Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.106.6.10
      1  1.106.6.10        ad /*	$NetBSD: kern_clock.c,v 1.106.6.10 2007/11/05 15:44:45 ad Exp $	*/
      2        1.52   thorpej 
      3        1.52   thorpej /*-
      4       1.106        ad  * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5        1.52   thorpej  * All rights reserved.
      6        1.52   thorpej  *
      7        1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8        1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9        1.52   thorpej  * NASA Ames Research Center.
     10        1.94   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11        1.94   mycroft  * by Charles M. Hannum.
     12        1.52   thorpej  *
     13        1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     14        1.52   thorpej  * modification, are permitted provided that the following conditions
     15        1.52   thorpej  * are met:
     16        1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     17        1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     18        1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19        1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20        1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     21        1.52   thorpej  * 3. All advertising materials mentioning features or use of this software
     22        1.52   thorpej  *    must display the following acknowledgement:
     23        1.52   thorpej  *	This product includes software developed by the NetBSD
     24        1.52   thorpej  *	Foundation, Inc. and its contributors.
     25        1.52   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26        1.52   thorpej  *    contributors may be used to endorse or promote products derived
     27        1.52   thorpej  *    from this software without specific prior written permission.
     28        1.52   thorpej  *
     29        1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30        1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31        1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32        1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33        1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34        1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35        1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36        1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37        1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38        1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39        1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40        1.52   thorpej  */
     41        1.19       cgd 
     42        1.19       cgd /*-
     43        1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     44        1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     45        1.19       cgd  * (c) UNIX System Laboratories, Inc.
     46        1.19       cgd  * All or some portions of this file are derived from material licensed
     47        1.19       cgd  * to the University of California by American Telephone and Telegraph
     48        1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49        1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     50        1.19       cgd  *
     51        1.19       cgd  * Redistribution and use in source and binary forms, with or without
     52        1.19       cgd  * modification, are permitted provided that the following conditions
     53        1.19       cgd  * are met:
     54        1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     55        1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     56        1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57        1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     58        1.19       cgd  *    documentation and/or other materials provided with the distribution.
     59        1.87       agc  * 3. Neither the name of the University nor the names of its contributors
     60        1.19       cgd  *    may be used to endorse or promote products derived from this software
     61        1.19       cgd  *    without specific prior written permission.
     62        1.19       cgd  *
     63        1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64        1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65        1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66        1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67        1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68        1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69        1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70        1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71        1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72        1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73        1.19       cgd  * SUCH DAMAGE.
     74        1.19       cgd  *
     75        1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     76        1.19       cgd  */
     77        1.78     lukem 
     78        1.78     lukem #include <sys/cdefs.h>
     79  1.106.6.10        ad __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.106.6.10 2007/11/05 15:44:45 ad Exp $");
     80        1.44  jonathan 
     81        1.44  jonathan #include "opt_ntp.h"
     82        1.86    martin #include "opt_multiprocessor.h"
     83        1.80    briggs #include "opt_perfctrs.h"
     84        1.19       cgd 
     85        1.19       cgd #include <sys/param.h>
     86        1.19       cgd #include <sys/systm.h>
     87        1.19       cgd #include <sys/callout.h>
     88        1.19       cgd #include <sys/kernel.h>
     89        1.19       cgd #include <sys/proc.h>
     90        1.19       cgd #include <sys/resourcevar.h>
     91        1.25  christos #include <sys/signalvar.h>
     92        1.26  christos #include <sys/sysctl.h>
     93        1.27  jonathan #include <sys/timex.h>
     94        1.45      ross #include <sys/sched.h>
     95        1.82   thorpej #include <sys/time.h>
     96        1.99    kardel #include <sys/timetc.h>
     97   1.106.6.3        ad #include <sys/cpu.h>
     98        1.25  christos 
     99        1.19       cgd #ifdef GPROF
    100        1.19       cgd #include <sys/gmon.h>
    101        1.19       cgd #endif
    102        1.19       cgd 
    103        1.19       cgd /*
    104        1.19       cgd  * Clock handling routines.
    105        1.19       cgd  *
    106        1.19       cgd  * This code is written to operate with two timers that run independently of
    107        1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    108        1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    109        1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    110        1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    111        1.90       wiz  * the randomization prevents an adversary from always giving up the CPU
    112        1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    113        1.90       wiz  * CPU ticks.  The mean frequency of the second timer is stathz.
    114        1.19       cgd  *
    115        1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    116        1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    117        1.19       cgd  * do not do it unless absolutely necessary.
    118        1.19       cgd  *
    119        1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    120        1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    121        1.19       cgd  * be an integral multiple of stathz.
    122        1.19       cgd  *
    123        1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    124        1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    125        1.19       cgd  */
    126        1.19       cgd 
    127        1.99    kardel #ifndef __HAVE_TIMECOUNTER
    128        1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    129        1.27  jonathan /*
    130        1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    131        1.27  jonathan  *
    132        1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    133        1.27  jonathan  * call.
    134        1.27  jonathan  *
    135        1.27  jonathan  * time_state shows the state of the system clock, with values defined
    136        1.27  jonathan  * in the timex.h header file.
    137        1.27  jonathan  *
    138        1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    139        1.27  jonathan  * in the timex.h header file.
    140        1.27  jonathan  *
    141        1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    142        1.27  jonathan  * increments.
    143        1.27  jonathan  *
    144        1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    145        1.27  jonathan  *
    146        1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    147        1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    148        1.27  jonathan  * in principle it could change as result of the presence of external
    149        1.27  jonathan  * discipline signals, for instance.
    150        1.27  jonathan  *
    151        1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    152        1.27  jonathan  * in cases where a precision clock counter or external clock is
    153        1.27  jonathan  * available, the resolution can be much less than this and depend on
    154        1.27  jonathan  * whether the external clock is working or not.
    155        1.27  jonathan  *
    156        1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    157        1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    158        1.27  jonathan  * growth.
    159        1.27  jonathan  *
    160        1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    161        1.27  jonathan  * otherwise not used by the kernel.
    162        1.27  jonathan  */
    163        1.27  jonathan int time_state = TIME_OK;	/* clock state */
    164        1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    165        1.27  jonathan long time_offset = 0;		/* time offset (us) */
    166        1.27  jonathan long time_constant = 0;		/* pll time constant */
    167        1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    168        1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    169        1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    170        1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    171        1.27  jonathan 
    172        1.27  jonathan /*
    173        1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    174        1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    175        1.27  jonathan  * factors are defined in the timex.h header file.
    176        1.27  jonathan  *
    177        1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    178        1.27  jonathan  * increment, respectively, of the kernel time variable.
    179        1.27  jonathan  *
    180        1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    181        1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    182        1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    183        1.27  jonathan  * daemon.
    184        1.27  jonathan  *
    185        1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    186        1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    187        1.27  jonathan  * seconds rollover.
    188        1.27  jonathan  *
    189        1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    190        1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    191        1.27  jonathan  * and to increase the time_maxerror as the time since last update
    192        1.27  jonathan  * increases.
    193        1.27  jonathan  */
    194        1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    195        1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    196        1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    197        1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    198        1.27  jonathan 
    199        1.27  jonathan #ifdef PPS_SYNC
    200        1.27  jonathan /*
    201        1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    202        1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    203        1.27  jonathan  * timex.h header file.
    204        1.27  jonathan  *
    205        1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    206        1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    207        1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    208        1.27  jonathan  * two.
    209        1.27  jonathan  *
    210        1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    211        1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    212        1.27  jonathan  * this filter.
    213        1.27  jonathan  *
    214        1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    215        1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    216        1.27  jonathan  * by this filter.
