kern_clock.c revision 1.1.1.2 1 1.1.1.2 fvdl /*-
2 1.1.1.2 fvdl * Copyright (c) 1982, 1986, 1991, 1993
3 1.1.1.2 fvdl * The Regents of the University of California. All rights reserved.
4 1.1.1.2 fvdl * (c) UNIX System Laboratories, Inc.
5 1.1.1.2 fvdl * All or some portions of this file are derived from material licensed
6 1.1.1.2 fvdl * to the University of California by American Telephone and Telegraph
7 1.1.1.2 fvdl * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 1.1.1.2 fvdl * the permission of UNIX System Laboratories, Inc.
9 1.1.1.2 fvdl *
10 1.1.1.2 fvdl * Redistribution and use in source and binary forms, with or without
11 1.1.1.2 fvdl * modification, are permitted provided that the following conditions
12 1.1.1.2 fvdl * are met:
13 1.1.1.2 fvdl * 1. Redistributions of source code must retain the above copyright
14 1.1.1.2 fvdl * notice, this list of conditions and the following disclaimer.
15 1.1.1.2 fvdl * 2. Redistributions in binary form must reproduce the above copyright
16 1.1.1.2 fvdl * notice, this list of conditions and the following disclaimer in the
17 1.1.1.2 fvdl * documentation and/or other materials provided with the distribution.
18 1.1.1.2 fvdl * 3. All advertising materials mentioning features or use of this software
19 1.1.1.2 fvdl * must display the following acknowledgement:
20 1.1.1.2 fvdl * This product includes software developed by the University of
21 1.1.1.2 fvdl * California, Berkeley and its contributors.
22 1.1.1.2 fvdl * 4. Neither the name of the University nor the names of its contributors
23 1.1.1.2 fvdl * may be used to endorse or promote products derived from this software
24 1.1.1.2 fvdl * without specific prior written permission.
25 1.1.1.2 fvdl *
26 1.1.1.2 fvdl * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1.1.2 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1.1.2 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1.1.2 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1.1.2 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1.1.2 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1.1.2 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1.1.2 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1.1.2 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1.1.2 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1.1.2 fvdl * SUCH DAMAGE.
37 1.1.1.2 fvdl *
38 1.1.1.2 fvdl * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
39 1.1.1.2 fvdl */
40 1.1.1.2 fvdl
41 1.1.1.2 fvdl #include <sys/param.h>
42 1.1.1.2 fvdl #include <sys/systm.h>
43 1.1.1.2 fvdl #include <sys/dkstat.h>
44 1.1.1.2 fvdl #include <sys/callout.h>
45 1.1.1.2 fvdl #include <sys/kernel.h>
46 1.1.1.2 fvdl #include <sys/proc.h>
47 1.1.1.2 fvdl #include <sys/resourcevar.h>
48 1.1.1.2 fvdl
49 1.1.1.2 fvdl #include <machine/cpu.h>
50 1.1.1.2 fvdl
51 1.1.1.2 fvdl #ifdef GPROF
52 1.1.1.2 fvdl #include <sys/gmon.h>
53 1.1.1.2 fvdl #endif
54 1.1.1.2 fvdl
55 1.1.1.2 fvdl /*
56 1.1.1.2 fvdl * Clock handling routines.
57 1.1.1.2 fvdl *
58 1.1.1.2 fvdl * This code is written to operate with two timers that run independently of
59 1.1.1.2 fvdl * each other. The main clock, running hz times per second, is used to keep
60 1.1.1.2 fvdl * track of real time. The second timer handles kernel and user profiling,
61 1.1.1.2 fvdl * and does resource use estimation. If the second timer is programmable,
62 1.1.1.2 fvdl * it is randomized to avoid aliasing between the two clocks. For example,
63 1.1.1.2 fvdl * the randomization prevents an adversary from always giving up the cpu
64 1.1.1.2 fvdl * just before its quantum expires. Otherwise, it would never accumulate
65 1.1.1.2 fvdl * cpu ticks. The mean frequency of the second timer is stathz.
