies out the data if necessary.
1369 */
1370 static int
1371 sysctl_msgbuf(SYSCTLFN_ARGS)
1372 {
1373 char *where = oldp;
1374 size_t len, maxlen;
1375 long beg, end;
1376 int error;
1377
1378 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1379 msgbufenabled = 0;
1380 return (ENXIO);
1381 }
1382
1383 switch (rnode->sysctl_num) {
1384 case KERN_MSGBUFSIZE: {
1385 struct sysctlnode node = *rnode;
1386 int msg_bufs = (int)msgbufp->msg_bufs;
1387 node.sysctl_data = &msg_bufs;
1388 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1389 }
1390 case KERN_MSGBUF:
1391 break;
1392 default:
1393 return (EOPNOTSUPP);
1394 }
1395
1396 if (newp != NULL)
1397 return (EPERM);
1398
1399 if (oldp == NULL) {
1400 /* always return full buffer size */
1401 *oldlenp = msgbufp->msg_bufs;
1402 return (0);
1403 }
1404
1405 error = 0;
1406 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1407
1408 /*
1409 * First, copy from the write pointer to the end of
1410 * message buffer.
1411 */
1412 beg = msgbufp->msg_bufx;
1413 end = msgbufp->msg_bufs;
1414 while (maxlen > 0) {
1415 len = MIN(end - beg, maxlen);
1416 if (len == 0)
1417 break;
1418 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1419 if (error)
1420 break;
1421 where += len;
1422 maxlen -= len;
1423
1424 /*
1425 * ... then, copy from the beginning of message buffer to
1426 * the write pointer.
1427 */
1428 beg = 0;
1429 end = msgbufp->msg_bufx;
1430 }
1431
1432 return (error);
1433 }
1434
1435 /*
1436 * sysctl helper routine for kern.defcorename. in the case of a new
1437 * string being assigned, check that it's not a zero-length string.
1438 * (XXX the check in -current doesn't work, but do we really care?)
1439 */
1440 static int
1441 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1442 {
1443 int error;
1444 char *newcorename;
1445 struct sysctlnode node;
1446
1447 newcorename = PNBUF_GET();
1448 node = *rnode;
1449 node.sysctl_data = &newcorename[0];
1450 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1451 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1452 if (error || newp == NULL) {
1453 goto done;
1454 }
1455
1456 /*
1457 * when sysctl_lookup() deals with a string, it's guaranteed
1458 * to come back nul terminated. so there. :)
1459 */
1460 if (strlen(newcorename) == 0) {
1461 error = EINVAL;
1462 } else {
1463 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1464 error = 0;
1465 }
1466 done:
1467 PNBUF_PUT(newcorename);
1468 return error;
1469 }
1470
1471 /*
1472 * sysctl helper routine for kern.cp_time node. adds up cpu time
1473 * across all cpus.
1474 */
1475 static int
1476 sysctl_kern_cptime(SYSCTLFN_ARGS)
1477 {
1478 struct sysctlnode node = *rnode;
1479
1480 #ifndef MULTIPROCESSOR
1481
1482 if (namelen == 1) {
1483 if (name[0] != 0)
1484 return (ENOENT);
1485 /*
1486 * you're allowed to ask for the zero'th processor
1487 */
1488 name++;
1489 namelen--;
1490 }
1491 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1492 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1493 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1494
1495 #else /* MULTIPROCESSOR */
1496
1497 uint64_t *cp_time = NULL;
1498 int error, n = sysctl_ncpus(), i;
1499 struct cpu_info *ci;
1500 CPU_INFO_ITERATOR cii;
1501
1502 /*
1503 * if you specifically pass a buffer that is the size of the
1504 * sum, or if you are probing for the size, you get the "sum"
1505 * of cp_time (and the size thereof) across all processors.
1506 *
1507 * alternately, you can pass an additional mib number and get
1508 * cp_time for that particular processor.
1509 */
1510 switch (namelen) {
1511 case 0:
1512 if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
1513 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1514 n = -1; /* SUM */
1515 }
1516 else {
1517 node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
1518 n = -2; /* ALL */
1519 }
1520 break;
1521 case 1:
1522 if (name[0] < 0 || name[0] >= n)
1523 return (ENOENT); /* ENOSUCHPROCESSOR */
1524 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1525 n = name[0];
1526 /*
1527 * adjust these so that sysctl_lookup() will be happy
1528 */
1529 name++;
1530 namelen--;
1531 break;
1532 default:
1533 return (EINVAL);
1534 }
1535
1536 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1537 if (cp_time == NULL)
1538 return (ENOMEM);
1539 node.sysctl_data = cp_time;
1540 memset(cp_time, 0, node.sysctl_size);
1541
1542 for (CPU_INFO_FOREACH(cii, ci)) {
1543 if (n <= 0)
1544 for (i = 0; i < CPUSTATES; i++)
1545 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1546 /*
1547 * if a specific processor was requested and we just
1548 * did it, we're done here
1549 */
1550 if (n == 0)
1551 break;
1552 /*
1553 * if doing "all", skip to next cp_time set for next processor
1554 */
1555 if (n == -2)
1556 cp_time += CPUSTATES;
1557 /*
1558 * if we're doing a specific processor, we're one
1559 * processor closer
1560 */
1561 if (n > 0)
1562 n--;
1563 }
1564
1565 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1566 free(node.sysctl_data, M_TEMP);
1567 return (error);
1568
1569 #endif /* MULTIPROCESSOR */
1570 }
1571
1572 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1573 /*
1574 * sysctl helper routine for kern.sysvipc_info subtree.