    217        1.27  jonathan  *
    218        1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    219        1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    220        1.27  jonathan  * contents plus the time_tv.usec as usual.
    221        1.27  jonathan  *
    222        1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    223        1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    224        1.27  jonathan  * PPS signal be lost.
    225        1.27  jonathan  *
    226        1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    227        1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    228        1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    229        1.27  jonathan  * PPS interrupt and timer interrupt.
    230        1.27  jonathan  *
    231        1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    232        1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    233        1.89    simonb  *
    234        1.89    simonb  * pps_kc_hardpps_source contains an arbitrary value that uniquely
    235        1.89    simonb  * identifies the currently bound source of the PPS signal, or NULL
    236        1.89    simonb  * if no source is bound.
    237        1.89    simonb  *
    238        1.89    simonb  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
    239        1.89    simonb  * signal should be reported.
    240        1.27  jonathan  */
    241        1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    242        1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    243        1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    244        1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    245        1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    246        1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    247        1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    248        1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    249        1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    250        1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    251        1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    252        1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    253        1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    254        1.89    simonb void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
    255        1.89    simonb int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
    256        1.27  jonathan 
    257        1.27  jonathan /*
    258        1.27  jonathan  * PPS signal quality monitors
    259        1.27  jonathan  *
    260        1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    261        1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    262        1.27  jonathan  * (100 us).
    263        1.27  jonathan  *
    264        1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    265        1.27  jonathan  * variable from 4 s to 256 s.
    266        1.27  jonathan  *
    267        1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    268        1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    269        1.27  jonathan  * calibration interval jitter exceeds two ticks.
    270        1.27  jonathan  *
    271        1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    272        1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    273        1.27  jonathan  */
    274        1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    275        1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    276        1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    277        1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    278        1.27  jonathan #endif /* PPS_SYNC */
    279        1.27  jonathan 
    280        1.27  jonathan #ifdef EXT_CLOCK
    281        1.27  jonathan /*
    282        1.27  jonathan  * External clock definitions
    283        1.27  jonathan  *
    284        1.27  jonathan  * The following definitions and declarations are used only if an
    285        1.27  jonathan  * external clock is configured on the system.
    286        1.27  jonathan  */
    287        1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    288        1.27  jonathan 
    289        1.27  jonathan /*
    290        1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    291        1.27  jonathan  * interrupt and decremented once each second.
    292        1.27  jonathan  */
    293        1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    294        1.27  jonathan 
    295        1.27  jonathan #endif /* EXT_CLOCK */
    296        1.27  jonathan #endif /* NTP */
    297        1.27  jonathan 
    298        1.19       cgd /*
    299        1.19       cgd  * Bump a timeval by a small number of usec's.
    300        1.19       cgd  */
    301        1.19       cgd #define BUMPTIME(t, usec) { \
    302        1.55  augustss 	volatile struct timeval *tp = (t); \
    303        1.55  augustss 	long us; \
    304        1.19       cgd  \
    305        1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    306        1.19       cgd 	if (us >= 1000000) { \
    307        1.19       cgd 		tp->tv_usec = us - 1000000; \
    308        1.19       cgd 		tp->tv_sec++; \
    309        1.19       cgd 	} \
    310        1.19       cgd }
    311        1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    312        1.19       cgd 
    313        1.19       cgd int	stathz;
    314        1.19       cgd int	profhz;
    315        1.80    briggs int	profsrc;
    316        1.75    simonb int	schedhz;
    317        1.19       cgd int	profprocs;
    318       1.100  drochner int	hardclock_ticks;
    319  1.106.6.10        ad static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    320        1.70  sommerfe static int psdiv;			/* prof => stat divider */
    321        1.22       cgd int	psratio;			/* ratio: prof / stat */
    322        1.99    kardel #ifndef __HAVE_TIMECOUNTER
    323        1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    324        1.34    briggs #ifndef NTP
    325        1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    326        1.34    briggs #else
    327        1.27  jonathan int	fixtick;			/* used by NTP for same */
    328        1.31   mycroft int	shifthz;
    329        1.31   mycroft #endif
    330        1.19       cgd 
    331        1.48  christos /*
    332        1.48  christos  * We might want ldd to load the both words from time at once.
    333        1.48  christos  * To succeed we need to be quadword aligned.
    334        1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    335        1.48  christos  */
    336        1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    337        1.19       cgd volatile struct	timeval mono_time;
    338        1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    339        1.19       cgd 
    340        1.99    kardel #ifdef __HAVE_TIMECOUNTER
    341        1.99    kardel static u_int get_intr_timecount(struct timecounter *);
    342        1.99    kardel 
    343        1.99    kardel static struct timecounter intr_timecounter = {
    344        1.99    kardel 	get_intr_timecount,	/* get_timecount */
    345        1.99    kardel 	0,			/* no poll_pps */
    346        1.99    kardel 	~0u,			/* counter_mask */
    347        1.99    kardel 	0,		        /* frequency */
    348        1.99    kardel 	"clockinterrupt",	/* name */
    349       1.102  christos 	0,			/* quality - minimum implementation level for a clock */
    350       1.102  christos 	NULL,			/* prev */
    351       1.102  christos 	NULL,			/* next */
    352        1.99    kardel };
    353        1.99    kardel 
    354        1.99    kardel static u_int
    355       1.104      yamt get_intr_timecount(struct timecounter *tc)
    356        1.99    kardel {
    357       1.104      yamt 
    358       1.100  drochner 	return (u_int)hardclock_ticks;
    359        1.99    kardel }
    360        1.99    kardel #endif
    361        1.73   thorpej 
    362        1.66   thorpej /*
    363        1.19       cgd  * Initialize clock frequencies and start both clocks running.
    364        1.19       cgd  */
    365        1.19       cgd void
    366        1.63   thorpej initclocks(void)
    367        1.19       cgd {
    368        1.55  augustss 	int i;
    369        1.19       cgd 
    370        1.19       cgd 	/*
    371        1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    372        1.19       cgd 	 * code do its bit.
    373        1.19       cgd 	 */
    374        1.70  sommerfe 	psdiv = 1;
    375        1.99    kardel #ifdef __HAVE_TIMECOUNTER
    376        1.99    kardel 	/*
    377        1.99    kardel 	 * provide minimum default time counter
    378        1.99    kardel 	 * will only run at interrupt resolution
    379        1.99    kardel 	 */
    380        1.99    kardel 	intr_timecounter.tc_frequency = hz;
    381        1.99    kardel 	tc_init(&intr_timecounter);
    382        1.99    kardel #endif
    383        1.19       cgd 	cpu_initclocks();
    384        1.19       cgd 
    385        1.19       cgd 	/*
    386   1.106.6.2        ad 	 * Compute profhz and stathz, fix profhz if needed.