66 1.1.1.2 fvdl *
67 1.1.1.2 fvdl * If no second timer exists, stathz will be zero; in this case we drive
68 1.1.1.2 fvdl * profiling and statistics off the main clock. This WILL NOT be accurate;
69 1.1.1.2 fvdl * do not do it unless absolutely necessary.
70 1.1.1.2 fvdl *
71 1.1.1.2 fvdl * The statistics clock may (or may not) be run at a higher rate while
72 1.1.1.2 fvdl * profiling. This profile clock runs at profhz. We require that profhz
73 1.1.1.2 fvdl * be an integral multiple of stathz.
74 1.1.1.2 fvdl *
75 1.1.1.2 fvdl * If the statistics clock is running fast, it must be divided by the ratio
76 1.1.1.2 fvdl * profhz/stathz for statistics. (For profiling, every tick counts.)
77 1.1.1.2 fvdl */
78 1.1.1.2 fvdl
79 1.1.1.2 fvdl /*
80 1.1.1.2 fvdl * TODO:
81 1.1.1.2 fvdl * allocate more timeout table slots when table overflows.
82 1.1.1.2 fvdl */
83 1.1.1.2 fvdl
84 1.1.1.2 fvdl /*
85 1.1.1.2 fvdl * Bump a timeval by a small number of usec's.
86 1.1.1.2 fvdl */
87 1.1.1.2 fvdl #define BUMPTIME(t, usec) { \
88 1.1.1.2 fvdl register volatile struct timeval *tp = (t); \
89 1.1.1.2 fvdl register long us; \
90 1.1.1.2 fvdl \
91 1.1.1.2 fvdl tp->tv_usec = us = tp->tv_usec + (usec); \
92 1.1.1.2 fvdl if (us >= 1000000) { \
93 1.1.1.2 fvdl tp->tv_usec = us - 1000000; \
94 1.1.1.2 fvdl tp->tv_sec++; \
95 1.1.1.2 fvdl } \
96 1.1.1.2 fvdl }
97 1.1.1.2 fvdl
98 1.1.1.2 fvdl int stathz;
99 1.1.1.2 fvdl int profhz;
100 1.1.1.2 fvdl int profprocs;
101 1.1.1.2 fvdl int ticks;
102 1.1.1.2 fvdl static int psdiv, pscnt; /* prof => stat divider */
103 1.1.1.2 fvdl int psratio; /* ratio: prof / stat */
104 1.1.1.2 fvdl
105 1.1.1.2 fvdl volatile struct timeval time;
106 1.1.1.2 fvdl volatile struct timeval mono_time;
107 1.1.1.2 fvdl
108 1.1.1.2 fvdl /*
109 1.1.1.2 fvdl * Initialize clock frequencies and start both clocks running.
110 1.1.1.2 fvdl */
111 1.1.1.2 fvdl void
112 1.1.1.2 fvdl initclocks()
113 1.1.1.2 fvdl {
114 1.1.1.2 fvdl register int i;
115 1.1.1.2 fvdl
116 1.1.1.2 fvdl /*
117 1.1.1.2 fvdl * Set divisors to 1 (normal case) and let the machine-specific
118 1.1.1.2 fvdl * code do its bit.
119 1.1.1.2 fvdl */
120 1.1.1.2 fvdl psdiv = pscnt = 1;
121 1.1.1.2 fvdl cpu_initclocks();
122 1.1.1.2 fvdl
123 1.1.1.2 fvdl /*
124 1.1.1.2 fvdl * Compute profhz/stathz, and fix profhz if needed.
125 1.1.1.2 fvdl */
126 1.1.1.2 fvdl i = stathz ? stathz : hz;
127 1.1.1.2 fvdl if (profhz == 0)
128 1.1.1.2 fvdl profhz = i;
129 1.1.1.2 fvdl psratio = profhz / i;
130 1.1.1.2 fvdl }
131 1.1.1.2 fvdl
132 1.1.1.2 fvdl /*
133 1.1.1.2 fvdl * The real-time timer, interrupting hz times per second.
