init_sysctl.c revision 1.91 1 /* $NetBSD: init_sysctl.c,v 1.91 2006/11/01 22:27:43 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.91 2006/11/01 22:27:43 christos Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "opt_compat_netbsd32.h"
46 #include "opt_ktrace.h"
47 #include "veriexec.h"
48 #include "pty.h"
49 #include "rnd.h"
50
51 #include <sys/types.h>
52 #include <sys/param.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/unistd.h>
58 #include <sys/disklabel.h>
59 #include <sys/rnd.h>
60 #include <sys/vnode.h>
61 #include <sys/mount.h>
62 #include <sys/namei.h>
63 #include <sys/msgbuf.h>
64 #include <dev/cons.h>
65 #include <sys/socketvar.h>
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/malloc.h>
70 #include <sys/resource.h>
71 #include <sys/resourcevar.h>
72 #include <sys/exec.h>
73 #include <sys/conf.h>
74 #include <sys/device.h>
75 #if NVERIEXEC > 0
76 #define VERIEXEC_NEED_NODE
77 #include <sys/verified_exec.h>
78 #endif /* NVERIEXEC > 0 */
79 #include <sys/stat.h>
80 #include <sys/kauth.h>
81 #ifdef KTRACE
82 #include <sys/ktrace.h>
83 #endif
84
85 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
86 #include <sys/ipc.h>
87 #endif
88 #ifdef SYSVMSG
89 #include <sys/msg.h>
90 #endif
91 #ifdef SYSVSEM
92 #include <sys/sem.h>
93 #endif
94 #ifdef SYSVSHM
95 #include <sys/shm.h>
96 #endif
97
98 #ifdef COMPAT_NETBSD32
99 #include <compat/netbsd32/netbsd32.h>
100 #endif
101
102 #include <machine/cpu.h>
103
104 /* XXX this should not be here */
105 int security_setidcore_dump;
106 char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
107 uid_t security_setidcore_owner = 0;
108 gid_t security_setidcore_group = 0;
109 mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
110
111 /*
112 * try over estimating by 5 procs/lwps
113 */
114 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
115 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
116
117 #ifdef KTRACE
118 int dcopyout(struct lwp *, const void *, void *, size_t);
119
120 int
121 dcopyout(l, kaddr, uaddr, len)
122 struct lwp *l;
123 const void *kaddr;
124 void *uaddr;
125 size_t len;
126 {
127 int error;
128
129 error = copyout(kaddr, uaddr, len);
130 if (!error && KTRPOINT(l->l_proc, KTR_MIB)) {
131 struct iovec iov;
132
133 iov.iov_base = uaddr;
134 iov.iov_len = len;
135 ktrgenio(l, -1, UIO_READ, &iov, len, 0);
136 }
137 return error;
138 }
139 #else /* !KTRACE */
140 #define dcopyout(l, kaddr, uaddr, len) copyout(kaddr, uaddr, len)
141 #endif /* KTRACE */
142 #ifndef MULTIPROCESSOR
143 #define sysctl_ncpus() (1)
144 #else /* MULTIPROCESSOR */
145 #ifndef CPU_INFO_FOREACH
146 #define CPU_INFO_ITERATOR int
147 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
148 #endif
149 static int
150 sysctl_ncpus(void)
151 {
152 struct cpu_info *ci;
153 CPU_INFO_ITERATOR cii;
154
155 int ncpus = 0;
156 for (CPU_INFO_FOREACH(cii, ci))
157 ncpus++;
158 return (ncpus);
159 }
160 #endif /* MULTIPROCESSOR */
161
162 #ifdef DIAGNOSTIC
163 static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
164 #endif
165 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
166 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
167 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
168 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
169 static int sysctl_setlen(SYSCTLFN_PROTO);
170 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
171 static int sysctl_kern_file(SYSCTLFN_PROTO);
172 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
173 static int sysctl_msgbuf(SYSCTLFN_PROTO);
174 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
175 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
176 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
177 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
178 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
179 #if NPTY > 0
180 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
181 #endif /* NPTY > 0 */
182 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
183 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
184 static int sysctl_kern_arnd(SYSCTLFN_PROTO);
185 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
186 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
187 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
188 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
189 static int sysctl_kern_file2(SYSCTLFN_PROTO);
190 #if NVERIEXEC > 0
191 static int sysctl_kern_veriexec(SYSCTLFN_PROTO);
192 #endif /* NVERIEXEC > 0 */
193 static int sysctl_security_setidcore(SYSCTLFN_PROTO);
194 static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
195 static int sysctl_kern_cpid(SYSCTLFN_PROTO);
196 static int sysctl_doeproc(SYSCTLFN_PROTO);
197 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
198 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
199 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
200 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
201
202 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
203 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
204 static void fill_file(struct kinfo_file *, const struct file *, struct proc *,
205 int);
206
207 /*
208 * ********************************************************************
209 * section 1: setup routines
210 * ********************************************************************
211 * these functions are stuffed into a link set for sysctl setup
212 * functions. they're never called or referenced from anywhere else.
213 * ********************************************************************
214 */
215
216 /*
217 * sets up the base nodes...
218 */
219 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
220 {
221
222 sysctl_createv(clog, 0, NULL, NULL,
223 CTLFLAG_PERMANENT,
224 CTLTYPE_NODE, "kern",
225 SYSCTL_DESCR("High kernel"),
226 NULL, 0, NULL, 0,
227 CTL_KERN, CTL_EOL);
228 sysctl_createv(clog, 0, NULL, NULL,
229 CTLFLAG_PERMANENT,
230 CTLTYPE_NODE, "vm",
231 SYSCTL_DESCR("Virtual memory"),
232 NULL, 0, NULL, 0,
233 CTL_VM, CTL_EOL);
234 sysctl_createv(clog, 0, NULL, NULL,
235 CTLFLAG_PERMANENT,
236 CTLTYPE_NODE, "vfs",
237 SYSCTL_DESCR("Filesystem"),
238 NULL, 0, NULL, 0,
239 CTL_VFS, CTL_EOL);
240 sysctl_createv(clog, 0, NULL, NULL,
241 CTLFLAG_PERMANENT,
242 CTLTYPE_NODE, "net",
243 SYSCTL_DESCR("Networking"),
244 NULL, 0, NULL, 0,
245 CTL_NET, CTL_EOL);
246 sysctl_createv(clog, 0, NULL, NULL,
247 CTLFLAG_PERMANENT,
248 CTLTYPE_NODE, "debug",
249 SYSCTL_DESCR("Debugging"),
250 NULL, 0, NULL, 0,
251 CTL_DEBUG, CTL_EOL);
252 sysctl_createv(clog, 0, NULL, NULL,
253 CTLFLAG_PERMANENT,
254 CTLTYPE_NODE, "hw",
255 SYSCTL_DESCR("Generic CPU, I/O"),
256 NULL, 0, NULL, 0,
257 CTL_HW, CTL_EOL);
258 sysctl_createv(clog, 0, NULL, NULL,
259 CTLFLAG_PERMANENT,
260 CTLTYPE_NODE, "machdep",
261 SYSCTL_DESCR("Machine dependent"),
262 NULL, 0, NULL, 0,
263 CTL_MACHDEP, CTL_EOL);
264 /*
265 * this node is inserted so that the sysctl nodes in libc can
266 * operate.
267 */
268 sysctl_createv(clog, 0, NULL, NULL,
269 CTLFLAG_PERMANENT,
270 CTLTYPE_NODE, "user",
271 SYSCTL_DESCR("User-level"),
272 NULL, 0, NULL, 0,
273 CTL_USER, CTL_EOL);
274 sysctl_createv(clog, 0, NULL, NULL,
275 CTLFLAG_PERMANENT,
276 CTLTYPE_NODE, "ddb",
277 SYSCTL_DESCR("In-kernel debugger"),
278 NULL, 0, NULL, 0,
279 CTL_DDB, CTL_EOL);
280 sysctl_createv(clog, 0, NULL, NULL,
281 CTLFLAG_PERMANENT,
282 CTLTYPE_NODE, "proc",
283 SYSCTL_DESCR("Per-process"),
284 NULL, 0, NULL, 0,
285 CTL_PROC, CTL_EOL);
286 sysctl_createv(clog, 0, NULL, NULL,
287 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
288 CTLTYPE_NODE, "vendor",
289 SYSCTL_DESCR("Vendor specific"),
290 NULL, 0, NULL, 0,
291 CTL_VENDOR, CTL_EOL);
292 sysctl_createv(clog, 0, NULL, NULL,
293 CTLFLAG_PERMANENT,
294 CTLTYPE_NODE, "emul",
295 SYSCTL_DESCR("Emulation settings"),
296 NULL, 0, NULL, 0,
297 CTL_EMUL, CTL_EOL);
298 sysctl_createv(clog, 0, NULL, NULL,
299 CTLFLAG_PERMANENT,
300 CTLTYPE_NODE, "security",
301 SYSCTL_DESCR("Security"),
302 NULL, 0, NULL, 0,
303 CTL_SECURITY, CTL_EOL);
304 }
305
306 /*
307 * this setup routine is a replacement for kern_sysctl()
308 */
309 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
310 {
311 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
312 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
313 extern int dumponpanic; /* defined in kern/subr_prf.c */
314 const struct sysctlnode *rnode;
315
316 sysctl_createv(clog, 0, NULL, NULL,
317 CTLFLAG_PERMANENT,
318 CTLTYPE_NODE, "kern", NULL,
319 NULL, 0, NULL, 0,
320 CTL_KERN, CTL_EOL);
321
322 sysctl_createv(clog, 0, NULL, NULL,
323 CTLFLAG_PERMANENT,
324 CTLTYPE_STRING, "ostype",
325 SYSCTL_DESCR("Operating system type"),
326 NULL, 0, &ostype, 0,
327 CTL_KERN, KERN_OSTYPE, CTL_EOL);
328 sysctl_createv(clog, 0, NULL, NULL,
329 CTLFLAG_PERMANENT,
330 CTLTYPE_STRING, "osrelease",
331 SYSCTL_DESCR("Operating system release"),
332 NULL, 0, &osrelease, 0,
333 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
334 sysctl_createv(clog, 0, NULL, NULL,
335 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
336 CTLTYPE_INT, "osrevision",
337 SYSCTL_DESCR("Operating system revision"),
338 NULL, __NetBSD_Version__, NULL, 0,
339 CTL_KERN, KERN_OSREV, CTL_EOL);
340 sysctl_createv(clog, 0, NULL, NULL,
341 CTLFLAG_PERMANENT,
342 CTLTYPE_STRING, "version",
343 SYSCTL_DESCR("Kernel version"),
344 NULL, 0, &version, 0,
345 CTL_KERN, KERN_VERSION, CTL_EOL);
346 sysctl_createv(clog, 0, NULL, NULL,
347 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
348 CTLTYPE_INT, "maxvnodes",
349 SYSCTL_DESCR("Maximum number of vnodes"),
350 sysctl_kern_maxvnodes, 0, NULL, 0,
351 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
352 sysctl_createv(clog, 0, NULL, NULL,
353 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
354 CTLTYPE_INT, "maxproc",
355 SYSCTL_DESCR("Maximum number of simultaneous processes"),
356 sysctl_kern_maxproc, 0, NULL, 0,
357 CTL_KERN, KERN_MAXPROC, CTL_EOL);
358 sysctl_createv(clog, 0, NULL, NULL,
359 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
360 CTLTYPE_INT, "maxfiles",
361 SYSCTL_DESCR("Maximum number of open files"),
362 NULL, 0, &maxfiles, 0,
363 CTL_KERN, KERN_MAXFILES, CTL_EOL);
364 sysctl_createv(clog, 0, NULL, NULL,
365 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
366 CTLTYPE_INT, "argmax",
367 SYSCTL_DESCR("Maximum number of bytes of arguments to "
368 "execve(2)"),
369 NULL, ARG_MAX, NULL, 0,
370 CTL_KERN, KERN_ARGMAX, CTL_EOL);
371 sysctl_createv(clog, 0, NULL, NULL,
372 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
373 CTLTYPE_STRING, "hostname",
374 SYSCTL_DESCR("System hostname"),
375 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
376 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
377 sysctl_createv(clog, 0, NULL, NULL,
378 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
379 CTLTYPE_INT, "hostid",
380 SYSCTL_DESCR("System host ID number"),
381 sysctl_kern_hostid, 0, NULL, 0,
382 CTL_KERN, KERN_HOSTID, CTL_EOL);
383 sysctl_createv(clog, 0, NULL, NULL,
384 CTLFLAG_PERMANENT,
385 CTLTYPE_STRUCT, "clockrate",
386 SYSCTL_DESCR("Kernel clock rates"),
387 sysctl_kern_clockrate, 0, NULL,
388 sizeof(struct clockinfo),
389 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
390 sysctl_createv(clog, 0, NULL, NULL,
391 CTLFLAG_PERMANENT,
392 CTLTYPE_INT, "hardclock_ticks",
393 SYSCTL_DESCR("Number of hardclock ticks"),
394 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
395 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
396 sysctl_createv(clog, 0, NULL, NULL,
397 CTLFLAG_PERMANENT,
398 CTLTYPE_STRUCT, "vnode",
399 SYSCTL_DESCR("System vnode table"),
400 sysctl_kern_vnode, 0, NULL, 0,
401 CTL_KERN, KERN_VNODE, CTL_EOL);
402 sysctl_createv(clog, 0, NULL, NULL,
403 CTLFLAG_PERMANENT,
404 CTLTYPE_STRUCT, "file",
405 SYSCTL_DESCR("System open file table"),
406 sysctl_kern_file, 0, NULL, 0,
407 CTL_KERN, KERN_FILE, CTL_EOL);
408 #ifndef GPROF