    387        1.19       cgd 	 */
    388        1.19       cgd 	i = stathz ? stathz : hz;
    389        1.19       cgd 	if (profhz == 0)
    390        1.19       cgd 		profhz = i;
    391        1.19       cgd 	psratio = profhz / i;
    392        1.91      yamt 	if (schedhz == 0) {
    393        1.91      yamt 		/* 16Hz is best */
    394  1.106.6.10        ad 		hardscheddiv = hz / 16;
    395  1.106.6.10        ad 		if (hardscheddiv <= 0)
    396  1.106.6.10        ad 			panic("hardscheddiv");
    397        1.91      yamt 	}
    398        1.31   mycroft 
    399        1.99    kardel #ifndef __HAVE_TIMECOUNTER
    400        1.31   mycroft #ifdef NTP
    401        1.31   mycroft 	switch (hz) {
    402        1.57   mycroft 	case 1:
    403        1.57   mycroft 		shifthz = SHIFT_SCALE - 0;
    404        1.57   mycroft 		break;
    405        1.57   mycroft 	case 2:
    406        1.57   mycroft 		shifthz = SHIFT_SCALE - 1;
    407        1.57   mycroft 		break;
    408        1.57   mycroft 	case 4:
    409        1.57   mycroft 		shifthz = SHIFT_SCALE - 2;
    410        1.57   mycroft 		break;
    411        1.57   mycroft 	case 8:
    412        1.57   mycroft 		shifthz = SHIFT_SCALE - 3;
    413        1.57   mycroft 		break;
    414        1.57   mycroft 	case 16:
    415        1.57   mycroft 		shifthz = SHIFT_SCALE - 4;
    416        1.57   mycroft 		break;
    417        1.57   mycroft 	case 32:
    418        1.57   mycroft 		shifthz = SHIFT_SCALE - 5;
    419        1.57   mycroft 		break;
    420        1.92       tls 	case 50:
    421        1.31   mycroft 	case 60:
    422        1.31   mycroft 	case 64:
    423        1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    424        1.31   mycroft 		break;
    425        1.31   mycroft 	case 96:
    426        1.31   mycroft 	case 100:
    427        1.31   mycroft 	case 128:
    428        1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    429        1.31   mycroft 		break;
    430        1.31   mycroft 	case 256:
    431        1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    432        1.41       tls 		break;
    433        1.41       tls 	case 512:
    434        1.41       tls 		shifthz = SHIFT_SCALE - 9;
    435        1.31   mycroft 		break;
    436        1.43      ross 	case 1000:
    437        1.31   mycroft 	case 1024:
    438        1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    439        1.31   mycroft 		break;
    440        1.57   mycroft 	case 1200:
    441        1.57   mycroft 	case 2048:
    442        1.57   mycroft 		shifthz = SHIFT_SCALE - 11;
    443        1.57   mycroft 		break;
    444        1.57   mycroft 	case 4096:
    445        1.57   mycroft 		shifthz = SHIFT_SCALE - 12;
    446        1.57   mycroft 		break;
    447        1.57   mycroft 	case 8192:
    448        1.57   mycroft 		shifthz = SHIFT_SCALE - 13;
    449        1.57   mycroft 		break;
    450        1.57   mycroft 	case 16384:
    451        1.57   mycroft 		shifthz = SHIFT_SCALE - 14;
    452        1.57   mycroft 		break;
    453        1.57   mycroft 	case 32768:
    454        1.57   mycroft 		shifthz = SHIFT_SCALE - 15;
    455        1.57   mycroft 		break;
    456        1.57   mycroft 	case 65536:
    457        1.57   mycroft 		shifthz = SHIFT_SCALE - 16;
    458        1.57   mycroft 		break;
    459        1.31   mycroft 	default:
    460        1.31   mycroft 		panic("weird hz");
    461        1.50  sommerfe 	}
    462        1.50  sommerfe 	if (fixtick == 0) {
    463        1.52   thorpej 		/*
    464        1.52   thorpej 		 * Give MD code a chance to set this to a better
    465        1.52   thorpej 		 * value; but, if it doesn't, we should.
    466        1.52   thorpej 		 */
    467        1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    468        1.31   mycroft 	}
    469        1.99    kardel #endif /* NTP */
    470        1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    471        1.19       cgd }
    472        1.19       cgd 
    473        1.19       cgd /*
    474        1.19       cgd  * The real-time timer, interrupting hz times per second.
    475        1.19       cgd  */
    476        1.19       cgd void
    477        1.63   thorpej hardclock(struct clockframe *frame)
    478        1.19       cgd {
    479        1.82   thorpej 	struct lwp *l;
    480        1.55  augustss 	struct proc *p;
    481        1.99    kardel 	struct cpu_info *ci = curcpu();
    482        1.99    kardel 	struct ptimer *pt;
    483        1.99    kardel #ifndef __HAVE_TIMECOUNTER
    484        1.55  augustss 	int delta;
    485        1.19       cgd 	extern int tickdelta;
    486        1.19       cgd 	extern long timedelta;
    487        1.30   mycroft #ifdef NTP
    488        1.55  augustss 	int time_update;
    489        1.55  augustss 	int ltemp;
    490        1.99    kardel #endif /* NTP */
    491        1.99    kardel #endif /* __HAVE_TIMECOUNTER */
    492        1.19       cgd 
    493   1.106.6.9        ad 	l = ci->ci_data.cpu_onproc;
    494   1.106.6.2        ad 	if (!CURCPU_IDLE_P()) {
    495        1.82   thorpej 		p = l->l_proc;
    496        1.19       cgd 		/*
    497        1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    498        1.19       cgd 		 */
    499        1.82   thorpej 		if (CLKF_USERMODE(frame) && p->p_timers &&
    500        1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    501        1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    502        1.82   thorpej 				itimerfire(pt);
    503        1.82   thorpej 		if (p->p_timers &&
    504        1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    505        1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    506        1.82   thorpej 				itimerfire(pt);
    507        1.19       cgd 	}
    508        1.19       cgd 
    509        1.19       cgd 	/*
    510        1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    511        1.19       cgd 	 */
    512        1.19       cgd 	if (stathz == 0)
    513        1.19       cgd 		statclock(frame);
    514  1.106.6.10        ad 	/*
    515  1.106.6.10        ad 	 * If no separate schedclock is provided, call it here
    516  1.106.6.10        ad 	 * at about 16 Hz.
    517  1.106.6.10        ad 	 */
    518  1.106.6.10        ad 	if (schedhz == 0) {
    519  1.106.6.10        ad 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    520  1.106.6.10        ad 			schedclock(l);
    521  1.106.6.10        ad 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    522  1.106.6.10        ad 		}
    523  1.106.6.10        ad 	}
    524   1.106.6.2        ad 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    525   1.106.6.2        ad 		sched_tick(ci);
    526        1.93     perry 
    527        1.60   thorpej #if defined(MULTIPROCESSOR)
    528        1.60   thorpej 	/*
    529        1.60   thorpej 	 * If we are not the primary CPU, we're not allowed to do
    530        1.60   thorpej 	 * any more work.
    531        1.60   thorpej 	 */
    532        1.70  sommerfe 	if (CPU_IS_PRIMARY(ci) == 0)
    533        1.60   thorpej 		return;
    534        1.60   thorpej #endif
    535        1.60   thorpej 
    536        1.99    kardel 	hardclock_ticks++;
    537        1.99    kardel 
    538        1.99    kardel #ifdef __HAVE_TIMECOUNTER
    539        1.99    kardel 	tc_ticktock();
    540        1.99    kardel #else /* __HAVE_TIMECOUNTER */
    541        1.19       cgd 	/*
    542        1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    543        1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    544        1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    545        1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    546        1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    547        1.22       cgd 	 * ``tickdelta'' may also be added in.
    548        1.19       cgd 	 */
    549        1.22       cgd 	delta = tick;
    550        1.27  jonathan 
    551        1.27  jonathan #ifndef NTP
    552        1.22       cgd 	if (tickfix) {
    553        1.39       cgd 		tickfixcnt += tickfix;
    554        1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    555        1.39       cgd 			delta++;
    556        1.39       cgd 			tickfixcnt -= tickfixinterval;
    557        1.22       cgd 		}
    558        1.22       cgd 	}
    559        1.27  jonathan #endif /* !NTP */
    560        1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    561        1.22       cgd 	if (timedelta != 0) {
    562        1.38       cgd 		delta += tickdelta;
    563        1.19       cgd 		timedelta -= tickdelta;
    564        1.19       cgd 	}
    565        1.27  jonathan 
    566        1.27  jonathan #ifdef notyet
    567        1.27  jonathan 	microset();
    568        1.27  jonathan #endif
    569        1.27  jonathan 
    570        1.27  jonathan #ifndef NTP
    571        1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    572        1.27  jonathan #endif
    573        1.19       cgd 	BUMPTIME(&mono_time, delta);
    574        1.27  jonathan 
    575        1.31   mycroft #ifdef NTP
    576        1.30   mycroft 	time_update = delta;
    577        1.27  jonathan 
    578        1.27  jonathan 	/*
    579        1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    580        1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    581        1.27  jonathan 	 * (time_update).