134 1.1.1.2 fvdl */
135 1.1.1.2 fvdl void
136 1.1.1.2 fvdl hardclock(frame)
137 1.1.1.2 fvdl register struct clockframe *frame;
138 1.1.1.2 fvdl {
139 1.1.1.2 fvdl register struct callout *p1;
140 1.1.1.2 fvdl register struct proc *p;
141 1.1.1.2 fvdl register int delta, needsoft;
142 1.1.1.2 fvdl extern int tickdelta;
143 1.1.1.2 fvdl extern long timedelta;
144 1.1.1.2 fvdl
145 1.1.1.2 fvdl /*
146 1.1.1.2 fvdl * Update real-time timeout queue.
147 1.1.1.2 fvdl * At front of queue are some number of events which are ``due''.
148 1.1.1.2 fvdl * The time to these is <= 0 and if negative represents the
149 1.1.1.2 fvdl * number of ticks which have passed since it was supposed to happen.
150 1.1.1.2 fvdl * The rest of the q elements (times > 0) are events yet to happen,
151 1.1.1.2 fvdl * where the time for each is given as a delta from the previous.
152 1.1.1.2 fvdl * Decrementing just the first of these serves to decrement the time
153 1.1.1.2 fvdl * to all events.
154 1.1.1.2 fvdl */
155 1.1.1.2 fvdl needsoft = 0;
156 1.1.1.2 fvdl for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
157 1.1.1.2 fvdl if (--p1->c_time > 0)
158 1.1.1.2 fvdl break;
159 1.1.1.2 fvdl needsoft = 1;
160 1.1.1.2 fvdl if (p1->c_time == 0)
161 1.1.1.2 fvdl break;
162 1.1.1.2 fvdl }
163 1.1.1.2 fvdl
164 1.1.1.2 fvdl p = curproc;
165 1.1.1.2 fvdl if (p) {
166 1.1.1.2 fvdl register struct pstats *pstats;
167 1.1.1.2 fvdl
168 1.1.1.2 fvdl /*
169 1.1.1.2 fvdl * Run current process's virtual and profile time, as needed.
170 1.1.1.2 fvdl */
171 1.1.1.2 fvdl pstats = p->p_stats;
172 1.1.1.2 fvdl if (CLKF_USERMODE(frame) &&
173 1.1.1.2 fvdl timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
174 1.1.1.2 fvdl itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
175 1.1.1.2 fvdl psignal(p, SIGVTALRM);
176 1.1.1.2 fvdl if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
177 1.1.1.2 fvdl itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
178 1.1.1.2 fvdl psignal(p, SIGPROF);
179 1.1.1.2 fvdl }
180 1.1.1.2 fvdl
181 1.1.1.2 fvdl /*
182 1.1.1.2 fvdl * If no separate statistics clock is available, run it from here.
183 1.1.1.2 fvdl */
184 1.1.1.2 fvdl if (stathz == 0)
185 1.1.1.2 fvdl statclock(frame);
186 1.1.1.2 fvdl
187 1.1.1.2 fvdl /*
188 1.1.1.2 fvdl * Increment the time-of-day. The increment is just ``tick'' unless
189 1.1.1.2 fvdl * we are still adjusting the clock; see adjtime().
190 1.1.1.2 fvdl */
191 1.1.1.2 fvdl ticks++;
192 1.1.1.2 fvdl if (timedelta == 0)
193 1.1.1.2 fvdl delta = tick;
194 1.1.1.2 fvdl else {
195 1.1.1.2 fvdl delta = tick + tickdelta;
196 1.1.1.2 fvdl timedelta -= tickdelta;
197 1.1.1.2 fvdl }
198 1.1.1.2 fvdl BUMPTIME(&time, delta);
199 1.1.1.2 fvdl BUMPTIME(&mono_time, delta);
200 1.1.1.2 fvdl
201 1.1.1.2 fvdl /*
202 1.1.1.2 fvdl * Process callouts at a very low cpu priority, so we don't keep the
203 1.1.1.2 fvdl * relatively high clock interrupt priority any longer than necessary.
