init_sysctl.c revision 1.98.2.7 1 /* $NetBSD: init_sysctl.c,v 1.98.2.7 2007/08/20 21:27:27 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.98.2.7 2007/08/20 21:27:27 ad Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "opt_compat_netbsd32.h"
46 #include "pty.h"
47 #include "rnd.h"
48
49 #include <sys/types.h>
50 #include <sys/param.h>
51 #include <sys/sysctl.h>
52 #include <sys/cpu.h>
53 #include <sys/errno.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/unistd.h>
57 #include <sys/disklabel.h>
58 #include <sys/rnd.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/namei.h>
62 #include <sys/msgbuf.h>
63 #include <dev/cons.h>
64 #include <sys/socketvar.h>
65 #include <sys/file.h>
66 #include <sys/filedesc.h>
67 #include <sys/tty.h>
68 #include <sys/malloc.h>
69 #include <sys/resource.h>
70 #include <sys/resourcevar.h>
71 #include <sys/exec.h>
72 #include <sys/conf.h>
73 #include <sys/device.h>
74 #include <sys/stat.h>
75 #include <sys/kauth.h>
76 #include <sys/ktrace.h>
77
78 #ifdef COMPAT_NETBSD32
79 #include <compat/netbsd32/netbsd32.h>
80 #endif
81
82 #include <machine/cpu.h>
83
84 /* XXX this should not be here */
85 int security_setidcore_dump;
86 char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
87 uid_t security_setidcore_owner = 0;
88 gid_t security_setidcore_group = 0;
89 mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
90
91 static const u_int sysctl_flagmap[] = {
92 PK_ADVLOCK, P_ADVLOCK,
93 PK_EXEC, P_EXEC,
94 PK_NOCLDWAIT, P_NOCLDWAIT,
95 PK_32, P_32,
96 PK_CLDSIGIGN, P_CLDSIGIGN,
97 PK_PAXMPROTECT, P_PAXMPROTECT,
98 PK_PAXNOMPROTECT, P_PAXNOMPROTECT,
99 PK_SYSTRACE, P_SYSTRACE,
100 PK_SUGID, P_SUGID,
101 0
102 };
103
104 static const u_int sysctl_sflagmap[] = {
105 PS_NOCLDSTOP, P_NOCLDSTOP,
106 PS_PPWAIT, P_PPWAIT,
107 PS_WEXIT, P_WEXIT,
108 PS_STOPFORK, P_STOPFORK,
109 PS_STOPEXEC, P_STOPEXEC,
110 PS_STOPEXIT, P_STOPEXIT,
111 0
112 };
113
114 static const u_int sysctl_slflagmap[] = {
115 PSL_TRACED, P_TRACED,
116 PSL_FSTRACE, P_FSTRACE,
117 PSL_CHTRACED, P_CHTRACED,
118 PSL_SYSCALL, P_SYSCALL,
119 0
120 };
121
122 static const u_int sysctl_lflagmap[] = {
123 PL_CONTROLT, P_CONTROLT,
124 0
125 };
126
127 static const u_int sysctl_stflagmap[] = {
128 PST_PROFIL, P_PROFIL,
129 0
130
131 };
132
133 static const u_int sysctl_lwpflagmap[] = {
134 LW_INMEM, P_INMEM,
135 LW_SINTR, P_SINTR,
136 LW_SYSTEM, P_SYSTEM,
137 0
138 };
139
140 static const u_int sysctl_lwpprflagmap[] = {
141 LPR_DETACHED, L_DETACHED,
142 0
143 };
144
145
146 /*
147 * try over estimating by 5 procs/lwps
148 */
149 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
150 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
151
152 static int dcopyout(struct lwp *, const void *, void *, size_t);
153
154 static int
155 dcopyout(l, kaddr, uaddr, len)
156 struct lwp *l;
157 const void *kaddr;
158 void *uaddr;
159 size_t len;
160 {
161 int error;
162
163 error = copyout(kaddr, uaddr, len);
164 ktrmibio(-1, UIO_READ, uaddr, len, error);
165
166 return error;
167 }
168
169 #ifdef DIAGNOSTIC
170 static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
171 #endif
172 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
173 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
174 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
175 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
176 static int sysctl_setlen(SYSCTLFN_PROTO);
177 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
178 static int sysctl_kern_file(SYSCTLFN_PROTO);
179 static int sysctl_msgbuf(SYSCTLFN_PROTO);
180 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
181 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
182 #if NPTY > 0
183 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
184 #endif /* NPTY > 0 */
185 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
186 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
187 static int sysctl_kern_arnd(SYSCTLFN_PROTO);
188 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
189 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
190 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
191 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
192 static int sysctl_kern_file2(SYSCTLFN_PROTO);
193 static int sysctl_security_setidcore(SYSCTLFN_PROTO);
194 static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
195 static int sysctl_kern_cpid(SYSCTLFN_PROTO);
196 static int sysctl_doeproc(SYSCTLFN_PROTO);
197 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
198 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
199 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
200 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
201
202 static u_int sysctl_map_flags(const u_int *, u_int);
203 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
204 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
205 static void fill_file(struct kinfo_file *, const struct file *, struct proc *,
206 int);
207
208 /*
209 * ********************************************************************
210 * section 1: setup routines
211 * ********************************************************************
212 * these functions are stuffed into a link set for sysctl setup
213 * functions. they're never called or referenced from anywhere else.
214 * ********************************************************************
215 */
216
217 /*
218 * sets up the base nodes...
219 */
220 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
221 {
222
223 sysctl_createv(clog, 0, NULL, NULL,
224 CTLFLAG_PERMANENT,
225 CTLTYPE_NODE, "kern",
226 SYSCTL_DESCR("High kernel"),
227 NULL, 0, NULL, 0,
228 CTL_KERN, CTL_EOL);
229 sysctl_createv(clog, 0, NULL, NULL,
230 CTLFLAG_PERMANENT,
231 CTLTYPE_NODE, "vm",
232 SYSCTL_DESCR("Virtual memory"),
233 NULL, 0, NULL, 0,
234 CTL_VM, CTL_EOL);
235 sysctl_createv(clog, 0, NULL, NULL,
236 CTLFLAG_PERMANENT,
237 CTLTYPE_NODE, "vfs",
238 SYSCTL_DESCR("Filesystem"),
239 NULL, 0, NULL, 0,
240 CTL_VFS, CTL_EOL);
241 sysctl_createv(clog, 0, NULL, NULL,
242 CTLFLAG_PERMANENT,
243 CTLTYPE_NODE, "net",
244 SYSCTL_DESCR("Networking"),
245 NULL, 0, NULL, 0,
246 CTL_NET, CTL_EOL);
247 sysctl_createv(clog, 0, NULL, NULL,
248 CTLFLAG_PERMANENT,
249 CTLTYPE_NODE, "debug",
250 SYSCTL_DESCR("Debugging"),
251 NULL, 0, NULL, 0,
252 CTL_DEBUG, CTL_EOL);
253 sysctl_createv(clog, 0, NULL, NULL,
254 CTLFLAG_PERMANENT,
255 CTLTYPE_NODE, "hw",
256 SYSCTL_DESCR("Generic CPU, I/O"),
257 NULL, 0, NULL, 0,
258 CTL_HW, CTL_EOL);
259 sysctl_createv(clog, 0, NULL, NULL,
260 CTLFLAG_PERMANENT,
261 CTLTYPE_NODE, "machdep",
262 SYSCTL_DESCR("Machine dependent"),
263 NULL, 0, NULL, 0,
264 CTL_MACHDEP, CTL_EOL);
265 /*
266 * this node is inserted so that the sysctl nodes in libc can
267 * operate.
268 */
269 sysctl_createv(clog, 0, NULL, NULL,
270 CTLFLAG_PERMANENT,
271 CTLTYPE_NODE, "user",
272 SYSCTL_DESCR("User-level"),
273 NULL, 0, NULL, 0,
274 CTL_USER, CTL_EOL);
275 sysctl_createv(clog, 0, NULL, NULL,
276 CTLFLAG_PERMANENT,
277 CTLTYPE_NODE, "ddb",
278 SYSCTL_DESCR("In-kernel debugger"),
279 NULL, 0, NULL, 0,
280 CTL_DDB, CTL_EOL);
281 sysctl_createv(clog, 0, NULL, NULL,
282 CTLFLAG_PERMANENT,
283 CTLTYPE_NODE, "proc",
284 SYSCTL_DESCR("Per-process"),
285 NULL, 0, NULL, 0,
286 CTL_PROC, CTL_EOL);
287 sysctl_createv(clog, 0, NULL, NULL,
288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
289 CTLTYPE_NODE, "vendor",
290 SYSCTL_DESCR("Vendor specific"),
291 NULL, 0, NULL, 0,
292 CTL_VENDOR, CTL_EOL);
293 sysctl_createv(clog, 0, NULL, NULL,
294 CTLFLAG_PERMANENT,
295 CTLTYPE_NODE, "emul",
296 SYSCTL_DESCR("Emulation settings"),
297 NULL, 0, NULL, 0,
298 CTL_EMUL, CTL_EOL);
299 sysctl_createv(clog, 0, NULL, NULL,
300 CTLFLAG_PERMANENT,
301 CTLTYPE_NODE, "security",
302 SYSCTL_DESCR("Security"),
303 NULL, 0, NULL, 0,
304 CTL_SECURITY, CTL_EOL);
305 }
306
307 /*
308 * this setup routine is a replacement for kern_sysctl()
309 */
310 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
311 {
312 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
313 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
314 extern int dumponpanic; /* defined in kern/subr_prf.c */
315 const struct sysctlnode *rnode;
316
317 sysctl_createv(clog, 0, NULL, NULL,
318 CTLFLAG_PERMANENT,
319 CTLTYPE_NODE, "kern", NULL,
320 NULL, 0, NULL, 0,
321 CTL_KERN, CTL_EOL);
322
323 sysctl_createv(clog, 0, NULL, NULL,
324 CTLFLAG_PERMANENT,
325 CTLTYPE_STRING, "ostype",
326 SYSCTL_DESCR("Operating system type"),
327 NULL, 0, &ostype, 0,
328 CTL_KERN, KERN_OSTYPE, CTL_EOL);
329 sysctl_createv(clog, 0, NULL, NULL,
330 CTLFLAG_PERMANENT,
331 CTLTYPE_STRING, "osrelease",
332 SYSCTL_DESCR("Operating system release"),
333 NULL, 0, &osrelease, 0,
334 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
335 sysctl_createv(clog, 0, NULL, NULL,
336 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
337 CTLTYPE_INT, "osrevision",
338 SYSCTL_DESCR("Operating system revision"),
339 NULL, __NetBSD_Version__, NULL, 0,
340 CTL_KERN, KERN_OSREV, CTL_EOL);
341 sysctl_createv(clog, 0, NULL, NULL,
342 CTLFLAG_PERMANENT,
343 CTLTYPE_STRING, "version",
344 SYSCTL_DESCR("Kernel version"),
345 NULL, 0, &version, 0,
346 CTL_KERN, KERN_VERSION, CTL_EOL);
347 sysctl_createv(clog, 0, NULL, NULL,
348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
349 CTLTYPE_INT, "maxvnodes",
350 SYSCTL_DESCR("Maximum number of vnodes"),
351 sysctl_kern_maxvnodes, 0, NULL, 0,
352 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
353 sysctl_createv(clog, 0, NULL, NULL,
354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
355 CTLTYPE_INT, "maxproc",
356 SYSCTL_DESCR("Maximum number of simultaneous processes"),
357 sysctl_kern_maxproc, 0, NULL, 0,
358 CTL_KERN, KERN_MAXPROC, CTL_EOL);
359 sysctl_createv(clog, 0, NULL, NULL,
360 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
361 CTLTYPE_INT, "maxfiles",
362 SYSCTL_DESCR("Maximum number of open files"),
363 NULL, 0, &maxfiles, 0,
364 CTL_KERN, KERN_MAXFILES, CTL_EOL);
365 sysctl_createv(clog, 0, NULL, NULL,
366 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
367 CTLTYPE_INT, "argmax",
368 SYSCTL_DESCR("Maximum number of bytes of arguments to "
369 "execve(2)"),
370 NULL, ARG_MAX, NULL, 0,
371 CTL_KERN, KERN_ARGMAX, CTL_EOL);
372 sysctl_createv(clog, 0, NULL, NULL,
373 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
374 CTLTYPE_STRING, "hostname",
375 SYSCTL_DESCR("System hostname"),
376 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
377 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
378 sysctl_createv(clog, 0, NULL, NULL,
379 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
380 CTLTYPE_INT, "hostid",
381 SYSCTL_DESCR("System host ID number"),
382 sysctl_kern_hostid, 0, NULL, 0,
383 CTL_KERN, KERN_HOSTID, CTL_EOL);
384 sysctl_createv(clog, 0, NULL, NULL,
385 CTLFLAG_PERMANENT,
386 CTLTYPE_STRUCT, "clockrate",
387 SYSCTL_DESCR("Kernel clock rates"),
388 sysctl_kern_clockrate, 0, NULL,
389 sizeof(struct clockinfo),
390 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
391 sysctl_createv(clog, 0, NULL, NULL,
392 CTLFLAG_PERMANENT,
393 CTLTYPE_INT, "hardclock_ticks",
394 SYSCTL_DESCR("Number of hardclock ticks"),