1575 */
1576
1577 #define FILL_PERM(src, dst) do { \
1578 (dst)._key = (src)._key; \
1579 (dst).uid = (src).uid; \
1580 (dst).gid = (src).gid; \
1581 (dst).cuid = (src).cuid; \
1582 (dst).cgid = (src).cgid; \
1583 (dst).mode = (src).mode; \
1584 (dst)._seq = (src)._seq; \
1585 } while (/*CONSTCOND*/ 0);
1586 #define FILL_MSG(src, dst) do { \
1587 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1588 (dst).msg_qnum = (src).msg_qnum; \
1589 (dst).msg_qbytes = (src).msg_qbytes; \
1590 (dst)._msg_cbytes = (src)._msg_cbytes; \
1591 (dst).msg_lspid = (src).msg_lspid; \
1592 (dst).msg_lrpid = (src).msg_lrpid; \
1593 (dst).msg_stime = (src).msg_stime; \
1594 (dst).msg_rtime = (src).msg_rtime; \
1595 (dst).msg_ctime = (src).msg_ctime; \
1596 } while (/*CONSTCOND*/ 0)
1597 #define FILL_SEM(src, dst) do { \
1598 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1599 (dst).sem_nsems = (src).sem_nsems; \
1600 (dst).sem_otime = (src).sem_otime; \
1601 (dst).sem_ctime = (src).sem_ctime; \
1602 } while (/*CONSTCOND*/ 0)
1603 #define FILL_SHM(src, dst) do { \
1604 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1605 (dst).shm_segsz = (src).shm_segsz; \
1606 (dst).shm_lpid = (src).shm_lpid; \
1607 (dst).shm_cpid = (src).shm_cpid; \
1608 (dst).shm_atime = (src).shm_atime; \
1609 (dst).shm_dtime = (src).shm_dtime; \
1610 (dst).shm_ctime = (src).shm_ctime; \
1611 (dst).shm_nattch = (src).shm_nattch; \
1612 } while (/*CONSTCOND*/ 0)
1613
1614 static int
1615 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1616 {
1617 void *where = oldp;
1618 size_t *sizep = oldlenp;
1619 #ifdef SYSVMSG
1620 struct msg_sysctl_info *msgsi = NULL;
1621 #endif
1622 #ifdef SYSVSEM
1623 struct sem_sysctl_info *semsi = NULL;
1624 #endif
1625 #ifdef SYSVSHM
1626 struct shm_sysctl_info *shmsi = NULL;
1627 #endif
1628 size_t infosize, dssize, tsize, buflen;
1629 void *bf = NULL;
1630 char *start;
1631 int32_t nds;
1632 int i, error, ret;
1633
1634 if (namelen != 1)
1635 return (EINVAL);
1636
1637 start = where;
1638 buflen = *sizep;
1639
1640 switch (*name) {
1641 case KERN_SYSVIPC_MSG_INFO:
1642 #ifdef SYSVMSG
1643 infosize = sizeof(msgsi->msginfo);
1644 nds = msginfo.msgmni;
1645 dssize = sizeof(msgsi->msgids[0]);
1646 break;
1647 #else
1648 return (EINVAL);
1649 #endif
1650 case KERN_SYSVIPC_SEM_INFO:
1651 #ifdef SYSVSEM
1652 infosize = sizeof(semsi->seminfo);
1653 nds = seminfo.semmni;
1654 dssize = sizeof(semsi->semids[0]);
1655 break;
1656 #else
1657 return (EINVAL);
1658 #endif
1659 case KERN_SYSVIPC_SHM_INFO:
1660 #ifdef SYSVSHM
1661 infosize = sizeof(shmsi->shminfo);
1662 nds = shminfo.shmmni;
1663 dssize = sizeof(shmsi->shmids[0]);
1664 break;
1665 #else
1666 return (EINVAL);
1667 #endif
1668 default:
1669 return (EINVAL);
1670 }
1671 /*
1672 * Round infosize to 64 bit boundary if requesting more than just
1673 * the info structure or getting the total data size.
1674 */
1675 if (where == NULL || *sizep > infosize)
1676 infosize = ((infosize + 7) / 8) * 8;
1677 tsize = infosize + nds * dssize;
1678
1679 /* Return just the total size required. */
1680 if (where == NULL) {
1681 *sizep = tsize;
1682 return (0);
1683 }
1684
1685 /* Not enough room for even the info struct. */
1686 if (buflen < infosize) {
1687 *sizep = 0;
1688 return (ENOMEM);
1689 }
1690 bf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1691 memset(bf, 0, min(tsize, buflen));
1692
1693 switch (*name) {
1694 #ifdef SYSVMSG
1695 case KERN_SYSVIPC_MSG_INFO:
1696 msgsi = (struct msg_sysctl_info *)bf;
1697 msgsi->msginfo = msginfo;
1698 break;
1699 #endif
1700 #ifdef SYSVSEM
1701 case KERN_SYSVIPC_SEM_INFO:
1702 semsi = (struct sem_sysctl_info *)bf;
1703 semsi->seminfo = seminfo;
1704 break;
1705 #endif
1706 #ifdef SYSVSHM
1707 case KERN_SYSVIPC_SHM_INFO:
1708 shmsi = (struct shm_sysctl_info *)bf;
1709 shmsi->shminfo = shminfo;
1710 break;
1711 #endif
1712 }
1713 buflen -= infosize;
1714
1715 ret = 0;
1716 if (buflen > 0) {
1717 /* Fill in the IPC data structures. */
1718 for (i = 0; i < nds; i++) {
1719 if (buflen < dssize) {
1720 ret = ENOMEM;
1721 break;
1722 }
1723 switch (*name) {
1724 #ifdef SYSVMSG
1725 case KERN_SYSVIPC_MSG_INFO:
1726 FILL_MSG(msqids[i], msgsi->msgids[i]);
1727 break;
1728 #endif
1729 #ifdef SYSVSEM
1730 case KERN_SYSVIPC_SEM_INFO:
1731 FILL_SEM(sema[i], semsi->semids[i]);
1732 break;
1733 #endif
1734 #ifdef SYSVSHM
1735 case KERN_SYSVIPC_SHM_INFO:
1736 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1737 break;
1738 #endif
1739 }
1740 buflen -= dssize;
1741 }
1742 }
1743 *sizep -= buflen;
1744 error = copyout(bf, start, *sizep);
1745 /* If copyout succeeded, use return code set earlier. */
1746 if (error == 0)
1747 error = ret;
1748 if (bf)
1749 free(bf, M_TEMP);
1750 return (error);
1751 }
1752
1753 #undef FILL_PERM
1754 #undef FILL_MSG
1755 #undef FILL_SEM
1756 #undef FILL_SHM
1757
1758 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1759
1760 #if NPTY > 0
1761 /*
1762 * sysctl helper routine for kern.maxptys. ensures that any new value
1763 * is acceptable to the pty subsystem.
1764 */
1765 static int
1766 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1767 {
1768 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1769 int error, xmax;
1770 struct sysctlnode node;
1771
1772 /* get current value of maxptys */
1773 xmax = pty_maxptys(0, 0);
1774
1775 node = *rnode;
1776 node.sysctl_data = &xmax;
1777 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1778 if (error || newp == NULL)
1779 return (error);
1780
1781 if (xmax != pty_maxptys(xmax, 1))
1782 return (EINVAL);
1783
1784 return (0);
1785 }
1786 #endif /* NPTY > 0 */
1787
1788 /*
1789 * sysctl helper routine for kern.sbmax. basically just ensures that
1790 * any new value is not too small.
1791 */
1792 static int
1793 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1794 {
1795 int error, new_sbmax;
1796 struct sysctlnode node;
1797
1798 new_sbmax = sb_max;
1799 node = *rnode;
1800 node.sysctl_data = &new_sbmax;
1801 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1802 if (error || newp == NULL)
1803 return (error);
1804
1805 error = sb_max_set(new_sbmax);
1806
1807 return (error);
1808 }
1809
1810 /*
1811 * sysctl helper routine for kern.urandom node. picks a random number
1812 * for you.