204 1.1.1.2 fvdl */
205 1.1.1.2 fvdl if (needsoft) {
206 1.1.1.2 fvdl if (CLKF_BASEPRI(frame)) {
207 1.1.1.2 fvdl /*
208 1.1.1.2 fvdl * Save the overhead of a software interrupt;
209 1.1.1.2 fvdl * it will happen as soon as we return, so do it now.
210 1.1.1.2 fvdl */
211 1.1.1.2 fvdl (void)splsoftclock();
212 1.1.1.2 fvdl softclock();
213 1.1.1.2 fvdl } else
214 1.1.1.2 fvdl setsoftclock();
215 1.1.1.2 fvdl }
216 1.1.1.2 fvdl }
217 1.1.1.2 fvdl
218 1.1.1.2 fvdl /*
219 1.1.1.2 fvdl * Software (low priority) clock interrupt.
220 1.1.1.2 fvdl * Run periodic events from timeout queue.
221 1.1.1.2 fvdl */
222 1.1.1.2 fvdl /*ARGSUSED*/
223 1.1.1.2 fvdl void
224 1.1.1.2 fvdl softclock()
225 1.1.1.2 fvdl {
226 1.1.1.2 fvdl register struct callout *c;
227 1.1.1.2 fvdl register void *arg;
228 1.1.1.2 fvdl register void (*func) __P((void *));
229 1.1.1.2 fvdl register int s;
230 1.1.1.2 fvdl
231 1.1.1.2 fvdl s = splhigh();
232 1.1.1.2 fvdl while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
233 1.1.1.2 fvdl func = c->c_func;
234 1.1.1.2 fvdl arg = c->c_arg;
235 1.1.1.2 fvdl calltodo.c_next = c->c_next;
236 1.1.1.2 fvdl c->c_next = callfree;
237 1.1.1.2 fvdl callfree = c;
238 1.1.1.2 fvdl splx(s);
239 1.1.1.2 fvdl (*func)(arg);
240 1.1.1.2 fvdl (void) splhigh();
241 1.1.1.2 fvdl }
242 1.1.1.2 fvdl splx(s);
243 1.1.1.2 fvdl }
244 1.1.1.2 fvdl
245 1.1.1.2 fvdl /*
246 1.1.1.2 fvdl * timeout --
247 1.1.1.2 fvdl * Execute a function after a specified length of time.
248 1.1.1.2 fvdl *
249 1.1.1.2 fvdl * untimeout --
250 1.1.1.2 fvdl * Cancel previous timeout function call.
251 1.1.1.2 fvdl *
252 1.1.1.2 fvdl * See AT&T BCI Driver Reference Manual for specification. This
253 1.1.1.2 fvdl * implementation differs from that one in that no identification
254 1.1.1.2 fvdl * value is returned from timeout, rather, the original arguments
255 1.1.1.2 fvdl * to timeout are used to identify entries for untimeout.