395 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
396 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
397 sysctl_createv(clog, 0, NULL, NULL,
398 CTLFLAG_PERMANENT,
399 CTLTYPE_STRUCT, "vnode",
400 SYSCTL_DESCR("System vnode table"),
401 sysctl_kern_vnode, 0, NULL, 0,
402 CTL_KERN, KERN_VNODE, CTL_EOL);
403 sysctl_createv(clog, 0, NULL, NULL,
404 CTLFLAG_PERMANENT,
405 CTLTYPE_STRUCT, "file",
406 SYSCTL_DESCR("System open file table"),
407 sysctl_kern_file, 0, NULL, 0,
408 CTL_KERN, KERN_FILE, CTL_EOL);
409 #ifndef GPROF
410 sysctl_createv(clog, 0, NULL, NULL,
411 CTLFLAG_PERMANENT,
412 CTLTYPE_NODE, "profiling",
413 SYSCTL_DESCR("Profiling information (not available)"),
414 sysctl_notavail, 0, NULL, 0,
415 CTL_KERN, KERN_PROF, CTL_EOL);
416 #endif
417 sysctl_createv(clog, 0, NULL, NULL,
418 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
419 CTLTYPE_INT, "posix1version",
420 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
421 "with which the operating system attempts "
422 "to comply"),
423 NULL, _POSIX_VERSION, NULL, 0,
424 CTL_KERN, KERN_POSIX1, CTL_EOL);
425 sysctl_createv(clog, 0, NULL, NULL,
426 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
427 CTLTYPE_INT, "ngroups",
428 SYSCTL_DESCR("Maximum number of supplemental groups"),
429 NULL, NGROUPS_MAX, NULL, 0,
430 CTL_KERN, KERN_NGROUPS, CTL_EOL);
431 sysctl_createv(clog, 0, NULL, NULL,
432 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
433 CTLTYPE_INT, "job_control",
434 SYSCTL_DESCR("Whether job control is available"),
435 NULL, 1, NULL, 0,
436 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
437 sysctl_createv(clog, 0, NULL, NULL,
438 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
439 CTLTYPE_INT, "saved_ids",
440 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
441 "available"), NULL,
442 #ifdef _POSIX_SAVED_IDS
443 1,
444 #else /* _POSIX_SAVED_IDS */
445 0,
446 #endif /* _POSIX_SAVED_IDS */
447 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
448 sysctl_createv(clog, 0, NULL, NULL,
449 CTLFLAG_PERMANENT,
450 CTLTYPE_STRUCT, "boottime",
451 SYSCTL_DESCR("System boot time"),
452 NULL, 0, &boottime, sizeof(boottime),
453 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
454 sysctl_createv(clog, 0, NULL, NULL,
455 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
456 CTLTYPE_STRING, "domainname",
457 SYSCTL_DESCR("YP domain name"),
458 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
459 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
460 sysctl_createv(clog, 0, NULL, NULL,
461 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
462 CTLTYPE_INT, "maxpartitions",
463 SYSCTL_DESCR("Maximum number of partitions allowed per "
464 "disk"),
465 NULL, MAXPARTITIONS, NULL, 0,
466 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
467 sysctl_createv(clog, 0, NULL, NULL,
468 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
469 CTLTYPE_INT, "rawpartition",
470 SYSCTL_DESCR("Raw partition of a disk"),
471 NULL, RAW_PART, NULL, 0,
472 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
473 sysctl_createv(clog, 0, NULL, NULL,
474 CTLFLAG_PERMANENT,
475 CTLTYPE_STRUCT, "timex", NULL,
476 sysctl_notavail, 0, NULL, 0,
477 CTL_KERN, KERN_TIMEX, CTL_EOL);
478 sysctl_createv(clog, 0, NULL, NULL,
479 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
480 CTLTYPE_INT, "rtc_offset",
481 SYSCTL_DESCR("Offset of real time clock from UTC in "
482 "minutes"),
483 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
484 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
485 sysctl_createv(clog, 0, NULL, NULL,
486 CTLFLAG_PERMANENT,
487 CTLTYPE_STRING, "root_device",
488 SYSCTL_DESCR("Name of the root device"),
489 sysctl_root_device, 0, NULL, 0,
490 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
491 sysctl_createv(clog, 0, NULL, NULL,
492 CTLFLAG_PERMANENT,
493 CTLTYPE_INT, "msgbufsize",
494 SYSCTL_DESCR("Size of the kernel message buffer"),
495 sysctl_msgbuf, 0, NULL, 0,
496 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
497 sysctl_createv(clog, 0, NULL, NULL,
498 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
499 CTLTYPE_INT, "fsync",
500 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
501 "Synchronization Option is available on "
502 "this system"),
503 NULL, 1, NULL, 0,
504 CTL_KERN, KERN_FSYNC, CTL_EOL);
505 sysctl_createv(clog, 0, NULL, NULL,
506 CTLFLAG_PERMANENT,
507 CTLTYPE_NODE, "ipc",
508 SYSCTL_DESCR("SysV IPC options"),
509 NULL, 0, NULL, 0,
510 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
511 sysctl_createv(clog, 0, NULL, NULL,
512 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
513 CTLTYPE_INT, "sysvmsg",
514 SYSCTL_DESCR("System V style message support available"),
515 NULL,
516 #ifdef SYSVMSG
517 1,
518 #else /* SYSVMSG */
519 0,
520 #endif /* SYSVMSG */
521 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_MSG, CTL_EOL);
522 sysctl_createv(clog, 0, NULL, NULL,
523 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
524 CTLTYPE_INT, "sysvsem",
525 SYSCTL_DESCR("System V style semaphore support "
526 "available"), NULL,
527 #ifdef SYSVSEM
528 1,
529 #else /* SYSVSEM */
530 0,
531 #endif /* SYSVSEM */
532 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SEM, CTL_EOL);
533 sysctl_createv(clog, 0, NULL, NULL,
534 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
535 CTLTYPE_INT, "sysvshm",
536 SYSCTL_DESCR("System V style shared memory support "
537 "available"), NULL,
538 #ifdef SYSVSHM
539 1,
540 #else /* SYSVSHM */
541 0,
542 #endif /* SYSVSHM */
543 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHM, CTL_EOL);
544 sysctl_createv(clog, 0, NULL, NULL,
545 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
546 CTLTYPE_INT, "synchronized_io",
547 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
548 "I/O Option is available on this system"),
549 NULL, 1, NULL, 0,
550 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
551 sysctl_createv(clog, 0, NULL, NULL,
552 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
553 CTLTYPE_INT, "iov_max",
554 SYSCTL_DESCR("Maximum number of iovec structures per "
555 "process"),
556 NULL, IOV_MAX, NULL, 0,
557 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
558 sysctl_createv(clog, 0, NULL, NULL,
559 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
560 CTLTYPE_INT, "mapped_files",
561 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
562 "Files Option is available on this system"),
563 NULL, 1, NULL, 0,
564 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
565 sysctl_createv(clog, 0, NULL, NULL,
566 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
567 CTLTYPE_INT, "memlock",
568 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
569 "Locking Option is available on this "
570 "system"),
571 NULL, 1, NULL, 0,
572 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
573 sysctl_createv(clog, 0, NULL, NULL,
574 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
575 CTLTYPE_INT, "memlock_range",
576 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
577 "Locking Option is available on this "
578 "system"),
579 NULL, 1, NULL, 0,
580 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
581 sysctl_createv(clog, 0, NULL, NULL,
582 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
583 CTLTYPE_INT, "memory_protection",
584 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
585 "Protection Option is available on this "
586 "system"),
587 NULL, 1, NULL, 0,
588 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
589 sysctl_createv(clog, 0, NULL, NULL,
590 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
591 CTLTYPE_INT, "login_name_max",
592 SYSCTL_DESCR("Maximum login name length"),
593 NULL, LOGIN_NAME_MAX, NULL, 0,
594 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
595 sysctl_createv(clog, 0, NULL, NULL,
596 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
597 CTLTYPE_STRING, "defcorename",
598 SYSCTL_DESCR("Default core file name"),
599 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
600 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
601 sysctl_createv(clog, 0, NULL, NULL,
602 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
603 CTLTYPE_INT, "logsigexit",
604 SYSCTL_DESCR("Log process exit when caused by signals"),
605 NULL, 0, &kern_logsigexit, 0,
606 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
607 sysctl_createv(clog, 0, NULL, NULL,
608 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
609 CTLTYPE_INT, "fscale",
610 SYSCTL_DESCR("Kernel fixed-point scale factor"),
611 NULL, FSCALE, NULL, 0,
612 CTL_KERN, KERN_FSCALE, CTL_EOL);
613 sysctl_createv(clog, 0, NULL, NULL,
614 CTLFLAG_PERMANENT,
615 CTLTYPE_INT, "ccpu",
616 SYSCTL_DESCR("Scheduler exponential decay value"),
617 NULL, 0, &ccpu, 0,
618 CTL_KERN, KERN_CCPU, CTL_EOL);
619 sysctl_createv(clog, 0, NULL, NULL,
620 CTLFLAG_PERMANENT,
621 CTLTYPE_STRUCT, "cp_time",
622 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
623 sysctl_kern_cptime, 0, NULL, 0,
624 CTL_KERN, KERN_CP_TIME, CTL_EOL);
625 sysctl_createv(clog, 0, NULL, NULL,
626 CTLFLAG_PERMANENT,
627 CTLTYPE_INT, "msgbuf",
628 SYSCTL_DESCR("Kernel message buffer"),
629 sysctl_msgbuf, 0, NULL, 0,
630 CTL_KERN, KERN_MSGBUF, CTL_EOL);
631 sysctl_createv(clog, 0, NULL, NULL,
632 CTLFLAG_PERMANENT,
633 CTLTYPE_STRUCT, "consdev",
634 SYSCTL_DESCR("Console device"),
635 sysctl_consdev, 0, NULL, sizeof(dev_t),
636 CTL_KERN, KERN_CONSDEV, CTL_EOL);
637 #if NPTY > 0
638 sysctl_createv(clog, 0, NULL, NULL,
639 CTLFLAG_PERMANENT,
640 CTLTYPE_INT, "maxptys",
641 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
642 sysctl_kern_maxptys, 0, NULL, 0,
643 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
644 #endif /* NPTY > 0 */
645 sysctl_createv(clog, 0, NULL, NULL,
646 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
647 CTLTYPE_INT, "maxphys",
648 SYSCTL_DESCR("Maximum raw I/O transfer size"),
649 NULL, MAXPHYS, NULL, 0,
650 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
651 sysctl_createv(clog, 0, NULL, NULL,
652 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
653 CTLTYPE_INT, "sbmax",
654 SYSCTL_DESCR("Maximum socket buffer size"),
655 sysctl_kern_sbmax, 0, NULL, 0,
656 CTL_KERN, KERN_SBMAX, CTL_EOL);
657 sysctl_createv(clog, 0, NULL, NULL,
658 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
659 CTLTYPE_INT, "monotonic_clock",
660 SYSCTL_DESCR("Implementation version of the POSIX "
661 "1003.1b Monotonic Clock Option"),
662 /* XXX _POSIX_VERSION */
663 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
664 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
665 sysctl_createv(clog, 0, NULL, NULL,
666 CTLFLAG_PERMANENT,
667 CTLTYPE_INT, "urandom",
668 SYSCTL_DESCR("Random integer value"),
669 sysctl_kern_urnd, 0, NULL, 0,
670 CTL_KERN, KERN_URND, CTL_EOL);
671 sysctl_createv(clog, 0, NULL, NULL,
672 CTLFLAG_PERMANENT,
673 CTLTYPE_INT, "arandom",
674 SYSCTL_DESCR("n bytes of random data"),
675 sysctl_kern_arnd, 0, NULL, 0,
676 CTL_KERN, KERN_ARND, CTL_EOL);
677 sysctl_createv(clog, 0, NULL, NULL,
678 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