409 sysctl_createv(clog, 0, NULL, NULL,
410 CTLFLAG_PERMANENT,
411 CTLTYPE_NODE, "profiling",
412 SYSCTL_DESCR("Profiling information (not available)"),
413 sysctl_notavail, 0, NULL, 0,
414 CTL_KERN, KERN_PROF, CTL_EOL);
415 #endif
416 sysctl_createv(clog, 0, NULL, NULL,
417 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
418 CTLTYPE_INT, "posix1version",
419 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
420 "with which the operating system attempts "
421 "to comply"),
422 NULL, _POSIX_VERSION, NULL, 0,
423 CTL_KERN, KERN_POSIX1, CTL_EOL);
424 sysctl_createv(clog, 0, NULL, NULL,
425 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
426 CTLTYPE_INT, "ngroups",
427 SYSCTL_DESCR("Maximum number of supplemental groups"),
428 NULL, NGROUPS_MAX, NULL, 0,
429 CTL_KERN, KERN_NGROUPS, CTL_EOL);
430 sysctl_createv(clog, 0, NULL, NULL,
431 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
432 CTLTYPE_INT, "job_control",
433 SYSCTL_DESCR("Whether job control is available"),
434 NULL, 1, NULL, 0,
435 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
436 sysctl_createv(clog, 0, NULL, NULL,
437 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
438 CTLTYPE_INT, "saved_ids",
439 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
440 "available"), NULL,
441 #ifdef _POSIX_SAVED_IDS
442 1,
443 #else /* _POSIX_SAVED_IDS */
444 0,
445 #endif /* _POSIX_SAVED_IDS */
446 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
447 sysctl_createv(clog, 0, NULL, NULL,
448 CTLFLAG_PERMANENT,
449 CTLTYPE_STRUCT, "boottime",
450 SYSCTL_DESCR("System boot time"),
451 NULL, 0, &boottime, sizeof(boottime),
452 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
453 sysctl_createv(clog, 0, NULL, NULL,
454 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
455 CTLTYPE_STRING, "domainname",
456 SYSCTL_DESCR("YP domain name"),
457 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
458 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
459 sysctl_createv(clog, 0, NULL, NULL,
460 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
461 CTLTYPE_INT, "maxpartitions",
462 SYSCTL_DESCR("Maximum number of partitions allowed per "
463 "disk"),
464 NULL, MAXPARTITIONS, NULL, 0,
465 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
466 sysctl_createv(clog, 0, NULL, NULL,
467 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
468 CTLTYPE_INT, "rawpartition",
469 SYSCTL_DESCR("Raw partition of a disk"),
470 NULL, RAW_PART, NULL, 0,
471 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
472 sysctl_createv(clog, 0, NULL, NULL,
473 CTLFLAG_PERMANENT,
474 CTLTYPE_STRUCT, "timex", NULL,
475 sysctl_notavail, 0, NULL, 0,
476 CTL_KERN, KERN_TIMEX, CTL_EOL);
477 sysctl_createv(clog, 0, NULL, NULL,
478 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
479 CTLTYPE_INT, "autonicetime",
480 SYSCTL_DESCR("CPU clock seconds before non-root "
481 "process priority is lowered"),
482 sysctl_kern_autonice, 0, &autonicetime, 0,
483 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
484 sysctl_createv(clog, 0, NULL, NULL,
485 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
486 CTLTYPE_INT, "autoniceval",
487 SYSCTL_DESCR("Automatic reniced non-root process "
488 "priority"),
489 sysctl_kern_autonice, 0, &autoniceval, 0,
490 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
491 sysctl_createv(clog, 0, NULL, NULL,
492 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
493 CTLTYPE_INT, "rtc_offset",
494 SYSCTL_DESCR("Offset of real time clock from UTC in "
495 "minutes"),
496 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
497 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
498 sysctl_createv(clog, 0, NULL, NULL,
499 CTLFLAG_PERMANENT,
500 CTLTYPE_STRING, "root_device",
501 SYSCTL_DESCR("Name of the root device"),
502 sysctl_root_device, 0, NULL, 0,
503 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
504 sysctl_createv(clog, 0, NULL, NULL,
505 CTLFLAG_PERMANENT,
506 CTLTYPE_INT, "msgbufsize",
507 SYSCTL_DESCR("Size of the kernel message buffer"),
508 sysctl_msgbuf, 0, NULL, 0,
509 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
510 sysctl_createv(clog, 0, NULL, NULL,
511 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
512 CTLTYPE_INT, "fsync",
513 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
514 "Synchronization Option is available on "
515 "this system"),
516 NULL, 1, NULL, 0,
517 CTL_KERN, KERN_FSYNC, CTL_EOL);
518 sysctl_createv(clog, 0, NULL, NULL,
519 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
520 CTLTYPE_INT, "sysvmsg",
521 SYSCTL_DESCR("System V style message support available"),
522 NULL,
523 #ifdef SYSVMSG
524 1,
525 #else /* SYSVMSG */
526 0,
527 #endif /* SYSVMSG */
528 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
529 sysctl_createv(clog, 0, NULL, NULL,
530 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
531 CTLTYPE_INT, "sysvsem",
532 SYSCTL_DESCR("System V style semaphore support "
533 "available"), NULL,
534 #ifdef SYSVSEM
535 1,
536 #else /* SYSVSEM */
537 0,
538 #endif /* SYSVSEM */
539 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
540 sysctl_createv(clog, 0, NULL, NULL,
541 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
542 CTLTYPE_INT, "sysvshm",
543 SYSCTL_DESCR("System V style shared memory support "
544 "available"), NULL,
545 #ifdef SYSVSHM
546 1,
547 #else /* SYSVSHM */
548 0,
549 #endif /* SYSVSHM */
550 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
551 sysctl_createv(clog, 0, NULL, NULL,
552 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
553 CTLTYPE_INT, "synchronized_io",
554 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
555 "I/O Option is available on this system"),
556 NULL, 1, NULL, 0,
557 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
558 sysctl_createv(clog, 0, NULL, NULL,
559 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
560 CTLTYPE_INT, "iov_max",
561 SYSCTL_DESCR("Maximum number of iovec structures per "
562 "process"),
563 NULL, IOV_MAX, NULL, 0,
564 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
565 sysctl_createv(clog, 0, NULL, NULL,
566 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
567 CTLTYPE_INT, "mapped_files",
568 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
569 "Files Option is available on this system"),
570 NULL, 1, NULL, 0,
571 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
572 sysctl_createv(clog, 0, NULL, NULL,
573 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
574 CTLTYPE_INT, "memlock",
575 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
576 "Locking Option is available on this "
577 "system"),
578 NULL, 1, NULL, 0,
579 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
580 sysctl_createv(clog, 0, NULL, NULL,
581 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
582 CTLTYPE_INT, "memlock_range",
583 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
584 "Locking Option is available on this "
585 "system"),
586 NULL, 1, NULL, 0,
587 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
588 sysctl_createv(clog, 0, NULL, NULL,
589 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
590 CTLTYPE_INT, "memory_protection",
591 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
592 "Protection Option is available on this "
593 "system"),
594 NULL, 1, NULL, 0,
595 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
596 sysctl_createv(clog, 0, NULL, NULL,
597 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
598 CTLTYPE_INT, "login_name_max",
599 SYSCTL_DESCR("Maximum login name length"),
600 NULL, LOGIN_NAME_MAX, NULL, 0,
601 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
602 sysctl_createv(clog, 0, NULL, NULL,
603 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
604 CTLTYPE_STRING, "defcorename",
605 SYSCTL_DESCR("Default core file name"),
606 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
607 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
608 sysctl_createv(clog, 0, NULL, NULL,
609 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
610 CTLTYPE_INT, "logsigexit",
611 SYSCTL_DESCR("Log process exit when caused by signals"),
612 NULL, 0, &kern_logsigexit, 0,
613 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
614 sysctl_createv(clog, 0, NULL, NULL,
615 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
616 CTLTYPE_INT, "fscale",
617 SYSCTL_DESCR("Kernel fixed-point scale factor"),
618 NULL, FSCALE, NULL, 0,
619 CTL_KERN, KERN_FSCALE, CTL_EOL);
620 sysctl_createv(clog, 0, NULL, NULL,
621 CTLFLAG_PERMANENT,
622 CTLTYPE_INT, "ccpu",
623 SYSCTL_DESCR("Scheduler exponential decay value"),
624 NULL, 0, &ccpu, 0,
625 CTL_KERN, KERN_CCPU, CTL_EOL);
626 sysctl_createv(clog, 0, NULL, NULL,
627 CTLFLAG_PERMANENT,
628 CTLTYPE_STRUCT, "cp_time",
629 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
630 sysctl_kern_cptime, 0, NULL, 0,
631 CTL_KERN, KERN_CP_TIME, CTL_EOL);
632 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
633 sysctl_createv(clog, 0, NULL, NULL,
634 CTLFLAG_PERMANENT,
635 CTLTYPE_STRUCT, "sysvipc_info",
636 SYSCTL_DESCR("System V style IPC information"),
637 sysctl_kern_sysvipc, 0, NULL, 0,
638 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
639 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
640 sysctl_createv(clog, 0, NULL, NULL,
641 CTLFLAG_PERMANENT,
642 CTLTYPE_INT, "msgbuf",
643 SYSCTL_DESCR("Kernel message buffer"),
644 sysctl_msgbuf, 0, NULL, 0,
645 CTL_KERN, KERN_MSGBUF, CTL_EOL);
646 sysctl_createv(clog, 0, NULL, NULL,
647 CTLFLAG_PERMANENT,
648 CTLTYPE_STRUCT, "consdev",
649 SYSCTL_DESCR("Console device"),
650 sysctl_consdev, 0, NULL, sizeof(dev_t),
651 CTL_KERN, KERN_CONSDEV, CTL_EOL);
652 #if NPTY > 0
653 sysctl_createv(clog, 0, NULL, NULL,
654 CTLFLAG_PERMANENT,
655 CTLTYPE_INT, "maxptys",
656 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
657 sysctl_kern_maxptys, 0, NULL, 0,
658 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
659 #endif /* NPTY > 0 */
660 sysctl_createv(clog, 0, NULL, NULL,
661 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
662 CTLTYPE_INT, "maxphys",
663 SYSCTL_DESCR("Maximum raw I/O transfer size"),
664 NULL, MAXPHYS, NULL, 0,
665 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
666 sysctl_createv(clog, 0, NULL, NULL,
667 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
668 CTLTYPE_INT, "sbmax",
669 SYSCTL_DESCR("Maximum socket buffer size"),
670 sysctl_kern_sbmax, 0, NULL, 0,
671 CTL_KERN, KERN_SBMAX, CTL_EOL);
672 sysctl_createv(clog, 0, NULL, NULL,
673 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
674 CTLTYPE_INT, "monotonic_clock",
675 SYSCTL_DESCR("Implementation version of the POSIX "
676 "1003.1b Monotonic Clock Option"),
677 /* XXX _POSIX_VERSION */
678 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
679 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
680 sysctl_createv(clog, 0, NULL, NULL,
681 CTLFLAG_PERMANENT,
682 CTLTYPE_INT, "urandom",
683 SYSCTL_DESCR("Random integer value"),
684 sysctl_kern_urnd, 0, NULL, 0,
685 CTL_KERN, KERN_URND, CTL_EOL);
686 sysctl_createv(clog, 0, NULL, NULL,
687 CTLFLAG_PERMANENT,
688 CTLTYPE_INT, "arandom",
689 SYSCTL_DESCR("n bytes of random data"),
690 sysctl_kern_arnd, 0, NULL, 0,
691 CTL_KERN, KERN_ARND, CTL_EOL);
692 sysctl_createv(clog, 0, NULL, NULL,
693 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
694 CTLTYPE_INT, "labelsector",
695 SYSCTL_DESCR("Sector number containing the disklabel"),
696 NULL, LABELSECTOR, NULL, 0,
697 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
698 sysctl_createv(clog, 0, NULL, NULL,
699 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
700 CTLTYPE_INT, "labeloffset",
701 SYSCTL_DESCR("Offset of the disklabel within the "
702 "sector"),
703 NULL, LABELOFFSET, NULL, 0,
704 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
705 sysctl_createv(clog, 0, NULL, NULL,
706 CTLFLAG_PERMANENT,
707 CTLTYPE_NODE, "lwp",
