1 1.151 riastrad /* $NetBSD: kern_clock.c,v 1.151 2023/09/02 17:44:59 riastradh Exp $ */ 2 1.52 thorpej 3 1.52 thorpej /*- 4 1.118 ad * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 1.52 thorpej * All rights reserved. 6 1.52 thorpej * 7 1.52 thorpej * This code is derived from software contributed to The NetBSD Foundation 8 1.52 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 1.52 thorpej * NASA Ames Research Center. 10 1.94 mycroft * This code is derived from software contributed to The NetBSD Foundation 11 1.94 mycroft * by Charles M. Hannum. 12 1.52 thorpej * 13 1.52 thorpej * Redistribution and use in source and binary forms, with or without 14 1.52 thorpej * modification, are permitted provided that the following conditions 15 1.52 thorpej * are met: 16 1.52 thorpej * 1. Redistributions of source code must retain the above copyright 17 1.52 thorpej * notice, this list of conditions and the following disclaimer. 18 1.52 thorpej * 2. Redistributions in binary form must reproduce the above copyright 19 1.52 thorpej * notice, this list of conditions and the following disclaimer in the 20 1.52 thorpej * documentation and/or other materials provided with the distribution. 21 1.52 thorpej * 22 1.52 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 1.52 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 1.52 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 1.52 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 1.52 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 1.52 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 1.52 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 1.52 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 1.52 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 1.52 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 1.52 thorpej * POSSIBILITY OF SUCH DAMAGE. 33 1.52 thorpej */ 34 1.19 cgd 35 1.19 cgd /*- 36 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993 37 1.19 cgd * The Regents of the University of California. All rights reserved. 38 1.19 cgd * (c) UNIX System Laboratories, Inc. 39 1.19 cgd * All or some portions of this file are derived from material licensed 40 1.19 cgd * to the University of California by American Telephone and Telegraph 41 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 1.19 cgd * the permission of UNIX System Laboratories, Inc. 43 1.19 cgd * 44 1.19 cgd * Redistribution and use in source and binary forms, with or without 45 1.19 cgd * modification, are permitted provided that the following conditions 46 1.19 cgd * are met: 47 1.19 cgd * 1. Redistributions of source code must retain the above copyright 48 1.19 cgd * notice, this list of conditions and the following disclaimer. 49 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright 50 1.19 cgd * notice, this list of conditions and the following disclaimer in the 51 1.19 cgd * documentation and/or other materials provided with the distribution. 52 1.87 agc * 3. Neither the name of the University nor the names of its contributors 53 1.19 cgd * may be used to endorse or promote products derived from this software 54 1.19 cgd * without specific prior written permission. 55 1.19 cgd * 56 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 1.19 cgd * SUCH DAMAGE. 