1813 */
1814 static int
1815 sysctl_kern_urnd(SYSCTLFN_ARGS)
1816 {
1817 #if NRND > 0
1818 int v;
1819
1820 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1821 struct sysctlnode node = *rnode;
1822 node.sysctl_data = &v;
1823 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1824 }
1825 else
1826 return (EIO); /*XXX*/
1827 #else
1828 return (EOPNOTSUPP);
1829 #endif
1830 }
1831
1832 /*
1833 * sysctl helper routine to do kern.lwp.* work.
1834 */
1835 static int
1836 sysctl_kern_lwp(SYSCTLFN_ARGS)
1837 {
1838 struct kinfo_lwp klwp;
1839 struct proc *p;
1840 struct lwp *l2;
1841 char *where, *dp;
1842 int pid, elem_size, elem_count;
1843 int buflen, needed, error;
1844
1845 if (namelen == 1 && name[0] == CTL_QUERY)
1846 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1847
1848 dp = where = oldp;
1849 buflen = where != NULL ? *oldlenp : 0;
1850 error = needed = 0;
1851
1852 if (newp != NULL || namelen != 3)
1853 return (EINVAL);
1854 pid = name[0];
1855 elem_size = name[1];
1856 elem_count = name[2];
1857
1858 p = pfind(pid);
1859 if (p == NULL)
1860 return (ESRCH);
1861 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1862 if (buflen >= elem_size && elem_count > 0) {
1863 fill_lwp(l2, &klwp);
1864 /*
1865 * Copy out elem_size, but not larger than
1866 * the size of a struct kinfo_proc2.
1867 */
1868 error = copyout(&klwp, dp,
1869 min(sizeof(klwp), elem_size));
1870 if (error)
1871 goto cleanup;
1872 dp += elem_size;
1873 buflen -= elem_size;
1874 elem_count--;
1875 }
1876 needed += elem_size;
1877 }
1878
1879 if (where != NULL) {
1880 *oldlenp = dp - where;
1881 if (needed > *oldlenp)
1882 return (ENOMEM);
1883 } else {
1884 needed += KERN_LWPSLOP;
1885 *oldlenp = needed;
1886 }
1887 return (0);
1888 cleanup:
1889 return (error);
1890 }
1891
1892 /*
1893 * sysctl helper routine for kern.forkfsleep node. ensures that the
1894 * given value is not too large or two small, and is at least one
1895 * timer tick if not zero.
1896 */
1897 static int
1898 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1899 {
1900 /* userland sees value in ms, internally is in ticks */
1901 extern int forkfsleep; /* defined in kern/kern_fork.c */
1902 int error, timo, lsleep;
1903 struct sysctlnode node;
1904
1905 lsleep = forkfsleep * 1000 / hz;
1906 node = *rnode;
1907 node.sysctl_data = &lsleep;
1908 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1909 if (error || newp == NULL)
1910 return (error);
1911
1912 /* refuse negative values, and overly 'long time' */
1913 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1914 return (EINVAL);
1915
1916 timo = mstohz(lsleep);
1917
1918 /* if the interval is >0 ms && <1 tick, use 1 tick */
1919 if (lsleep != 0 && timo == 0)
1920 forkfsleep = 1;
1921 else
1922 forkfsleep = timo;
1923
1924 return (0);
1925 }
1926
1927 /*
1928 * sysctl helper routine for kern.root_partition
1929 */
1930 static int
1931 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1932 {
1933 int rootpart = DISKPART(rootdev);
1934 struct sysctlnode node = *rnode;
1935
1936 node.sysctl_data = &rootpart;
1937 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1938 }
1939
1940 /*
1941 * sysctl helper function for kern.drivers
1942 */
1943 static int
1944 sysctl_kern_drivers(SYSCTLFN_ARGS)
1945 {
1946 int error;
1947 size_t buflen;
1948 struct kinfo_drivers kd;
1949 char *start, *where;
1950 const char *dname;
1951 int i;
1952 extern struct devsw_conv *devsw_conv;
1953 extern int max_devsw_convs;
1954
1955 if (newp != NULL || namelen != 0)
1956 return (EINVAL);
1957
1958 start = where = oldp;
1959 buflen = *oldlenp;
1960 if (where == NULL) {
1961 *oldlenp = max_devsw_convs * sizeof kd;
1962 return 0;
1963 }
1964
1965 /*
1966 * An array of kinfo_drivers structures
1967 */
1968 error = 0;
1969 for (i = 0; i < max_devsw_convs; i++) {
1970 dname = devsw_conv[i].d_name;
1971 if (dname == NULL)
1972 continue;
1973 if (buflen < sizeof kd) {
1974 error = ENOMEM;
1975 break;
1976 }
1977 memset(&kd, 0, sizeof(kd));
1978 kd.d_bmajor = devsw_conv[i].d_bmajor;
1979 kd.d_cmajor = devsw_conv[i].d_cmajor;
1980 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1981 error = copyout(&kd, where, sizeof kd);
1982 if (error != 0)
1983 break;
1984 buflen -= sizeof kd;
1985 where += sizeof kd;
1986 }
1987 *oldlenp = where - start;
1988 return error;
1989 }
1990
1991 /*
1992 * sysctl helper function for kern.file2
1993 */
1994 static int
1995 sysctl_kern_file2(SYSCTLFN_ARGS)
1996 {
1997 struct proc *p;
1998 struct file *fp;
1999 struct filedesc *fd;
2000 struct kinfo_file kf;
2001 char *dp;
2002 u_int i, op;
2003 size_t len, needed, elem_size, out_size;
2004 int error, arg, elem_count;
2005
2006 if (namelen == 1 && name[0] == CTL_QUERY)
2007 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2008
2009 if (namelen != 4)
2010 return (EINVAL);
2011
2012 error = 0;
2013 dp = oldp;