708 SYSCTL_DESCR("System-wide LWP information"),
709 sysctl_kern_lwp, 0, NULL, 0,
710 CTL_KERN, KERN_LWP, CTL_EOL);
711 sysctl_createv(clog, 0, NULL, NULL,
712 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
713 CTLTYPE_INT, "forkfsleep",
714 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
715 "to process limits"),
716 sysctl_kern_forkfsleep, 0, NULL, 0,
717 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
718 sysctl_createv(clog, 0, NULL, NULL,
719 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
720 CTLTYPE_INT, "posix_threads",
721 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
722 "Threads option to which the system "
723 "attempts to conform"),
724 /* XXX _POSIX_VERSION */
725 NULL, _POSIX_THREADS, NULL, 0,
726 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
727 sysctl_createv(clog, 0, NULL, NULL,
728 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
729 CTLTYPE_INT, "posix_semaphores",
730 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
731 "Semaphores option to which the system "
732 "attempts to conform"), NULL,
733 #ifdef P1003_1B_SEMAPHORE
734 200112,
735 #else /* P1003_1B_SEMAPHORE */
736 0,
737 #endif /* P1003_1B_SEMAPHORE */
738 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
739 sysctl_createv(clog, 0, NULL, NULL,
740 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
741 CTLTYPE_INT, "posix_barriers",
742 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
743 "Barriers option to which the system "
744 "attempts to conform"),
745 /* XXX _POSIX_VERSION */
746 NULL, _POSIX_BARRIERS, NULL, 0,
747 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
748 sysctl_createv(clog, 0, NULL, NULL,
749 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
750 CTLTYPE_INT, "posix_timers",
751 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
752 "Timers option to which the system "
753 "attempts to conform"),
754 /* XXX _POSIX_VERSION */
755 NULL, _POSIX_TIMERS, NULL, 0,
756 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
757 sysctl_createv(clog, 0, NULL, NULL,
758 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
759 CTLTYPE_INT, "posix_spin_locks",
760 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
761 "Locks option to which the system attempts "
762 "to conform"),
763 /* XXX _POSIX_VERSION */
764 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
765 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
766 sysctl_createv(clog, 0, NULL, NULL,
767 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
768 CTLTYPE_INT, "posix_reader_writer_locks",
769 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
770 "Read-Write Locks option to which the "
771 "system attempts to conform"),
772 /* XXX _POSIX_VERSION */
773 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
774 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
775 sysctl_createv(clog, 0, NULL, NULL,
776 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
777 CTLTYPE_INT, "dump_on_panic",
778 SYSCTL_DESCR("Perform a crash dump on system panic"),
779 NULL, 0, &dumponpanic, 0,
780 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
781 #ifdef DIAGNOSTIC
782 sysctl_createv(clog, 0, NULL, NULL,
783 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
784 CTLTYPE_INT, "panic_now",
785 SYSCTL_DESCR("Trigger a panic"),
786 sysctl_kern_trigger_panic, 0, NULL, 0,
787 CTL_KERN, CTL_CREATE, CTL_EOL);
788 #endif
789 sysctl_createv(clog, 0, NULL, NULL,
790 CTLFLAG_PERMANENT,
791 CTLTYPE_INT, "root_partition",
792 SYSCTL_DESCR("Root partition on the root device"),
793 sysctl_kern_root_partition, 0, NULL, 0,
794 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
795 sysctl_createv(clog, 0, NULL, NULL,
796 CTLFLAG_PERMANENT,
797 CTLTYPE_STRUCT, "drivers",
798 SYSCTL_DESCR("List of all drivers with block and "
799 "character device numbers"),
800 sysctl_kern_drivers, 0, NULL, 0,
801 CTL_KERN, KERN_DRIVERS, CTL_EOL);
802 sysctl_createv(clog, 0, NULL, NULL,
803 CTLFLAG_PERMANENT,
804 CTLTYPE_STRUCT, "file2",
805 SYSCTL_DESCR("System open file table"),
806 sysctl_kern_file2, 0, NULL, 0,
807 CTL_KERN, KERN_FILE2, CTL_EOL);
808 #if NVERIEXEC > 0
809 sysctl_createv(clog, 0, NULL, NULL,
810 CTLFLAG_PERMANENT,
811 CTLTYPE_NODE, "veriexec",
812 SYSCTL_DESCR("Verified Exec"),
813 NULL, 0, NULL, 0,
814 CTL_KERN, KERN_VERIEXEC, CTL_EOL);
815 sysctl_createv(clog, 0, NULL, NULL,
816 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
817 CTLTYPE_INT, "verbose",
818 SYSCTL_DESCR("Verified Exec verbose level"),
819 NULL, 0, &veriexec_verbose, 0,
820 CTL_KERN, KERN_VERIEXEC, VERIEXEC_VERBOSE,
821 CTL_EOL);
822 sysctl_createv(clog, 0, NULL, NULL,
823 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
824 CTLTYPE_INT, "strict",
825 SYSCTL_DESCR("Verified Exec strict level"),
826 sysctl_kern_veriexec, 0, NULL, 0,
827 CTL_KERN, KERN_VERIEXEC, VERIEXEC_STRICT, CTL_EOL);
828 sysctl_createv(clog, 0, NULL, NULL,
829 CTLFLAG_PERMANENT,
830 CTLTYPE_STRING, "algorithms",
831 SYSCTL_DESCR("Verified Exec supported hashing "
832 "algorithms"),
833 sysctl_kern_veriexec, 0, NULL, 0,
834 CTL_KERN, KERN_VERIEXEC, VERIEXEC_ALGORITHMS, CTL_EOL);
835 sysctl_createv(clog, 0, NULL, &veriexec_count_node,
836 CTLFLAG_PERMANENT,
837 CTLTYPE_NODE, "count",
838 SYSCTL_DESCR("Number of fingerprints on device(s)"),
839 NULL, 0, NULL, 0,
840 CTL_KERN, KERN_VERIEXEC, VERIEXEC_COUNT, CTL_EOL);
841 #endif /* NVERIEXEC > 0 */
842 sysctl_createv(clog, 0, NULL, NULL,
843 CTLFLAG_PERMANENT,
844 CTLTYPE_STRUCT, "cp_id",
845 SYSCTL_DESCR("Mapping of CPU number to CPU id"),
846 sysctl_kern_cpid, 0, NULL, 0,
847 CTL_KERN, KERN_CP_ID, CTL_EOL);
848
849 sysctl_createv(clog, 0, NULL, &rnode,
850 CTLFLAG_PERMANENT,
851 CTLTYPE_NODE, "coredump",
852 SYSCTL_DESCR("Coredump settings."),
853 NULL, 0, NULL, 0,
854 CTL_KERN, CTL_CREATE, CTL_EOL);
855 sysctl_createv(clog, 0, &rnode, &rnode,
856 CTLFLAG_PERMANENT,
857 CTLTYPE_NODE, "setid",
858 SYSCTL_DESCR("Set-id processes' coredump settings."),
859 NULL, 0, NULL, 0,
860 CTL_CREATE, CTL_EOL);
861 sysctl_createv(clog, 0, &rnode, NULL,
862 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
863 CTLTYPE_INT, "dump",
864 SYSCTL_DESCR("Allow set-id processes to dump core."),
865 sysctl_security_setidcore, 0, &security_setidcore_dump,
866 sizeof(security_setidcore_dump),
867 CTL_CREATE, CTL_EOL);
868 sysctl_createv(clog, 0, &rnode, NULL,
869 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
870 CTLTYPE_STRING, "path",
871 SYSCTL_DESCR("Path pattern for set-id coredumps."),
872 sysctl_security_setidcorename, 0,
873 &security_setidcore_path,
874 sizeof(security_setidcore_path),
875 CTL_CREATE, CTL_EOL);
876 sysctl_createv(clog, 0, &rnode, NULL,
877 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
878 CTLTYPE_INT, "owner",
879 SYSCTL_DESCR("Owner id for set-id processes' cores."),
880 sysctl_security_setidcore, 0, &security_setidcore_owner,
881 0,
882 CTL_CREATE, CTL_EOL);
883 sysctl_createv(clog, 0, &rnode, NULL,
884 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
885 CTLTYPE_INT, "group",
886 SYSCTL_DESCR("Group id for set-id processes' cores."),
887 sysctl_security_setidcore, 0, &security_setidcore_group,
888 0,
889 CTL_CREATE, CTL_EOL);
890 sysctl_createv(clog, 0, &rnode, NULL,
891 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
892 CTLTYPE_INT, "mode",
893 SYSCTL_DESCR("Mode for set-id processes' cores."),
894 sysctl_security_setidcore, 0, &security_setidcore_mode,
895 0,
896 CTL_CREATE, CTL_EOL);
897 }
898
899 SYSCTL_SETUP(sysctl_kern_proc_setup,
900 "sysctl kern.proc/proc2/proc_args subtree setup")
901 {
902
903 sysctl_createv(clog, 0, NULL, NULL,
904 CTLFLAG_PERMANENT,
905 CTLTYPE_NODE, "kern", NULL,
906 NULL, 0, NULL, 0,
907 CTL_KERN, CTL_EOL);
908
909 sysctl_createv(clog, 0, NULL, NULL,
910 CTLFLAG_PERMANENT,
911 CTLTYPE_NODE, "proc",
912 SYSCTL_DESCR("System-wide process information"),
913 sysctl_doeproc, 0, NULL, 0,
914 CTL_KERN, KERN_PROC, CTL_EOL);
915 sysctl_createv(clog, 0, NULL, NULL,
916 CTLFLAG_PERMANENT,
917 CTLTYPE_NODE, "proc2",
918 SYSCTL_DESCR("Machine-independent process information"),
919 sysctl_doeproc, 0, NULL, 0,
920 CTL_KERN, KERN_PROC2, CTL_EOL);
921 sysctl_createv(clog, 0, NULL, NULL,
922 CTLFLAG_PERMANENT,
923 CTLTYPE_NODE, "proc_args",
924 SYSCTL_DESCR("Process argument information"),
925 sysctl_kern_proc_args, 0, NULL, 0,
926 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
927
928 /*
929 "nodes" under these:
930
931 KERN_PROC_ALL
932 KERN_PROC_PID pid
933 KERN_PROC_PGRP pgrp
934 KERN_PROC_SESSION sess
935 KERN_PROC_TTY tty
936 KERN_PROC_UID uid
937 KERN_PROC_RUID uid
938 KERN_PROC_GID gid
939 KERN_PROC_RGID gid
940
941 all in all, probably not worth the effort...
942 */
943 }
944
945 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
946 {
947 u_int u;
948 u_quad_t q;
949
950 sysctl_createv(clog, 0, NULL, NULL,
951 CTLFLAG_PERMANENT,
952 CTLTYPE_NODE, "hw", NULL,
953 NULL, 0, NULL, 0,
954 CTL_HW, CTL_EOL);
955
956 sysctl_createv(clog, 0, NULL, NULL,
957 CTLFLAG_PERMANENT,
958 CTLTYPE_STRING, "machine",
959 SYSCTL_DESCR("Machine class"),
960 NULL, 0, machine, 0,
961 CTL_HW, HW_MACHINE, CTL_EOL);
962 sysctl_createv(clog, 0, NULL, NULL,
963 CTLFLAG_PERMANENT,
964 CTLTYPE_STRING, "model",
965 SYSCTL_DESCR("Machine model"),
966 NULL, 0, cpu_model, 0,
967 CTL_HW, HW_MODEL, CTL_EOL);
968 sysctl_createv(clog, 0, NULL, NULL,
969 CTLFLAG_PERMANENT,
970 CTLTYPE_INT, "ncpu",
971 SYSCTL_DESCR("Number of active CPUs"),
972 sysctl_hw_ncpu, 0, NULL, 0,
973 CTL_HW, HW_NCPU, CTL_EOL);
974 sysctl_createv(clog, 0, NULL, NULL,
975 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
976 CTLTYPE_INT, "byteorder",
977 SYSCTL_DESCR("System byte order"),
978 NULL, BYTE_ORDER, NULL, 0,
979 CTL_HW, HW_BYTEORDER, CTL_EOL);
980 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
981 UINT_MAX : physmem * PAGE_SIZE;
982 sysctl_createv(clog, 0, NULL, NULL,
983 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
984 CTLTYPE_INT, "physmem",
985 SYSCTL_DESCR("Bytes of physical memory"),
986 NULL, u, NULL, 0,
987 CTL_HW, HW_PHYSMEM, CTL_EOL);
988 sysctl_createv(clog, 0, NULL, NULL,
989 CTLFLAG_PERMANENT,
990 CTLTYPE_INT, "usermem",
991 SYSCTL_DESCR("Bytes of non-kernel memory"),
992 sysctl_hw_usermem, 0, NULL, 0,
993 CTL_HW, HW_USERMEM, CTL_EOL);
994 sysctl_createv(clog, 0, NULL, NULL,
995 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
996 CTLTYPE_INT, "pagesize",
997 SYSCTL_DESCR("Software page size"),
998 NULL, PAGE_SIZE, NULL, 0,
999 CTL_HW, HW_PAGESIZE, CTL_EOL);
1000 sysctl_createv(clog, 0, NULL, NULL,
1001 CTLFLAG_PERMANENT,
1002 CTLTYPE_STRING, "machine_arch",
1003 SYSCTL_DESCR("Machine CPU class"),
1004 NULL, 0, machine_arch, 0,
1005 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
1006 sysctl_createv(clog, 0, NULL, NULL,
1007 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
1008 CTLTYPE_INT, "alignbytes",
1009 SYSCTL_DESCR("Alignment constraint for all possible "
1010 "data types"),
1011 NULL, ALIGNBYTES, NULL, 0,
1012 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
1013 sysctl_createv(clog, 0, NULL, NULL,
1014 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
1015 CTLTYPE_STRING, "cnmagic",
1016 SYSCTL_DESCR("Console magic key sequence"),
1017 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
1018 CTL_HW, HW_CNMAGIC, CTL_EOL);
1019 q = (u_quad_t)physmem * PAGE_SIZE;
1020 sysctl_createv(clog, 0, NULL, NULL,
1021 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
1022 CTLTYPE_QUAD, "physmem64",
1023 SYSCTL_DESCR("Bytes of physical memory"),
1024 NULL, q, NULL, 0,
1025 CTL_HW, HW_PHYSMEM64, CTL_EOL);
1026 sysctl_createv(clog, 0, NULL, NULL,
1027 CTLFLAG_PERMANENT,
1028 CTLTYPE_QUAD, "usermem64",
1029 SYSCTL_DESCR("Bytes of non-kernel memory"),
1030 sysctl_hw_usermem, 0, NULL, 0,
1031 CTL_HW, HW_USERMEM64, CTL_EOL);
1032 }
1033
1034 #ifdef DEBUG
1035 /*
1036 * Debugging related system variables.