679 CTLTYPE_INT, "labelsector",
680 SYSCTL_DESCR("Sector number containing the disklabel"),
681 NULL, LABELSECTOR, NULL, 0,
682 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
683 sysctl_createv(clog, 0, NULL, NULL,
684 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
685 CTLTYPE_INT, "labeloffset",
686 SYSCTL_DESCR("Offset of the disklabel within the "
687 "sector"),
688 NULL, LABELOFFSET, NULL, 0,
689 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
690 sysctl_createv(clog, 0, NULL, NULL,
691 CTLFLAG_PERMANENT,
692 CTLTYPE_NODE, "lwp",
693 SYSCTL_DESCR("System-wide LWP information"),
694 sysctl_kern_lwp, 0, NULL, 0,
695 CTL_KERN, KERN_LWP, CTL_EOL);
696 sysctl_createv(clog, 0, NULL, NULL,
697 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
698 CTLTYPE_INT, "forkfsleep",
699 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
700 "to process limits"),
701 sysctl_kern_forkfsleep, 0, NULL, 0,
702 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
703 sysctl_createv(clog, 0, NULL, NULL,
704 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
705 CTLTYPE_INT, "posix_threads",
706 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
707 "Threads option to which the system "
708 "attempts to conform"),
709 /* XXX _POSIX_VERSION */
710 NULL, _POSIX_THREADS, NULL, 0,
711 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
712 sysctl_createv(clog, 0, NULL, NULL,
713 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
714 CTLTYPE_INT, "posix_semaphores",
715 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
716 "Semaphores option to which the system "
717 "attempts to conform"), NULL,
718 #ifdef P1003_1B_SEMAPHORE
719 200112,
720 #else /* P1003_1B_SEMAPHORE */
721 0,
722 #endif /* P1003_1B_SEMAPHORE */
723 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
724 sysctl_createv(clog, 0, NULL, NULL,
725 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
726 CTLTYPE_INT, "posix_barriers",
727 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
728 "Barriers option to which the system "
729 "attempts to conform"),
730 /* XXX _POSIX_VERSION */
731 NULL, _POSIX_BARRIERS, NULL, 0,
732 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
733 sysctl_createv(clog, 0, NULL, NULL,
734 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
735 CTLTYPE_INT, "posix_timers",
736 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
737 "Timers option to which the system "
738 "attempts to conform"),
739 /* XXX _POSIX_VERSION */
740 NULL, _POSIX_TIMERS, NULL, 0,
741 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
742 sysctl_createv(clog, 0, NULL, NULL,
743 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
744 CTLTYPE_INT, "posix_spin_locks",
745 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
746 "Locks option to which the system attempts "
747 "to conform"),
748 /* XXX _POSIX_VERSION */
749 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
750 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
751 sysctl_createv(clog, 0, NULL, NULL,
752 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
753 CTLTYPE_INT, "posix_reader_writer_locks",
754 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
755 "Read-Write Locks option to which the "
756 "system attempts to conform"),
757 /* XXX _POSIX_VERSION */
758 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
759 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
760 sysctl_createv(clog, 0, NULL, NULL,
761 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
762 CTLTYPE_INT, "dump_on_panic",
763 SYSCTL_DESCR("Perform a crash dump on system panic"),
764 NULL, 0, &dumponpanic, 0,
765 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
766 #ifdef DIAGNOSTIC
767 sysctl_createv(clog, 0, NULL, NULL,
768 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
769 CTLTYPE_INT, "panic_now",
770 SYSCTL_DESCR("Trigger a panic"),
771 sysctl_kern_trigger_panic, 0, NULL, 0,
772 CTL_KERN, CTL_CREATE, CTL_EOL);
773 #endif
774 sysctl_createv(clog, 0, NULL, NULL,
775 CTLFLAG_PERMANENT,
776 CTLTYPE_INT, "root_partition",
777 SYSCTL_DESCR("Root partition on the root device"),
778 sysctl_kern_root_partition, 0, NULL, 0,
779 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
780 sysctl_createv(clog, 0, NULL, NULL,
781 CTLFLAG_PERMANENT,
782 CTLTYPE_STRUCT, "drivers",
783 SYSCTL_DESCR("List of all drivers with block and "
784 "character device numbers"),
785 sysctl_kern_drivers, 0, NULL, 0,
786 CTL_KERN, KERN_DRIVERS, CTL_EOL);
787 sysctl_createv(clog, 0, NULL, NULL,
788 CTLFLAG_PERMANENT,
789 CTLTYPE_STRUCT, "file2",
790 SYSCTL_DESCR("System open file table"),
791 sysctl_kern_file2, 0, NULL, 0,
792 CTL_KERN, KERN_FILE2, CTL_EOL);
793 sysctl_createv(clog, 0, NULL, NULL,
794 CTLFLAG_PERMANENT,
795 CTLTYPE_STRUCT, "cp_id",
796 SYSCTL_DESCR("Mapping of CPU number to CPU id"),
797 sysctl_kern_cpid, 0, NULL, 0,
798 CTL_KERN, KERN_CP_ID, CTL_EOL);
799 sysctl_createv(clog, 0, NULL, &rnode,
800 CTLFLAG_PERMANENT,
801 CTLTYPE_NODE, "coredump",
802 SYSCTL_DESCR("Coredump settings."),
803 NULL, 0, NULL, 0,
804 CTL_KERN, CTL_CREATE, CTL_EOL);
805 sysctl_createv(clog, 0, &rnode, &rnode,
806 CTLFLAG_PERMANENT,
807 CTLTYPE_NODE, "setid",
808 SYSCTL_DESCR("Set-id processes' coredump settings."),
809 NULL, 0, NULL, 0,
810 CTL_CREATE, CTL_EOL);
811 sysctl_createv(clog, 0, &rnode, NULL,
812 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
813 CTLTYPE_INT, "dump",
814 SYSCTL_DESCR("Allow set-id processes to dump core."),
815 sysctl_security_setidcore, 0, &security_setidcore_dump,
816 sizeof(security_setidcore_dump),
817 CTL_CREATE, CTL_EOL);
818 sysctl_createv(clog, 0, &rnode, NULL,
819 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
820 CTLTYPE_STRING, "path",
821 SYSCTL_DESCR("Path pattern for set-id coredumps."),
822 sysctl_security_setidcorename, 0,
823 &security_setidcore_path,
824 sizeof(security_setidcore_path),
825 CTL_CREATE, CTL_EOL);
826 sysctl_createv(clog, 0, &rnode, NULL,
827 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
828 CTLTYPE_INT, "owner",
829 SYSCTL_DESCR("Owner id for set-id processes' cores."),
830 sysctl_security_setidcore, 0, &security_setidcore_owner,
831 0,
832 CTL_CREATE, CTL_EOL);
833 sysctl_createv(clog, 0, &rnode, NULL,
834 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
835 CTLTYPE_INT, "group",
836 SYSCTL_DESCR("Group id for set-id processes' cores."),
837 sysctl_security_setidcore, 0, &security_setidcore_group,
838 0,
839 CTL_CREATE, CTL_EOL);
840 sysctl_createv(clog, 0, &rnode, NULL,
841 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
842 CTLTYPE_INT, "mode",
843 SYSCTL_DESCR("Mode for set-id processes' cores."),
844 sysctl_security_setidcore, 0, &security_setidcore_mode,
845 0,
846 CTL_CREATE, CTL_EOL);
847 }
848
849 SYSCTL_SETUP(sysctl_kern_proc_setup,
850 "sysctl kern.proc/proc2/proc_args subtree setup")
851 {
852
853 sysctl_createv(clog, 0, NULL, NULL,
854 CTLFLAG_PERMANENT,
855 CTLTYPE_NODE, "kern", NULL,
856 NULL, 0, NULL, 0,
857 CTL_KERN, CTL_EOL);
858
859 sysctl_createv(clog, 0, NULL, NULL,
860 CTLFLAG_PERMANENT,
861 CTLTYPE_NODE, "proc",
862 SYSCTL_DESCR("System-wide process information"),
863 sysctl_doeproc, 0, NULL, 0,
864 CTL_KERN, KERN_PROC, CTL_EOL);
865 sysctl_createv(clog, 0, NULL, NULL,
866 CTLFLAG_PERMANENT,
867 CTLTYPE_NODE, "proc2",
868 SYSCTL_DESCR("Machine-independent process information"),
869 sysctl_doeproc, 0, NULL, 0,
870 CTL_KERN, KERN_PROC2, CTL_EOL);
871 sysctl_createv(clog, 0, NULL, NULL,
872 CTLFLAG_PERMANENT,
873 CTLTYPE_NODE, "proc_args",
874 SYSCTL_DESCR("Process argument information"),
875 sysctl_kern_proc_args, 0, NULL, 0,
876 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
877
878 /*
879 "nodes" under these:
880
881 KERN_PROC_ALL
882 KERN_PROC_PID pid
883 KERN_PROC_PGRP pgrp
884 KERN_PROC_SESSION sess
885 KERN_PROC_TTY tty
886 KERN_PROC_UID uid
887 KERN_PROC_RUID uid
888 KERN_PROC_GID gid
889 KERN_PROC_RGID gid
890
891 all in all, probably not worth the effort...
892 */
893 }
894
895 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
896 {
897 u_int u;
898 u_quad_t q;
899
900 sysctl_createv(clog, 0, NULL, NULL,
901 CTLFLAG_PERMANENT,
902 CTLTYPE_NODE, "hw", NULL,
903 NULL, 0, NULL, 0,
904 CTL_HW, CTL_EOL);
905
906 sysctl_createv(clog, 0, NULL, NULL,
907 CTLFLAG_PERMANENT,
908 CTLTYPE_STRING, "machine",
909 SYSCTL_DESCR("Machine class"),
910 NULL, 0, machine, 0,
911 CTL_HW, HW_MACHINE, CTL_EOL);
912 sysctl_createv(clog, 0, NULL, NULL,
913 CTLFLAG_PERMANENT,
914 CTLTYPE_STRING, "model",
915 SYSCTL_DESCR("Machine model"),
916 NULL, 0, cpu_model, 0,
917 CTL_HW, HW_MODEL, CTL_EOL);
918 sysctl_createv(clog, 0, NULL, NULL,
919 CTLFLAG_PERMANENT,
920 CTLTYPE_INT, "ncpu",
921 SYSCTL_DESCR("Number of active CPUs"),
922 sysctl_hw_ncpu, 0, NULL, 0,
923 CTL_HW, HW_NCPU, CTL_EOL);
924 sysctl_createv(clog, 0, NULL, NULL,
925 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
926 CTLTYPE_INT, "byteorder",
927 SYSCTL_DESCR("System byte order"),
928 NULL, BYTE_ORDER, NULL, 0,
929 CTL_HW, HW_BYTEORDER, CTL_EOL);
930 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
931 UINT_MAX : physmem * PAGE_SIZE;
932 sysctl_createv(clog, 0, NULL, NULL,
933 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
934 CTLTYPE_INT, "physmem",
935 SYSCTL_DESCR("Bytes of physical memory"),
936 NULL, u, NULL, 0,
937 CTL_HW, HW_PHYSMEM, CTL_EOL);
938 sysctl_createv(clog, 0, NULL, NULL,
939 CTLFLAG_PERMANENT,
940 CTLTYPE_INT, "usermem",
941 SYSCTL_DESCR("Bytes of non-kernel memory"),
942 sysctl_hw_usermem, 0, NULL, 0,
943 CTL_HW, HW_USERMEM, CTL_EOL);
944 sysctl_createv(clog, 0, NULL, NULL,
945 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
946 CTLTYPE_INT, "pagesize",
947 SYSCTL_DESCR("Software page size"),
948 NULL, PAGE_SIZE, NULL, 0,
949 CTL_HW, HW_PAGESIZE, CTL_EOL);
950 sysctl_createv(clog, 0, NULL, NULL,
951 CTLFLAG_PERMANENT,
952 CTLTYPE_STRING, "machine_arch",
953 SYSCTL_DESCR("Machine CPU class"),
954 NULL, 0, machine_arch, 0,
955 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
956 sysctl_createv(clog, 0, NULL, NULL,
957 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
958 CTLTYPE_INT, "alignbytes",
959 SYSCTL_DESCR("Alignment constraint for all possible "
960 "data types"),
961 NULL, ALIGNBYTES, NULL, 0,
962 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
963 sysctl_createv(clog, 0, NULL, NULL,
964 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
965 CTLTYPE_STRING, "cnmagic",
966 SYSCTL_DESCR("Console magic key sequence"),
967 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
968 CTL_HW, HW_CNMAGIC, CTL_EOL);
969 q = (u_quad_t)physmem * PAGE_SIZE;
970 sysctl_createv(clog, 0, NULL, NULL,
971 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
972 CTLTYPE_QUAD, "physmem64",
973 SYSCTL_DESCR("Bytes of physical memory"),
974 NULL, q, NULL, 0,
975 CTL_HW, HW_PHYSMEM64, CTL_EOL);
976 sysctl_createv(clog, 0, NULL, NULL,
977 CTLFLAG_PERMANENT,
978 CTLTYPE_QUAD, "usermem64",
979 SYSCTL_DESCR("Bytes of non-kernel memory"),
980 sysctl_hw_usermem, 0, NULL, 0,
981 CTL_HW, HW_USERMEM64, CTL_EOL);
982 }
983
984 #ifdef DEBUG
985 /*
986 * Debugging related system variables.