2014 len = (oldp != NULL) ? *oldlenp : 0;
2015 op = name[0];
2016 arg = name[1];
2017 elem_size = name[2];
2018 elem_count = name[3];
2019 out_size = MIN(sizeof(kf), elem_size);
2020 needed = 0;
2021
2022 if (elem_size < 1 || elem_count < 0)
2023 return (EINVAL);
2024
2025 switch (op) {
2026 case KERN_FILE_BYFILE:
2027 /*
2028 * doesn't use arg so it must be zero
2029 */
2030 if (arg != 0)
2031 return (EINVAL);
2032 LIST_FOREACH(fp, &filehead, f_list) {
2033 if (kauth_authorize_process(l->l_proc->p_cred,
2034 KAUTH_PROCESS_CANSEE, l->l_proc, fp->f_cred, NULL,
2035 NULL) != 0)
2036 continue;
2037 if (len >= elem_size && elem_count > 0) {
2038 fill_file(&kf, fp, NULL, 0);
2039 error = copyout(&kf, dp, out_size);
2040 if (error)
2041 break;
2042 dp += elem_size;
2043 len -= elem_size;
2044 }
2045 if (elem_count > 0) {
2046 needed += elem_size;
2047 if (elem_count != INT_MAX)
2048 elem_count--;
2049 }
2050 }
2051 break;
2052 case KERN_FILE_BYPID:
2053 if (arg < -1)
2054 /* -1 means all processes */
2055 return (EINVAL);
2056 proclist_lock_read();
2057 PROCLIST_FOREACH(p, &allproc) {
2058 if (p->p_stat == SIDL)
2059 /* skip embryonic processes */
2060 continue;
2061 if (kauth_authorize_process(l->l_proc->p_cred,
2062 KAUTH_PROCESS_CANSEE, l->l_proc, p->p_cred,
2063 NULL, NULL) != 0)
2064 continue;
2065 if (arg > 0 && p->p_pid != arg)
2066 /* pick only the one we want */
2067 /* XXX want 0 to mean "kernel files" */
2068 continue;
2069 fd = p->p_fd;
2070 for (i = 0; i < fd->fd_nfiles; i++) {
2071 fp = fd->fd_ofiles[i];
2072 if (fp == NULL || !FILE_IS_USABLE(fp))
2073 continue;
2074 if (len >= elem_size && elem_count > 0) {
2075 fill_file(&kf, fd->fd_ofiles[i],
2076 p, i);
2077 error = copyout(&kf, dp, out_size);
2078 if (error)
2079 break;
2080 dp += elem_size;
2081 len -= elem_size;
2082 }
2083 if (elem_count > 0) {
2084 needed += elem_size;
2085 if (elem_count != INT_MAX)
2086 elem_count--;
2087 }
2088 }
2089 }
2090 proclist_unlock_read();
2091 break;
2092 default:
2093 return (EINVAL);
2094 }
2095
2096 if (oldp == NULL)
2097 needed += KERN_FILESLOP * elem_size;
2098 *oldlenp = needed;
2099
2100 return (error);
2101 }
2102
2103 static void
2104 fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i)
2105 {
2106
2107 memset(kp, 0, sizeof(*kp));
2108
2109 kp->ki_fileaddr = PTRTOUINT64(fp);
2110 kp->ki_flag = fp->f_flag;
2111 kp->ki_iflags = fp->f_iflags;
2112 kp->ki_ftype = fp->f_type;
2113 kp->ki_count = fp->f_count;
2114 kp->ki_msgcount = fp->f_msgcount;
2115 kp->ki_usecount = fp->f_usecount;
2116 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2117 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2118 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2119 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2120 kp->ki_foffset = fp->f_offset;
2121 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2122
2123 /* vnode information to glue this file to something */
2124 if (fp->f_type == DTYPE_VNODE) {
2125 struct vnode *vp = (struct vnode *)fp->f_data;
2126
2127 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2128 kp->ki_vsize = vp->v_size;
2129 kp->ki_vtype = vp->v_type;
2130 kp->ki_vtag = vp->v_tag;
2131 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2132 }
2133
2134 /* process information when retrieved via KERN_FILE_BYPID */
2135 if (p) {
2136 kp->ki_pid = p->p_pid;
2137 kp->ki_fd = i;
2138 kp->ki_ofileflags = p->p_fd->fd_ofileflags[i];
2139 }
2140 }
2141
2142 static int
2143 sysctl_doeproc(SYSCTLFN_ARGS)
2144 {
2145 struct eproc eproc;
2146 struct kinfo_proc2 kproc2;
2147 struct kinfo_proc *dp;
2148 struct proc *p;
2149 const struct proclist_desc *pd;
2150 char *where, *dp2;
2151 int type, op, arg;
2152 u_int elem_size, elem_count;
2153 size_t buflen, needed;
2154 int error;
2155
2156 if (namelen == 1 && name[0] == CTL_QUERY)
2157 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2158
2159 dp = oldp;
2160 dp2 = where = oldp;
2161 buflen = where != NULL ? *oldlenp : 0;
2162 error = 0;
2163 needed = 0;
2164 type = rnode->sysctl_num;
2165
2166 if (type == KERN_PROC) {
2167 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
2168 return (EINVAL);
2169 op = name[0];
2170 if (op != KERN_PROC_ALL)
2171 arg = name[1];
2172 else
2173 arg = 0; /* Quell compiler warning */
2174 elem_size = elem_count = 0; /* Ditto */
2175 } else {
2176 if (namelen != 4)
2177 return (EINVAL);
2178 op = name[0];
2179 arg = name[1];
2180 elem_size = name[2];
2181 elem_count = name[3];
2182 }
2183
2184 proclist_lock_read();
2185
2186 pd = proclists;
2187 again:
2188 PROCLIST_FOREACH(p, pd->pd_list) {
2189 /*
2190 * Skip embryonic processes.
2191 */
2192 if (p->p_stat == SIDL)
2193 continue;
2194
2195 if (kauth_authorize_process(l->l_proc->p_cred,
2196 KAUTH_PROCESS_CANSEE, l->l_proc, p->p_cred,
2197 NULL, NULL) != 0)
2198 continue;
2199
2200 /*
2201 * TODO - make more efficient (see notes below).
2202 * do by session.