1037 */
1038 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
1039 struct ctldebug debug5, debug6, debug7, debug8, debug9;
1040 struct ctldebug debug10, debug11, debug12, debug13, debug14;
1041 struct ctldebug debug15, debug16, debug17, debug18, debug19;
1042 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
1043 &debug0, &debug1, &debug2, &debug3, &debug4,
1044 &debug5, &debug6, &debug7, &debug8, &debug9,
1045 &debug10, &debug11, &debug12, &debug13, &debug14,
1046 &debug15, &debug16, &debug17, &debug18, &debug19,
1047 };
1048
1049 /*
1050 * this setup routine is a replacement for debug_sysctl()
1051 *
1052 * note that it creates several nodes per defined debug variable
1053 */
1054 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
1055 {
1056 struct ctldebug *cdp;
1057 char nodename[20];
1058 int i;
1059
1060 /*
1061 * two ways here:
1062 *
1063 * the "old" way (debug.name -> value) which was emulated by
1064 * the sysctl(8) binary
1065 *
1066 * the new way, which the sysctl(8) binary was actually using
1067
1068 node debug
1069 node debug.0
1070 string debug.0.name
1071 int debug.0.value
1072 int debug.name
1073
1074 */
1075
1076 sysctl_createv(clog, 0, NULL, NULL,
1077 CTLFLAG_PERMANENT,
1078 CTLTYPE_NODE, "debug", NULL,
1079 NULL, 0, NULL, 0,
1080 CTL_DEBUG, CTL_EOL);
1081
1082 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
1083 cdp = debugvars[i];
1084 if (cdp->debugname == NULL || cdp->debugvar == NULL)
1085 continue;
1086
1087 snprintf(nodename, sizeof(nodename), "debug%d", i);
1088 sysctl_createv(clog, 0, NULL, NULL,
1089 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1090 CTLTYPE_NODE, nodename, NULL,
1091 NULL, 0, NULL, 0,
1092 CTL_DEBUG, i, CTL_EOL);
1093 sysctl_createv(clog, 0, NULL, NULL,
1094 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1095 CTLTYPE_STRING, "name", NULL,
1096 /*XXXUNCONST*/
1097 NULL, 0, __UNCONST(cdp->debugname), 0,
1098 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
1099 sysctl_createv(clog, 0, NULL, NULL,
1100 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1101 CTLTYPE_INT, "value", NULL,
1102 NULL, 0, cdp->debugvar, 0,
1103 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
1104 sysctl_createv(clog, 0, NULL, NULL,
1105 CTLFLAG_PERMANENT,
1106 CTLTYPE_INT, cdp->debugname, NULL,
1107 NULL, 0, cdp->debugvar, 0,
1108 CTL_DEBUG, CTL_CREATE, CTL_EOL);
1109 }
1110 }
1111 #endif /* DEBUG */
1112
1113 /*
1114 * ********************************************************************
1115 * section 2: private node-specific helper routines.
1116 * ********************************************************************
1117 */
1118
1119 #ifdef DIAGNOSTIC
1120 static int
1121 sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
1122 {
1123 int newtrig, error;
1124 struct sysctlnode node;
1125
1126 newtrig = 0;
1127 node = *rnode;
1128 node.sysctl_data = &newtrig;
1129 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1130 if (error || newp == NULL)
1131 return (error);
1132
1133 if (newtrig != 0)
1134 panic("Panic triggered");
1135
1136 return (error);
1137 }
1138 #endif
1139
1140 /*
1141 * sysctl helper routine for kern.maxvnodes. drain vnodes if
1142 * new value is lower than desiredvnodes and then calls reinit
1143 * routines that needs to adjust to the new value.
1144 */
1145 static int
1146 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1147 {
1148 int error, new_vnodes, old_vnodes;
1149 struct sysctlnode node;
1150
1151 new_vnodes = desiredvnodes;
1152 node = *rnode;
1153 node.sysctl_data = &new_vnodes;
1154 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1155 if (error || newp == NULL)
1156 return (error);
1157
1158 old_vnodes = desiredvnodes;
1159 desiredvnodes = new_vnodes;
1160 if (new_vnodes < old_vnodes) {
1161 error = vfs_drainvnodes(new_vnodes, l);
1162 if (error) {
1163 desiredvnodes = old_vnodes;
1164 return (error);
1165 }
1166 }
1167 vfs_reinit();
1168 nchreinit();
1169
1170 return (0);
1171 }
1172
1173 /*
1174 * sysctl helper routine for rtc_offset - set time after changes
1175 */
1176 static int
1177 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1178 {
1179 struct timespec ts, delta;
1180 int error, new_rtc_offset;
1181 struct sysctlnode node;
1182
1183 new_rtc_offset = rtc_offset;
1184 node = *rnode;
1185 node.sysctl_data = &new_rtc_offset;
1186 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1187 if (error || newp == NULL)
1188 return (error);
1189
1190 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
1191 KAUTH_REQ_SYSTEM_TIME_RTCOFFSET,
1192 (void *)(u_long)new_rtc_offset, NULL, NULL))
1193 return (EPERM);
1194 if (rtc_offset == new_rtc_offset)
1195 return (0);
1196
1197 /* if we change the offset, adjust the time */
1198 nanotime(&ts);
1199 delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
1200 delta.tv_nsec = 0;
1201 timespecadd(&ts, &delta, &ts);
1202 rtc_offset = new_rtc_offset;
1203 settime(l->l_proc, &ts);
1204
1205 return (0);
1206 }
1207
1208 /*
1209 * sysctl helper routine for kern.maxproc. ensures that the new
1210 * values are not too low or too high.
1211 */
1212 static int
1213 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1214 {
1215 int error, nmaxproc;
1216 struct sysctlnode node;
1217
1218 nmaxproc = maxproc;
1219 node = *rnode;
1220 node.sysctl_data = &nmaxproc;
1221 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1222 if (error || newp == NULL)
1223 return (error);
1224
1225 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1226 return (EINVAL);
1227 #ifdef __HAVE_CPU_MAXPROC
1228 if (nmaxproc > cpu_maxproc())
1229 return (EINVAL);
1230 #endif
1231 maxproc = nmaxproc;
1232
1233 return (0);
1234 }
1235
1236 /*
1237 * sysctl helper function for kern.hostid. the hostid is a long, but
1238 * we export it as an int, so we need to give it a little help.
1239 */
1240 static int
1241 sysctl_kern_hostid(SYSCTLFN_ARGS)
1242 {
1243 int error, inthostid;
1244 struct sysctlnode node;
1245
1246 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1247 node = *rnode;
1248 node.sysctl_data = &inthostid;
1249 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1250 if (error || newp == NULL)
1251 return (error);
1252
1253 hostid = (unsigned)inthostid;
1254
1255 return (0);
1256 }
1257
1258 /*
1259 * sysctl helper function for kern.hostname and kern.domainnname.
1260 * resets the relevant recorded length when the underlying name is
1261 * changed.
1262 */
1263 static int
1264 sysctl_setlen(SYSCTLFN_ARGS)
1265 {
1266 int error;
1267
1268 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1269 if (error || newp == NULL)
1270 return (error);
1271
1272 switch (rnode->sysctl_num) {
1273 case KERN_HOSTNAME:
1274 hostnamelen = strlen((const char*)rnode->sysctl_data);
1275 break;
1276 case KERN_DOMAINNAME:
1277 domainnamelen = strlen((const char*)rnode->sysctl_data);
1278 break;
1279 }
1280
1281 return (0);
1282 }
1283
1284 /*
1285 * sysctl helper routine for kern.clockrate. assembles a struct on
1286 * the fly to be returned to the caller.
1287 */
1288 static int
1289 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1290 {
1291 struct clockinfo clkinfo;
1292 struct sysctlnode node;
1293
1294 clkinfo.tick = tick;
1295 clkinfo.tickadj = tickadj;
1296 clkinfo.hz = hz;
1297 clkinfo.profhz = profhz;
1298 clkinfo.stathz = stathz ? stathz : hz;
1299
1300 node = *rnode;
1301 node.sysctl_data = &clkinfo;
1302 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1303 }
1304
1305
1306 /*
1307 * sysctl helper routine for kern.file pseudo-subtree.
1308 */
1309 static int
1310 sysctl_kern_file(SYSCTLFN_ARGS)
1311 {
1312 int error;
1313 size_t buflen;
1314 struct file *fp;
1315 char *start, *where;
1316
1317 start = where = oldp;
1318 buflen = *oldlenp;
1319 if (where == NULL) {
1320 /*
1321 * overestimate by 10 files
1322 */
1323 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1324 return (0);
1325 }
1326
1327 /*
1328 * first dcopyout filehead
1329 */
1330 if (buflen < sizeof(filehead)) {
1331 *oldlenp = 0;
1332 return (0);
1333 }
1334 error = dcopyout(l, &filehead, where, sizeof(filehead));
1335 if (error)
1336 return (error);
1337 buflen -= sizeof(filehead);
1338 where += sizeof(filehead);
1339
1340 /*
1341 * followed by an array of file structures
1342 */
1343 LIST_FOREACH(fp, &filehead, f_list) {
1344 if (kauth_authorize_generic(l->l_cred,
1345 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0)
1346 continue;
1347 if (buflen < sizeof(struct file)) {
1348 *oldlenp = where - start;
1349 return (ENOMEM);
1350 }
1351 error = dcopyout(l, fp, where, sizeof(struct file));
1352 if (error)
1353 return (error);
1354 buflen -= sizeof(struct file);
1355 where += sizeof(struct file);
1356 }
1357 *oldlenp = where - start;
1358 return (0);
1359 }
1360
1361 /*
1362 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
1363 * asserts that the assigned value is in the correct range.
1364 */
1365 static int
1366 sysctl_kern_autonice(SYSCTLFN_ARGS)
1367 {
1368 int error, t = 0;
1369 struct sysctlnode node;
1370
1371 node = *rnode;
1372 t = *(int*)node.sysctl_data;
1373 node.sysctl_data = &t;
1374 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1375 if (error || newp == NULL)
1376 return (error);
1377
1378 switch (node.sysctl_num) {
1379 case KERN_AUTONICETIME:
1380 if (t >= 0)
1381 autonicetime = t;
1382 break;
1383 case KERN_AUTONICEVAL:
1384 if (t < PRIO_MIN)
1385 t = PRIO_MIN;
1386 else if (t > PRIO_MAX)
1387 t = PRIO_MAX;
1388 autoniceval = t;
1389 break;
1390 }
1391
1392 return (0);
1393 }
1394
1395 /*
1396 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
1397 * former it merely checks the message buffer is set up. for the latter,
1398 * it also copies out the data if necessary.
1399 */
1400 static int
1401 sysctl_msgbuf(SYSCTLFN_ARGS)
1402 {
1403 char *where = oldp;
1404 size_t len, maxlen;
1405 long beg, end;
1406 int error;
1407
1408 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1409 msgbufenabled = 0;
1410 return (ENXIO);
1411 }
1412
1413 switch (rnode->sysctl_num) {
1414 case KERN_MSGBUFSIZE: {
1415 struct sysctlnode node = *rnode;
1416 int msg_bufs = (int)msgbufp->msg_bufs;
1417 node.sysctl_data = &msg_bufs;
1418 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1419 }
1420 case KERN_MSGBUF:
1421 break;
1422 default:
1423 return (EOPNOTSUPP);
1424 }
1425
1426 if (newp != NULL)
1427 return (EPERM);
1428
1429 if (oldp == NULL) {
1430 /* always return full buffer size */
1431 *oldlenp = msgbufp->msg_bufs;
1432 return (0);
1433 }
1434
1435 error = 0;
1436 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1437
1438 /*
1439 * First, copy from the write pointer to the end of
1440 * message buffer.
1441 */
1442 beg = msgbufp->msg_bufx;
1443 end = msgbufp->msg_bufs;
1444 while (maxlen > 0) {
1445 len = MIN(end - beg, maxlen);
1446 if (len == 0)
1447 break;
1448 error = dcopyout(l, &msgbufp->msg_bufc[beg], where, len);
1449 if (error)
1450 break;
1451 where += len;
1452 maxlen -= len;
1453
1454 /*
1455 * ... then, copy from the beginning of message buffer to
1456 * the write pointer.
1457 */
1458 beg = 0;
1459 end = msgbufp->msg_bufx;
1460 }
1461
1462 return (error);
1463 }
1464
1465 /*
1466 * sysctl helper routine for kern.defcorename. in the case of a new
1467 * string being assigned, check that it's not a zero-length string.