987 */
988 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
989 struct ctldebug debug5, debug6, debug7, debug8, debug9;
990 struct ctldebug debug10, debug11, debug12, debug13, debug14;
991 struct ctldebug debug15, debug16, debug17, debug18, debug19;
992 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
993 &debug0, &debug1, &debug2, &debug3, &debug4,
994 &debug5, &debug6, &debug7, &debug8, &debug9,
995 &debug10, &debug11, &debug12, &debug13, &debug14,
996 &debug15, &debug16, &debug17, &debug18, &debug19,
997 };
998
999 /*
1000 * this setup routine is a replacement for debug_sysctl()
1001 *
1002 * note that it creates several nodes per defined debug variable
1003 */
1004 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
1005 {
1006 struct ctldebug *cdp;
1007 char nodename[20];
1008 int i;
1009
1010 /*
1011 * two ways here:
1012 *
1013 * the "old" way (debug.name -> value) which was emulated by
1014 * the sysctl(8) binary
1015 *
1016 * the new way, which the sysctl(8) binary was actually using
1017
1018 node debug
1019 node debug.0
1020 string debug.0.name
1021 int debug.0.value
1022 int debug.name
1023
1024 */
1025
1026 sysctl_createv(clog, 0, NULL, NULL,
1027 CTLFLAG_PERMANENT,
1028 CTLTYPE_NODE, "debug", NULL,
1029 NULL, 0, NULL, 0,
1030 CTL_DEBUG, CTL_EOL);
1031
1032 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
1033 cdp = debugvars[i];
1034 if (cdp->debugname == NULL || cdp->debugvar == NULL)
1035 continue;
1036
1037 snprintf(nodename, sizeof(nodename), "debug%d", i);
1038 sysctl_createv(clog, 0, NULL, NULL,
1039 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1040 CTLTYPE_NODE, nodename, NULL,
1041 NULL, 0, NULL, 0,
1042 CTL_DEBUG, i, CTL_EOL);
1043 sysctl_createv(clog, 0, NULL, NULL,
1044 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1045 CTLTYPE_STRING, "name", NULL,
1046 /*XXXUNCONST*/
1047 NULL, 0, __UNCONST(cdp->debugname), 0,
1048 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
1049 sysctl_createv(clog, 0, NULL, NULL,
1050 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1051 CTLTYPE_INT, "value", NULL,
1052 NULL, 0, cdp->debugvar, 0,
1053 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
1054 sysctl_createv(clog, 0, NULL, NULL,
1055 CTLFLAG_PERMANENT,
1056 CTLTYPE_INT, cdp->debugname, NULL,
1057 NULL, 0, cdp->debugvar, 0,
1058 CTL_DEBUG, CTL_CREATE, CTL_EOL);
1059 }
1060 }
1061 #endif /* DEBUG */
1062
1063 /*
1064 * ********************************************************************
1065 * section 2: private node-specific helper routines.
1066 * ********************************************************************
1067 */
1068
1069 #ifdef DIAGNOSTIC
1070 static int
1071 sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
1072 {
1073 int newtrig, error;
1074 struct sysctlnode node;
1075
1076 newtrig = 0;
1077 node = *rnode;
1078 node.sysctl_data = &newtrig;
1079 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1080 if (error || newp == NULL)
1081 return (error);
1082
1083 if (newtrig != 0)
1084 panic("Panic triggered");
1085
1086 return (error);
1087 }
1088 #endif
1089
1090 /*
1091 * sysctl helper routine for kern.maxvnodes. drain vnodes if
1092 * new value is lower than desiredvnodes and then calls reinit
1093 * routines that needs to adjust to the new value.
1094 */
1095 static int
1096 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1097 {
1098 int error, new_vnodes, old_vnodes;
1099 struct sysctlnode node;
1100
1101 new_vnodes = desiredvnodes;
1102 node = *rnode;
1103 node.sysctl_data = &new_vnodes;
1104 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1105 if (error || newp == NULL)
1106 return (error);
1107
1108 old_vnodes = desiredvnodes;
1109 desiredvnodes = new_vnodes;
1110 if (new_vnodes < old_vnodes) {
1111 error = vfs_drainvnodes(new_vnodes, l);
1112 if (error) {
1113 desiredvnodes = old_vnodes;
1114 return (error);
1115 }
1116 }
1117 vfs_reinit();
1118 nchreinit();
1119
1120 return (0);
1121 }
1122
1123 /*
1124 * sysctl helper routine for rtc_offset - set time after changes
1125 */
1126 static int
1127 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1128 {
1129 struct timespec ts, delta;
1130 int error, new_rtc_offset;
1131 struct sysctlnode node;
1132
1133 new_rtc_offset = rtc_offset;
1134 node = *rnode;
1135 node.sysctl_data = &new_rtc_offset;
1136 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1137 if (error || newp == NULL)
1138 return (error);
1139
1140 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
1141 KAUTH_REQ_SYSTEM_TIME_RTCOFFSET,
1142 (void *)(u_long)new_rtc_offset, NULL, NULL))
1143 return (EPERM);
1144 if (rtc_offset == new_rtc_offset)
1145 return (0);
1146
1147 /* if we change the offset, adjust the time */
1148 nanotime(&ts);
1149 delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
1150 delta.tv_nsec = 0;
1151 timespecadd(&ts, &delta, &ts);
1152 rtc_offset = new_rtc_offset;
1153 settime(l->l_proc, &ts);
1154
1155 return (0);
1156 }
1157
1158 /*
1159 * sysctl helper routine for kern.maxproc. ensures that the new
1160 * values are not too low or too high.
1161 */
1162 static int
1163 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1164 {
1165 int error, nmaxproc;
1166 struct sysctlnode node;
1167
1168 nmaxproc = maxproc;
1169 node = *rnode;
1170 node.sysctl_data = &nmaxproc;
1171 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1172 if (error || newp == NULL)
1173 return (error);
1174
1175 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1176 return (EINVAL);
1177 #ifdef __HAVE_CPU_MAXPROC
1178 if (nmaxproc > cpu_maxproc())
1179 return (EINVAL);
1180 #endif
1181 maxproc = nmaxproc;
1182
1183 return (0);
1184 }
1185
1186 /*
1187 * sysctl helper function for kern.hostid. the hostid is a long, but
1188 * we export it as an int, so we need to give it a little help.
1189 */
1190 static int
1191 sysctl_kern_hostid(SYSCTLFN_ARGS)
1192 {
1193 int error, inthostid;
1194 struct sysctlnode node;
1195
1196 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1197 node = *rnode;
1198 node.sysctl_data = &inthostid;
1199 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1200 if (error || newp == NULL)
1201 return (error);
1202
1203 hostid = (unsigned)inthostid;
1204
1205 return (0);
1206 }
1207
1208 /*
1209 * sysctl helper function for kern.hostname and kern.domainnname.
1210 * resets the relevant recorded length when the underlying name is
1211 * changed.
1212 */
1213 static int
1214 sysctl_setlen(SYSCTLFN_ARGS)
1215 {
1216 int error;
1217
1218 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1219 if (error || newp == NULL)
1220 return (error);
1221
1222 switch (rnode->sysctl_num) {
1223 case KERN_HOSTNAME:
1224 hostnamelen = strlen((const char*)rnode->sysctl_data);
1225 break;
1226 case KERN_DOMAINNAME:
1227 domainnamelen = strlen((const char*)rnode->sysctl_data);
1228 break;
1229 }
1230
1231 return (0);
1232 }
1233
1234 /*
1235 * sysctl helper routine for kern.clockrate. assembles a struct on
1236 * the fly to be returned to the caller.
1237 */
1238 static int
1239 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1240 {
1241 struct clockinfo clkinfo;
1242 struct sysctlnode node;
1243
1244 clkinfo.tick = tick;
1245 clkinfo.tickadj = tickadj;
1246 clkinfo.hz = hz;
1247 clkinfo.profhz = profhz;
1248 clkinfo.stathz = stathz ? stathz : hz;
1249
1250 node = *rnode;
1251 node.sysctl_data = &clkinfo;
1252 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1253 }
1254
1255
1256 /*
1257 * sysctl helper routine for kern.file pseudo-subtree.
1258 */
1259 static int
1260 sysctl_kern_file(SYSCTLFN_ARGS)
1261 {
1262 int error;
1263 size_t buflen;
1264 struct file *fp;
1265 char *start, *where;
1266
1267 start = where = oldp;
1268 buflen = *oldlenp;
1269 if (where == NULL) {
1270 /*
1271 * overestimate by 10 files
1272 */
1273 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
1274 return (0);
1275 }
1276
1277 /*
1278 * first dcopyout filehead
1279 */
1280 if (buflen < sizeof(filehead)) {
1281 *oldlenp = 0;
1282 return (0);
1283 }
1284 error = dcopyout(l, &filehead, where, sizeof(filehead));
1285 if (error)
1286 return (error);
1287 buflen -= sizeof(filehead);
1288 where += sizeof(filehead);
1289
1290 /*
1291 * followed by an array of file structures
1292 */
1293 LIST_FOREACH(fp, &filehead, f_list) {
1294 if (kauth_authorize_generic(l->l_cred,
1295 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0)
1296 continue;
1297 if (buflen < sizeof(struct file)) {
1298 *oldlenp = where - start;
1299 return (ENOMEM);
1300 }
1301 error = dcopyout(l, fp, where, sizeof(struct file));
1302 if (error)
1303 return (error);
1304 buflen -= sizeof(struct file);
1305 where += sizeof(struct file);
1306 }
1307 *oldlenp = where - start;
1308 return (0);
1309 }
1310
1311 /*
1312 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
1313 * former it merely checks the message buffer is set up. for the latter,
1314 * it also copies out the data if necessary.
1315 */
1316 static int
1317 sysctl_msgbuf(SYSCTLFN_ARGS)
1318 {
1319 char *where = oldp;
1320 size_t len, maxlen;
1321 long beg, end;
1322 int error;
1323
1324 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1325 msgbufenabled = 0;
1326 return (ENXIO);
1327 }
1328
1329 switch (rnode->sysctl_num) {
1330 case KERN_MSGBUFSIZE: {
1331 struct sysctlnode node = *rnode;
1332 int msg_bufs = (int)msgbufp->msg_bufs;
1333 node.sysctl_data = &msg_bufs;
1334 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1335 }
1336 case KERN_MSGBUF:
1337 break;
1338 default:
1339 return (EOPNOTSUPP);
1340 }
1341
1342 if (newp != NULL)
1343 return (EPERM);
1344
1345 if (oldp == NULL) {
1346 /* always return full buffer size */
1347 *oldlenp = msgbufp->msg_bufs;
1348 return (0);
1349 }
1350
1351 error = 0;
1352 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1353
1354 /*
1355 * First, copy from the write pointer to the end of
1356 * message buffer.