256 1.1.1.2 fvdl */
257 1.1.1.2 fvdl void
258 1.1.1.2 fvdl timeout(ftn, arg, ticks)
259 1.1.1.2 fvdl void (*ftn) __P((void *));
260 1.1.1.2 fvdl void *arg;
261 1.1.1.2 fvdl register int ticks;
262 1.1.1.2 fvdl {
263 1.1.1.2 fvdl register struct callout *new, *p, *t;
264 1.1.1.2 fvdl register int s;
265 1.1.1.2 fvdl
266 1.1.1.2 fvdl if (ticks <= 0)
267 1.1.1.2 fvdl ticks = 1;
268 1.1.1.2 fvdl
269 1.1.1.2 fvdl /* Lock out the clock. */
270 1.1.1.2 fvdl s = splhigh();
271 1.1.1.2 fvdl
272 1.1.1.2 fvdl /* Fill in the next free callout structure. */
273 1.1.1.2 fvdl if (callfree == NULL)
274 1.1.1.2 fvdl panic("timeout table full");
275 1.1.1.2 fvdl new = callfree;
276 1.1.1.2 fvdl callfree = new->c_next;
277 1.1.1.2 fvdl new->c_arg = arg;
278 1.1.1.2 fvdl new->c_func = ftn;
279 1.1.1.2 fvdl
280 1.1.1.2 fvdl /*
281 1.1.1.2 fvdl * The time for each event is stored as a difference from the time
282 1.1.1.2 fvdl * of the previous event on the queue. Walk the queue, correcting
283 1.1.1.2 fvdl * the ticks argument for queue entries passed. Correct the ticks
284 1.1.1.2 fvdl * value for the queue entry immediately after the insertion point
285 1.1.1.2 fvdl * as well. Watch out for negative c_time values; these represent
286 1.1.1.2 fvdl * overdue events.
287 1.1.1.2 fvdl */
288 1.1.1.2 fvdl for (p = &calltodo;
289 1.1.1.2 fvdl (t = p->c_next) != NULL && ticks > t->c_time; p = t)
290 1.1.1.2 fvdl if (t->c_time > 0)
291 1.1.1.2 fvdl ticks -= t->c_time;
292 1.1.1.2 fvdl new->c_time = ticks;
293 1.1.1.2 fvdl if (t != NULL)
294 1.1.1.2 fvdl t->c_time -= ticks;
295 1.1.1.2 fvdl
296 1.1.1.2 fvdl /* Insert the new entry into the queue. */
297 1.1.1.2 fvdl p->c_next = new;
298 1.1.1.2 fvdl new->c_next = t;
299 1.1.1.2 fvdl splx(s);
300 1.1.1.2 fvdl }
301 1.1.1.2 fvdl
302 1.1.1.2 fvdl void
303 1.1.1.2 fvdl untimeout(ftn, arg)
304 1.1.1.2 fvdl void (*ftn) __P((void *));
305 1.1.1.2 fvdl void *arg;
306 1.1.1.2 fvdl {
307 1.1.1.2 fvdl register struct callout *p, *t;
308 1.1.1.2 fvdl register int s;
309 1.1.1.2 fvdl
310 1.1.1.2 fvdl s = splhigh();
311 1.1.1.2 fvdl for (p = &calltodo; (t = p->c_next) != NULL; p = t)
312 1.1.1.2 fvdl if (t->c_func == ftn && t->c_arg == arg) {
313 1.1.1.2 fvdl /* Increment next entry's tick count. */
314 1.1.1.2 fvdl if (t->c_next && t->c_time > 0)
315 1.1.1.2 fvdl t->c_next->c_time += t->c_time;
316 1.1.1.2 fvdl
317 1.1.1.2 fvdl /* Move entry from callout queue to callfree queue. */
318 1.1.1.2 fvdl p->c_next = t->c_next;
319 1.1.1.2 fvdl t->c_next = callfree;
320 1.1.1.2 fvdl callfree = t;
321 1.1.1.2 fvdl break;
322 1.1.1.2 fvdl }
323 1.1.1.2 fvdl splx(s);
324 1.1.1.2 fvdl }
325 1.1.1.2 fvdl
326 1.1.1.2 fvdl /*
327 1.1.1.2 fvdl * Compute number of hz until specified time. Used to
328 1.1.1.2 fvdl * compute third argument to timeout() from an absolute time.
329 1.1.1.2 fvdl */
330 1.1.1.2 fvdl int
331 1.1.1.2 fvdl hzto(tv)
332 1.1.1.2 fvdl struct timeval *tv;
333 1.1.1.2 fvdl {
334 1.1.1.2 fvdl register long ticks, sec;
335 1.1.1.2 fvdl int s;
336 1.1.1.2 fvdl
337 1.1.1.2 fvdl /*
338 1.1.1.2 fvdl * If number of milliseconds will fit in 32 bit arithmetic,
339 1.1.1.2 fvdl * then compute number of milliseconds to time and scale to
340 1.1.1.2 fvdl * ticks. Otherwise just compute number of hz in time, rounding
341 1.1.1.2 fvdl * times greater than representible to maximum value.