1468 * (XXX the check in -current doesn't work, but do we really care?)
1469 */
1470 static int
1471 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1472 {
1473 int error;
1474 char *newcorename;
1475 struct sysctlnode node;
1476
1477 newcorename = PNBUF_GET();
1478 node = *rnode;
1479 node.sysctl_data = &newcorename[0];
1480 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1481 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1482 if (error || newp == NULL) {
1483 goto done;
1484 }
1485
1486 /*
1487 * when sysctl_lookup() deals with a string, it's guaranteed
1488 * to come back nul terminated. so there. :)
1489 */
1490 if (strlen(newcorename) == 0) {
1491 error = EINVAL;
1492 } else {
1493 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1494 error = 0;
1495 }
1496 done:
1497 PNBUF_PUT(newcorename);
1498 return error;
1499 }
1500
1501 /*
1502 * sysctl helper routine for kern.cp_time node. adds up cpu time
1503 * across all cpus.
1504 */
1505 static int
1506 sysctl_kern_cptime(SYSCTLFN_ARGS)
1507 {
1508 struct sysctlnode node = *rnode;
1509
1510 #ifndef MULTIPROCESSOR
1511
1512 if (namelen == 1) {
1513 if (name[0] != 0)
1514 return (ENOENT);
1515 /*
1516 * you're allowed to ask for the zero'th processor
1517 */
1518 name++;
1519 namelen--;
1520 }
1521 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1522 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1523 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1524
1525 #else /* MULTIPROCESSOR */
1526
1527 uint64_t *cp_time = NULL;
1528 int error, n = sysctl_ncpus(), i;
1529 struct cpu_info *ci;
1530 CPU_INFO_ITERATOR cii;
1531
1532 /*
1533 * if you specifically pass a buffer that is the size of the
1534 * sum, or if you are probing for the size, you get the "sum"
1535 * of cp_time (and the size thereof) across all processors.
1536 *
1537 * alternately, you can pass an additional mib number and get
1538 * cp_time for that particular processor.
1539 */
1540 switch (namelen) {
1541 case 0:
1542 if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
1543 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1544 n = -1; /* SUM */
1545 }
1546 else {
1547 node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
1548 n = -2; /* ALL */
1549 }
1550 break;
1551 case 1:
1552 if (name[0] < 0 || name[0] >= n)
1553 return (ENOENT); /* ENOSUCHPROCESSOR */
1554 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1555 n = name[0];
1556 /*
1557 * adjust these so that sysctl_lookup() will be happy
1558 */
1559 name++;
1560 namelen--;
1561 break;
1562 default:
1563 return (EINVAL);
1564 }
1565
1566 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1567 if (cp_time == NULL)
1568 return (ENOMEM);
1569 node.sysctl_data = cp_time;
1570 memset(cp_time, 0, node.sysctl_size);
1571
1572 for (CPU_INFO_FOREACH(cii, ci)) {
1573 if (n <= 0)
1574 for (i = 0; i < CPUSTATES; i++)
1575 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1576 /*
1577 * if a specific processor was requested and we just
1578 * did it, we're done here
1579 */
1580 if (n == 0)
1581 break;
1582 /*
1583 * if doing "all", skip to next cp_time set for next processor
1584 */
1585 if (n == -2)
1586 cp_time += CPUSTATES;
1587 /*
1588 * if we're doing a specific processor, we're one
1589 * processor closer
1590 */
1591 if (n > 0)
1592 n--;
1593 }
1594
1595 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1596 free(node.sysctl_data, M_TEMP);
1597 return (error);
1598
1599 #endif /* MULTIPROCESSOR */
1600 }
1601
1602 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1603 /*
1604 * sysctl helper routine for kern.sysvipc_info subtree.
1605 */
1606
1607 #define FILL_PERM(src, dst) do { \
1608 (dst)._key = (src)._key; \
1609 (dst).uid = (src).uid; \
1610 (dst).gid = (src).gid; \
1611 (dst).cuid = (src).cuid; \
1612 (dst).cgid = (src).cgid; \
1613 (dst).mode = (src).mode; \
1614 (dst)._seq = (src)._seq; \
1615 } while (/*CONSTCOND*/ 0);
1616 #define FILL_MSG(src, dst) do { \
1617 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1618 (dst).msg_qnum = (src).msg_qnum; \
1619 (dst).msg_qbytes = (src).msg_qbytes; \
1620 (dst)._msg_cbytes = (src)._msg_cbytes; \
1621 (dst).msg_lspid = (src).msg_lspid; \
1622 (dst).msg_lrpid = (src).msg_lrpid; \
1623 (dst).msg_stime = (src).msg_stime; \
1624 (dst).msg_rtime = (src).msg_rtime; \
1625 (dst).msg_ctime = (src).msg_ctime; \
1626 } while (/*CONSTCOND*/ 0)
1627 #define FILL_SEM(src, dst) do { \
1628 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1629 (dst).sem_nsems = (src).sem_nsems; \
1630 (dst).sem_otime = (src).sem_otime; \
1631 (dst).sem_ctime = (src).sem_ctime; \
1632 } while (/*CONSTCOND*/ 0)
1633 #define FILL_SHM(src, dst) do { \
1634 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1635 (dst).shm_segsz = (src).shm_segsz; \
1636 (dst).shm_lpid = (src).shm_lpid; \
1637 (dst).shm_cpid = (src).shm_cpid; \
1638 (dst).shm_atime = (src).shm_atime; \
1639 (dst).shm_dtime = (src).shm_dtime; \
1640 (dst).shm_ctime = (src).shm_ctime; \
1641 (dst).shm_nattch = (src).shm_nattch; \
1642 } while (/*CONSTCOND*/ 0)
1643
1644 static int
1645 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1646 {
1647 void *where = oldp;
1648 size_t *sizep = oldlenp;
1649 #ifdef SYSVMSG
1650 struct msg_sysctl_info *msgsi = NULL;
1651 #endif
1652 #ifdef SYSVSEM
1653 struct sem_sysctl_info *semsi = NULL;
1654 #endif
1655 #ifdef SYSVSHM
1656 struct shm_sysctl_info *shmsi = NULL;
1657 #endif
1658 size_t infosize, dssize, tsize, buflen;
1659 void *bf = NULL;
1660 char *start;
1661 int32_t nds;
1662 int i, error, ret;
1663
1664 if (namelen != 1)
1665 return (EINVAL);
1666
1667 start = where;
1668 buflen = *sizep;
1669
1670 switch (*name) {
1671 case KERN_SYSVIPC_MSG_INFO:
1672 #ifdef SYSVMSG
1673 infosize = sizeof(msgsi->msginfo);
1674 nds = msginfo.msgmni;
1675 dssize = sizeof(msgsi->msgids[0]);
1676 break;
1677 #else
1678 return (EINVAL);
1679 #endif
1680 case KERN_SYSVIPC_SEM_INFO:
1681 #ifdef SYSVSEM
1682 infosize = sizeof(semsi->seminfo);
1683 nds = seminfo.semmni;
1684 dssize = sizeof(semsi->semids[0]);
1685 break;
1686 #else
1687 return (EINVAL);
1688 #endif
1689 case KERN_SYSVIPC_SHM_INFO:
1690 #ifdef SYSVSHM
1691 infosize = sizeof(shmsi->shminfo);
1692 nds = shminfo.shmmni;
1693 dssize = sizeof(shmsi->shmids[0]);
1694 break;
1695 #else
1696 return (EINVAL);
1697 #endif
1698 default:
1699 return (EINVAL);
1700 }
1701 /*
1702 * Round infosize to 64 bit boundary if requesting more than just
1703 * the info structure or getting the total data size.
1704 */
1705 if (where == NULL || *sizep > infosize)
1706 infosize = ((infosize + 7) / 8) * 8;
1707 tsize = infosize + nds * dssize;
1708
1709 /* Return just the total size required. */
1710 if (where == NULL) {
1711 *sizep = tsize;
1712 return (0);
1713 }
1714
1715 /* Not enough room for even the info struct. */
1716 if (buflen < infosize) {
1717 *sizep = 0;
1718 return (ENOMEM);
1719 }
1720 bf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1721 memset(bf, 0, min(tsize, buflen));
1722
1723 switch (*name) {
1724 #ifdef SYSVMSG
1725 case KERN_SYSVIPC_MSG_INFO:
1726 msgsi = (struct msg_sysctl_info *)bf;
1727 msgsi->msginfo = msginfo;
1728 break;
1729 #endif
1730 #ifdef SYSVSEM
1731 case KERN_SYSVIPC_SEM_INFO:
1732 semsi = (struct sem_sysctl_info *)bf;
1733 semsi->seminfo = seminfo;
1734 break;
1735 #endif
1736 #ifdef SYSVSHM
1737 case KERN_SYSVIPC_SHM_INFO:
1738 shmsi = (struct shm_sysctl_info *)bf;
1739 shmsi->shminfo = shminfo;
1740 break;
1741 #endif
1742 }
1743 buflen -= infosize;
1744
1745 ret = 0;
1746 if (buflen > 0) {
1747 /* Fill in the IPC data structures. */
1748 for (i = 0; i < nds; i++) {
1749 if (buflen < dssize) {
1750 ret = ENOMEM;
1751 break;
1752 }
1753 switch (*name) {
1754 #ifdef SYSVMSG
1755 case KERN_SYSVIPC_MSG_INFO:
1756 FILL_MSG(msqids[i], msgsi->msgids[i]);
1757 break;
1758 #endif
1759 #ifdef SYSVSEM
1760 case KERN_SYSVIPC_SEM_INFO:
1761 FILL_SEM(sema[i], semsi->semids[i]);
1762 break;
1763 #endif
1764 #ifdef SYSVSHM
1765 case KERN_SYSVIPC_SHM_INFO:
1766 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1767 break;
1768 #endif
1769 }
1770 buflen -= dssize;
1771 }
1772 }
1773 *sizep -= buflen;
1774 error = dcopyout(l, bf, start, *sizep);
1775 /* If dcopyout succeeded, use return code set earlier. */
1776 if (error == 0)
1777 error = ret;
1778 if (bf)
1779 free(bf, M_TEMP);
1780 return (error);
1781 }
1782
1783 #undef FILL_PERM
1784 #undef FILL_MSG
1785 #undef FILL_SEM
1786 #undef FILL_SHM
1787
1788 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1789
1790 #if NPTY > 0
1791 /*
1792 * sysctl helper routine for kern.maxptys. ensures that any new value
1793 * is acceptable to the pty subsystem.
1794 */
1795 static int
1796 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1797 {
1798 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1799 int error, xmax;
1800 struct sysctlnode node;
1801
1802 /* get current value of maxptys */
1803 xmax = pty_maxptys(0, 0);
1804
1805 node = *rnode;
1806 node.sysctl_data = &xmax;
1807 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1808 if (error || newp == NULL)
1809 return (error);
1810
1811 if (xmax != pty_maxptys(xmax, 1))
1812 return (EINVAL);
1813
1814 return (0);
1815 }
1816 #endif /* NPTY > 0 */
1817
1818 /*
1819 * sysctl helper routine for kern.sbmax. basically just ensures that
1820 * any new value is not too small.
1821 */
1822 static int
1823 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1824 {
1825 int error, new_sbmax;
1826 struct sysctlnode node;
1827
1828 new_sbmax = sb_max;
1829 node = *rnode;
1830 node.sysctl_data = &new_sbmax;
1831 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1832 if (error || newp == NULL)
1833 return (error);
1834
1835 error = sb_max_set(new_sbmax);
1836
1837 return (error);
1838 }
1839
1840 /*
1841 * sysctl helper routine for kern.urandom node. picks a random number
1842 * for you.
1843 */
1844 static int
1845 sysctl_kern_urnd(SYSCTLFN_ARGS)
1846 {
1847 #if NRND > 0
1848 int v;
1849
1850 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1851 struct sysctlnode node = *rnode;
1852 node.sysctl_data = &v;
1853 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1854 }
1855 else
1856 return (EIO); /*XXX*/
1857 #else
1858 return (EOPNOTSUPP);
1859 #endif
1860 }
1861
1862 /*
1863 * sysctl helper routine for kern.arandom node. picks a random number
1864 * for you.
1865 */
1866 static int
1867 sysctl_kern_arnd(SYSCTLFN_ARGS)
1868 {
1869 #if NRND > 0
1870 int error;
1871 void *v;
1872 struct sysctlnode node = *rnode;
1873
1874 if (*oldlenp == 0)
1875 return 0;
1876 if (*oldlenp > 8192)
1877 return E2BIG;
1878
1879 v = malloc(*oldlenp, M_TEMP, M_WAITOK);
1880
1881 arc4randbytes(v, *oldlenp);
1882 node.sysctl_data = v;
1883 node.sysctl_size = *oldlenp;
1884 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1885 free(v, M_TEMP);
1886 return error;
1887 #else
1888 return (EOPNOTSUPP);
1889 #endif
1890 }
1891 /*
1892 * sysctl helper routine to do kern.lwp.* work.