67 1.19 cgd * 68 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 69 1.19 cgd */ 70 1.78 lukem 71 1.78 lukem #include <sys/cdefs.h> 72 1.151 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.151 2023/09/02 17:44:59 riastradh Exp $"); 73 1.44 jonathan 74 1.133 pooka #ifdef _KERNEL_OPT 75 1.131 chs #include "opt_dtrace.h" 76 1.136 maxv #include "opt_gprof.h" 77 1.145 ryo #include "opt_multiprocessor.h" 78 1.133 pooka #endif 79 1.19 cgd 80 1.19 cgd #include <sys/param.h> 81 1.19 cgd #include <sys/systm.h> 82 1.19 cgd #include <sys/callout.h> 83 1.19 cgd #include <sys/kernel.h> 84 1.19 cgd #include <sys/proc.h> 85 1.19 cgd #include <sys/resourcevar.h> 86 1.25 christos #include <sys/signalvar.h> 87 1.26 christos #include <sys/sysctl.h> 88 1.27 jonathan #include <sys/timex.h> 89 1.45 ross #include <sys/sched.h> 90 1.82 thorpej #include <sys/time.h> 91 1.99 kardel #include <sys/timetc.h> 92 1.109 ad #include <sys/cpu.h> 93 1.118 ad #include <sys/atomic.h> 94 1.144 riastrad #include <sys/rndsource.h> 95 1.150 riastrad #include <sys/heartbeat.h> 96 1.118 ad 97 1.19 cgd #ifdef GPROF 98 1.19 cgd #include <sys/gmon.h> 99 1.19 cgd #endif 100 1.19 cgd 101 1.131 chs #ifdef KDTRACE_HOOKS 102 1.131 chs #include <sys/dtrace_bsd.h> 103 1.131 chs #include <sys/cpu.h> 104 1.131 chs 105 1.131 chs cyclic_clock_func_t cyclic_clock_func[MAXCPUS]; 106 1.131 chs #endif 107 1.131 chs 108 1.132 pooka static int sysctl_kern_clockrate(SYSCTLFN_PROTO); 109 1.132 pooka 110 1.19 cgd /* 111 1.19 cgd * Clock handling routines. 112 1.19 cgd * 113 1.19 cgd * This code is written to operate with two timers that run independently of 114 1.19 cgd * each other. The main clock, running hz times per second, is used to keep 115 1.19 cgd * track of real time. The second timer handles kernel and user profiling, 116 1.19 cgd * and does resource use estimation. If the second timer is programmable, 117 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example, 118 1.90 wiz * the randomization prevents an adversary from always giving up the CPU 119 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate 120 1.90 wiz * CPU ticks. The mean frequency of the second timer is stathz. 121 1.19 cgd * 122 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive 123 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate; 124 1.19 cgd * do not do it unless absolutely necessary. 125 1.19 cgd * 126 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while 127 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz 128 1.19 cgd * be an integral multiple of stathz. 129 1.19 cgd * 130 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio 131 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.) 132 1.19 cgd */ 133 1.19 cgd 134 1.19 cgd int stathz; 135 1.19 cgd int profhz; 136 1.80 briggs int profsrc; 137 1.75 simonb int schedhz; 138 1.19 cgd int profprocs; 139 1.148 riastrad static int hardclock_ticks; 140 1.114 ad static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */ 141 1.70 sommerfe static int psdiv; /* prof => stat divider */ 142 1.22 cgd int psratio; /* ratio: prof / stat */ 143 1.19 cgd 144 1.144 riastrad struct clockrnd { 145 1.144 riastrad struct krndsource source; 146 1.144 riastrad unsigned needed; 147 1.144 riastrad }; 148 1.144 riastrad 149 1.144 riastrad static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT); 150 1.144 riastrad static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT); 151 1.144 riastrad 152 1.144 riastrad static void 153 1.144 riastrad clockrnd_get(size_t needed, void *cookie) 154 1.144 riastrad { 155 1.144 riastrad struct clockrnd *C = cookie; 156 1.144 riastrad 157 1.144 riastrad /* Start sampling. */ 158 1.144 riastrad atomic_store_relaxed(&C->needed, 2*NBBY*needed); 159 1.144 riastrad } 160 1.144 riastrad 161 1.144 riastrad static void 