342 1.1.1.2 fvdl *
343 1.1.1.2 fvdl * Delta times less than 25 days can be computed ``exactly''.
344 1.1.1.2 fvdl * Maximum value for any timeout in 10ms ticks is 250 days.
345 1.1.1.2 fvdl */
346 1.1.1.2 fvdl s = splhigh();
347 1.1.1.2 fvdl sec = tv->tv_sec - time.tv_sec;
348 1.1.1.2 fvdl if (sec <= 0x7fffffff / 1000 - 1000)
349 1.1.1.2 fvdl ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
350 1.1.1.2 fvdl (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
351 1.1.1.2 fvdl else if (sec <= 0x7fffffff / hz)
352 1.1.1.2 fvdl ticks = sec * hz;
353 1.1.1.2 fvdl else
354 1.1.1.2 fvdl ticks = 0x7fffffff;
355 1.1.1.2 fvdl splx(s);
356 1.1.1.2 fvdl return (ticks);
357 1.1.1.2 fvdl }
358 1.1.1.2 fvdl
359 1.1.1.2 fvdl /*
360 1.1.1.2 fvdl * Start profiling on a process.
361 1.1.1.2 fvdl *
362 1.1.1.2 fvdl * Kernel profiling passes proc0 which never exits and hence
363 1.1.1.2 fvdl * keeps the profile clock running constantly.
364 1.1.1.2 fvdl */
365 1.1.1.2 fvdl void
366 1.1.1.2 fvdl startprofclock(p)
367 1.1.1.2 fvdl register struct proc *p;
368 1.1.1.2 fvdl {
369 1.1.1.2 fvdl int s;
370 1.1.1.2 fvdl
371 1.1.1.2 fvdl if ((p->p_flag & P_PROFIL) == 0) {
372 1.1.1.2 fvdl p->p_flag |= P_PROFIL;
373 1.1.1.2 fvdl if (++profprocs == 1 && stathz != 0) {
374 1.1.1.2 fvdl s = splstatclock();
375 1.1.1.2 fvdl psdiv = pscnt = psratio;
376 1.1.1.2 fvdl setstatclockrate(profhz);
377 1.1.1.2 fvdl splx(s);
378 1.1.1.2 fvdl }
379 1.1.1.2 fvdl }
380 1.1.1.2 fvdl }
381 1.1.1.2 fvdl
382 1.1.1.2 fvdl /*
383 1.1.1.2 fvdl * Stop profiling on a process.
384 1.1.1.2 fvdl */
385 1.1.1.2 fvdl void
386 1.1.1.2 fvdl stopprofclock(p)
387 1.1.1.2 fvdl register struct proc *p;
388 1.1.1.2 fvdl {
389 1.1.1.2 fvdl int s;
390 1.1.1.2 fvdl
391 1.1.1.2 fvdl if (p->p_flag & P_PROFIL) {
392 1.1.1.2 fvdl p->p_flag &= ~P_PROFIL;
393 1.1.1.2 fvdl if (--profprocs == 0 && stathz != 0) {
394 1.1.1.2 fvdl s = splstatclock();
395 1.1.1.2 fvdl psdiv = pscnt = 1;
396 1.1.1.2 fvdl setstatclockrate(stathz);
397 1.1.1.2 fvdl splx(s);
398 1.1.1.2 fvdl }
399 1.1.1.2 fvdl }
400 1.1.1.2 fvdl }
401 1.1.1.2 fvdl
402 1.1.1.2 fvdl int dk_ndrive = DK_NDRIVE;
403 1.1.1.2 fvdl
404 1.1.1.2 fvdl /*
405 1.1.1.2 fvdl * Statistics clock. Grab profile sample, and if divider reaches 0,
406 1.1.1.2 fvdl * do process and kernel statistics.