1893 */
1894 static int
1895 sysctl_kern_lwp(SYSCTLFN_ARGS)
1896 {
1897 struct kinfo_lwp klwp;
1898 struct proc *p;
1899 struct lwp *l2;
1900 char *where, *dp;
1901 int pid, elem_size, elem_count;
1902 int buflen, needed, error;
1903
1904 if (namelen == 1 && name[0] == CTL_QUERY)
1905 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1906
1907 dp = where = oldp;
1908 buflen = where != NULL ? *oldlenp : 0;
1909 error = needed = 0;
1910
1911 if (newp != NULL || namelen != 3)
1912 return (EINVAL);
1913 pid = name[0];
1914 elem_size = name[1];
1915 elem_count = name[2];
1916
1917 p = pfind(pid);
1918 if (p == NULL)
1919 return (ESRCH);
1920 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1921 if (buflen >= elem_size && elem_count > 0) {
1922 fill_lwp(l2, &klwp);
1923 /*
1924 * Copy out elem_size, but not larger than
1925 * the size of a struct kinfo_proc2.
1926 */
1927 error = dcopyout(l, &klwp, dp,
1928 min(sizeof(klwp), elem_size));
1929 if (error)
1930 goto cleanup;
1931 dp += elem_size;
1932 buflen -= elem_size;
1933 elem_count--;
1934 }
1935 needed += elem_size;
1936 }
1937
1938 if (where != NULL) {
1939 *oldlenp = dp - where;
1940 if (needed > *oldlenp)
1941 return (ENOMEM);
1942 } else {
1943 needed += KERN_LWPSLOP;
1944 *oldlenp = needed;
1945 }
1946 return (0);
1947 cleanup:
1948 return (error);
1949 }
1950
1951 /*
1952 * sysctl helper routine for kern.forkfsleep node. ensures that the
1953 * given value is not too large or two small, and is at least one
1954 * timer tick if not zero.
1955 */
1956 static int
1957 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1958 {
1959 /* userland sees value in ms, internally is in ticks */
1960 extern int forkfsleep; /* defined in kern/kern_fork.c */
1961 int error, timo, lsleep;
1962 struct sysctlnode node;
1963
1964 lsleep = forkfsleep * 1000 / hz;
1965 node = *rnode;
1966 node.sysctl_data = &lsleep;
1967 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1968 if (error || newp == NULL)
1969 return (error);
1970
1971 /* refuse negative values, and overly 'long time' */
1972 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1973 return (EINVAL);
1974
1975 timo = mstohz(lsleep);
1976
1977 /* if the interval is >0 ms && <1 tick, use 1 tick */
1978 if (lsleep != 0 && timo == 0)
1979 forkfsleep = 1;
1980 else
1981 forkfsleep = timo;
1982
1983 return (0);
1984 }
1985
1986 /*
1987 * sysctl helper routine for kern.root_partition
1988 */
1989 static int
1990 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1991 {
1992 int rootpart = DISKPART(rootdev);
1993 struct sysctlnode node = *rnode;
1994
1995 node.sysctl_data = &rootpart;
1996 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1997 }
1998
1999 /*
2000 * sysctl helper function for kern.drivers
2001 */
2002 static int
2003 sysctl_kern_drivers(SYSCTLFN_ARGS)
2004 {
2005 int error;
2006 size_t buflen;
2007 struct kinfo_drivers kd;
2008 char *start, *where;
2009 const char *dname;
2010 int i;
2011 extern struct devsw_conv *devsw_conv;
2012 extern int max_devsw_convs;
2013
2014 if (newp != NULL || namelen != 0)
2015 return (EINVAL);
2016
2017 start = where = oldp;
2018 buflen = *oldlenp;
2019 if (where == NULL) {
2020 *oldlenp = max_devsw_convs * sizeof kd;
2021 return 0;
2022 }
2023
2024 /*
2025 * An array of kinfo_drivers structures
2026 */
2027 error = 0;
2028 for (i = 0; i < max_devsw_convs; i++) {
2029 dname = devsw_conv[i].d_name;
2030 if (dname == NULL)
2031 continue;
2032 if (buflen < sizeof kd) {
2033 error = ENOMEM;
2034 break;
2035 }
2036 memset(&kd, 0, sizeof(kd));
2037 kd.d_bmajor = devsw_conv[i].d_bmajor;
2038 kd.d_cmajor = devsw_conv[i].d_cmajor;
2039 strlcpy(kd.d_name, dname, sizeof kd.d_name);
2040 error = dcopyout(l, &kd, where, sizeof kd);
2041 if (error != 0)
2042 break;
2043 buflen -= sizeof kd;
2044 where += sizeof kd;
2045 }
2046 *oldlenp = where - start;
2047 return error;
2048 }
2049
2050 /*
2051 * sysctl helper function for kern.file2
2052 */
2053 static int
2054 sysctl_kern_file2(SYSCTLFN_ARGS)
2055 {
2056 struct proc *p;
2057 struct file *fp;
2058 struct filedesc *fd;
2059 struct kinfo_file kf;
2060 char *dp;
2061 u_int i, op;
2062 size_t len, needed, elem_size, out_size;
2063 int error, arg, elem_count;
2064
2065 if (namelen == 1 && name[0] == CTL_QUERY)
2066 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2067
2068 if (namelen != 4)
2069 return (EINVAL);
2070
2071 error = 0;
2072 dp = oldp;
2073 len = (oldp != NULL) ? *oldlenp : 0;
2074 op = name[0];
2075 arg = name[1];
2076 elem_size = name[2];
2077 elem_count = name[3];
2078 out_size = MIN(sizeof(kf), elem_size);
2079 needed = 0;
2080
2081 if (elem_size < 1 || elem_count < 0)
2082 return (EINVAL);
2083
2084 switch (op) {
2085 case KERN_FILE_BYFILE:
2086 /*
2087 * doesn't use arg so it must be zero
2088 */
2089 if (arg != 0)
2090 return (EINVAL);
2091 LIST_FOREACH(fp, &filehead, f_list) {
2092 if (kauth_authorize_generic(l->l_cred,
2093 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0)
2094 continue;
2095 if (len >= elem_size && elem_count > 0) {
2096 fill_file(&kf, fp, NULL, 0);
2097 error = dcopyout(l, &kf, dp, out_size);
2098 if (error)
2099 break;
2100 dp += elem_size;
2101 len -= elem_size;
2102 }
2103 if (elem_count > 0) {
2104 needed += elem_size;
2105 if (elem_count != INT_MAX)
2106 elem_count--;
2107 }
2108 }
2109 break;
2110 case KERN_FILE_BYPID:
2111 if (arg < -1)
2112 /* -1 means all processes */
2113 return (EINVAL);
2114 proclist_lock_read();
2115 PROCLIST_FOREACH(p, &allproc) {
2116 if (p->p_stat == SIDL)
2117 /* skip embryonic processes */
2118 continue;
2119 if (kauth_authorize_process(l->l_cred,
2120 KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL) != 0)
2121 continue;
2122 if (arg > 0 && p->p_pid != arg)
2123 /* pick only the one we want */
2124 /* XXX want 0 to mean "kernel files" */
2125 continue;
2126 fd = p->p_fd;
2127 for (i = 0; i < fd->fd_nfiles; i++) {
2128 fp = fd->fd_ofiles[i];
2129 if (fp == NULL || !FILE_IS_USABLE(fp))
2130 continue;
2131 if (len >= elem_size && elem_count > 0) {
2132 fill_file(&kf, fd->fd_ofiles[i],
2133 p, i);
2134 error = dcopyout(l, &kf, dp, out_size);
2135 if (error)
2136 break;
2137 dp += elem_size;
2138 len -= elem_size;
2139 }
2140 if (elem_count > 0) {
2141 needed += elem_size;
2142 if (elem_count != INT_MAX)
2143 elem_count--;
2144 }
2145 }
2146 }
2147 proclist_unlock_read();
2148 break;
2149 default:
2150 return (EINVAL);
2151 }
2152
2153 if (oldp == NULL)
2154 needed += KERN_FILESLOP * elem_size;
2155 *oldlenp = needed;
2156
2157 return (error);
2158 }
2159
2160 static void
2161 fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i)
2162 {
2163
2164 memset(kp, 0, sizeof(*kp));
2165
2166 kp->ki_fileaddr = PTRTOUINT64(fp);
2167 kp->ki_flag = fp->f_flag;
2168 kp->ki_iflags = fp->f_iflags;
2169 kp->ki_ftype = fp->f_type;
2170 kp->ki_count = fp->f_count;
2171 kp->ki_msgcount = fp->f_msgcount;
2172 kp->ki_usecount = fp->f_usecount;
2173 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2174 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2175 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2176 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2177 kp->ki_foffset = fp->f_offset;
2178 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2179
2180 /* vnode information to glue this file to something */
2181 if (fp->f_type == DTYPE_VNODE) {
2182 struct vnode *vp = (struct vnode *)fp->f_data;
2183
2184 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2185 kp->ki_vsize = vp->v_size;
2186 kp->ki_vtype = vp->v_type;
2187 kp->ki_vtag = vp->v_tag;
2188 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2189 }
2190
2191 /* process information when retrieved via KERN_FILE_BYPID */
2192 if (p) {
2193 kp->ki_pid = p->p_pid;
2194 kp->ki_fd = i;
2195 kp->ki_ofileflags = p->p_fd->fd_ofileflags[i];
2196 }
2197 }
2198
2199 static int
2200 sysctl_doeproc(SYSCTLFN_ARGS)
2201 {
2202 struct eproc *eproc;
2203 struct kinfo_proc2 *kproc2;
2204 struct kinfo_proc *dp;
2205 struct proc *p;
2206 const struct proclist_desc *pd;
2207 char *where, *dp2;
2208 int type, op, arg;
2209 u_int elem_size, elem_count;
2210 size_t buflen, needed;
2211 int error;
2212
2213 if (namelen == 1 && name[0] == CTL_QUERY)
2214 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2215
2216 dp = oldp;
2217 dp2 = where = oldp;
2218 buflen = where != NULL ? *oldlenp : 0;
2219 error = 0;
2220 needed = 0;
2221 type = rnode->sysctl_num;
2222
2223 if (type == KERN_PROC) {
2224 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
2225 return (EINVAL);
2226 op = name[0];
2227 if (op != KERN_PROC_ALL)
2228 arg = name[1];
2229 else
2230 arg = 0; /* Quell compiler warning */
2231 elem_size = elem_count = 0; /* Ditto */
2232 } else {
2233 if (namelen != 4)
2234 return (EINVAL);
2235 op = name[0];
2236 arg = name[1];
2237 elem_size = name[2];
2238 elem_count = name[3];
2239 }
2240
2241 if (type == KERN_PROC) {
2242 eproc = malloc(sizeof(*eproc), M_TEMP, M_WAITOK);
2243 kproc2 = NULL;
2244 } else {
2245 eproc = NULL;
2246 kproc2 = malloc(sizeof(*kproc2), M_TEMP, M_WAITOK);
2247 }
2248 proclist_lock_read();
2249
2250 pd = proclists;
2251 again:
2252 PROCLIST_FOREACH(p, pd->pd_list) {
2253 /*
2254 * Skip embryonic processes.
2255 */
2256 if (p->p_stat == SIDL)
2257 continue;
2258
2259 if (kauth_authorize_process(l->l_cred,
2260 KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL) != 0)
2261 continue;
2262
2263 /*
2264 * TODO - make more efficient (see notes below).
2265 * do by session.
2266 */
2267 switch (op) {
2268
2269 case KERN_PROC_PID:
2270 /* could do this with just a lookup */
2271 if (p->p_pid != (pid_t)arg)
2272 continue;
2273 break;
2274
2275 case KERN_PROC_PGRP:
2276 /* could do this by traversing pgrp */
2277 if (p->p_pgrp->pg_id != (pid_t)arg)
2278 continue;
2279 break;
2280
2281 case KERN_PROC_SESSION:
2282 if (p->p_session->s_sid != (pid_t)arg)
2283 continue;
2284 break;
2285
2286 case KERN_PROC_TTY:
2287 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2288 if ((p->p_flag & P_CONTROLT) == 0 ||
2289 p->p_session->s_ttyp == NULL ||
2290 p->p_session->s_ttyvp != NULL)
2291 continue;
2292 } else if ((p->p_flag & P_CONTROLT) == 0 ||
2293 p->p_session->s_ttyp == NULL) {
2294 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
2295 continue;
2296 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
2297 continue;
2298 break;
2299
2300 case KERN_PROC_UID:
2301 if (kauth_cred_geteuid(p->p_cred) != (uid_t)arg)
2302 continue;
2303 break;
2304
2305 case KERN_PROC_RUID:
2306 if (kauth_cred_getuid(p->p_cred) != (uid_t)arg)
2307 continue;
2308 break;
2309
2310 case KERN_PROC_GID:
2311 if (kauth_cred_getegid(p->p_cred) != (uid_t)arg)
2312 continue;
2313 break;
2314
2315 case KERN_PROC_RGID:
2316 if (kauth_cred_getgid(p->p_cred) != (uid_t)arg)
2317 continue;
2318 break;
2319
2320 case KERN_PROC_ALL:
2321 /* allow everything */
2322 break;
2323
2324 default:
2325 error = EINVAL;
2326 goto cleanup;
2327 }
2328 if (type == KERN_PROC) {
2329 if (buflen >= sizeof(struct kinfo_proc)) {
2330 fill_eproc(p, eproc);
2331 error = dcopyout(l, p, &dp->kp_proc,
2332 sizeof(struct proc));
2333 if (error)
2334 goto cleanup;
2335 error = dcopyout(l, eproc, &dp->kp_eproc,
2336 sizeof(*eproc));
2337 if (error)
2338 goto cleanup;
2339 dp++;
2340 buflen -= sizeof(struct kinfo_proc);
2341 }
2342 needed += sizeof(struct kinfo_proc);
2343 } else { /* KERN_PROC2 */
2344 if (buflen >= elem_size && elem_count > 0) {
2345 fill_kproc2(p, kproc2);
2346 /*
2347 * Copy out elem_size, but not larger than
2348 * the size of a struct kinfo_proc2.