1357 */
1358 beg = msgbufp->msg_bufx;
1359 end = msgbufp->msg_bufs;
1360 while (maxlen > 0) {
1361 len = MIN(end - beg, maxlen);
1362 if (len == 0)
1363 break;
1364 error = dcopyout(l, &msgbufp->msg_bufc[beg], where, len);
1365 if (error)
1366 break;
1367 where += len;
1368 maxlen -= len;
1369
1370 /*
1371 * ... then, copy from the beginning of message buffer to
1372 * the write pointer.
1373 */
1374 beg = 0;
1375 end = msgbufp->msg_bufx;
1376 }
1377
1378 return (error);
1379 }
1380
1381 /*
1382 * sysctl helper routine for kern.defcorename. in the case of a new
1383 * string being assigned, check that it's not a zero-length string.
1384 * (XXX the check in -current doesn't work, but do we really care?)
1385 */
1386 static int
1387 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1388 {
1389 int error;
1390 char *newcorename;
1391 struct sysctlnode node;
1392
1393 newcorename = PNBUF_GET();
1394 node = *rnode;
1395 node.sysctl_data = &newcorename[0];
1396 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1397 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1398 if (error || newp == NULL) {
1399 goto done;
1400 }
1401
1402 /*
1403 * when sysctl_lookup() deals with a string, it's guaranteed
1404 * to come back nul terminated. so there. :)
1405 */
1406 if (strlen(newcorename) == 0) {
1407 error = EINVAL;
1408 } else {
1409 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1410 error = 0;
1411 }
1412 done:
1413 PNBUF_PUT(newcorename);
1414 return error;
1415 }
1416
1417 /*
1418 * sysctl helper routine for kern.cp_time node. adds up cpu time
1419 * across all cpus.
1420 */
1421 static int
1422 sysctl_kern_cptime(SYSCTLFN_ARGS)
1423 {
1424 struct sysctlnode node = *rnode;
1425
1426 #ifndef MULTIPROCESSOR
1427
1428 if (namelen == 1) {
1429 if (name[0] != 0)
1430 return (ENOENT);
1431 /*
1432 * you're allowed to ask for the zero'th processor
1433 */
1434 name++;
1435 namelen--;
1436 }
1437 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1438 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1439 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1440
1441 #else /* MULTIPROCESSOR */
1442
1443 uint64_t *cp_time = NULL;
1444 int error, n = ncpu, i;
1445 struct cpu_info *ci;
1446 CPU_INFO_ITERATOR cii;
1447
1448 /*
1449 * if you specifically pass a buffer that is the size of the
1450 * sum, or if you are probing for the size, you get the "sum"
1451 * of cp_time (and the size thereof) across all processors.
1452 *
1453 * alternately, you can pass an additional mib number and get
1454 * cp_time for that particular processor.
1455 */
1456 switch (namelen) {
1457 case 0:
1458 if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
1459 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1460 n = -1; /* SUM */
1461 }
1462 else {
1463 node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
1464 n = -2; /* ALL */
1465 }
1466 break;
1467 case 1:
1468 if (name[0] < 0 || name[0] >= n)
1469 return (ENOENT); /* ENOSUCHPROCESSOR */
1470 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1471 n = name[0];
1472 /*
1473 * adjust these so that sysctl_lookup() will be happy
1474 */
1475 name++;
1476 namelen--;
1477 break;
1478 default:
1479 return (EINVAL);
1480 }
1481
1482 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1483 if (cp_time == NULL)
1484 return (ENOMEM);
1485 node.sysctl_data = cp_time;
1486 memset(cp_time, 0, node.sysctl_size);
1487
1488 for (CPU_INFO_FOREACH(cii, ci)) {
1489 if (n <= 0)
1490 for (i = 0; i < CPUSTATES; i++)
1491 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1492 /*
1493 * if a specific processor was requested and we just
1494 * did it, we're done here
1495 */
1496 if (n == 0)
1497 break;
1498 /*
1499 * if doing "all", skip to next cp_time set for next processor
1500 */
1501 if (n == -2)
1502 cp_time += CPUSTATES;
1503 /*
1504 * if we're doing a specific processor, we're one
1505 * processor closer
1506 */
1507 if (n > 0)
1508 n--;
1509 }
1510
1511 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1512 free(node.sysctl_data, M_TEMP);
1513 return (error);
1514
1515 #endif /* MULTIPROCESSOR */
1516 }
1517
1518 #if NPTY > 0
1519 /*
1520 * sysctl helper routine for kern.maxptys. ensures that any new value
1521 * is acceptable to the pty subsystem.
1522 */
1523 static int
1524 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1525 {
1526 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1527 int error, xmax;
1528 struct sysctlnode node;
1529
1530 /* get current value of maxptys */
1531 xmax = pty_maxptys(0, 0);
1532
1533 node = *rnode;
1534 node.sysctl_data = &xmax;
1535 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1536 if (error || newp == NULL)
1537 return (error);
1538
1539 if (xmax != pty_maxptys(xmax, 1))
1540 return (EINVAL);
1541
1542 return (0);
1543 }
1544 #endif /* NPTY > 0 */
1545
1546 /*
1547 * sysctl helper routine for kern.sbmax. basically just ensures that
1548 * any new value is not too small.
1549 */
1550 static int
1551 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1552 {
1553 int error, new_sbmax;
1554 struct sysctlnode node;
1555
1556 new_sbmax = sb_max;
1557 node = *rnode;
1558 node.sysctl_data = &new_sbmax;
1559 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1560 if (error || newp == NULL)
1561 return (error);
1562
1563 error = sb_max_set(new_sbmax);
1564
1565 return (error);
1566 }
1567
1568 /*
1569 * sysctl helper routine for kern.urandom node. picks a random number
1570 * for you.
1571 */
1572 static int
1573 sysctl_kern_urnd(SYSCTLFN_ARGS)
1574 {
1575 #if NRND > 0
1576 int v;
1577
1578 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1579 struct sysctlnode node = *rnode;
1580 node.sysctl_data = &v;
1581 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1582 }
1583 else
1584 return (EIO); /*XXX*/
1585 #else
1586 return (EOPNOTSUPP);
1587 #endif
1588 }
1589
1590 /*
1591 * sysctl helper routine for kern.arandom node. picks a random number
1592 * for you.
1593 */
1594 static int
1595 sysctl_kern_arnd(SYSCTLFN_ARGS)
1596 {
1597 #if NRND > 0
1598 int error;
1599 void *v;
1600 struct sysctlnode node = *rnode;
1601
1602 if (*oldlenp == 0)
1603 return 0;
1604 if (*oldlenp > 8192)
1605 return E2BIG;
1606
1607 v = malloc(*oldlenp, M_TEMP, M_WAITOK);
1608
1609 arc4randbytes(v, *oldlenp);
1610 node.sysctl_data = v;
1611 node.sysctl_size = *oldlenp;
1612 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1613 free(v, M_TEMP);
1614 return error;
1615 #else
1616 return (EOPNOTSUPP);
1617 #endif
1618 }
1619 /*
1620 * sysctl helper routine to do kern.lwp.* work.
1621 */
1622 static int
1623 sysctl_kern_lwp(SYSCTLFN_ARGS)
1624 {
1625 struct kinfo_lwp klwp;
1626 struct proc *p;
1627 struct lwp *l2;
1628 char *where, *dp;
1629 int pid, elem_size, elem_count;
1630 int buflen, needed, error;
1631
1632 if (namelen == 1 && name[0] == CTL_QUERY)
1633 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1634
1635 dp = where = oldp;
1636 buflen = where != NULL ? *oldlenp : 0;
1637 error = needed = 0;
1638
1639 if (newp != NULL || namelen != 3)
1640 return (EINVAL);
1641 pid = name[0];
1642 elem_size = name[1];
1643 elem_count = name[2];
1644
1645 mutex_enter(&proclist_lock);
1646 if (pid == -1) {
1647 LIST_FOREACH(l2, &alllwp, l_list) {
1648 if (buflen >= elem_size && elem_count > 0) {
1649 lwp_lock(l2);
1650 fill_lwp(l2, &klwp);
1651 lwp_unlock(l2);
1652
1653 /*
1654 * Copy out elem_size, but not larger than
1655 * the size of a struct kinfo_proc2.
1656 */
1657 error = dcopyout(l, &klwp, dp,
1658 min(sizeof(klwp), elem_size));
1659 if (error)
1660 goto cleanup;
1661 dp += elem_size;
1662 buflen -= elem_size;
1663 elem_count--;
1664 }
1665 needed += elem_size;
1666 }
1667 } else {
1668 p = p_find(pid, PFIND_LOCKED);
1669 if (p == NULL) {
1670 mutex_exit(&proclist_lock);
1671 return (ESRCH);
1672 }
1673 mutex_enter(&p->p_smutex);
1674 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1675 if (buflen >= elem_size && elem_count > 0) {
1676 struct lwp *l3;
1677
1678 lwp_lock(l2);
1679 fill_lwp(l2, &klwp);
1680 lwp_unlock(l2);
1681 mutex_exit(&p->p_smutex);
1682 /*
1683 * Copy out elem_size, but not larger than
1684 * the size of a struct kinfo_proc2.
1685 */
1686 error = dcopyout(l, &klwp, dp,
1687 min(sizeof(klwp), elem_size));
1688 if (error) {
1689 goto cleanup;
1690 }
1691 mutex_enter(&p->p_smutex);
1692 LIST_FOREACH(l3, &p->p_lwps, l_sibling) {
1693 if (l2 == l3)
1694 break;
1695 }
1696 if (l2 == NULL) {
1697 mutex_exit(&p->p_smutex);
1698 error = EAGAIN;
1699 goto cleanup;
1700 }
1701 dp += elem_size;
1702 buflen -= elem_size;
1703 elem_count--;
1704 }
1705 needed += elem_size;
1706 }
1707 mutex_exit(&p->p_smutex);
1708 }
1709 mutex_exit(&proclist_lock);
1710
1711 if (where != NULL) {
1712 *oldlenp = dp - where;
1713 if (needed > *oldlenp)
1714 return (ENOMEM);
1715 } else {
1716 needed += KERN_LWPSLOP;
1717 *oldlenp = needed;
1718 }
1719 return (0);
1720 cleanup:
1721 mutex_exit(&proclist_lock);
1722 return (error);
1723 }
1724
1725 /*
1726 * sysctl helper routine for kern.forkfsleep node. ensures that the
1727 * given value is not too large or two small, and is at least one
1728 * timer tick if not zero.