162 1.144 riastrad clockrnd_sample(struct clockrnd *C) 163 1.144 riastrad { 164 1.144 riastrad struct cpu_info *ci = curcpu(); 165 1.144 riastrad 166 1.144 riastrad /* If there's nothing needed right now, stop here. */ 167 1.147 riastrad if (__predict_true(atomic_load_relaxed(&C->needed) == 0)) 168 1.144 riastrad return; 169 1.144 riastrad 170 1.144 riastrad /* 171 1.144 riastrad * If we're not the primary core of a package, we're probably 172 1.144 riastrad * driven by the same clock as the primary core, so don't 173 1.144 riastrad * bother. 174 1.144 riastrad */ 175 1.144 riastrad if (ci != ci->ci_package1st) 176 1.144 riastrad return; 177 1.144 riastrad 178 1.144 riastrad /* Take a sample and enter it into the pool. */ 179 1.144 riastrad rnd_add_uint32(&C->source, 0); 180 1.144 riastrad 181 1.144 riastrad /* 182 1.144 riastrad * On the primary CPU, count down. Using an atomic decrement 183 1.144 riastrad * here isn't really necessary -- on every platform we care 184 1.144 riastrad * about, stores to unsigned int are atomic, and the only other 185 1.144 riastrad * memory operation that could happen here is for another CPU 186 1.144 riastrad * to store a higher value for needed. But using an atomic 187 1.144 riastrad * decrement avoids giving the impression of data races, and is 188 1.144 riastrad * unlikely to hurt because only one CPU will ever be writing 189 1.144 riastrad * to the location. 190 1.144 riastrad */ 191 1.144 riastrad if (CPU_IS_PRIMARY(curcpu())) { 192 1.144 riastrad unsigned needed __diagused; 193 1.144 riastrad 194 1.144 riastrad needed = atomic_dec_uint_nv(&C->needed); 195 1.144 riastrad KASSERT(needed != UINT_MAX); 196 1.144 riastrad } 197 1.144 riastrad } 198 1.144 riastrad 199 1.99 kardel static u_int get_intr_timecount(struct timecounter *); 200 1.99 kardel 201 1.99 kardel static struct timecounter intr_timecounter = { 202 1.138 riastrad .tc_get_timecount = get_intr_timecount, 203 1.138 riastrad .tc_poll_pps = NULL, 204 1.138 riastrad .tc_counter_mask = ~0u, 205 1.138 riastrad .tc_frequency = 0, 206 1.138 riastrad .tc_name = "clockinterrupt", 207 1.138 riastrad /* quality - minimum implementation level for a clock */ 208 1.138 riastrad .tc_quality = 0, 209 1.138 riastrad .tc_priv = NULL, 210 1.99 kardel }; 211 1.99 kardel 212 1.99 kardel static u_int 213 1.104 yamt get_intr_timecount(struct timecounter *tc) 214 1.99 kardel { 215 1.104 yamt 216 1.140 maxv return (u_int)getticks(); 217 1.140 maxv } 218 1.140 maxv 219 1.140 maxv int 220 1.140 maxv getticks(void) 221 1.140 maxv { 222 1.140 maxv return atomic_load_relaxed(&hardclock_ticks); 223 1.99 kardel } 224 1.73 thorpej 225 1.66 thorpej /* 226 1.19 cgd * Initialize clock frequencies and start both clocks running. 227 1.19 cgd */ 228 1.19 cgd void 229 1.63 thorpej initclocks(void) 230 1.19 cgd { 231 1.132 pooka static struct sysctllog *clog; 232 1.55 augustss int i; 233 1.19 cgd 234 1.19 cgd /* 235 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific 236 1.19 cgd * code do its bit. 237 1.19 cgd */ 238 1.70 sommerfe psdiv = 1; 239 1.142 thorpej 240 1.142 thorpej /* 241 1.142 thorpej * Call cpu_initclocks() before registering the default 242 1.142 thorpej * timecounter, in case it needs to adjust hz. 243 1.142 thorpej */ 244 1.142 thorpej const int old_hz = hz; 245 1.142 thorpej cpu_initclocks(); 246 1.142 thorpej if (old_hz != hz) { 247 1.142 thorpej tick = 1000000 / hz; 248 1.142 thorpej tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1; 249 1.142 thorpej } 250 1.142 thorpej 251 1.99 kardel /* 252 1.99 kardel * provide minimum default time counter 253 1.99 kardel * will only run at interrupt resolution 254 1.99 kardel */ 255 1.99 kardel intr_timecounter.tc_frequency = hz; 256 1.99 kardel tc_init(&intr_timecounter); 257 1.19 cgd 258 1.19 cgd /* 259 1.108 yamt * Compute profhz and stathz, fix profhz if needed. 