2349 */
2350 error = dcopyout(l, kproc2, dp2,
2351 min(sizeof(*kproc2), elem_size));
2352 if (error)
2353 goto cleanup;
2354 dp2 += elem_size;
2355 buflen -= elem_size;
2356 elem_count--;
2357 }
2358 needed += elem_size;
2359 }
2360 }
2361 pd++;
2362 if (pd->pd_list != NULL)
2363 goto again;
2364 proclist_unlock_read();
2365
2366 if (where != NULL) {
2367 if (type == KERN_PROC)
2368 *oldlenp = (char *)dp - where;
2369 else
2370 *oldlenp = dp2 - where;
2371 if (needed > *oldlenp) {
2372 error = ENOMEM;
2373 goto out;
2374 }
2375 } else {
2376 needed += KERN_PROCSLOP;
2377 *oldlenp = needed;
2378 }
2379 if (kproc2)
2380 free(kproc2, M_TEMP);
2381 if (eproc)
2382 free(eproc, M_TEMP);
2383 return 0;
2384 cleanup:
2385 proclist_unlock_read();
2386 out:
2387 if (kproc2)
2388 free(kproc2, M_TEMP);
2389 if (eproc)
2390 free(eproc, M_TEMP);
2391 return error;
2392 }
2393
2394 /*
2395 * sysctl helper routine for kern.proc_args pseudo-subtree.
2396 */
2397 static int
2398 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2399 {
2400 struct ps_strings pss;
2401 struct proc *p;
2402 size_t len, i;
2403 struct uio auio;
2404 struct iovec aiov;
2405 pid_t pid;
2406 int nargv, type, error;
2407 char *arg;
2408 char **argv = NULL;
2409 char *tmp;
2410 struct vmspace *vmspace;
2411 vaddr_t psstr_addr;
2412 vaddr_t offsetn;
2413 vaddr_t offsetv;
2414
2415 if (namelen == 1 && name[0] == CTL_QUERY)
2416 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2417
2418 if (newp != NULL || namelen != 2)
2419 return (EINVAL);
2420 pid = name[0];
2421 type = name[1];
2422
2423 switch (type) {
2424 case KERN_PROC_ARGV:
2425 case KERN_PROC_NARGV:
2426 case KERN_PROC_ENV:
2427 case KERN_PROC_NENV:
2428 /* ok */
2429 break;
2430 default:
2431 return (EINVAL);
2432 }
2433
2434 proclist_lock_read();
2435
2436 /* check pid */
2437 if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
2438 error = EINVAL;
2439 goto out_locked;
2440 }
2441
2442 error = kauth_authorize_process(l->l_cred,
2443 KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL);
2444 if (error) {
2445 goto out_locked;
2446 }
2447
2448 /* only root or same user change look at the environment */
2449 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2450 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2451 p, NULL, NULL, NULL)) {
2452 error = EPERM;
2453 goto out_locked;
2454 }
2455 }
2456
2457 if (oldp == NULL) {
2458 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2459 *oldlenp = sizeof (int);
2460 else
2461 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2462 error = 0;
2463 goto out_locked;
2464 }
2465
2466 /*
2467 * Zombies don't have a stack, so we can't read their psstrings.
2468 * System processes also don't have a user stack.
2469 */
2470 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0) {
2471 error = EINVAL;
2472 goto out_locked;
2473 }
2474
2475 /*
2476 * Lock the process down in memory.
2477 */
2478 /* XXXCDC: how should locking work here? */
2479 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1)) {
2480 error = EFAULT;
2481 goto out_locked;
2482 }
2483
2484 psstr_addr = (vaddr_t)p->p_psstr;
2485 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
2486 offsetn = p->p_psnargv;
2487 offsetv = p->p_psargv;
2488 } else {
2489 offsetn = p->p_psnenv;
2490 offsetv = p->p_psenv;
2491 }
2492 vmspace = p->p_vmspace;
2493 vmspace->vm_refcnt++; /* XXX */
2494
2495 proclist_unlock_read();
2496
2497 /*
2498 * Allocate a temporary buffer to hold the arguments.
2499 */
2500 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2501
2502 /*
2503 * Read in the ps_strings structure.
2504 */
2505 aiov.iov_base = &pss;
2506 aiov.iov_len = sizeof(pss);
2507 auio.uio_iov = &aiov;
2508 auio.uio_iovcnt = 1;
2509 auio.uio_offset = psstr_addr;
2510 auio.uio_resid = sizeof(pss);
2511 auio.uio_rw = UIO_READ;
2512 UIO_SETUP_SYSSPACE(&auio);
2513 error = uvm_io(&vmspace->vm_map, &auio);
2514 if (error)
2515 goto done;
2516
2517 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
2518 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2519 error = dcopyout(l, &nargv, oldp, sizeof(nargv));
2520 *oldlenp = sizeof(nargv);
2521 goto done;
2522 }
2523 /*
2524 * Now read the address of the argument vector.
2525 */
2526 switch (type) {
2527 case KERN_PROC_ARGV:
2528 /* FALLTHROUGH */
2529 case KERN_PROC_ENV:
2530 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
2531 break;
2532 default:
2533 return (EINVAL);
2534 }
2535
2536 #ifdef COMPAT_NETBSD32
2537 if (p->p_flag & P_32)
2538 len = sizeof(netbsd32_charp) * nargv;
2539 else
2540 #endif
2541 len = sizeof(char *) * nargv;
2542
2543 argv = malloc(len, M_TEMP, M_WAITOK);
2544
2545 aiov.iov_base = argv;
2546 aiov.iov_len = len;
2547 auio.uio_iov = &aiov;
2548 auio.uio_iovcnt = 1;
2549 auio.uio_offset = (off_t)(unsigned long)tmp;
2550 auio.uio_resid = len;
2551 auio.uio_rw = UIO_READ;
2552 UIO_SETUP_SYSSPACE(&auio);
2553 error = uvm_io(&vmspace->vm_map, &auio);
2554 if (error)
2555 goto done;
2556
2557 /*
2558 * Now copy each string.
2559 */
2560 len = 0; /* bytes written to user buffer */
2561 for (i = 0; i < nargv; i++) {
2562 int finished = 0;
2563 vaddr_t base;
2564 size_t xlen;
2565 int j;
2566
2567 #ifdef COMPAT_NETBSD32
2568 if (p->p_flag & P_32) {
2569 netbsd32_charp *argv32;
2570
2571 argv32 = (netbsd32_charp *)argv;
2572
2573 base = (vaddr_t)NETBSD32PTR64(argv32[i]);
2574 } else
2575 #endif
2576 base = (vaddr_t)argv[i];
2577
2578 while (!finished) {
2579 xlen = PAGE_SIZE - (base & PAGE_MASK);
2580
2581 aiov.iov_base = arg;
2582 aiov.iov_len = PAGE_SIZE;
2583 auio.uio_iov = &aiov;
2584 auio.uio_iovcnt = 1;
2585 auio.uio_offset = base;
2586 auio.uio_resid = xlen;
2587 auio.uio_rw = UIO_READ;
2588 UIO_SETUP_SYSSPACE(&auio);
2589 error = uvm_io(&vmspace->vm_map, &auio);
2590 if (error)
2591 goto done;
2592
2593 /* Look for the end of the string */
2594 for (j = 0; j < xlen; j++) {
2595 if (arg[j] == '\0') {
2596 xlen = j + 1;
2597 finished = 1;
2598 break;
2599 }
2600 }
2601
2602 /* Check for user buffer overflow */
2603 if (len + xlen > *oldlenp) {
2604 finished = 1;
2605 if (len > *oldlenp)
2606 xlen = 0;
2607 else
2608 xlen = *oldlenp - len;
2609 }
2610
2611 /* Copyout the page */
2612 error = dcopyout(l, arg, (char *)oldp + len, xlen);
2613 if (error)
2614 goto done;
2615
2616 len += xlen;
2617 base += xlen;
2618 }
2619 }
2620 *oldlenp = len;
2621
2622 done:
2623 if (argv != NULL)
2624 free(argv, M_TEMP);
2625
2626 uvmspace_free(vmspace);
2627
2628 free(arg, M_TEMP);
2629 return error;
2630
2631 out_locked:
2632 proclist_unlock_read();
2633 return error;
2634 }
2635
2636 /*
2637 * Sysctl helper routine for Verified Exec.
2638 */
2639 #if NVERIEXEC > 0
2640 static int
2641 sysctl_kern_veriexec(SYSCTLFN_ARGS)
2642 {
2643 int newval, error;
2644 int *var = NULL, raise_only = 0;
2645 struct sysctlnode node;
2646
2647 node = *rnode;
2648
2649 switch (rnode->sysctl_num) {
2650 case VERIEXEC_STRICT:
2651 raise_only = 1;
2652 var = &veriexec_strict;
2653 break;
2654 case VERIEXEC_ALGORITHMS:
2655 node.sysctl_data = veriexec_fp_names;
2656 node.sysctl_size = strlen(veriexec_fp_names) + 1;
2657 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2658 default:
2659 return (EINVAL);
2660 }
2661
2662 newval = *var;
2663
2664 node.sysctl_data = &newval;
2665 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2666 if (error || newp == NULL) {
2667 return (error);
2668 }
2669
2670 if (raise_only && (newval < *var))
2671 return (EPERM);
2672
2673 *var = newval;
2674
2675 return (error);
2676 }
2677 #endif /* NVERIEXEC > 0 */
2678
2679 static int
2680 sysctl_security_setidcore(SYSCTLFN_ARGS)
2681 {
2682 int newsize, error;
2683 struct sysctlnode node;
2684
2685 node = *rnode;
2686 node.sysctl_data = &newsize;
2687 newsize = *(int *)rnode->sysctl_data;
2688 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2689 if (error || newp == NULL)
2690 return error;
2691
2692 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2693 0, NULL, NULL, NULL))
2694 return (EPERM);
2695
2696 *(int *)rnode->sysctl_data = newsize;
2697
2698 return 0;
2699 }
2700
2701 static int
2702 sysctl_security_setidcorename(SYSCTLFN_ARGS)
2703 {
2704 int error;
2705 char *newsetidcorename;
2706 struct sysctlnode node;
2707
2708 newsetidcorename = PNBUF_GET();
2709 node = *rnode;
2710 node.sysctl_data = newsetidcorename;
2711 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
2712 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2713 if (error || newp == NULL) {
2714 goto out;
2715 }
2716 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2717 0, NULL, NULL, NULL)) {
2718 error = EPERM;
2719 goto out;
2720 }
2721 if (strlen(newsetidcorename) == 0) {
2722 error = EINVAL;
2723 goto out;
2724 }
2725 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
2726 out:
2727 PNBUF_PUT(newsetidcorename);
2728 return error;
2729 }
2730
2731 /*
2732 * sysctl helper routine for kern.cp_id node. maps cpus to their
2733 * cpuids.
2734 */
2735 static int
2736 sysctl_kern_cpid(SYSCTLFN_ARGS)
2737 {
2738 struct sysctlnode node = *rnode;
2739
2740 #ifndef MULTIPROCESSOR
2741 uint64_t id;
2742
2743 if (namelen == 1) {
2744 if (name[0] != 0)
2745 return (ENOENT);
2746 /*
2747 * you're allowed to ask for the zero'th processor
2748 */
2749 name++;
2750 namelen--;
2751 }
2752 node.sysctl_data = &id;
2753 node.sysctl_size = sizeof(id);
2754 id = cpu_number();
2755 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2756
2757 #else /* MULTIPROCESSOR */
2758 uint64_t *cp_id = NULL;
2759 int error, n = sysctl_ncpus();
2760 struct cpu_info *ci;
2761 CPU_INFO_ITERATOR cii;
2762
2763 /*
2764 * here you may either retrieve a single cpu id or the whole
2765 * set. the size you get back when probing depends on what
2766 * you ask for.