1729 */
1730 static int
1731 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1732 {
1733 /* userland sees value in ms, internally is in ticks */
1734 extern int forkfsleep; /* defined in kern/kern_fork.c */
1735 int error, timo, lsleep;
1736 struct sysctlnode node;
1737
1738 lsleep = forkfsleep * 1000 / hz;
1739 node = *rnode;
1740 node.sysctl_data = &lsleep;
1741 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1742 if (error || newp == NULL)
1743 return (error);
1744
1745 /* refuse negative values, and overly 'long time' */
1746 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1747 return (EINVAL);
1748
1749 timo = mstohz(lsleep);
1750
1751 /* if the interval is >0 ms && <1 tick, use 1 tick */
1752 if (lsleep != 0 && timo == 0)
1753 forkfsleep = 1;
1754 else
1755 forkfsleep = timo;
1756
1757 return (0);
1758 }
1759
1760 /*
1761 * sysctl helper routine for kern.root_partition
1762 */
1763 static int
1764 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1765 {
1766 int rootpart = DISKPART(rootdev);
1767 struct sysctlnode node = *rnode;
1768
1769 node.sysctl_data = &rootpart;
1770 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1771 }
1772
1773 /*
1774 * sysctl helper function for kern.drivers
1775 */
1776 static int
1777 sysctl_kern_drivers(SYSCTLFN_ARGS)
1778 {
1779 int error;
1780 size_t buflen;
1781 struct kinfo_drivers kd;
1782 char *start, *where;
1783 const char *dname;
1784 int i;
1785 extern struct devsw_conv *devsw_conv;
1786 extern int max_devsw_convs;
1787
1788 if (newp != NULL || namelen != 0)
1789 return (EINVAL);
1790
1791 start = where = oldp;
1792 buflen = *oldlenp;
1793 if (where == NULL) {
1794 *oldlenp = max_devsw_convs * sizeof kd;
1795 return 0;
1796 }
1797
1798 /*
1799 * An array of kinfo_drivers structures
1800 */
1801 error = 0;
1802 for (i = 0; i < max_devsw_convs; i++) {
1803 dname = devsw_conv[i].d_name;
1804 if (dname == NULL)
1805 continue;
1806 if (buflen < sizeof kd) {
1807 error = ENOMEM;
1808 break;
1809 }
1810 memset(&kd, 0, sizeof(kd));
1811 kd.d_bmajor = devsw_conv[i].d_bmajor;
1812 kd.d_cmajor = devsw_conv[i].d_cmajor;
1813 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1814 error = dcopyout(l, &kd, where, sizeof kd);
1815 if (error != 0)
1816 break;
1817 buflen -= sizeof kd;
1818 where += sizeof kd;
1819 }
1820 *oldlenp = where - start;
1821 return error;
1822 }
1823
1824 /*
1825 * sysctl helper function for kern.file2
1826 */
1827 static int
1828 sysctl_kern_file2(SYSCTLFN_ARGS)
1829 {
1830 struct proc *p;
1831 struct file *fp;
1832 struct filedesc *fd;
1833 struct kinfo_file kf;
1834 char *dp;
1835 u_int i, op;
1836 size_t len, needed, elem_size, out_size;
1837 int error, arg, elem_count;
1838
1839 if (namelen == 1 && name[0] == CTL_QUERY)
1840 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1841
1842 if (namelen != 4)
1843 return (EINVAL);
1844
1845 error = 0;
1846 dp = oldp;
1847 len = (oldp != NULL) ? *oldlenp : 0;
1848 op = name[0];
1849 arg = name[1];
1850 elem_size = name[2];
1851 elem_count = name[3];
1852 out_size = MIN(sizeof(kf), elem_size);
1853 needed = 0;
1854
1855 if (elem_size < 1 || elem_count < 0)
1856 return (EINVAL);
1857
1858 switch (op) {
1859 case KERN_FILE_BYFILE:
1860 /*
1861 * doesn't use arg so it must be zero
1862 */
1863 if (arg != 0)
1864 return (EINVAL);
1865 LIST_FOREACH(fp, &filehead, f_list) {
1866 if (kauth_authorize_generic(l->l_cred,
1867 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0)
1868 continue;
1869 if (len >= elem_size && elem_count > 0) {
1870 fill_file(&kf, fp, NULL, 0);
1871 error = dcopyout(l, &kf, dp, out_size);
1872 if (error)
1873 break;
1874 dp += elem_size;
1875 len -= elem_size;
1876 }
1877 if (elem_count > 0) {
1878 needed += elem_size;
1879 if (elem_count != INT_MAX)
1880 elem_count--;
1881 }
1882 }
1883 break;
1884 case KERN_FILE_BYPID:
1885 if (arg < -1)
1886 /* -1 means all processes */
1887 return (EINVAL);
1888 mutex_enter(&proclist_lock);
1889 PROCLIST_FOREACH(p, &allproc) {
1890 if (p->p_stat == SIDL)
1891 /* skip embryonic processes */
1892 continue;
1893 if (kauth_authorize_process(l->l_cred,
1894 KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL) != 0)
1895 continue;
1896 if (arg > 0 && p->p_pid != arg)
1897 /* pick only the one we want */
1898 /* XXX want 0 to mean "kernel files" */
1899 continue;
1900 fd = p->p_fd;
1901 for (i = 0; i < fd->fd_nfiles; i++) {
1902 fp = fd->fd_ofiles[i];
1903 if (fp == NULL || !FILE_IS_USABLE(fp))
1904 continue;
1905 if (len >= elem_size && elem_count > 0) {
1906 fill_file(&kf, fd->fd_ofiles[i],
1907 p, i);
1908 error = dcopyout(l, &kf, dp, out_size);
1909 if (error)
1910 break;
1911 dp += elem_size;
1912 len -= elem_size;
1913 }
1914 if (elem_count > 0) {
1915 needed += elem_size;
1916 if (elem_count != INT_MAX)
1917 elem_count--;
1918 }
1919 }
1920 }
1921 mutex_exit(&proclist_lock);
1922 break;
1923 default:
1924 return (EINVAL);
1925 }
1926
1927 if (oldp == NULL)
1928 needed += KERN_FILESLOP * elem_size;
1929 *oldlenp = needed;
1930
1931 return (error);
1932 }
1933
1934 static void
1935 fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i)
1936 {
1937
1938 memset(kp, 0, sizeof(*kp));
1939
1940 kp->ki_fileaddr = PTRTOUINT64(fp);
1941 kp->ki_flag = fp->f_flag;
1942 kp->ki_iflags = fp->f_iflags;
1943 kp->ki_ftype = fp->f_type;
1944 kp->ki_count = fp->f_count;
1945 kp->ki_msgcount = fp->f_msgcount;
1946 kp->ki_usecount = fp->f_usecount;
1947 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
1948 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
1949 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
1950 kp->ki_fops = PTRTOUINT64(fp->f_ops);
1951 kp->ki_foffset = fp->f_offset;
1952 kp->ki_fdata = PTRTOUINT64(fp->f_data);
1953
1954 /* vnode information to glue this file to something */
1955 if (fp->f_type == DTYPE_VNODE) {
1956 struct vnode *vp = (struct vnode *)fp->f_data;
1957
1958 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
1959 kp->ki_vsize = vp->v_size;
1960 kp->ki_vtype = vp->v_type;
1961 kp->ki_vtag = vp->v_tag;
1962 kp->ki_vdata = PTRTOUINT64(vp->v_data);
1963 }
1964
1965 /* process information when retrieved via KERN_FILE_BYPID */
1966 if (p) {
1967 kp->ki_pid = p->p_pid;
1968 kp->ki_fd = i;
1969 kp->ki_ofileflags = p->p_fd->fd_ofileflags[i];
1970 }
1971 }
1972
1973 static int
1974 sysctl_doeproc(SYSCTLFN_ARGS)
1975 {
1976 struct eproc *eproc;
1977 struct kinfo_proc2 *kproc2;
1978 struct kinfo_proc *dp;
1979 struct proc *p;
1980 const struct proclist_desc *pd;
1981 char *where, *dp2;
1982 int type, op, arg;
1983 u_int elem_size, elem_count;
1984 size_t buflen, needed;
1985 int error;
1986
1987 if (namelen == 1 && name[0] == CTL_QUERY)
1988 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1989
1990 dp = oldp;
1991 dp2 = where = oldp;
1992 buflen = where != NULL ? *oldlenp : 0;
1993 error = 0;
1994 needed = 0;
1995 type = rnode->sysctl_num;
1996
1997 if (type == KERN_PROC) {
1998 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1999 return (EINVAL);
2000 op = name[0];
2001 if (op != KERN_PROC_ALL)
2002 arg = name[1];
2003 else
2004 arg = 0; /* Quell compiler warning */
2005 elem_size = elem_count = 0; /* Ditto */
2006 } else {
2007 if (namelen != 4)
2008 return (EINVAL);
2009 op = name[0];
2010 arg = name[1];
2011 elem_size = name[2];
2012 elem_count = name[3];
2013 }
2014
2015 if (type == KERN_PROC) {
2016 eproc = malloc(sizeof(*eproc), M_TEMP, M_WAITOK);
2017 kproc2 = NULL;
2018 } else {
2019 eproc = NULL;
2020 kproc2 = malloc(sizeof(*kproc2), M_TEMP, M_WAITOK);
2021 }
2022 mutex_enter(&proclist_lock);
2023
2024 pd = proclists;
2025 again:
2026 PROCLIST_FOREACH(p, pd->pd_list) {
2027 /*
2028 * Skip embryonic processes.
2029 */
2030 if (p->p_stat == SIDL)
2031 continue;
2032
2033 if (kauth_authorize_process(l->l_cred,
2034 KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL) != 0)
2035 continue;
2036
2037 /*
2038 * TODO - make more efficient (see notes below).
2039 * do by session.
2040 */
2041 switch (op) {
2042
2043 case KERN_PROC_PID:
2044 /* could do this with just a lookup */
2045 if (p->p_pid != (pid_t)arg)
2046 continue;
2047 break;
2048
2049 case KERN_PROC_PGRP:
2050 /* could do this by traversing pgrp */
2051 if (p->p_pgrp->pg_id != (pid_t)arg)
2052 continue;
2053 break;
2054
2055 case KERN_PROC_SESSION:
2056 if (p->p_session->s_sid != (pid_t)arg)
2057 continue;
2058 break;
2059
2060 case KERN_PROC_TTY:
2061 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2062 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2063 p->p_session->s_ttyp == NULL ||
2064 p->p_session->s_ttyvp != NULL)
2065 continue;
2066 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2067 p->p_session->s_ttyp == NULL) {
2068 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
2069 continue;
2070 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
2071 continue;
2072 break;
2073
2074 case KERN_PROC_UID:
2075 if (kauth_cred_geteuid(p->p_cred) != (uid_t)arg)
2076 continue;
2077 break;
2078
2079 case KERN_PROC_RUID:
2080 if (kauth_cred_getuid(p->p_cred) != (uid_t)arg)
2081 continue;
2082 break;
2083
2084 case KERN_PROC_GID:
2085 if (kauth_cred_getegid(p->p_cred) != (uid_t)arg)
2086 continue;
2087 break;
2088
2089 case KERN_PROC_RGID:
2090 if (kauth_cred_getgid(p->p_cred) != (uid_t)arg)
2091 continue;
2092 break;
2093
2094 case KERN_PROC_ALL:
2095 /* allow everything */
2096 break;
2097
2098 default:
2099 error = EINVAL;
2100 goto cleanup;
2101 }
2102 if (type == KERN_PROC) {
2103 if (buflen >= sizeof(struct kinfo_proc)) {
2104 fill_eproc(p, eproc);
2105 error = dcopyout(l, p, &dp->kp_proc,
2106 sizeof(struct proc));
2107 if (error)
2108 goto cleanup;
2109 error = dcopyout(l, eproc, &dp->kp_eproc,
2110 sizeof(*eproc));
2111 if (error)
2112 goto cleanup;
2113 dp++;
2114 buflen -= sizeof(struct kinfo_proc);
2115 }
2116 needed += sizeof(struct kinfo_proc);
2117 } else { /* KERN_PROC2 */
2118 if (buflen >= elem_size && elem_count > 0) {
2119 fill_kproc2(p, kproc2);
2120 /*
2121 * Copy out elem_size, but not larger than
2122 * the size of a struct kinfo_proc2.
2123 */
2124 error = dcopyout(l, kproc2, dp2,
2125 min(sizeof(*kproc2), elem_size));
2126 if (error)
2127 goto cleanup;
2128 dp2 += elem_size;
2129 buflen -= elem_size;
2130 elem_count--;
2131 }
2132 needed += elem_size;
2133 }
2134 }
2135 pd++;
2136 if (pd->pd_list != NULL)
2137 goto again;
2138 mutex_exit(&proclist_lock);
2139
2140 if (where != NULL) {
2141 if (type == KERN_PROC)
2142 *oldlenp = (char *)dp - where;
2143 else
2144 *oldlenp = dp2 - where;
2145 if (needed > *oldlenp) {
2146 error = ENOMEM;
2147 goto out;
2148 }
2149 } else {
2150 needed += KERN_PROCSLOP;
2151 *oldlenp = needed;
2152 }
2153 if (kproc2)
2154 free(kproc2, M_TEMP);
2155 if (eproc)
2156 free(eproc, M_TEMP);
2157 return 0;
2158 cleanup:
2159 mutex_exit(&proclist_lock);
2160 out:
2161 if (kproc2)
2162 free(kproc2, M_TEMP);
2163 if (eproc)
2164 free(eproc, M_TEMP);
2165 return error;
2166 }
2167
2168 /*
2169 * sysctl helper routine for kern.proc_args pseudo-subtree.