260 1.19 cgd */ 261 1.19 cgd i = stathz ? stathz : hz; 262 1.19 cgd if (profhz == 0) 263 1.19 cgd profhz = i; 264 1.19 cgd psratio = profhz / i; 265 1.91 yamt if (schedhz == 0) { 266 1.91 yamt /* 16Hz is best */ 267 1.114 ad hardscheddiv = hz / 16; 268 1.114 ad if (hardscheddiv <= 0) 269 1.114 ad panic("hardscheddiv"); 270 1.91 yamt } 271 1.31 mycroft 272 1.132 pooka sysctl_createv(&clog, 0, NULL, NULL, 273 1.132 pooka CTLFLAG_PERMANENT, 274 1.132 pooka CTLTYPE_STRUCT, "clockrate", 275 1.132 pooka SYSCTL_DESCR("Kernel clock rates"), 276 1.132 pooka sysctl_kern_clockrate, 0, NULL, 277 1.132 pooka sizeof(struct clockinfo), 278 1.132 pooka CTL_KERN, KERN_CLOCKRATE, CTL_EOL); 279 1.132 pooka sysctl_createv(&clog, 0, NULL, NULL, 280 1.132 pooka CTLFLAG_PERMANENT, 281 1.132 pooka CTLTYPE_INT, "hardclock_ticks", 282 1.132 pooka SYSCTL_DESCR("Number of hardclock ticks"), 283 1.132 pooka NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks), 284 1.132 pooka CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL); 285 1.144 riastrad 286 1.144 riastrad rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd); 287 1.144 riastrad rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW, 288 1.149 riastrad RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|RND_FLAG_HASCB); 289 1.144 riastrad if (stathz) { 290 1.144 riastrad rndsource_setcb(&statclockrnd.source, clockrnd_get, 291 1.144 riastrad &statclockrnd); 292 1.144 riastrad rnd_attach_source(&statclockrnd.source, "statclock", 293 1.149 riastrad RND_TYPE_SKEW, 294 1.149 riastrad (RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME| 295 1.149 riastrad RND_FLAG_HASCB)); 296 1.144 riastrad } 297 1.19 cgd } 298 1.19 cgd 299 1.19 cgd /* 300 1.19 cgd * The real-time timer, interrupting hz times per second. 301 1.19 cgd */ 302 1.19 cgd void 303 1.63 thorpej hardclock(struct clockframe *frame) 304 1.19 cgd { 305 1.82 thorpej struct lwp *l; 306 1.120 ad struct cpu_info *ci; 307 1.19 cgd 308 1.144 riastrad clockrnd_sample(&hardclockrnd); 309 1.144 riastrad 310 1.120 ad ci = curcpu(); 311 1.139 ad l = ci->ci_onproc; 312 1.120 ad 313 1.143 thorpej ptimer_tick(l, CLKF_USERMODE(frame)); 314 1.19 cgd 315 1.19 cgd /* 316 1.19 cgd * If no separate statistics clock is available, run it from here. 317 1.19 cgd */ 318 1.19 cgd if (stathz == 0) 319 1.19 cgd statclock(frame); 320 1.114 ad /* 321 1.114 ad * If no separate schedclock is provided, call it here 322 1.114 ad * at about 16 Hz. 323 1.114 ad */ 324 1.114 ad if (schedhz == 0) { 325 1.114 ad if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) { 326 1.114 ad schedclock(l); 327 1.114 ad ci->ci_schedstate.spc_schedticks = hardscheddiv; 328 1.114 ad } 329 1.114 ad } 330 1.108 yamt if ((--ci->ci_schedstate.spc_ticks) <= 0) 331 1.108 yamt sched_tick(ci); 332 1.93 perry 333 1.123 ad if (CPU_IS_PRIMARY(ci)) { 334 1.140 maxv atomic_store_relaxed(&hardclock_ticks, 335 1.140 maxv atomic_load_relaxed(&hardclock_ticks) + 1); 336 1.121 ad tc_ticktock(); 337 1.121 ad } 338 1.19 cgd 339 1.150 riastrad /* 340 1.150 riastrad * Make sure the CPUs and timecounter are making progress. 341 1.150 riastrad */ 342 1.150 riastrad heartbeat(); 343 1.150 riastrad 344 1.19 cgd /* 345 1.126 pooka * Update real-time timeout queue. 