2767 */
2768 switch (namelen) {
2769 case 0:
2770 node.sysctl_size = n * sizeof(uint64_t);
2771 n = -2; /* ALL */
2772 break;
2773 case 1:
2774 if (name[0] < 0 || name[0] >= n)
2775 return (ENOENT); /* ENOSUCHPROCESSOR */
2776 node.sysctl_size = sizeof(uint64_t);
2777 n = name[0];
2778 /*
2779 * adjust these so that sysctl_lookup() will be happy
2780 */
2781 name++;
2782 namelen--;
2783 break;
2784 default:
2785 return (EINVAL);
2786 }
2787
2788 cp_id = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
2789 if (cp_id == NULL)
2790 return (ENOMEM);
2791 node.sysctl_data = cp_id;
2792 memset(cp_id, 0, node.sysctl_size);
2793
2794 for (CPU_INFO_FOREACH(cii, ci)) {
2795 if (n <= 0)
2796 cp_id[0] = ci->ci_cpuid;
2797 /*
2798 * if a specific processor was requested and we just
2799 * did it, we're done here
2800 */
2801 if (n == 0)
2802 break;
2803 /*
2804 * if doing "all", skip to next cp_id slot for next processor
2805 */
2806 if (n == -2)
2807 cp_id++;
2808 /*
2809 * if we're doing a specific processor, we're one
2810 * processor closer
2811 */
2812 if (n > 0)
2813 n--;
2814 }
2815
2816 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2817 free(node.sysctl_data, M_TEMP);
2818 return (error);
2819
2820 #endif /* MULTIPROCESSOR */
2821 }
2822
2823 /*
2824 * sysctl helper routine for hw.usermem and hw.usermem64. values are
2825 * calculate on the fly taking into account integer overflow and the
2826 * current wired count.
2827 */
2828 static int
2829 sysctl_hw_usermem(SYSCTLFN_ARGS)
2830 {
2831 u_int ui;
2832 u_quad_t uq;
2833 struct sysctlnode node;
2834
2835 node = *rnode;
2836 switch (rnode->sysctl_num) {
2837 case HW_USERMEM:
2838 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2839 ui = UINT_MAX;
2840 else
2841 ui *= PAGE_SIZE;
2842 node.sysctl_data = &ui;
2843 break;
2844 case HW_USERMEM64:
2845 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2846 node.sysctl_data = &uq;
2847 break;
2848 default:
2849 return (EINVAL);
2850 }
2851
2852 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2853 }
2854
2855 /*
2856 * sysctl helper routine for kern.cnmagic node. pulls the old value
2857 * out, encoded, and stuffs the new value in for decoding.
2858 */
2859 static int
2860 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2861 {
2862 char magic[CNS_LEN];
2863 int error;
2864 struct sysctlnode node;
2865
2866 if (oldp)
2867 cn_get_magic(magic, CNS_LEN);
2868 node = *rnode;
2869 node.sysctl_data = &magic[0];
2870 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2871 if (error || newp == NULL)
2872 return (error);
2873
2874 return (cn_set_magic(magic));
2875 }
2876
2877 static int
2878 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2879 {
2880 int ncpu;
2881 struct sysctlnode node;
2882
2883 ncpu = sysctl_ncpus();
2884 node = *rnode;
2885 node.sysctl_data = &ncpu;
2886
2887 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2888 }
2889
2890
2891 /*
2892 * ********************************************************************
2893 * section 3: public helper routines that are used for more than one
2894 * node
2895 * ********************************************************************
2896 */
2897
2898 /*
2899 * sysctl helper routine for the kern.root_device node and some ports'
2900 * machdep.root_device nodes.
2901 */
2902 int
2903 sysctl_root_device(SYSCTLFN_ARGS)
2904 {
2905 struct sysctlnode node;
2906
2907 node = *rnode;
2908 node.sysctl_data = root_device->dv_xname;
2909 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2910 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2911 }
2912
2913 /*
2914 * sysctl helper routine for kern.consdev, dependent on the current
2915 * state of the console. also used for machdep.console_device on some
2916 * ports.
2917 */
2918 int
2919 sysctl_consdev(SYSCTLFN_ARGS)
2920 {
2921 dev_t consdev;
2922 struct sysctlnode node;
2923
2924 if (cn_tab != NULL)
2925 consdev = cn_tab->cn_dev;
2926 else
2927 consdev = NODEV;
2928 node = *rnode;
2929 node.sysctl_data = &consdev;
2930 node.sysctl_size = sizeof(consdev);
2931 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2932 }
2933
2934 /*
2935 * ********************************************************************
2936 * section 4: support for some helpers
2937 * ********************************************************************
2938 */
2939
2940 /*
2941 * Fill in a kinfo_proc2 structure for the specified process.
2942 */
2943 static void
2944 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2945 {
2946 struct tty *tp;
2947 struct lwp *l;
2948 struct timeval ut, st;
2949
2950 memset(ki, 0, sizeof(*ki));
2951
2952 ki->p_paddr = PTRTOUINT64(p);
2953 ki->p_fd = PTRTOUINT64(p->p_fd);
2954 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2955 ki->p_stats = PTRTOUINT64(p->p_stats);
2956 ki->p_limit = PTRTOUINT64(p->p_limit);
2957 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2958 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2959 ki->p_sess = PTRTOUINT64(p->p_session);
2960 ki->p_tsess = 0; /* may be changed if controlling tty below */
2961 ki->p_ru = PTRTOUINT64(p->p_ru);
2962
2963 ki->p_eflag = 0;
2964 ki->p_exitsig = p->p_exitsig;
2965 ki->p_flag = p->p_flag;
2966
2967 ki->p_pid = p->p_pid;
2968 if (p->p_pptr)
2969 ki->p_ppid = p->p_pptr->p_pid;
2970 else
2971 ki->p_ppid = 0;
2972 ki->p_sid = p->p_session->s_sid;
2973 ki->p__pgid = p->p_pgrp->pg_id;
2974
2975 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2976
2977 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2978 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2979 ki->p_gid = kauth_cred_getegid(p->p_cred);
2980 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2981 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2982 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2983
2984 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2985 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2986 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])));
2987
2988 ki->p_jobc = p->p_pgrp->pg_jobc;
2989 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2990 ki->p_tdev = tp->t_dev;
2991 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2992 ki->p_tsess = PTRTOUINT64(tp->t_session);
2993 } else {
2994 ki->p_tdev = NODEV;
2995 }
2996
2997 ki->p_estcpu = p->p_estcpu;
2998 ki->p_rtime_sec = p->p_rtime.tv_sec;
2999 ki->p_rtime_usec = p->p_rtime.tv_usec;
3000 ki->p_cpticks = p->p_cpticks;
3001 ki->p_pctcpu = p->p_pctcpu;
3002
3003 ki->p_uticks = p->p_uticks;
3004 ki->p_sticks = p->p_sticks;
3005 ki->p_iticks = p->p_iticks;
3006
3007 ki->p_tracep = PTRTOUINT64(p->p_tracep);
3008 ki->p_traceflag = p->p_traceflag;
3009
3010
3011 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
3012 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
3013 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
3014 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
3015
3016 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
3017 ki->p_realstat = p->p_stat;
3018 ki->p_nice = p->p_nice;
3019
3020 ki->p_xstat = p->p_xstat;
3021 ki->p_acflag = p->p_acflag;
3022
3023 strncpy(ki->p_comm, p->p_comm,
3024 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
3025
3026 strncpy(ki->p_login, p->p_session->s_login,
3027 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
3028
3029 ki->p_nlwps = p->p_nlwps;
3030 ki->p_nrlwps = p->p_nrlwps;
3031 ki->p_realflag = p->p_flag;
3032
3033 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
3034 ki->p_vm_rssize = 0;
3035 ki->p_vm_tsize = 0;
3036 ki->p_vm_dsize = 0;
3037 ki->p_vm_ssize = 0;
3038 l = NULL;
3039 } else {
3040 struct vmspace *vm = p->p_vmspace;
3041
3042 ki->p_vm_rssize = vm_resident_count(vm);
3043 ki->p_vm_tsize = vm->vm_tsize;
3044 ki->p_vm_dsize = vm->vm_dsize;
3045 ki->p_vm_ssize = vm->vm_ssize;
3046
3047 /* Pick a "representative" LWP */
3048 l = proc_representative_lwp(p);
3049 ki->p_forw = PTRTOUINT64(l->l_forw);
3050 ki->p_back = PTRTOUINT64(l->l_back);
3051 ki->p_addr = PTRTOUINT64(l->l_addr);
3052 ki->p_stat = l->l_stat;
3053 ki->p_flag |= l->l_flag & P_SHARED;
3054 ki->p_swtime = l->l_swtime;
3055 ki->p_slptime = l->l_slptime;
3056 if (l->l_stat == LSONPROC) {
3057 KDASSERT(l->l_cpu != NULL);
3058 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3059 } else
3060 ki->p_schedflags = 0;
3061 ki->p_holdcnt = l->l_holdcnt;
3062 ki->p_priority = l->l_priority;
3063 ki->p_usrpri = l->l_usrpri;
3064 if (l->l_wmesg)
3065 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
3066 ki->p_wchan = PTRTOUINT64(l->l_wchan);
3067
3068 }
3069
3070 if (p->p_session->s_ttyvp)
3071 ki->p_eflag |= EPROC_CTTY;
3072 if (SESS_LEADER(p))
3073 ki->p_eflag |= EPROC_SLEADER;
3074
3075 /* XXX Is this double check necessary? */
3076 if (P_ZOMBIE(p)) {
3077 ki->p_uvalid = 0;
3078 } else {
3079 ki->p_uvalid = 1;
3080
3081 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
3082 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
3083
3084 calcru(p, &ut, &st, 0);
3085 ki->p_uutime_sec = ut.tv_sec;
3086 ki->p_uutime_usec = ut.tv_usec;
3087 ki->p_ustime_sec = st.tv_sec;
3088 ki->p_ustime_usec = st.tv_usec;
3089
3090 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
3091 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
3092 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
3093 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
3094 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
3095 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
3096 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
3097 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
3098 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
3099 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
3100 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
3101 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
3102 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
3103 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
3104
3105 timeradd(&p->p_stats->p_cru.ru_utime,
3106 &p->p_stats->p_cru.ru_stime, &ut);
3107 ki->p_uctime_sec = ut.tv_sec;
3108 ki->p_uctime_usec = ut.tv_usec;
3109 }
3110 #ifdef MULTIPROCESSOR
3111 if (l && l->l_cpu != NULL)
3112 ki->p_cpuid = l->l_cpu->ci_cpuid;
3113 else
3114 #endif
3115 ki->p_cpuid = KI_NOCPU;
3116 }
3117
3118 /*
3119 * Fill in a kinfo_lwp structure for the specified lwp.
3120 */
3121 static void
3122 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
3123 {
3124
3125 kl->l_forw = PTRTOUINT64(l->l_forw);
3126 kl->l_back = PTRTOUINT64(l->l_back);
3127 kl->l_laddr = PTRTOUINT64(l);
3128 kl->l_addr = PTRTOUINT64(l->l_addr);
3129 kl->l_stat = l->l_stat;
3130 kl->l_lid = l->l_lid;
3131 kl->l_flag = l->l_flag;
3132
3133 kl->l_swtime = l->l_swtime;
3134 kl->l_slptime = l->l_slptime;
3135 if (l->l_stat == LSONPROC) {
3136 KDASSERT(l->l_cpu != NULL);
3137 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3138 } else
3139 kl->l_schedflags = 0;
3140 kl->l_holdcnt = l->l_holdcnt;
3141 kl->l_priority = l->l_priority;
3142 kl->l_usrpri = l->l_usrpri;
3143 if (l->l_wmesg)
3144 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
3145 kl->l_wchan = PTRTOUINT64(l->l_wchan);
3146 #ifdef MULTIPROCESSOR
3147 if (l->l_cpu != NULL)
3148 kl->l_cpuid = l->l_cpu->ci_cpuid;
3149 else
3150 #endif
3151 kl->l_cpuid = KI_NOCPU;
3152 }
3153
3154 /*
3155 * Fill in an eproc structure for the specified process.
3156 */
3157 void
3158 fill_eproc(struct proc *p, struct eproc *ep)
3159 {
3160 struct tty *tp;
3161 struct lwp *l;
3162
3163 ep->e_paddr = p;
3164 ep->e_sess = p->p_session;
3165 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
3166 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
3167 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
3168 ep->e_vm.vm_rssize = 0;
3169 ep->e_vm.vm_tsize = 0;
3170 ep->e_vm.vm_dsize = 0;
3171 ep->e_vm.vm_ssize = 0;
3172 /* ep->e_vm.vm_pmap = XXX; */
3173 } else {
3174 struct vmspace *vm = p->p_vmspace;
3175
3176 ep->e_vm.vm_rssize = vm_resident_count(vm);
3177 ep->e_vm.vm_tsize = vm->vm_tsize;
3178 ep->e_vm.vm_dsize = vm->vm_dsize;
3179 ep->e_vm.vm_ssize = vm->vm_ssize;
3180
3181 /* Pick a "representative" LWP */
3182 l = proc_representative_lwp(p);
3183
3184 if (l->l_wmesg)
3185 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
3186 }
3187 if (p->p_pptr)
3188 ep->e_ppid = p->p_pptr->p_pid;
3189 else
3190 ep->e_ppid = 0;
3191 ep->e_pgid = p->p_pgrp->pg_id;
3192 ep->e_sid = ep->e_sess->s_sid;
3193 ep->e_jobc = p->p_pgrp->pg_jobc;
3194 if ((p->p_flag & P_CONTROLT) &&
3195 (tp = ep->e_sess->s_ttyp)) {
3196 ep->e_tdev = tp->t_dev;
3197 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3198 ep->e_tsess = tp->t_session;
3199 } else
3200 ep->e_tdev = NODEV;
3201
3202 ep->e_xsize = ep->e_xrssize = 0;
3203 ep->e_xccount = ep->e_xswrss = 0;
3204 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
3205 if (SESS_LEADER(p))
3206 ep->e_flag |= EPROC_SLEADER;
3207 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
3208 }
3209