407 1.1.1.2 fvdl */
408 1.1.1.2 fvdl void
409 1.1.1.2 fvdl statclock(frame)
410 1.1.1.2 fvdl register struct clockframe *frame;
411 1.1.1.2 fvdl {
412 1.1.1.2 fvdl #ifdef GPROF
413 1.1.1.2 fvdl register struct gmonparam *g;
414 1.1.1.2 fvdl #endif
415 1.1.1.2 fvdl register struct proc *p;
416 1.1.1.2 fvdl register int i;
417 1.1.1.2 fvdl
418 1.1.1.2 fvdl if (CLKF_USERMODE(frame)) {
419 1.1.1.2 fvdl p = curproc;
420 1.1.1.2 fvdl if (p->p_flag & P_PROFIL)
421 1.1.1.2 fvdl addupc_intr(p, CLKF_PC(frame), 1);
422 1.1.1.2 fvdl if (--pscnt > 0)
423 1.1.1.2 fvdl return;
424 1.1.1.2 fvdl /*
425 1.1.1.2 fvdl * Came from user mode; CPU was in user state.
426 1.1.1.2 fvdl * If this process is being profiled record the tick.
427 1.1.1.2 fvdl */
428 1.1.1.2 fvdl p->p_uticks++;
429 1.1.1.2 fvdl if (p->p_nice > NZERO)
430 1.1.1.2 fvdl cp_time[CP_NICE]++;
431 1.1.1.2 fvdl else
432 1.1.1.2 fvdl cp_time[CP_USER]++;
433 1.1.1.2 fvdl } else {
434 1.1.1.2 fvdl #ifdef GPROF
435 1.1.1.2 fvdl /*
436 1.1.1.2 fvdl * Kernel statistics are just like addupc_intr, only easier.
437 1.1.1.2 fvdl */
438 1.1.1.2 fvdl g = &_gmonparam;
439 1.1.1.2 fvdl if (g->state == GMON_PROF_ON) {
440 1.1.1.2 fvdl i = CLKF_PC(frame) - g->lowpc;
441 1.1.1.2 fvdl if (i < g->textsize) {
442 1.1.1.2 fvdl i /= HISTFRACTION * sizeof(*g->kcount);
443 1.1.1.2 fvdl g->kcount[i]++;
444 1.1.1.2 fvdl }
445 1.1.1.2 fvdl }
446 1.1.1.2 fvdl #endif
447 1.1.1.2 fvdl if (--pscnt > 0)
448 1.1.1.2 fvdl return;
449 1.1.1.2 fvdl /*
450 1.1.1.2 fvdl * Came from kernel mode, so we were:
451 1.1.1.2 fvdl * - handling an interrupt,
452 1.1.1.2 fvdl * - doing syscall or trap work on behalf of the current
453 1.1.1.2 fvdl * user process, or
454 1.1.1.2 fvdl * - spinning in the idle loop.
455 1.1.1.2 fvdl * Whichever it is, charge the time as appropriate.
456 1.1.1.2 fvdl * Note that we charge interrupts to the current process,
457 1.1.1.2 fvdl * regardless of whether they are ``for'' that process,
458 1.1.1.2 fvdl * so that we know how much of its real time was spent
459 1.1.1.2 fvdl * in ``non-process'' (i.e., interrupt) work.