    582        1.27  jonathan 	 */
    583        1.27  jonathan 	time_phase += time_adj;
    584        1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    585        1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    586        1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    587        1.27  jonathan 		time_update -= ltemp;
    588        1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    589        1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    590        1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    591        1.27  jonathan 		time_update += ltemp;
    592        1.27  jonathan 	}
    593        1.27  jonathan 	time.tv_usec += time_update;
    594        1.27  jonathan 
    595        1.27  jonathan 	/*
    596        1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    597        1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    598        1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    599        1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    600        1.27  jonathan 	 * CPU clock oscillator frequency error.
    601        1.27  jonathan 	 *
    602        1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    603        1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    604        1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    605        1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    606        1.27  jonathan 	 */
    607        1.27  jonathan 	if (time.tv_usec >= 1000000) {
    608        1.27  jonathan 		time.tv_usec -= 1000000;
    609        1.27  jonathan 		time.tv_sec++;
    610        1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    611        1.27  jonathan 
    612        1.27  jonathan 		/*
    613        1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    614        1.27  jonathan 		 * the end of the day, the system clock is set back one
    615        1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    616        1.27  jonathan 		 * set ahead one second. The microtime() routine or
    617        1.27  jonathan 		 * external clock driver will insure that reported time
    618        1.27  jonathan 		 * is always monotonic. The ugly divides should be
    619        1.27  jonathan 		 * replaced.
    620        1.27  jonathan 		 */
    621        1.27  jonathan 		switch (time_state) {
    622        1.31   mycroft 		case TIME_OK:
    623        1.27  jonathan 			if (time_status & STA_INS)
    624        1.27  jonathan 				time_state = TIME_INS;
    625        1.27  jonathan 			else if (time_status & STA_DEL)
    626        1.27  jonathan 				time_state = TIME_DEL;
    627        1.27  jonathan 			break;
    628        1.27  jonathan 
    629        1.31   mycroft 		case TIME_INS:
    630        1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    631        1.27  jonathan 				time.tv_sec--;
    632        1.27  jonathan 				time_state = TIME_OOP;
    633        1.27  jonathan 			}
    634        1.27  jonathan 			break;
    635        1.27  jonathan 
    636        1.31   mycroft 		case TIME_DEL:
    637        1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    638        1.27  jonathan 				time.tv_sec++;
    639        1.27  jonathan 				time_state = TIME_WAIT;
    640        1.27  jonathan 			}
    641        1.27  jonathan 			break;
    642        1.27  jonathan 
    643        1.31   mycroft 		case TIME_OOP:
    644        1.27  jonathan 			time_state = TIME_WAIT;
    645        1.27  jonathan 			break;
    646        1.27  jonathan 
    647        1.31   mycroft 		case TIME_WAIT:
    648        1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    649        1.27  jonathan 				time_state = TIME_OK;
    650        1.31   mycroft 			break;
    651        1.27  jonathan 		}
    652        1.27  jonathan 
    653        1.27  jonathan 		/*
    654        1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    655        1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    656        1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    657        1.27  jonathan 		 * used directly. In either mode, the maximum phase
    658        1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    659        1.27  jonathan 		 * the adjustment over not more than the number of
    660        1.27  jonathan 		 * seconds between updates.
    661        1.27  jonathan 		 */
    662        1.27  jonathan 		if (time_offset < 0) {
    663        1.27  jonathan 			ltemp = -time_offset;
    664        1.27  jonathan 			if (!(time_status & STA_FLL))
    665        1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    666        1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    667        1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    668        1.27  jonathan 				    SHIFT_UPDATE;
    669        1.27  jonathan 			time_offset += ltemp;
    670        1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    671        1.31   mycroft 		} else if (time_offset > 0) {
    672        1.27  jonathan 			ltemp = time_offset;
    673        1.27  jonathan 			if (!(time_status & STA_FLL))
    674        1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    675        1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    676        1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    677        1.27  jonathan 				    SHIFT_UPDATE;
    678        1.27  jonathan 			time_offset -= ltemp;
    679        1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    680        1.31   mycroft 		} else
    681        1.31   mycroft 			time_adj = 0;
    682        1.27  jonathan 
    683        1.27  jonathan 		/*
    684        1.27  jonathan 		 * Compute the frequency estimate and additional phase
    685        1.27  jonathan 		 * adjustment due to frequency error for the next
    686        1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    687        1.27  jonathan 		 * watchdog counter and update the frequency computed by
    688        1.27  jonathan 		 * the pll and the PPS signal.
    689        1.27  jonathan 		 */
    690        1.27  jonathan #ifdef PPS_SYNC
    691        1.27  jonathan 		pps_valid++;
    692        1.27  jonathan 		if (pps_valid == PPS_VALID) {
    693        1.27  jonathan 			pps_jitter = MAXTIME;
    694        1.27  jonathan 			pps_stabil = MAXFREQ;
    695        1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    696        1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    697        1.27  jonathan 		}
    698        1.27  jonathan 		ltemp = time_freq + pps_freq;
    699        1.27  jonathan #else
    700        1.27  jonathan 		ltemp = time_freq;
    701        1.27  jonathan #endif /* PPS_SYNC */
    702        1.27  jonathan 
    703        1.27  jonathan 		if (ltemp < 0)
    704        1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    705        1.27  jonathan 		else
    706        1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    707        1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    708        1.27  jonathan 
    709        1.27  jonathan 		/*
    710        1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    711        1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    712        1.31   mycroft 		 * scale factor.
    713        1.46   mycroft 		 *
    714        1.46   mycroft 		 * To determine the adjustment, you can do the following:
    715        1.46   mycroft 		 *   bc -q
    716        1.46   mycroft 		 *   scale=24
    717        1.46   mycroft 		 *   obase=2
    718        1.46   mycroft 		 *   idealhz/realhz
    719        1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    720        1.57   mycroft 		 * is the actual value.  You may need to factor this result
    721        1.57   mycroft 		 * into a sequence of 2 multipliers to get better precision.
    722        1.46   mycroft 		 *
    723        1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    724        1.46   mycroft 		 *   bc -q
    725        1.46   mycroft 		 *   scale=24
    726        1.57   mycroft 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    727        1.57   mycroft 		 * (and then multiply by 1000000 to get ppm).