2203 */
2204 switch (op) {
2205
2206 case KERN_PROC_PID:
2207 /* could do this with just a lookup */
2208 if (p->p_pid != (pid_t)arg)
2209 continue;
2210 break;
2211
2212 case KERN_PROC_PGRP:
2213 /* could do this by traversing pgrp */
2214 if (p->p_pgrp->pg_id != (pid_t)arg)
2215 continue;
2216 break;
2217
2218 case KERN_PROC_SESSION:
2219 if (p->p_session->s_sid != (pid_t)arg)
2220 continue;
2221 break;
2222
2223 case KERN_PROC_TTY:
2224 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2225 if ((p->p_flag & P_CONTROLT) == 0 ||
2226 p->p_session->s_ttyp == NULL ||
2227 p->p_session->s_ttyvp != NULL)
2228 continue;
2229 } else if ((p->p_flag & P_CONTROLT) == 0 ||
2230 p->p_session->s_ttyp == NULL) {
2231 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
2232 continue;
2233 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
2234 continue;
2235 break;
2236
2237 case KERN_PROC_UID:
2238 if (kauth_cred_geteuid(p->p_cred) != (uid_t)arg)
2239 continue;
2240 break;
2241
2242 case KERN_PROC_RUID:
2243 if (kauth_cred_getuid(p->p_cred) != (uid_t)arg)
2244 continue;
2245 break;
2246
2247 case KERN_PROC_GID:
2248 if (kauth_cred_getegid(p->p_cred) != (uid_t)arg)
2249 continue;
2250 break;
2251
2252 case KERN_PROC_RGID:
2253 if (kauth_cred_getgid(p->p_cred) != (uid_t)arg)
2254 continue;
2255 break;
2256
2257 case KERN_PROC_ALL:
2258 /* allow everything */
2259 break;
2260
2261 default:
2262 error = EINVAL;
2263 goto cleanup;
2264 }
2265 if (type == KERN_PROC) {
2266 if (buflen >= sizeof(struct kinfo_proc)) {
2267 fill_eproc(p, &eproc);
2268 error = copyout(p, &dp->kp_proc,
2269 sizeof(struct proc));
2270 if (error)
2271 goto cleanup;
2272 error = copyout(&eproc, &dp->kp_eproc,
2273 sizeof(eproc));
2274 if (error)
2275 goto cleanup;
2276 dp++;
2277 buflen -= sizeof(struct kinfo_proc);
2278 }
2279 needed += sizeof(struct kinfo_proc);
2280 } else { /* KERN_PROC2 */
2281 if (buflen >= elem_size && elem_count > 0) {
2282 fill_kproc2(p, &kproc2);
2283 /*
2284 * Copy out elem_size, but not larger than
2285 * the size of a struct kinfo_proc2.
2286 */
2287 error = copyout(&kproc2, dp2,
2288 min(sizeof(kproc2), elem_size));
2289 if (error)
2290 goto cleanup;
2291 dp2 += elem_size;
2292 buflen -= elem_size;
2293 elem_count--;
2294 }
2295 needed += elem_size;
2296 }
2297 }
2298 pd++;
2299 if (pd->pd_list != NULL)
2300 goto again;
2301 proclist_unlock_read();
2302
2303 if (where != NULL) {
2304 if (type == KERN_PROC)
2305 *oldlenp = (char *)dp - where;
2306 else
2307 *oldlenp = dp2 - where;
2308 if (needed > *oldlenp)
2309 return (ENOMEM);
2310 } else {
2311 needed += KERN_PROCSLOP;
2312 *oldlenp = needed;
2313 }
2314 return (0);
2315 cleanup:
2316 proclist_unlock_read();
2317 return (error);
2318 }
2319
2320 /*
2321 * sysctl helper routine for kern.proc_args pseudo-subtree.
2322 */
2323 static int
2324 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2325 {
2326 struct ps_strings pss;
2327 struct proc *p, *up = l->l_proc;
2328 size_t len, upper_bound, xlen, i;
2329 struct uio auio;
2330 struct iovec aiov;
2331 vaddr_t argv;
2332 pid_t pid;
2333 int nargv, type, error;
2334 char *arg;
2335 char *tmp;
2336 struct vmspace *vmspace;
2337 vaddr_t psstr_addr;
2338 vaddr_t offsetn;
2339 vaddr_t offsetv;
2340
2341 if (namelen == 1 && name[0] == CTL_QUERY)
2342 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2343
2344 if (newp != NULL || namelen != 2)
2345 return (EINVAL);
2346 pid = name[0];
2347 type = name[1];
2348
2349 switch (type) {
2350 case KERN_PROC_ARGV:
2351 case KERN_PROC_NARGV:
2352 case KERN_PROC_ENV:
2353 case KERN_PROC_NENV:
2354 /* ok */
2355 break;
2356 default:
2357 return (EINVAL);
2358 }
2359
2360 proclist_lock_read();
2361
2362 /* check pid */
2363 if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
2364 error = EINVAL;
2365 goto out_locked;
2366 }
2367
2368 if (kauth_authorize_process(l->l_proc->p_cred,
2369 KAUTH_PROCESS_CANSEE, l->l_proc, p->p_cred, NULL, NULL) != 0) {
2370 error = EPERM;
2371 goto out_locked;
2372 }
2373
2374 /* only root or same user change look at the environment */
2375 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2376 if (kauth_cred_geteuid(up->p_cred) != 0) {
2377 if (kauth_cred_getuid(up->p_cred) != kauth_cred_getuid(p->p_cred) ||
2378 kauth_cred_getuid(up->p_cred) != kauth_cred_getsvuid(p->p_cred)) {
2379 error = EPERM;
2380 goto out_locked;
2381 }
2382 }
2383 }
2384
2385 if (oldp == NULL) {
2386 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2387 *oldlenp = sizeof (int);
2388 else
2389 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2390 error = 0;
2391 goto out_locked;
2392 }
2393
2394 /*
2395 * Zombies don't have a stack, so we can't read their psstrings.
2396 * System processes also don't have a user stack.
2397 */
2398 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0) {
2399 error = EINVAL;
2400 goto out_locked;
2401 }
2402
2403 /*
2404 * Lock the process down in memory.
2405 */
2406 /* XXXCDC: how should locking work here? */
2407 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1)) {
2408 error = EFAULT;
2409 goto out_locked;
2410 }
2411
2412 psstr_addr = (vaddr_t)p->p_psstr;
2413 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
2414 offsetn = p->p_psnargv;
2415 offsetv = p->p_psargv;
2416 } else {
2417 offsetn = p->p_psnenv;
2418 offsetv = p->p_psenv;
2419 }
2420 vmspace = p->p_vmspace;
2421 vmspace->vm_refcnt++; /* XXX */
2422
2423 proclist_unlock_read();
2424
2425 /*
2426 * Allocate a temporary buffer to hold the arguments.
2427 */
2428 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2429
2430 /*
2431 * Read in the ps_strings structure.
2432 */
2433 aiov.iov_base = &pss;
2434 aiov.iov_len = sizeof(pss);
2435 auio.uio_iov = &aiov;
2436 auio.uio_iovcnt = 1;
2437 auio.uio_offset = psstr_addr;
2438 auio.uio_resid = sizeof(pss);
2439 auio.uio_rw = UIO_READ;
2440 UIO_SETUP_SYSSPACE(&auio);
2441 error = uvm_io(&vmspace->vm_map, &auio);
2442 if (error)
2443 goto done;
2444
2445 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
2446 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2447 error = copyout(&nargv, oldp, sizeof(nargv));
2448 *oldlenp = sizeof(nargv);
2449 goto done;
2450 }
2451 /*
2452 * Now read the address of the argument vector.