460 1.1.1.2 fvdl */
461 1.1.1.2 fvdl p = curproc;
462 1.1.1.2 fvdl if (CLKF_INTR(frame)) {
463 1.1.1.2 fvdl if (p != NULL)
464 1.1.1.2 fvdl p->p_iticks++;
465 1.1.1.2 fvdl cp_time[CP_INTR]++;
466 1.1.1.2 fvdl } else if (p != NULL) {
467 1.1.1.2 fvdl p->p_sticks++;
468 1.1.1.2 fvdl cp_time[CP_SYS]++;
469 1.1.1.2 fvdl } else
470 1.1.1.2 fvdl cp_time[CP_IDLE]++;
471 1.1.1.2 fvdl }
472 1.1.1.2 fvdl pscnt = psdiv;
473 1.1.1.2 fvdl
474 1.1.1.2 fvdl /*
475 1.1.1.2 fvdl * We maintain statistics shown by user-level statistics
476 1.1.1.2 fvdl * programs: the amount of time in each cpu state, and
477 1.1.1.2 fvdl * the amount of time each of DK_NDRIVE ``drives'' is busy.
478 1.1.1.2 fvdl *
479 1.1.1.2 fvdl * XXX should either run linked list of drives, or (better)
480 1.1.1.2 fvdl * grab timestamps in the start & done code.
481 1.1.1.2 fvdl */
482 1.1.1.2 fvdl for (i = 0; i < DK_NDRIVE; i++)
483 1.1.1.2 fvdl if (dk_busy & (1 << i))
484 1.1.1.2 fvdl dk_time[i]++;
485 1.1.1.2 fvdl
486 1.1.1.2 fvdl /*
487 1.1.1.2 fvdl * We adjust the priority of the current process. The priority of
488 1.1.1.2 fvdl * a process gets worse as it accumulates CPU time. The cpu usage
489 1.1.1.2 fvdl * estimator (p_estcpu) is increased here. The formula for computing
490 1.1.1.2 fvdl * priorities (in kern_synch.c) will compute a different value each
491 1.1.1.2 fvdl * time p_estcpu increases by 4. The cpu usage estimator ramps up
492 1.1.1.2 fvdl * quite quickly when the process is running (linearly), and decays
493 1.1.1.2 fvdl * away exponentially, at a rate which is proportionally slower when
494 1.1.1.2 fvdl * the system is busy. The basic principal is that the system will
495 1.1.1.2 fvdl * 90% forget that the process used a lot of CPU time in 5 * loadav
496 1.1.1.2 fvdl * seconds. This causes the system to favor processes which haven't
497 1.1.1.2 fvdl * run much recently, and to round-robin among other processes.
498 1.1.1.2 fvdl */
499 1.1.1.2 fvdl if (p != NULL) {
500 1.1.1.2 fvdl p->p_cpticks++;
501 1.1.1.2 fvdl if (++p->p_estcpu == 0)
502 1.1.1.2 fvdl p->p_estcpu--;
503 1.1.1.2 fvdl if ((p->p_estcpu & 3) == 0) {
504 1.1.1.2 fvdl resetpriority(p);
505 1.1.1.2 fvdl if (p->p_priority >= PUSER)
506 1.1.1.2 fvdl p->p_priority = p->p_usrpri;
507 1.1.1.2 fvdl }
508 1.1.1.2 fvdl }
509 1.1.1.2 fvdl }
510 1.1.1.2 fvdl
511 1.1.1.2 fvdl /*
512 1.1.1.2 fvdl * Return information about system clocks.
513 1.1.1.2 fvdl */
514 1.1.1.2 fvdl sysctl_clockrate(where, sizep)
515 1.1.1.2 fvdl register char *where;
516 1.1.1.2 fvdl size_t *sizep;
517 1.1.1.2 fvdl {
518 1.1.1.2 fvdl struct clockinfo clkinfo;
519 1.1.1.2 fvdl
520 1.1.1.2 fvdl /*
521 1.1.1.2 fvdl * Construct clockinfo structure.
522 1.1.1.2 fvdl */
523 1.1.1.2 fvdl clkinfo.hz = hz;
524 1.1.1.2 fvdl clkinfo.tick = tick;
525 1.1.1.2 fvdl clkinfo.profhz = profhz;
526 1.1.1.2 fvdl clkinfo.stathz = stathz ? stathz : hz;
527 1.1.1.2 fvdl return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
528 1.1.1.2 fvdl }
529