    728        1.27  jonathan 		 */
    729        1.31   mycroft 		switch (hz) {
    730        1.58   mycroft 		case 60:
    731        1.58   mycroft 			/* A factor of 1.000100010001 gives about 15ppm
    732        1.58   mycroft 			   error. */
    733        1.58   mycroft 			if (time_adj < 0) {
    734        1.58   mycroft 				time_adj -= (-time_adj >> 4);
    735        1.58   mycroft 				time_adj -= (-time_adj >> 8);
    736        1.58   mycroft 			} else {
    737        1.58   mycroft 				time_adj += (time_adj >> 4);
    738        1.58   mycroft 				time_adj += (time_adj >> 8);
    739        1.58   mycroft 			}
    740        1.58   mycroft 			break;
    741        1.58   mycroft 
    742        1.31   mycroft 		case 96:
    743        1.56   mycroft 			/* A factor of 1.0101010101 gives about 244ppm error. */
    744        1.46   mycroft 			if (time_adj < 0) {
    745        1.46   mycroft 				time_adj -= (-time_adj >> 2);
    746        1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    747        1.46   mycroft 			} else {
    748        1.46   mycroft 				time_adj += (time_adj >> 2);
    749        1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    750        1.46   mycroft 			}
    751        1.46   mycroft 			break;
    752        1.46   mycroft 
    753        1.92       tls 		case 50:
    754        1.31   mycroft 		case 100:
    755        1.56   mycroft 			/* A factor of 1.010001111010111 gives about 1ppm
    756        1.56   mycroft 			   error. */
    757        1.56   mycroft 			if (time_adj < 0) {
    758        1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    759        1.56   mycroft 				time_adj += (-time_adj >> 10);
    760        1.56   mycroft 			} else {
    761        1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    762        1.56   mycroft 				time_adj -= (time_adj >> 10);
    763        1.56   mycroft 			}
    764        1.43      ross 			break;
    765        1.46   mycroft 
    766        1.43      ross 		case 1000:
    767        1.56   mycroft 			/* A factor of 1.000001100010100001 gives about 50ppm
    768        1.56   mycroft 			   error. */
    769        1.56   mycroft 			if (time_adj < 0) {
    770        1.56   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    771        1.56   mycroft 				time_adj -= (-time_adj >> 7);
    772        1.56   mycroft 			} else {
    773        1.56   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    774        1.56   mycroft 				time_adj += (time_adj >> 7);
    775        1.56   mycroft 			}
    776        1.56   mycroft 			break;
    777        1.56   mycroft 
    778        1.56   mycroft 		case 1200:
    779        1.56   mycroft 			/* A factor of 1.1011010011100001 gives about 64ppm
    780        1.56   mycroft 			   error. */
    781        1.56   mycroft 			if (time_adj < 0) {
    782        1.56   mycroft 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    783        1.56   mycroft 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    784        1.56   mycroft 			} else {
    785        1.56   mycroft 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    786        1.56   mycroft 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    787        1.56   mycroft 			}
    788        1.31   mycroft 			break;
    789        1.27  jonathan 		}
    790        1.27  jonathan 
    791        1.27  jonathan #ifdef EXT_CLOCK
    792        1.27  jonathan 		/*
    793        1.27  jonathan 		 * If an external clock is present, it is necessary to
    794        1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    795        1.27  jonathan 		 * all system components use the microtime() interface.
    796        1.27  jonathan 		 * Here, the time offset between the external clock and
    797        1.27  jonathan 		 * kernel time variable is computed every so often.
    798        1.27  jonathan 		 */
    799        1.27  jonathan 		clock_count++;
    800        1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    801        1.27  jonathan 			clock_count = 0;
    802        1.27  jonathan 			microtime(&clock_ext);
    803        1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    804        1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    805        1.27  jonathan 			    time.tv_usec;
    806        1.27  jonathan 			if (delta.tv_usec < 0)
    807        1.27  jonathan 				delta.tv_sec--;
    808        1.27  jonathan 			if (delta.tv_usec >= 500000) {
    809        1.27  jonathan 				delta.tv_usec -= 1000000;
    810        1.27  jonathan 				delta.tv_sec++;
    811        1.27  jonathan 			}
    812        1.27  jonathan 			if (delta.tv_usec < -500000) {
    813        1.27  jonathan 				delta.tv_usec += 1000000;
    814        1.27  jonathan 				delta.tv_sec--;
    815        1.27  jonathan 			}
    816        1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    817        1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    818        1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    819        1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    820        1.27  jonathan 				time = clock_ext;
    821        1.27  jonathan 				delta.tv_sec = 0;
    822        1.27  jonathan 				delta.tv_usec = 0;
    823        1.27  jonathan 			}
    824        1.27  jonathan 			hardupdate(delta.tv_usec);
    825        1.27  jonathan 		}
    826        1.27  jonathan #endif /* EXT_CLOCK */
    827        1.27  jonathan 	}
    828        1.27  jonathan 
    829        1.31   mycroft #endif /* NTP */
    830        1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    831        1.19       cgd 
    832        1.19       cgd 	/*
    833       1.106        ad 	 * Update real-time timeout queue.  Callouts are processed at a
    834       1.106        ad 	 * very low CPU priority, so we don't keep the relatively high
    835       1.106        ad 	 * clock interrupt priority any longer than necessary.
    836       1.106        ad 	 */
    837   1.106.6.4        ad 	callout_hardclock();
    838        1.19       cgd }
    839        1.19       cgd 
    840        1.19       cgd /*
    841        1.19       cgd  * Start profiling on a process.
    842        1.19       cgd  *
    843        1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
    844        1.19       cgd  * keeps the profile clock running constantly.
    845        1.19       cgd  */
    846        1.19       cgd void
    847        1.63   thorpej startprofclock(struct proc *p)
    848        1.19       cgd {
    849        1.19       cgd 
    850   1.106.6.1        ad 	KASSERT(mutex_owned(&p->p_stmutex));
    851       1.105        ad 
    852       1.105        ad 	if ((p->p_stflag & PST_PROFIL) == 0) {
    853       1.105        ad 		p->p_stflag |= PST_PROFIL;
    854        1.80    briggs 		/*
    855        1.80    briggs 		 * This is only necessary if using the clock as the
    856        1.80    briggs 		 * profiling source.
    857        1.80    briggs 		 */
    858        1.70  sommerfe 		if (++profprocs == 1 && stathz != 0)
    859        1.70  sommerfe 			psdiv = psratio;
    860        1.19       cgd 	}
    861        1.19       cgd }
    862        1.19       cgd 
    863        1.19       cgd /*
    864        1.19       cgd  * Stop profiling on a process.
    865        1.19       cgd  */
    866        1.19       cgd void
    867        1.63   thorpej stopprofclock(struct proc *p)
    868        1.19       cgd {
    869        1.19       cgd 
    870   1.106.6.1        ad 	KASSERT(mutex_owned(&p->p_stmutex));
    871       1.105        ad 
    872       1.105        ad 	if (p->p_stflag & PST_PROFIL) {
    873       1.105        ad 		p->p_stflag &= ~PST_PROFIL;
    874        1.80    briggs 		/*
    875        1.80    briggs 		 * This is only necessary if using the clock as the
    876        1.80    briggs 		 * profiling source.
    877        1.80    briggs 		 */
    878        1.70  sommerfe 		if (--profprocs == 0 && stathz != 0)
    879        1.70  sommerfe 			psdiv = 1;
    880        1.19       cgd 	}
    881        1.19       cgd }
    882        1.19       cgd 
    883        1.80    briggs #if defined(PERFCTRS)
    884        1.80    briggs /*
    885        1.80    briggs  * Independent profiling "tick" in case we're using a separate
    886        1.80    briggs  * clock or profiling event source.  Currently, that's just
    887        1.80    briggs  * performance counters--hence the wrapper.