346 1.106 ad */ 347 1.109 ad callout_hardclock(); 348 1.19 cgd } 349 1.19 cgd 350 1.19 cgd /* 351 1.19 cgd * Start profiling on a process. 352 1.19 cgd * 353 1.19 cgd * Kernel profiling passes proc0 which never exits and hence 354 1.19 cgd * keeps the profile clock running constantly. 355 1.19 cgd */ 356 1.19 cgd void 357 1.63 thorpej startprofclock(struct proc *p) 358 1.19 cgd { 359 1.19 cgd 360 1.109 ad KASSERT(mutex_owned(&p->p_stmutex)); 361 1.105 ad 362 1.105 ad if ((p->p_stflag & PST_PROFIL) == 0) { 363 1.105 ad p->p_stflag |= PST_PROFIL; 364 1.80 briggs /* 365 1.80 briggs * This is only necessary if using the clock as the 366 1.80 briggs * profiling source. 367 1.80 briggs */ 368 1.70 sommerfe if (++profprocs == 1 && stathz != 0) 369 1.70 sommerfe psdiv = psratio; 370 1.19 cgd } 371 1.19 cgd } 372 1.19 cgd 373 1.19 cgd /* 374 1.19 cgd * Stop profiling on a process. 375 1.19 cgd */ 376 1.19 cgd void 377 1.63 thorpej stopprofclock(struct proc *p) 378 1.19 cgd { 379 1.19 cgd 380 1.109 ad KASSERT(mutex_owned(&p->p_stmutex)); 381 1.105 ad 382 1.105 ad if (p->p_stflag & PST_PROFIL) { 383 1.105 ad p->p_stflag &= ~PST_PROFIL; 384 1.80 briggs /* 385 1.80 briggs * This is only necessary if using the clock as the 386 1.80 briggs * profiling source. 387 1.80 briggs */ 388 1.70 sommerfe if (--profprocs == 0 && stathz != 0) 389 1.70 sommerfe psdiv = 1; 390 1.19 cgd } 391 1.19 cgd } 392 1.19 cgd 393 1.108 yamt void 394 1.108 yamt schedclock(struct lwp *l) 395 1.108 yamt { 396 1.108 yamt if ((l->l_flag & LW_IDLE) != 0) 397 1.108 yamt return; 398 1.108 yamt 399 1.108 yamt sched_schedclock(l); 400 1.108 yamt } 401 1.108 yamt 402 1.19 cgd /* 403 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0, 404 1.19 cgd * do process and kernel statistics. 405 1.19 cgd */ 406 1.19 cgd void 407 1.63 thorpej statclock(struct clockframe *frame) 408 1.19 cgd { 409 1.19 cgd #ifdef GPROF 410 1.55 augustss struct gmonparam *g; 411 1.68 eeh intptr_t i; 412 1.19 cgd #endif 413 1.60 thorpej struct cpu_info *ci = curcpu(); 414 1.60 thorpej struct schedstate_percpu *spc = &ci->ci_schedstate; 415 1.55 augustss struct proc *p; 416 1.98 christos struct lwp *l; 417 1.19 cgd 418 1.144 riastrad if (stathz) 419 1.144 riastrad clockrnd_sample(&statclockrnd); 420 1.144 riastrad 421 1.70 sommerfe /* 422 1.70 sommerfe * Notice changes in divisor frequency, and adjust clock 423 1.70 sommerfe * frequency accordingly. 424 1.70 sommerfe */ 425 1.70 sommerfe if (spc->spc_psdiv != psdiv) { 426 1.70 sommerfe spc->spc_psdiv = psdiv; 427 1.70 sommerfe spc->spc_pscnt = psdiv; 428 1.70 sommerfe if (psdiv == 1) { 429 1.70 sommerfe setstatclockrate(stathz); 430 1.70 sommerfe } else { 431 1.93 perry setstatclockrate(profhz); 432 1.70 sommerfe } 433 1.70 sommerfe } 434 1.139 ad l = ci->ci_onproc; 435 1.108 yamt if ((l->l_flag & LW_IDLE) != 0) { 436 1.108 yamt /* 437 1.108 yamt * don't account idle lwps as swapper. 438 1.108 yamt */ 439 1.108 yamt p = NULL; 440 1.108 yamt } else { 441 1.108 yamt p = l->l_proc; 442 1.105 ad mutex_spin_enter(&p->p_stmutex); 443 1.108 yamt } 444 1.108 yamt 445 1.19 cgd if (CLKF_USERMODE(frame)) { 446 1.135 maxv KASSERT(p != NULL); 447 1.105 ad if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK) 448 1.105 ad addupc_intr(l, CLKF_PC(frame)); 449 1.105 ad if (--spc->spc_pscnt > 0) { 450 1.105 ad mutex_spin_exit(&p->p_stmutex); 451 1.19 cgd return; 452 1.105 ad } 453 1.105 ad 454 1.19 cgd /* 455 1.19 cgd * Came from user mode; CPU was in user state. 