2170 */
2171 static int
2172 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2173 {
2174 struct ps_strings pss;
2175 struct proc *p;
2176 size_t len, i;
2177 struct uio auio;
2178 struct iovec aiov;
2179 pid_t pid;
2180 int nargv, type, error;
2181 char *arg;
2182 char **argv = NULL;
2183 char *tmp;
2184 struct vmspace *vmspace;
2185 vaddr_t psstr_addr;
2186 vaddr_t offsetn;
2187 vaddr_t offsetv;
2188
2189 if (namelen == 1 && name[0] == CTL_QUERY)
2190 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2191
2192 if (newp != NULL || namelen != 2)
2193 return (EINVAL);
2194 pid = name[0];
2195 type = name[1];
2196
2197 switch (type) {
2198 case KERN_PROC_ARGV:
2199 case KERN_PROC_NARGV:
2200 case KERN_PROC_ENV:
2201 case KERN_PROC_NENV:
2202 /* ok */
2203 break;
2204 default:
2205 return (EINVAL);
2206 }
2207
2208 mutex_enter(&proclist_lock);
2209
2210 /* check pid */
2211 if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
2212 error = EINVAL;
2213 goto out_locked;
2214 }
2215
2216 error = kauth_authorize_process(l->l_cred,
2217 KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL);
2218 if (error) {
2219 goto out_locked;
2220 }
2221
2222 /* only root or same user change look at the environment */
2223 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
2224 if (kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
2225 NULL) != 0) {
2226 if (kauth_cred_getuid(l->l_cred) !=
2227 kauth_cred_getuid(p->p_cred) ||
2228 kauth_cred_getuid(l->l_cred) !=
2229 kauth_cred_getsvuid(p->p_cred)) {
2230 error = EPERM;
2231 goto out_locked;
2232 }
2233 }
2234 }
2235
2236 if (oldp == NULL) {
2237 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2238 *oldlenp = sizeof (int);
2239 else
2240 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2241 error = 0;
2242 goto out_locked;
2243 }
2244
2245 /*
2246 * Zombies don't have a stack, so we can't read their psstrings.
2247 * System processes also don't have a user stack.
2248 */
2249 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2250 error = EINVAL;
2251 goto out_locked;
2252 }
2253
2254 /*
2255 * Lock the process down in memory.
2256 */
2257 /* XXXCDC: how should locking work here? */
2258 if ((l->l_flag & LW_WEXIT) || (p->p_vmspace->vm_refcnt < 1)) {
2259 error = EFAULT;
2260 goto out_locked;
2261 }
2262
2263 psstr_addr = (vaddr_t)p->p_psstr;
2264 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
2265 offsetn = p->p_psnargv;
2266 offsetv = p->p_psargv;
2267 } else {
2268 offsetn = p->p_psnenv;
2269 offsetv = p->p_psenv;
2270 }
2271 vmspace = p->p_vmspace;
2272 vmspace->vm_refcnt++; /* XXX */
2273
2274 mutex_exit(&proclist_lock);
2275
2276 /*
2277 * Allocate a temporary buffer to hold the arguments.
2278 */
2279 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
2280
2281 /*
2282 * Read in the ps_strings structure.
2283 */
2284 aiov.iov_base = &pss;
2285 aiov.iov_len = sizeof(pss);
2286 auio.uio_iov = &aiov;
2287 auio.uio_iovcnt = 1;
2288 auio.uio_offset = psstr_addr;
2289 auio.uio_resid = sizeof(pss);
2290 auio.uio_rw = UIO_READ;
2291 UIO_SETUP_SYSSPACE(&auio);
2292 error = uvm_io(&vmspace->vm_map, &auio);
2293 if (error)
2294 goto done;
2295
2296 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
2297 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2298 error = dcopyout(l, &nargv, oldp, sizeof(nargv));
2299 *oldlenp = sizeof(nargv);
2300 goto done;
2301 }
2302 /*
2303 * Now read the address of the argument vector.
2304 */
2305 switch (type) {
2306 case KERN_PROC_ARGV:
2307 /* FALLTHROUGH */
2308 case KERN_PROC_ENV:
2309 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
2310 break;
2311 default:
2312 return (EINVAL);
2313 }
2314
2315 #ifdef COMPAT_NETBSD32
2316 if (p->p_flag & PK_32)
2317 len = sizeof(netbsd32_charp) * nargv;
2318 else
2319 #endif
2320 len = sizeof(char *) * nargv;
2321
2322 argv = malloc(len, M_TEMP, M_WAITOK);
2323
2324 aiov.iov_base = argv;
2325 aiov.iov_len = len;
2326 auio.uio_iov = &aiov;
2327 auio.uio_iovcnt = 1;
2328 auio.uio_offset = (off_t)(unsigned long)tmp;
2329 auio.uio_resid = len;
2330 auio.uio_rw = UIO_READ;
2331 UIO_SETUP_SYSSPACE(&auio);
2332 error = uvm_io(&vmspace->vm_map, &auio);
2333 if (error)
2334 goto done;
2335
2336 /*
2337 * Now copy each string.
2338 */
2339 len = 0; /* bytes written to user buffer */
2340 for (i = 0; i < nargv; i++) {
2341 int finished = 0;
2342 vaddr_t base;
2343 size_t xlen;
2344 int j;
2345
2346 #ifdef COMPAT_NETBSD32
2347 if (p->p_flag & PK_32) {
2348 netbsd32_charp *argv32;
2349
2350 argv32 = (netbsd32_charp *)argv;
2351
2352 base = (vaddr_t)NETBSD32PTR64(argv32[i]);
2353 } else
2354 #endif
2355 base = (vaddr_t)argv[i];
2356
2357 while (!finished) {
2358 xlen = PAGE_SIZE - (base & PAGE_MASK);
2359
2360 aiov.iov_base = arg;
2361 aiov.iov_len = PAGE_SIZE;
2362 auio.uio_iov = &aiov;
2363 auio.uio_iovcnt = 1;
2364 auio.uio_offset = base;
2365 auio.uio_resid = xlen;
2366 auio.uio_rw = UIO_READ;
2367 UIO_SETUP_SYSSPACE(&auio);
2368 error = uvm_io(&vmspace->vm_map, &auio);
2369 if (error)
2370 goto done;
2371
2372 /* Look for the end of the string */
2373 for (j = 0; j < xlen; j++) {
2374 if (arg[j] == '\0') {
2375 xlen = j + 1;
2376 finished = 1;
2377 break;
2378 }
2379 }
2380
2381 /* Check for user buffer overflow */
2382 if (len + xlen > *oldlenp) {
2383 finished = 1;
2384 if (len > *oldlenp)
2385 xlen = 0;
2386 else
2387 xlen = *oldlenp - len;
2388 }
2389
2390 /* Copyout the page */
2391 error = dcopyout(l, arg, (char *)oldp + len, xlen);
2392 if (error)
2393 goto done;
2394
2395 len += xlen;
2396 base += xlen;
2397 }
2398 }
2399 *oldlenp = len;
2400
2401 done:
2402 if (argv != NULL)
2403 free(argv, M_TEMP);
2404
2405 uvmspace_free(vmspace);
2406
2407 free(arg, M_TEMP);
2408 return error;
2409
2410 out_locked:
2411 mutex_exit(&proclist_lock);
2412 return error;
2413 }
2414
2415 static int
2416 sysctl_security_setidcore(SYSCTLFN_ARGS)
2417 {
2418 int newsize, error;
2419 struct sysctlnode node;
2420
2421 node = *rnode;
2422 node.sysctl_data = &newsize;
2423 newsize = *(int *)rnode->sysctl_data;
2424 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2425 if (error || newp == NULL)
2426 return error;
2427
2428 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2429 0, NULL, NULL, NULL))
2430 return (EPERM);
2431
2432 *(int *)rnode->sysctl_data = newsize;
2433
2434 return 0;
2435 }
2436
2437 static int
2438 sysctl_security_setidcorename(SYSCTLFN_ARGS)
2439 {
2440 int error;
2441 char *newsetidcorename;
2442 struct sysctlnode node;
2443
2444 newsetidcorename = PNBUF_GET();
2445 node = *rnode;
2446 node.sysctl_data = newsetidcorename;
2447 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
2448 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2449 if (error || newp == NULL) {
2450 goto out;
2451 }
2452 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2453 0, NULL, NULL, NULL)) {
2454 error = EPERM;
2455 goto out;
2456 }
2457 if (strlen(newsetidcorename) == 0) {
2458 error = EINVAL;
2459 goto out;
2460 }
2461 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
2462 out:
2463 PNBUF_PUT(newsetidcorename);
2464 return error;
2465 }
2466
2467 /*
2468 * sysctl helper routine for kern.cp_id node. maps cpus to their
2469 * cpuids.
2470 */
2471 static int
2472 sysctl_kern_cpid(SYSCTLFN_ARGS)
2473 {
2474 struct sysctlnode node = *rnode;
2475
2476 #ifndef MULTIPROCESSOR
2477 uint64_t id;
2478
2479 if (namelen == 1) {
2480 if (name[0] != 0)
2481 return (ENOENT);
2482 /*
2483 * you're allowed to ask for the zero'th processor
2484 */
2485 name++;
2486 namelen--;
2487 }
2488 node.sysctl_data = &id;
2489 node.sysctl_size = sizeof(id);
2490 id = cpu_number();
2491 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2492
2493 #else /* MULTIPROCESSOR */
2494 uint64_t *cp_id = NULL;
2495 int error, n = ncpu;
2496 struct cpu_info *ci;
2497 CPU_INFO_ITERATOR cii;
2498
2499 /*
2500 * here you may either retrieve a single cpu id or the whole
2501 * set. the size you get back when probing depends on what
2502 * you ask for.
2503 */
2504 switch (namelen) {
2505 case 0:
2506 node.sysctl_size = n * sizeof(uint64_t);
2507 n = -2; /* ALL */
2508 break;
2509 case 1:
2510 if (name[0] < 0 || name[0] >= n)
2511 return (ENOENT); /* ENOSUCHPROCESSOR */
2512 node.sysctl_size = sizeof(uint64_t);
2513 n = name[0];
2514 /*
2515 * adjust these so that sysctl_lookup() will be happy
2516 */
2517 name++;
2518 namelen--;
2519 break;
2520 default:
2521 return (EINVAL);
2522 }
2523
2524 cp_id = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
2525 if (cp_id == NULL)
2526 return (ENOMEM);
2527 node.sysctl_data = cp_id;
2528 memset(cp_id, 0, node.sysctl_size);
2529
2530 for (CPU_INFO_FOREACH(cii, ci)) {
2531 if (n <= 0)
2532 cp_id[0] = ci->ci_cpuid;
2533 /*
2534 * if a specific processor was requested and we just
2535 * did it, we're done here
2536 */
2537 if (n == 0)
2538 break;
2539 /*
2540 * if doing "all", skip to next cp_id slot for next processor
2541 */
2542 if (n == -2)
2543 cp_id++;
2544 /*
2545 * if we're doing a specific processor, we're one
2546 * processor closer
2547 */
2548 if (n > 0)
2549 n--;
2550 }
2551
2552 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2553 free(node.sysctl_data, M_TEMP);
2554 return (error);
2555
2556 #endif /* MULTIPROCESSOR */
2557 }
2558
2559 /*
2560 * sysctl helper routine for hw.usermem and hw.usermem64. values are
2561 * calculate on the fly taking into account integer overflow and the
2562 * current wired count.
2563 */
2564 static int
2565 sysctl_hw_usermem(SYSCTLFN_ARGS)
2566 {
2567 u_int ui;
2568 u_quad_t uq;
2569 struct sysctlnode node;
2570
2571 node = *rnode;
2572 switch (rnode->sysctl_num) {
2573 case HW_USERMEM:
2574 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2575 ui = UINT_MAX;
2576 else
2577 ui *= PAGE_SIZE;
2578 node.sysctl_data = &ui;
2579 break;
2580 case HW_USERMEM64:
2581 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2582 node.sysctl_data = &uq;
2583 break;
2584 default:
2585 return (EINVAL);
2586 }
2587
2588 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2589 }
2590
2591 /*
2592 * sysctl helper routine for kern.cnmagic node. pulls the old value
2593 * out, encoded, and stuffs the new value in for decoding.
2594 */
2595 static int
2596 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2597 {
2598 char magic[CNS_LEN];
2599 int error;
2600 struct sysctlnode node;
2601
2602 if (oldp)
2603 cn_get_magic(magic, CNS_LEN);
2604 node = *rnode;
2605 node.sysctl_data = &magic[0];
2606 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2607 if (error || newp == NULL)
2608 return (error);
2609
2610 return (cn_set_magic(magic));
2611 }
2612
2613 static int
2614 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2615 {
2616 struct sysctlnode node;
2617
2618 node = *rnode;
2619 node.sysctl_data = &ncpu;
2620
2621 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2622 }
2623
2624
2625 /*
2626 * ********************************************************************
2627 * section 3: public helper routines that are used for more than one
2628 * node
2629 * ********************************************************************
2630 */
2631
2632 /*
2633 * sysctl helper routine for the kern.root_device node and some ports'
2634 * machdep.root_device nodes.