    888        1.80    briggs  */
    889        1.80    briggs void
    890        1.80    briggs proftick(struct clockframe *frame)
    891        1.80    briggs {
    892        1.80    briggs #ifdef GPROF
    893        1.93     perry         struct gmonparam *g;
    894        1.93     perry         intptr_t i;
    895        1.80    briggs #endif
    896       1.105        ad 	struct lwp *l;
    897        1.80    briggs 	struct proc *p;
    898        1.80    briggs 
    899   1.106.6.9        ad 	l = curcpu()->ci_data.cpu_onproc;
    900       1.105        ad 	p = (l ? l->l_proc : NULL);
    901        1.80    briggs 	if (CLKF_USERMODE(frame)) {
    902       1.105        ad 		mutex_spin_enter(&p->p_stmutex);
    903       1.105        ad 		if (p->p_stflag & PST_PROFIL)
    904       1.105        ad 			addupc_intr(l, CLKF_PC(frame));
    905       1.105        ad 		mutex_spin_exit(&p->p_stmutex);
    906        1.80    briggs 	} else {
    907        1.80    briggs #ifdef GPROF
    908        1.80    briggs 		g = &_gmonparam;
    909        1.80    briggs 		if (g->state == GMON_PROF_ON) {
    910        1.80    briggs 			i = CLKF_PC(frame) - g->lowpc;
    911        1.80    briggs 			if (i < g->textsize) {
    912        1.80    briggs 				i /= HISTFRACTION * sizeof(*g->kcount);
    913        1.80    briggs 				g->kcount[i]++;
    914        1.80    briggs 			}
    915        1.80    briggs 		}
    916        1.80    briggs #endif
    917   1.106.6.6        ad #ifdef LWP_PC
    918   1.106.6.6        ad 		if (p != NULL && (p->p_stflag & PST_PROFIL) != 0)
    919   1.106.6.6        ad 			addupc_intr(l, LWP_PC(l));
    920        1.93     perry #endif
    921        1.80    briggs 	}
    922        1.80    briggs }
    923        1.80    briggs #endif
    924        1.80    briggs 
    925   1.106.6.2        ad void
    926   1.106.6.2        ad schedclock(struct lwp *l)
    927   1.106.6.2        ad {
    928   1.106.6.2        ad 
    929   1.106.6.2        ad 	if ((l->l_flag & LW_IDLE) != 0)
    930   1.106.6.2        ad 		return;
    931   1.106.6.2        ad 
    932   1.106.6.2        ad 	sched_schedclock(l);
    933   1.106.6.2        ad }
    934   1.106.6.2        ad 
    935        1.19       cgd /*
    936        1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    937        1.19       cgd  * do process and kernel statistics.
    938        1.19       cgd  */
    939        1.19       cgd void
    940        1.63   thorpej statclock(struct clockframe *frame)
    941        1.19       cgd {
    942        1.19       cgd #ifdef GPROF
    943        1.55  augustss 	struct gmonparam *g;
    944        1.68       eeh 	intptr_t i;
    945        1.19       cgd #endif
    946        1.60   thorpej 	struct cpu_info *ci = curcpu();
    947        1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    948        1.55  augustss 	struct proc *p;
    949        1.98  christos 	struct lwp *l;
    950        1.19       cgd 
    951        1.70  sommerfe 	/*
    952        1.70  sommerfe 	 * Notice changes in divisor frequency, and adjust clock
    953        1.70  sommerfe 	 * frequency accordingly.
    954        1.70  sommerfe 	 */
    955        1.70  sommerfe 	if (spc->spc_psdiv != psdiv) {
    956        1.70  sommerfe 		spc->spc_psdiv = psdiv;
    957        1.70  sommerfe 		spc->spc_pscnt = psdiv;
    958        1.70  sommerfe 		if (psdiv == 1) {
    959        1.70  sommerfe 			setstatclockrate(stathz);
    960        1.70  sommerfe 		} else {
    961        1.93     perry 			setstatclockrate(profhz);
    962        1.70  sommerfe 		}
    963        1.70  sommerfe 	}
    964   1.106.6.9        ad 	l = ci->ci_data.cpu_onproc;
    965   1.106.6.2        ad 	if ((l->l_flag & LW_IDLE) != 0) {
    966   1.106.6.2        ad 		/*
    967   1.106.6.2        ad 		 * don't account idle lwps as swapper.
    968   1.106.6.2        ad 		 */
    969   1.106.6.2        ad 		p = NULL;
    970   1.106.6.2        ad 	} else {
    971   1.106.6.2        ad 		p = l->l_proc;
    972       1.105        ad 		mutex_spin_enter(&p->p_stmutex);
    973   1.106.6.2        ad 	}
    974        1.97      elad 
    975   1.106.6.2        ad 	if (CLKF_USERMODE(frame)) {
    976       1.105        ad 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    977       1.105        ad 			addupc_intr(l, CLKF_PC(frame));
    978       1.105        ad 		if (--spc->spc_pscnt > 0) {
    979       1.105        ad 			mutex_spin_exit(&p->p_stmutex);
    980        1.19       cgd 			return;
    981       1.105        ad 		}
    982       1.105        ad 
    983        1.19       cgd 		/*
    984        1.19       cgd 		 * Came from user mode; CPU was in user state.
    985        1.19       cgd 		 * If this process is being profiled record the tick.
    986        1.19       cgd 		 */
    987        1.19       cgd 		p->p_uticks++;
    988        1.19       cgd 		if (p->p_nice > NZERO)
    989        1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
    990        1.19       cgd 		else
    991        1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
    992        1.19       cgd 	} else {
    993        1.19       cgd #ifdef GPROF
    994        1.19       cgd 		/*
    995        1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
    996        1.19       cgd 		 */
    997        1.19       cgd 		g = &_gmonparam;
    998        1.80    briggs 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    999        1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1000        1.19       cgd 			if (i < g->textsize) {
   1001        1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1002        1.19       cgd 				g->kcount[i]++;
   1003        1.19       cgd 			}
   1004        1.19       cgd 		}
   1005        1.19       cgd #endif
   1006        1.82   thorpej #ifdef LWP_PC
   1007   1.106.6.2        ad 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
   1008   1.106.6.2        ad 		    (p->p_stflag & PST_PROFIL)) {
   1009       1.105        ad 			addupc_intr(l, LWP_PC(l));
   1010   1.106.6.2        ad 		}
   1011        1.72   mycroft #endif
   1012       1.105        ad 		if (--spc->spc_pscnt > 0) {
   1013       1.105        ad 			if (p != NULL)
   1014       1.105        ad 				mutex_spin_exit(&p->p_stmutex);
   1015        1.19       cgd 			return;
   1016       1.105        ad 		}
   1017        1.19       cgd 		/*
   1018        1.19       cgd 		 * Came from kernel mode, so we were:
   1019        1.19       cgd 		 * - handling an interrupt,
   1020        1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1021        1.19       cgd 		 *   user process, or
   1022        1.19       cgd 		 * - spinning in the idle loop.
   1023        1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1024        1.19       cgd 		 * Note that we charge interrupts to the current process,
   1025        1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1026        1.19       cgd 		 * so that we know how much of its real time was spent
   1027        1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1028        1.19       cgd 		 */
   1029   1.106.6.9        ad 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
   1030   1.106.6.2        ad 			if (p != NULL) {
   1031        1.19       cgd 				p->p_iticks++;
   1032   1.106.6.2        ad 			}
   1033        1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
   1034        1.19       cgd 		} else if (p != NULL) {
   1035        1.19       cgd 			p->p_sticks++;
   1036        1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
   1037   1.106.6.2        ad 		} else {
   1038        1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
   1039   1.106.6.2        ad 		}
   1040        1.19       cgd 	}
   1041        1.70  sommerfe 	spc->spc_pscnt = psdiv;
   1042        1.19       cgd 
   1043        1.97      elad 	if (p != NULL) {
   1044   1.106.6.2        ad 		++l->l_cpticks;
   1045       1.105        ad 		mutex_spin_exit(&p->p_stmutex);
   1046   1.106.6.2        ad 	}
   1047        1.19       cgd }
   1048        1.27  jonathan 
   1049        1.99    kardel #ifndef __HAVE_TIMECOUNTER
   1050        1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1051        1.27  jonathan /*
   1052        1.27  jonathan  * hardupdate() - local clock update
   1053        1.27  jonathan  *
   1054        1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1055        1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1056        1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1057        1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1058        1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1059        1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1060        1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1061        1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1062        1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1063        1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1064        1.27  jonathan  *
   1065        1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1066        1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1067        1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1068        1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1069        1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1070        1.27  jonathan  *
   1071        1.27  jonathan  * Note: splclock() is in effect.