456 1.19 cgd * If this process is being profiled record the tick. 457 1.19 cgd */ 458 1.19 cgd p->p_uticks++; 459 1.19 cgd if (p->p_nice > NZERO) 460 1.60 thorpej spc->spc_cp_time[CP_NICE]++; 461 1.19 cgd else 462 1.60 thorpej spc->spc_cp_time[CP_USER]++; 463 1.19 cgd } else { 464 1.19 cgd #ifdef GPROF 465 1.19 cgd /* 466 1.19 cgd * Kernel statistics are just like addupc_intr, only easier. 467 1.19 cgd */ 468 1.146 ryo #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL) 469 1.145 ryo g = curcpu()->ci_gmon; 470 1.145 ryo if (g != NULL && 471 1.145 ryo profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) { 472 1.145 ryo #else 473 1.19 cgd g = &_gmonparam; 474 1.80 briggs if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) { 475 1.145 ryo #endif 476 1.19 cgd i = CLKF_PC(frame) - g->lowpc; 477 1.19 cgd if (i < g->textsize) { 478 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount); 479 1.19 cgd g->kcount[i]++; 480 1.19 cgd } 481 1.19 cgd } 482 1.19 cgd #endif 483 1.82 thorpej #ifdef LWP_PC 484 1.108 yamt if (p != NULL && profsrc == PROFSRC_CLOCK && 485 1.108 yamt (p->p_stflag & PST_PROFIL)) { 486 1.105 ad addupc_intr(l, LWP_PC(l)); 487 1.108 yamt } 488 1.72 mycroft #endif 489 1.105 ad if (--spc->spc_pscnt > 0) { 490 1.105 ad if (p != NULL) 491 1.105 ad mutex_spin_exit(&p->p_stmutex); 492 1.19 cgd return; 493 1.105 ad } 494 1.19 cgd /* 495 1.19 cgd * Came from kernel mode, so we were: 496 1.19 cgd * - handling an interrupt, 497 1.19 cgd * - doing syscall or trap work on behalf of the current 498 1.19 cgd * user process, or 499 1.19 cgd * - spinning in the idle loop. 500 1.19 cgd * Whichever it is, charge the time as appropriate. 501 1.19 cgd * Note that we charge interrupts to the current process, 502 1.19 cgd * regardless of whether they are ``for'' that process, 503 1.19 cgd * so that we know how much of its real time was spent 504 1.19 cgd * in ``non-process'' (i.e., interrupt) work. 505 1.19 cgd */ 506 1.114 ad if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) { 507 1.108 yamt if (p != NULL) { 508 1.19 cgd p->p_iticks++; 509 1.108 yamt } 510 1.60 thorpej spc->spc_cp_time[CP_INTR]++; 511 1.19 cgd } else if (p != NULL) { 512 1.19 cgd p->p_sticks++; 513 1.60 thorpej spc->spc_cp_time[CP_SYS]++; 514 1.108 yamt } else { 515 1.60 thorpej spc->spc_cp_time[CP_IDLE]++; 516 1.108 yamt } 517 1.19 cgd } 518 1.70 sommerfe spc->spc_pscnt = psdiv; 519 1.19 cgd 520 1.97 elad if (p != NULL) { 521 1.125 rmind atomic_inc_uint(&l->l_cpticks); 522 1.105 ad mutex_spin_exit(&p->p_stmutex); 523 1.108 yamt } 524 1.141 ad 525 1.141 ad #ifdef KDTRACE_HOOKS 526 1.141 ad cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)]; 527 1.141 ad if (func) { 528 1.141 ad (*func)((struct clockframe *)frame); 529 1.141 ad } 530 1.141 ad #endif 531 1.19 cgd } 532 1.132 pooka 533 1.132 pooka /* 534 1.132 pooka * sysctl helper routine for kern.clockrate. Assembles a struct on 535 1.132 pooka * the fly to be returned to the caller. 536 1.132 pooka */ 537 1.132 pooka static int 538 1.132 pooka sysctl_kern_clockrate(SYSCTLFN_ARGS) 539 1.132 pooka { 540 1.132 pooka struct clockinfo clkinfo; 541 1.132 pooka struct sysctlnode node; 542 1.132 pooka 543 1.132 pooka clkinfo.tick = tick; 544 1.132 pooka clkinfo.tickadj = tickadj; 545 1.132 pooka clkinfo.hz = hz; 546 1.132 pooka clkinfo.profhz = profhz; 547 1.132 pooka clkinfo.stathz = stathz ? stathz : hz; 548 1.132 pooka 549 1.132 pooka node = *rnode; 550 1.132 pooka node.sysctl_data = &clkinfo; 551 1.132 pooka return (sysctl_lookup(SYSCTLFN_CALL(&node))); 552 1.132 pooka } 553