2635 */
2636 int
2637 sysctl_root_device(SYSCTLFN_ARGS)
2638 {
2639 struct sysctlnode node;
2640
2641 node = *rnode;
2642 node.sysctl_data = root_device->dv_xname;
2643 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2644 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2645 }
2646
2647 /*
2648 * sysctl helper routine for kern.consdev, dependent on the current
2649 * state of the console. also used for machdep.console_device on some
2650 * ports.
2651 */
2652 int
2653 sysctl_consdev(SYSCTLFN_ARGS)
2654 {
2655 dev_t consdev;
2656 struct sysctlnode node;
2657
2658 if (cn_tab != NULL)
2659 consdev = cn_tab->cn_dev;
2660 else
2661 consdev = NODEV;
2662 node = *rnode;
2663 node.sysctl_data = &consdev;
2664 node.sysctl_size = sizeof(consdev);
2665 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2666 }
2667
2668 /*
2669 * ********************************************************************
2670 * section 4: support for some helpers
2671 * ********************************************************************
2672 */
2673
2674 /*
2675 * Fill in a kinfo_proc2 structure for the specified process.
2676 */
2677 static void
2678 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2679 {
2680 struct tty *tp;
2681 struct lwp *l, *l2;
2682 struct timeval ut, st, rt;
2683 sigset_t ss1, ss2;
2684
2685 memset(ki, 0, sizeof(*ki));
2686
2687 ki->p_paddr = PTRTOUINT64(p);
2688 ki->p_fd = PTRTOUINT64(p->p_fd);
2689 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2690 ki->p_stats = PTRTOUINT64(p->p_stats);
2691 ki->p_limit = PTRTOUINT64(p->p_limit);
2692 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2693 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2694 ki->p_sess = PTRTOUINT64(p->p_session);
2695 ki->p_tsess = 0; /* may be changed if controlling tty below */
2696 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2697
2698 ki->p_eflag = 0;
2699 ki->p_exitsig = p->p_exitsig;
2700
2701 ki->p_flag = sysctl_map_flags(sysctl_flagmap, p->p_flag);
2702 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2703 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2704 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2705 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2706
2707 ki->p_pid = p->p_pid;
2708 if (p->p_pptr)
2709 ki->p_ppid = p->p_pptr->p_pid;
2710 else
2711 ki->p_ppid = 0;
2712 ki->p_sid = p->p_session->s_sid;
2713 ki->p__pgid = p->p_pgrp->pg_id;
2714
2715 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2716
2717 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2718 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2719 ki->p_gid = kauth_cred_getegid(p->p_cred);
2720 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2721 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2722 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2723
2724 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2725 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2726 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2727 UIO_SYSSPACE);
2728
2729 ki->p_jobc = p->p_pgrp->pg_jobc;
2730 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2731 ki->p_tdev = tp->t_dev;
2732 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2733 ki->p_tsess = PTRTOUINT64(tp->t_session);
2734 } else {
2735 ki->p_tdev = NODEV;
2736 }
2737
2738 ki->p_estcpu = p->p_estcpu;
2739
2740 mutex_enter(&p->p_smutex);
2741
2742 ki->p_uticks = p->p_uticks;
2743 ki->p_sticks = p->p_sticks;
2744 ki->p_iticks = p->p_iticks;
2745
2746 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2747 ki->p_traceflag = p->p_traceflag;
2748
2749 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2750 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2751
2752 ki->p_cpticks = 0;
2753 ki->p_pctcpu = p->p_pctcpu;
2754 ss1 = p->p_sigpend.sp_set;
2755 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2756 /* This is hardly correct, but... */
2757 sigplusset(&l->l_sigpend.sp_set, &ss1);
2758 sigplusset(&l->l_sigmask, &ss2);
2759 ki->p_cpticks += l->l_cpticks;
2760 ki->p_pctcpu += l->l_pctcpu;
2761 }
2762 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2763 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2764
2765 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2766 ki->p_realstat = p->p_stat;
2767 ki->p_nice = p->p_nice;
2768
2769 ki->p_xstat = p->p_xstat;
2770 ki->p_acflag = p->p_acflag;
2771
2772 strncpy(ki->p_comm, p->p_comm,
2773 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2774
2775 strncpy(ki->p_login, p->p_session->s_login,
2776 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2777
2778 ki->p_nlwps = p->p_nlwps;
2779 ki->p_realflag = ki->p_flag;
2780
2781 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2782 ki->p_vm_rssize = 0;
2783 ki->p_vm_tsize = 0;
2784 ki->p_vm_dsize = 0;
2785 ki->p_vm_ssize = 0;
2786 ki->p_nrlwps = 0;
2787 l = NULL;
2788 } else {
2789 struct vmspace *vm = p->p_vmspace;
2790 int tmp;
2791
2792 ki->p_vm_rssize = vm_resident_count(vm);
2793 ki->p_vm_tsize = vm->vm_tsize;
2794 ki->p_vm_dsize = vm->vm_dsize;
2795 ki->p_vm_ssize = vm->vm_ssize;
2796
2797 /* Pick a "representative" LWP */
2798 l = proc_representative_lwp(p, &tmp, 1);
2799 lwp_lock(l);
2800 ki->p_nrlwps = tmp;
2801 ki->p_forw = 0;
2802 ki->p_back = 0;
2803 ki->p_addr = PTRTOUINT64(l->l_addr);
2804 ki->p_stat = l->l_stat;
2805 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2806 ki->p_swtime = l->l_swtime;
2807 ki->p_slptime = l->l_slptime;
2808 if (l->l_stat == LSONPROC)
2809 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2810 else
2811 ki->p_schedflags = 0;
2812 ki->p_holdcnt = l->l_holdcnt;
2813 ki->p_priority = l->l_priority;
2814 ki->p_usrpri = l->l_usrpri;
2815 if (l->l_wmesg)
2816 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2817 ki->p_wchan = PTRTOUINT64(l->l_wchan);
2818 lwp_unlock(l);
2819 }
2820 if (p->p_session->s_ttyvp)
2821 ki->p_eflag |= EPROC_CTTY;
2822 if (SESS_LEADER(p))
2823 ki->p_eflag |= EPROC_SLEADER;
2824
2825 /* XXX Is this double check necessary? */
2826 if (P_ZOMBIE(p)) {
2827 ki->p_uvalid = 0;
2828 ki->p_rtime_sec = 0;
2829 ki->p_rtime_usec = 0;
2830 } else {
2831 ki->p_uvalid = 1;
2832
2833 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2834 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2835
2836 calcru(p, &ut, &st, NULL, &rt);
2837 ki->p_rtime_sec = rt.tv_sec;
2838 ki->p_rtime_usec = rt.tv_usec;
2839 ki->p_uutime_sec = ut.tv_sec;
2840 ki->p_uutime_usec = ut.tv_usec;
2841 ki->p_ustime_sec = st.tv_sec;
2842 ki->p_ustime_usec = st.tv_usec;
2843
2844 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2845 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2846 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2847 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2848 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2849 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2850 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2851 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2852 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2853 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2854 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2855 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2856
2857 ki->p_uru_nvcsw = 0;
2858 ki->p_uru_nivcsw = 0;
2859 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2860 ki->p_uru_nvcsw += (l->l_ncsw - l->l_nivcsw);
2861 ki->p_uru_nivcsw += l->l_nivcsw;
2862 }
2863
2864 timeradd(&p->p_stats->p_cru.ru_utime,
2865 &p->p_stats->p_cru.ru_stime, &ut);
2866 ki->p_uctime_sec = ut.tv_sec;
2867 ki->p_uctime_usec = ut.tv_usec;
2868 }
2869 #ifdef MULTIPROCESSOR
2870 if (l != NULL)
2871 ki->p_cpuid = l->l_cpu->ci_cpuid;
2872 else
2873 #endif
2874 ki->p_cpuid = KI_NOCPU;
2875
2876 mutex_exit(&p->p_smutex);
2877 }
2878
2879 /*
2880 * Fill in a kinfo_lwp structure for the specified lwp.
2881 */
2882 static void
2883 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2884 {
2885 struct proc *p = l->l_proc;
2886
2887 kl->l_forw = 0;
2888 kl->l_back = 0;
2889 kl->l_laddr = PTRTOUINT64(l);
2890 kl->l_addr = PTRTOUINT64(l->l_addr);
2891 kl->l_stat = l->l_stat;
2892 kl->l_lid = l->l_lid;
2893 kl->l_flag = sysctl_map_flags(sysctl_lwpprflagmap, l->l_prflag);
2894
2895 kl->l_swtime = l->l_swtime;
2896 kl->l_slptime = l->l_slptime;
2897 if (l->l_stat == LSONPROC)
2898 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2899 else
2900 kl->l_schedflags = 0;
2901 kl->l_holdcnt = l->l_holdcnt;
2902 kl->l_priority = l->l_priority;
2903 kl->l_usrpri = l->l_usrpri;
2904 if (l->l_wmesg)
2905 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2906 kl->l_wchan = PTRTOUINT64(l->l_wchan);
2907 #ifdef MULTIPROCESSOR
2908 kl->l_cpuid = l->l_cpu->ci_cpuid;
2909 #else
2910 kl->l_cpuid = KI_NOCPU;
2911 #endif
2912 kl->l_rtime_sec = l->l_rtime.tv_sec;
2913 kl->l_rtime_usec = l->l_rtime.tv_usec;
2914 kl->l_cpticks = l->l_cpticks;
2915 kl->l_pctcpu = l->l_pctcpu;
2916 kl->l_pid = p->p_pid;
2917 if (l->l_name == NULL)
2918 kl->l_name[0] = '\0';
2919 else
2920 strlcpy(kl->l_name, l->l_name, sizeof(kl->l_name));
2921 }
2922
2923 /*
2924 * Fill in an eproc structure for the specified process.
2925 */
2926 void
2927 fill_eproc(struct proc *p, struct eproc *ep)
2928 {
2929 struct tty *tp;
2930 struct lwp *l;
2931
2932 ep->e_paddr = p;
2933 ep->e_sess = p->p_session;
2934 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2935 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2936 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2937 ep->e_vm.vm_rssize = 0;
2938 ep->e_vm.vm_tsize = 0;
2939 ep->e_vm.vm_dsize = 0;
2940 ep->e_vm.vm_ssize = 0;
2941 /* ep->e_vm.vm_pmap = XXX; */
2942 } else {
2943 struct vmspace *vm = p->p_vmspace;
2944
2945 ep->e_vm.vm_rssize = vm_resident_count(vm);
2946 ep->e_vm.vm_tsize = vm->vm_tsize;
2947 ep->e_vm.vm_dsize = vm->vm_dsize;
2948 ep->e_vm.vm_ssize = vm->vm_ssize;
2949
2950 /* Pick a "representative" LWP */
2951 mutex_enter(&p->p_smutex);
2952 l = proc_representative_lwp(p, NULL, 1);
2953 lwp_lock(l);
2954 if (l->l_wmesg)
2955 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2956 lwp_unlock(l);
2957 mutex_exit(&p->p_smutex);
2958 }
2959 if (p->p_pptr)
2960 ep->e_ppid = p->p_pptr->p_pid;
2961 else
2962 ep->e_ppid = 0;
2963 ep->e_pgid = p->p_pgrp->pg_id;
2964 ep->e_sid = ep->e_sess->s_sid;
2965 ep->e_jobc = p->p_pgrp->pg_jobc;
2966 if ((p->p_lflag & PL_CONTROLT) &&
2967 (tp = ep->e_sess->s_ttyp)) {
2968 ep->e_tdev = tp->t_dev;
2969 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2970 ep->e_tsess = tp->t_session;
2971 } else
2972 ep->e_tdev = NODEV;
2973
2974 ep->e_xsize = ep->e_xrssize = 0;
2975 ep->e_xccount = ep->e_xswrss = 0;
2976 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2977 if (SESS_LEADER(p))
2978 ep->e_flag |= EPROC_SLEADER;
2979 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2980 }
2981
2982 u_int
2983 sysctl_map_flags(const u_int *map, u_int word)
2984 {
2985 u_int rv;
2986
2987 for (rv = 0; *map != 0; map += 2)
2988 if ((word & map[0]) != 0)
2989 rv |= map[1];
2990
2991 return rv;
2992 }
2993