   1072        1.27  jonathan  */
   1073        1.27  jonathan void
   1074        1.63   thorpej hardupdate(long offset)
   1075        1.27  jonathan {
   1076        1.27  jonathan 	long ltemp, mtemp;
   1077        1.27  jonathan 
   1078        1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1079        1.27  jonathan 		return;
   1080        1.27  jonathan 	ltemp = offset;
   1081        1.27  jonathan #ifdef PPS_SYNC
   1082        1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1083        1.27  jonathan 		ltemp = pps_offset;
   1084        1.27  jonathan #endif /* PPS_SYNC */
   1085        1.27  jonathan 
   1086        1.27  jonathan 	/*
   1087        1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1088        1.27  jonathan 	 */
   1089        1.27  jonathan 	if (ltemp > MAXPHASE)
   1090        1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1091        1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1092        1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1093        1.27  jonathan 	else
   1094        1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1095        1.27  jonathan 
   1096        1.27  jonathan 	/*
   1097        1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1098        1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1099        1.27  jonathan 	 * multiply/divide should be replaced someday.
   1100        1.27  jonathan 	 */
   1101        1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1102        1.27  jonathan 		time_reftime = time.tv_sec;
   1103        1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1104        1.27  jonathan 	time_reftime = time.tv_sec;
   1105        1.27  jonathan 	if (time_status & STA_FLL) {
   1106        1.27  jonathan 		if (mtemp >= MINSEC) {
   1107        1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1108        1.27  jonathan 			    SHIFT_UPDATE));
   1109        1.27  jonathan 			if (ltemp < 0)
   1110        1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1111        1.27  jonathan 			else
   1112        1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1113        1.27  jonathan 		}
   1114        1.27  jonathan 	} else {
   1115        1.27  jonathan 		if (mtemp < MAXSEC) {
   1116        1.27  jonathan 			ltemp *= mtemp;
   1117        1.27  jonathan 			if (ltemp < 0)
   1118        1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1119        1.27  jonathan 				    time_constant + SHIFT_KF -
   1120        1.27  jonathan 				    SHIFT_USEC);
   1121        1.27  jonathan 			else
   1122        1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1123        1.27  jonathan 				    time_constant + SHIFT_KF -
   1124        1.27  jonathan 				    SHIFT_USEC);
   1125        1.27  jonathan 		}
   1126        1.27  jonathan 	}
   1127        1.27  jonathan 	if (time_freq > time_tolerance)
   1128        1.27  jonathan 		time_freq = time_tolerance;
   1129        1.27  jonathan 	else if (time_freq < -time_tolerance)
   1130        1.27  jonathan 		time_freq = -time_tolerance;
   1131        1.27  jonathan }
   1132        1.27  jonathan 
   1133        1.27  jonathan #ifdef PPS_SYNC
   1134        1.27  jonathan /*
   1135        1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1136        1.27  jonathan  *
   1137        1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1138        1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1139        1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1140        1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1141        1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1142        1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1143        1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1144        1.27  jonathan  * value at the on-time PPS signal transition.
   1145        1.27  jonathan  *
   1146        1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1147        1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1148        1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1149        1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1150        1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1151        1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1152        1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1153        1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1154        1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1155        1.27  jonathan  * routine.
   1156        1.27  jonathan  */
   1157        1.27  jonathan void
   1158        1.63   thorpej hardpps(struct timeval *tvp,		/* time at PPS */
   1159        1.63   thorpej 	long usec			/* hardware counter at PPS */)
   1160        1.27  jonathan {
   1161        1.27  jonathan 	long u_usec, v_usec, bigtick;
   1162        1.27  jonathan 	long cal_sec, cal_usec;
   1163        1.27  jonathan 
   1164        1.27  jonathan 	/*
   1165        1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1166        1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1167        1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1168        1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1169        1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1170        1.27  jonathan 	 */
   1171        1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1172        1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1173        1.27  jonathan 	pps_valid = 0;
   1174        1.27  jonathan 	u_usec = -tvp->tv_usec;
   1175        1.27  jonathan 	if (u_usec < -500000)
   1176        1.27  jonathan 		u_usec += 1000000;
   1177        1.27  jonathan 	v_usec = pps_offset - u_usec;
   1178        1.27  jonathan 	if (v_usec < 0)
   1179        1.27  jonathan 		v_usec = -v_usec;
   1180        1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1181        1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1182        1.27  jonathan 			pps_glitch = 0;
   1183        1.27  jonathan 			pps_tf[2] = u_usec;
   1184        1.27  jonathan 			pps_tf[1] = u_usec;
   1185        1.27  jonathan 		} else {
   1186        1.27  jonathan 			pps_glitch++;
   1187        1.27  jonathan 			u_usec = pps_offset;
   1188        1.27  jonathan 		}
   1189        1.27  jonathan 	} else
   1190        1.27  jonathan 		pps_glitch = 0;
   1191        1.27  jonathan 
   1192        1.27  jonathan 	/*
   1193        1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1194        1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1195        1.27  jonathan 	 * difference between the other two samples becomes the time
   1196        1.27  jonathan 	 * dispersion (jitter) estimate.
   1197        1.27  jonathan 	 */
   1198        1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1199        1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1200        1.27  jonathan 	pps_tf[0] = u_usec;
   1201        1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1202        1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1203        1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1204        1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1205        1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1206        1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1207        1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1208        1.27  jonathan 		} else {
   1209        1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1210        1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1211        1.27  jonathan 		}
   1212        1.27  jonathan 	} else {
   1213        1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1214        1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1215        1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1216        1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1217        1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1218        1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1219        1.27  jonathan 		} else {
   1220        1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1221        1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1222        1.27  jonathan 		}
   1223        1.27  jonathan 	}
   1224        1.27  jonathan 	if (v_usec > MAXTIME)
   1225        1.27  jonathan 		pps_jitcnt++;
   1226        1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1227        1.27  jonathan 	if (v_usec < 0)
   1228        1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1229        1.27  jonathan 	else
   1230        1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1231        1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1232        1.27  jonathan 		time_status |= STA_PPSJITTER;
   1233        1.27  jonathan 
   1234        1.27  jonathan 	/*
   1235        1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1236        1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1237        1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1238        1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1239        1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1240        1.27  jonathan 	 * exceed the value of tick when using long calibration
   1241        1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1242        1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1243        1.27  jonathan 	 * the values returned and used here are correct.