2453 */
2454 switch (type) {
2455 case KERN_PROC_ARGV:
2456 /* XXX compat32 stuff here */
2457 /* FALLTHROUGH */
2458 case KERN_PROC_ENV:
2459 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
2460 break;
2461 default:
2462 return (EINVAL);
2463 }
2464 auio.uio_offset = (off_t)(unsigned long)tmp;
2465 aiov.iov_base = &argv;
2466 aiov.iov_len = sizeof(argv);
2467 auio.uio_iov = &aiov;
2468 auio.uio_iovcnt = 1;
2469 auio.uio_resid = sizeof(argv);
2470 auio.uio_rw = UIO_READ;
2471 UIO_SETUP_SYSSPACE(&auio);
2472 error = uvm_io(&vmspace->vm_map, &auio);
2473 if (error)
2474 goto done;
2475
2476 /*
2477 * Now copy in the actual argument vector, one page at a time,
2478 * since we don't know how long the vector is (though, we do
2479 * know how many NUL-terminated strings are in the vector).
2480 */
2481 len = 0;
2482 upper_bound = *oldlenp;
2483 for (; nargv != 0 && len < upper_bound; len += xlen) {
2484 aiov.iov_base = arg;
2485 aiov.iov_len = PAGE_SIZE;
2486 auio.uio_iov = &aiov;
2487 auio.uio_iovcnt = 1;
2488 auio.uio_offset = argv + len;
2489 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
2490 auio.uio_resid = xlen;
2491 auio.uio_rw = UIO_READ;
2492 UIO_SETUP_SYSSPACE(&auio);
2493 error = uvm_io(&vmspace->vm_map, &auio);
2494 if (error)
2495 goto done;
2496
2497 for (i = 0; i < xlen && nargv != 0; i++) {
2498 if (arg[i] == '\0')
2499 nargv--; /* one full string */
2500 }
2501
2502 /*
2503 * Make sure we don't copyout past the end of the user's
2504 * buffer.
2505 */
2506 if (len + i > upper_bound)
2507 i = upper_bound - len;
2508
2509 error = copyout(arg, (char *)oldp + len, i);
2510 if (error)
2511 break;
2512
2513 if (nargv == 0) {
2514 len += i;
2515 break;
2516 }
2517 }
2518 *oldlenp = len;
2519
2520 done:
2521 uvmspace_free(vmspace);
2522
2523 free(arg, M_TEMP);
2524 return error;
2525
2526 out_locked:
2527 proclist_unlock_read();
2528 return error;
2529 }
2530
2531 /*
2532 * Sysctl helper routine for Verified Exec.
2533 */
2534 #ifdef VERIFIED_EXEC
2535 static int
2536 sysctl_kern_veriexec(SYSCTLFN_ARGS)
2537 {
2538 int newval, error;
2539 int *var = NULL, raise_only = 0;
2540 struct sysctlnode node;
2541
2542 node = *rnode;
2543
2544 switch (rnode->sysctl_num) {
2545 case VERIEXEC_STRICT:
2546 raise_only = 1;
2547 var = &veriexec_strict;
2548 break;
2549 case VERIEXEC_ALGORITHMS:
2550 node.sysctl_data = veriexec_fp_names;
2551 node.sysctl_size = strlen(veriexec_fp_names) + 1;
2552 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2553 default:
2554 return (EINVAL);
2555 }
2556
2557 newval = *var;
2558
2559 node.sysctl_data = &newval;
2560 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2561 if (error || newp == NULL) {
2562 return (error);
2563 }
2564
2565 if (raise_only && (newval < *var))
2566 return (EPERM);
2567
2568 *var = newval;
2569
2570 return (error);
2571 }
2572 #endif /* VERIFIED_EXEC */
2573
2574 static int
2575 sysctl_security_setidcore(SYSCTLFN_ARGS)
2576 {
2577 int newsize, error;
2578 struct sysctlnode node;
2579
2580 node = *rnode;
2581 node.sysctl_data = &newsize;
2582 newsize = *(int *)rnode->sysctl_data;
2583 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2584 if (error || newp == NULL)
2585 return error;
2586
2587 if (securelevel > 0)
2588 return (EPERM);
2589
2590 *(int *)rnode->sysctl_data = newsize;
2591
2592 return 0;
2593 }
2594
2595 static int
2596 sysctl_security_setidcorename(SYSCTLFN_ARGS)
2597 {
2598 int error;
2599 char newsetidcorename[MAXPATHLEN];
2600 struct sysctlnode node;
2601
2602 node = *rnode;
2603 node.sysctl_data = &newsetidcorename[0];
2604 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
2605 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2606 if (error || newp == NULL)
2607 return (error);
2608
2609 if (securelevel > 0)
2610 return (EPERM);
2611
2612 if (strlen(newsetidcorename) == 0)
2613 return (EINVAL);
2614
2615 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
2616
2617 return (0);
2618 }
2619
2620 /*
2621 * sysctl helper routine for kern.cp_id node. maps cpus to their
2622 * cpuids.
2623 */
2624 static int
2625 sysctl_kern_cpid(SYSCTLFN_ARGS)
2626 {
2627 struct sysctlnode node = *rnode;
2628
2629 #ifndef MULTIPROCESSOR
2630 uint64_t id;
2631
2632 if (namelen == 1) {
2633 if (name[0] != 0)
2634 return (ENOENT);
2635 /*
2636 * you're allowed to ask for the zero'th processor
2637 */
2638 name++;
2639 namelen--;
2640 }
2641 node.sysctl_data = &id;
2642 node.sysctl_size = sizeof(id);
2643 id = cpu_number();
2644 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2645
2646 #else /* MULTIPROCESSOR */
2647 uint64_t *cp_id = NULL;
2648 int error, n = sysctl_ncpus();
2649 struct cpu_info *ci;
2650 CPU_INFO_ITERATOR cii;
2651
2652 /*
2653 * here you may either retrieve a single cpu id or the whole
2654 * set. the size you get back when probing depends on what
2655 * you ask for.
2656 */
2657 switch (namelen) {
2658 case 0:
2659 node.sysctl_size = n * sizeof(uint64_t);
2660 n = -2; /* ALL */
2661 break;
2662 case 1:
2663 if (name[0] < 0 || name[0] >= n)
2664 return (ENOENT); /* ENOSUCHPROCESSOR */
2665 node.sysctl_size = sizeof(uint64_t);
2666 n = name[0];
2667 /*
2668 * adjust these so that sysctl_lookup() will be happy
2669 */
2670 name++;
2671 namelen--;
2672 break;
2673 default:
2674 return (EINVAL);
2675 }
2676
2677 cp_id = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
2678 if (cp_id == NULL)
2679 return (ENOMEM);
2680 node.sysctl_data = cp_id;
2681 memset(cp_id, 0, node.sysctl_size);
2682
2683 for (CPU_INFO_FOREACH(cii, ci)) {
2684 if (n <= 0)
2685 cp_id[0] = ci->ci_cpuid;
2686 /*
2687 * if a specific processor was requested and we just
2688 * did it, we're done here
2689 */
2690 if (n == 0)
2691 break;
2692 /*
2693 * if doing "all", skip to next cp_id slot for next processor
2694 */
2695 if (n == -2)
2696 cp_id++;
2697 /*
2698 * if we're doing a specific processor, we're one
2699 * processor closer
2700 */
2701 if (n > 0)
2702 n--;
2703 }
2704
2705 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2706 free(node.sysctl_data, M_TEMP);
2707 return (error);
2708
2709 #endif /* MULTIPROCESSOR */
2710 }
2711
2712 /*
2713 * sysctl helper routine for hw.usermem and hw.usermem64. values are
2714 * calculate on the fly taking into account integer overflow and the
2715 * current wired count.