   1244        1.27  jonathan 	 */
   1245        1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1246        1.27  jonathan 	pps_usec -= pps_freq;
   1247        1.27  jonathan 	if (pps_usec >= bigtick)
   1248        1.27  jonathan 		pps_usec -= bigtick;
   1249        1.27  jonathan 	if (pps_usec < 0)
   1250        1.27  jonathan 		pps_usec += bigtick;
   1251        1.27  jonathan 	pps_time.tv_sec++;
   1252        1.27  jonathan 	pps_count++;
   1253        1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1254        1.27  jonathan 		return;
   1255        1.27  jonathan 	pps_count = 0;
   1256        1.27  jonathan 	pps_calcnt++;
   1257        1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1258        1.27  jonathan 	v_usec = pps_usec - u_usec;
   1259        1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1260        1.27  jonathan 		v_usec -= bigtick;
   1261        1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1262        1.27  jonathan 		v_usec += bigtick;
   1263        1.27  jonathan 	if (v_usec < 0)
   1264        1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1265        1.27  jonathan 	else
   1266        1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1267        1.27  jonathan 	pps_usec = u_usec;
   1268        1.27  jonathan 	cal_sec = tvp->tv_sec;
   1269        1.27  jonathan 	cal_usec = tvp->tv_usec;
   1270        1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1271        1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1272        1.27  jonathan 	if (cal_usec < 0) {
   1273        1.27  jonathan 		cal_usec += 1000000;
   1274        1.27  jonathan 		cal_sec--;
   1275        1.27  jonathan 	}
   1276        1.27  jonathan 	pps_time = *tvp;
   1277        1.27  jonathan 
   1278        1.27  jonathan 	/*
   1279        1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1280        1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1281        1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1282        1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1283        1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1284        1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1285        1.27  jonathan 	 */
   1286        1.27  jonathan 	u_usec = (long)tick << 1;
   1287        1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1288        1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1289        1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1290        1.27  jonathan 		pps_errcnt++;
   1291        1.27  jonathan 		pps_shift = PPS_SHIFT;
   1292        1.27  jonathan 		pps_intcnt = 0;
   1293        1.27  jonathan 		time_status |= STA_PPSERROR;
   1294        1.27  jonathan 		return;
   1295        1.27  jonathan 	}
   1296        1.27  jonathan 
   1297        1.27  jonathan 	/*
   1298        1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1299        1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1300        1.27  jonathan 	 * estimate; the difference between the other two samples
   1301        1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1302        1.27  jonathan 	 */
   1303        1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1304        1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1305        1.27  jonathan 	pps_ff[0] = v_usec;
   1306        1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1307        1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1308        1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1309        1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1310        1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1311        1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1312        1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1313        1.27  jonathan 		} else {
   1314        1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1315        1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1316        1.27  jonathan 		}
   1317        1.27  jonathan 	} else {
   1318        1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1319        1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1320        1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1321        1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1322        1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1323        1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1324        1.27  jonathan 		} else {
   1325        1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1326        1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1327        1.27  jonathan 		}
   1328        1.27  jonathan 	}
   1329        1.27  jonathan 
   1330        1.27  jonathan 	/*
   1331        1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1332        1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1333        1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1334        1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1335        1.27  jonathan 	 */
   1336        1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1337        1.27  jonathan 	if (v_usec < 0)
   1338        1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1339        1.27  jonathan 	else
   1340        1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1341        1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1342        1.27  jonathan 		pps_stbcnt++;
   1343        1.27  jonathan 		time_status |= STA_PPSWANDER;
   1344        1.27  jonathan 		return;
   1345        1.27  jonathan 	}
   1346        1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1347        1.27  jonathan 		if (u_usec < 0) {
   1348        1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1349        1.27  jonathan 			if (pps_freq < -time_tolerance)
   1350        1.27  jonathan 				pps_freq = -time_tolerance;
   1351        1.27  jonathan 			u_usec = -u_usec;
   1352        1.27  jonathan 		} else {
   1353        1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1354        1.27  jonathan 			if (pps_freq > time_tolerance)
   1355        1.27  jonathan 				pps_freq = time_tolerance;
   1356        1.27  jonathan 		}
   1357        1.27  jonathan 	}
   1358        1.27  jonathan 
   1359        1.27  jonathan 	/*
   1360        1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1361        1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1362        1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1363        1.27  jonathan 	 * intervals, double the interval.
   1364        1.27  jonathan 	 */
   1365        1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1366        1.27  jonathan 		pps_intcnt = 0;
   1367        1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1368        1.27  jonathan 			pps_shift--;
   1369        1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1370        1.27  jonathan 		pps_intcnt = 0;
   1371        1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1372        1.27  jonathan 			pps_shift++;
   1373        1.27  jonathan 	} else
   1374        1.27  jonathan 		pps_intcnt++;
   1375        1.27  jonathan }
   1376        1.27  jonathan #endif /* PPS_SYNC */
   1377        1.27  jonathan #endif /* NTP  */
   1378        1.95  christos 
   1379        1.99    kardel /* timecounter compat functions */
   1380        1.99    kardel void
   1381        1.95  christos nanotime(struct timespec *ts)
   1382        1.95  christos {
   1383        1.95  christos 	struct timeval tv;
   1384        1.95  christos 
   1385        1.95  christos 	microtime(&tv);
   1386        1.95  christos 	TIMEVAL_TO_TIMESPEC(&tv, ts);
   1387        1.95  christos }
   1388        1.99    kardel 
   1389        1.99    kardel void
   1390        1.99    kardel getbinuptime(struct bintime *bt)
   1391        1.99    kardel {
   1392        1.99    kardel 	struct timeval tv;
   1393        1.99    kardel 
   1394        1.99    kardel 	microtime(&tv);
   1395        1.99    kardel 	timeval2bintime(&tv, bt);
   1396        1.99    kardel }
   1397        1.99    kardel 
   1398        1.99    kardel void
   1399        1.99    kardel nanouptime(struct timespec *tsp)
   1400        1.99    kardel {
   1401        1.99    kardel 	int s;
   1402        1.99    kardel 
   1403        1.99    kardel 	s = splclock();
   1404        1.99    kardel 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1405        1.99    kardel 	splx(s);
   1406        1.99    kardel }
   1407        1.99    kardel 
   1408        1.99    kardel void
   1409        1.99    kardel getnanouptime(struct timespec *tsp)
   1410        1.99    kardel {
   1411        1.99    kardel 	int s;
   1412        1.99    kardel 
   1413        1.99    kardel 	s = splclock();
   1414        1.99    kardel 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1415        1.99    kardel 	splx(s);
   1416        1.99    kardel }
   1417        1.99    kardel 
   1418        1.99    kardel void
   1419        1.99    kardel getmicrouptime(struct timeval *tvp)
   1420        1.99    kardel {
   1421        1.99    kardel 	int s;
   1422        1.99    kardel 
   1423        1.99    kardel 	s = splclock();
   1424        1.99    kardel 	*tvp = mono_time;
   1425        1.99    kardel 	splx(s);
   1426        1.99    kardel }
   1427        1.99    kardel 
   1428        1.99    kardel void
   1429        1.99    kardel getnanotime(struct timespec *tsp)
   1430        1.99    kardel {
   1431        1.99    kardel 	int s;
   1432        1.99    kardel 
   1433        1.99    kardel 	s = splclock();
   1434        1.99    kardel 	TIMEVAL_TO_TIMESPEC(&time, tsp);
   1435        1.99    kardel 	splx(s);
   1436        1.99    kardel }
   1437        1.99    kardel 
   1438        1.99    kardel void
   1439        1.99    kardel getmicrotime(struct timeval *tvp)
   1440        1.99    kardel {
   1441        1.99    kardel 	int s;
   1442        1.99    kardel 
   1443        1.99    kardel 	s = splclock();
   1444        1.99    kardel 	*tvp = time;
   1445        1.99    kardel 	splx(s);
   1446        1.99    kardel }
   1447   1.106.6.2        ad 
   1448   1.106.6.2        ad u_int64_t
   1449   1.106.6.2        ad tc_getfrequency(void)
   1450   1.106.6.2        ad {
   1451   1.106.6.2        ad 	return hz;
   1452   1.106.6.2        ad }
   1453        1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
   1454