2716 */
2717 static int
2718 sysctl_hw_usermem(SYSCTLFN_ARGS)
2719 {
2720 u_int ui;
2721 u_quad_t uq;
2722 struct sysctlnode node;
2723
2724 node = *rnode;
2725 switch (rnode->sysctl_num) {
2726 case HW_USERMEM:
2727 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2728 ui = UINT_MAX;
2729 else
2730 ui *= PAGE_SIZE;
2731 node.sysctl_data = &ui;
2732 break;
2733 case HW_USERMEM64:
2734 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2735 node.sysctl_data = &uq;
2736 break;
2737 default:
2738 return (EINVAL);
2739 }
2740
2741 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2742 }
2743
2744 /*
2745 * sysctl helper routine for kern.cnmagic node. pulls the old value
2746 * out, encoded, and stuffs the new value in for decoding.
2747 */
2748 static int
2749 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2750 {
2751 char magic[CNS_LEN];
2752 int error;
2753 struct sysctlnode node;
2754
2755 if (oldp)
2756 cn_get_magic(magic, CNS_LEN);
2757 node = *rnode;
2758 node.sysctl_data = &magic[0];
2759 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2760 if (error || newp == NULL)
2761 return (error);
2762
2763 return (cn_set_magic(magic));
2764 }
2765
2766 static int
2767 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2768 {
2769 int ncpu;
2770 struct sysctlnode node;
2771
2772 ncpu = sysctl_ncpus();
2773 node = *rnode;
2774 node.sysctl_data = &ncpu;
2775
2776 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2777 }
2778
2779
2780 /*
2781 * ********************************************************************
2782 * section 3: public helper routines that are used for more than one
2783 * node
2784 * ********************************************************************
2785 */
2786
2787 /*
2788 * sysctl helper routine for the kern.root_device node and some ports'
2789 * machdep.root_device nodes.
2790 */
2791 int
2792 sysctl_root_device(SYSCTLFN_ARGS)
2793 {
2794 struct sysctlnode node;
2795
2796 node = *rnode;
2797 node.sysctl_data = root_device->dv_xname;
2798 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2799 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2800 }
2801
2802 /*
2803 * sysctl helper routine for kern.consdev, dependent on the current
2804 * state of the console. also used for machdep.console_device on some
2805 * ports.
2806 */
2807 int
2808 sysctl_consdev(SYSCTLFN_ARGS)
2809 {
2810 dev_t consdev;
2811 struct sysctlnode node;
2812
2813 if (cn_tab != NULL)
2814 consdev = cn_tab->cn_dev;
2815 else
2816 consdev = NODEV;
2817 node = *rnode;
2818 node.sysctl_data = &consdev;
2819 node.sysctl_size = sizeof(consdev);
2820 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2821 }
2822
2823 /*
2824 * ********************************************************************
2825 * section 4: support for some helpers
2826 * ********************************************************************
2827 */
2828
2829 /*
2830 * Fill in a kinfo_proc2 structure for the specified process.
2831 */
2832 static void
2833 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2834 {
2835 struct tty *tp;
2836 struct lwp *l;
2837 struct timeval ut, st;
2838
2839 memset(ki, 0, sizeof(*ki));
2840
2841 ki->p_paddr = PTRTOUINT64(p);
2842 ki->p_fd = PTRTOUINT64(p->p_fd);
2843 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2844 ki->p_stats = PTRTOUINT64(p->p_stats);
2845 ki->p_limit = PTRTOUINT64(p->p_limit);
2846 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2847 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2848 ki->p_sess = PTRTOUINT64(p->p_session);
2849 ki->p_tsess = 0; /* may be changed if controlling tty below */
2850 ki->p_ru = PTRTOUINT64(p->p_ru);
2851
2852 ki->p_eflag = 0;
2853 ki->p_exitsig = p->p_exitsig;
2854 ki->p_flag = p->p_flag;
2855
2856 ki->p_pid = p->p_pid;
2857 if (p->p_pptr)
2858 ki->p_ppid = p->p_pptr->p_pid;
2859 else
2860 ki->p_ppid = 0;
2861 ki->p_sid = p->p_session->s_sid;
2862 ki->p__pgid = p->p_pgrp->pg_id;
2863
2864 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2865
2866 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2867 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2868 ki->p_gid = kauth_cred_getegid(p->p_cred);
2869 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2870 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2871 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2872
2873 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2874 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2875 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])));
2876
2877 ki->p_jobc = p->p_pgrp->pg_jobc;
2878 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2879 ki->p_tdev = tp->t_dev;
2880 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2881 ki->p_tsess = PTRTOUINT64(tp->t_session);
2882 } else {
2883 ki->p_tdev = NODEV;
2884 }
2885
2886 ki->p_estcpu = p->p_estcpu;
2887 ki->p_rtime_sec = p->p_rtime.tv_sec;
2888 ki->p_rtime_usec = p->p_rtime.tv_usec;
2889 ki->p_cpticks = p->p_cpticks;
2890 ki->p_pctcpu = p->p_pctcpu;
2891
2892 ki->p_uticks = p->p_uticks;
2893 ki->p_sticks = p->p_sticks;
2894 ki->p_iticks = p->p_iticks;
2895
2896 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2897 ki->p_traceflag = p->p_traceflag;
2898
2899
2900 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2901 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2902 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2903 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2904
2905 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2906 ki->p_realstat = p->p_stat;
2907 ki->p_nice = p->p_nice;
2908
2909 ki->p_xstat = p->p_xstat;
2910 ki->p_acflag = p->p_acflag;
2911
2912 strncpy(ki->p_comm, p->p_comm,
2913 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2914
2915 strncpy(ki->p_login, p->p_session->s_login,
2916 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2917
2918 ki->p_nlwps = p->p_nlwps;
2919 ki->p_nrlwps = p->p_nrlwps;
2920 ki->p_realflag = p->p_flag;
2921
2922 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2923 ki->p_vm_rssize = 0;
2924 ki->p_vm_tsize = 0;
2925 ki->p_vm_dsize = 0;
2926 ki->p_vm_ssize = 0;
2927 l = NULL;
2928 } else {
2929 struct vmspace *vm = p->p_vmspace;
2930
2931 ki->p_vm_rssize = vm_resident_count(vm);
2932 ki->p_vm_tsize = vm->vm_tsize;
2933 ki->p_vm_dsize = vm->vm_dsize;
2934 ki->p_vm_ssize = vm->vm_ssize;
2935
2936 /* Pick a "representative" LWP */
2937 l = proc_representative_lwp(p);
2938 ki->p_forw = PTRTOUINT64(l->l_forw);
2939 ki->p_back = PTRTOUINT64(l->l_back);
2940 ki->p_addr = PTRTOUINT64(l->l_addr);
2941 ki->p_stat = l->l_stat;
2942 ki->p_flag |= l->l_flag & P_SHARED;
2943 ki->p_swtime = l->l_swtime;
2944 ki->p_slptime = l->l_slptime;
2945 if (l->l_stat == LSONPROC) {
2946 KDASSERT(l->l_cpu != NULL);
2947 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2948 } else
2949 ki->p_schedflags = 0;
2950 ki->p_holdcnt = l->l_holdcnt;
2951 ki->p_priority = l->l_priority;
2952 ki->p_usrpri = l->l_usrpri;
2953 if (l->l_wmesg)
2954 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2955 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2956
2957 }
2958
2959 if (p->p_session->s_ttyvp)
2960 ki->p_eflag |= EPROC_CTTY;
2961 if (SESS_LEADER(p))
2962 ki->p_eflag |= EPROC_SLEADER;
2963
2964 /* XXX Is this double check necessary? */
2965 if (P_ZOMBIE(p)) {
2966 ki->p_uvalid = 0;
2967 } else {
2968 ki->p_uvalid = 1;
2969
2970 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2971 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2972
2973 calcru(p, &ut, &st, 0);
2974 ki->p_uutime_sec = ut.tv_sec;
2975 ki->p_uutime_usec = ut.tv_usec;
2976 ki->p_ustime_sec = st.tv_sec;
2977 ki->p_ustime_usec = st.tv_usec;
2978
2979 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2980 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2981 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2982 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2983 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2984 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2985 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2986 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2987 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2988 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2989 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2990 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2991 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2992 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2993
2994 timeradd(&p->p_stats->p_cru.ru_utime,
2995 &p->p_stats->p_cru.ru_stime, &ut);
2996 ki->p_uctime_sec = ut.tv_sec;
2997 ki->p_uctime_usec = ut.tv_usec;
2998 }
2999 #ifdef MULTIPROCESSOR
3000 if (l && l->l_cpu != NULL)
3001 ki->p_cpuid = l->l_cpu->ci_cpuid;
3002 else
3003 #endif
3004 ki->p_cpuid = KI_NOCPU;
3005 }
3006
3007 /*
3008 * Fill in a kinfo_lwp structure for the specified lwp.
3009 */
3010 static void
3011 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
3012 {
3013
3014 kl->l_forw = PTRTOUINT64(l->l_forw);
3015 kl->l_back = PTRTOUINT64(l->l_back);
3016 kl->l_laddr = PTRTOUINT64(l);
3017 kl->l_addr = PTRTOUINT64(l->l_addr);
3018 kl->l_stat = l->l_stat;
3019 kl->l_lid = l->l_lid;
3020 kl->l_flag = l->l_flag;
3021
3022 kl->l_swtime = l->l_swtime;
3023 kl->l_slptime = l->l_slptime;
3024 if (l->l_stat == LSONPROC) {
3025 KDASSERT(l->l_cpu != NULL);
3026 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3027 } else
3028 kl->l_schedflags = 0;
3029 kl->l_holdcnt = l->l_holdcnt;
3030 kl->l_priority = l->l_priority;
3031 kl->l_usrpri = l->l_usrpri;
3032 if (l->l_wmesg)
3033 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
3034 kl->l_wchan = PTRTOUINT64(l->l_wchan);
3035 #ifdef MULTIPROCESSOR
3036 if (l->l_cpu != NULL)
3037 kl->l_cpuid = l->l_cpu->ci_cpuid;
3038 else
3039 #endif
3040 kl->l_cpuid = KI_NOCPU;
3041 }
3042
3043 /*
3044 * Fill in an eproc structure for the specified process.
3045 */
3046 void
3047 fill_eproc(struct proc *p, struct eproc *ep)
3048 {
3049 struct tty *tp;
3050 struct lwp *l;
3051 struct pcred pc;
3052 struct ucred uc;
3053
3054 ep->e_paddr = p;
3055 ep->e_sess = p->p_session;
3056 kauth_cred_topcred(p->p_cred, &pc);
3057 kauth_cred_toucred(p->p_cred, &uc);
3058 ep->e_pcred = pc;
3059 ep->e_ucred = uc;
3060 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
3061 ep->e_vm.vm_rssize = 0;
3062 ep->e_vm.vm_tsize = 0;
3063 ep->e_vm.vm_dsize = 0;
3064 ep->e_vm.vm_ssize = 0;
3065 /* ep->e_vm.vm_pmap = XXX; */
3066 } else {
3067 struct vmspace *vm = p->p_vmspace;
3068
3069 ep->e_vm.vm_rssize = vm_resident_count(vm);
3070 ep->e_vm.vm_tsize = vm->vm_tsize;
3071 ep->e_vm.vm_dsize = vm->vm_dsize;
3072 ep->e_vm.vm_ssize = vm->vm_ssize;
3073
3074 /* Pick a "representative" LWP */
3075 l = proc_representative_lwp(p);
3076
3077 if (l->l_wmesg)
3078 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
3079 }
3080 if (p->p_pptr)
3081 ep->e_ppid = p->p_pptr->p_pid;
3082 else
3083 ep->e_ppid = 0;
3084 ep->e_pgid = p->p_pgrp->pg_id;
3085 ep->e_sid = ep->e_sess->s_sid;
3086 ep->e_jobc = p->p_pgrp->pg_jobc;
3087 if ((p->p_flag & P_CONTROLT) &&
3088 (tp = ep->e_sess->s_ttyp)) {
3089 ep->e_tdev = tp->t_dev;
3090 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3091 ep->e_tsess = tp->t_session;
3092 } else
3093 ep->e_tdev = NODEV;
3094
3095 ep->e_xsize = ep->e_xrssize = 0;
3096 ep->e_xccount = ep->e_xswrss = 0;
3097 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
3098 if (SESS_LEADER(p))
3099 ep->e_flag |= EPROC_SLEADER;
3100 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
3101 }
3102