Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.111
      1  1.111        ad /*	$NetBSD: kern_clock.c,v 1.111 2007/10/03 11:05:58 ad Exp $	*/
      2   1.52   thorpej 
      3   1.52   thorpej /*-
      4  1.106        ad  * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.52   thorpej  * All rights reserved.
      6   1.52   thorpej  *
      7   1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8   1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.52   thorpej  * NASA Ames Research Center.
     10   1.94   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11   1.94   mycroft  * by Charles M. Hannum.
     12   1.52   thorpej  *
     13   1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     14   1.52   thorpej  * modification, are permitted provided that the following conditions
     15   1.52   thorpej  * are met:
     16   1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     17   1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     18   1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19   1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20   1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     21   1.52   thorpej  * 3. All advertising materials mentioning features or use of this software
     22   1.52   thorpej  *    must display the following acknowledgement:
     23   1.52   thorpej  *	This product includes software developed by the NetBSD
     24   1.52   thorpej  *	Foundation, Inc. and its contributors.
     25   1.52   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26   1.52   thorpej  *    contributors may be used to endorse or promote products derived
     27   1.52   thorpej  *    from this software without specific prior written permission.
     28   1.52   thorpej  *
     29   1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30   1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31   1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32   1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33   1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34   1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35   1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36   1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37   1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38   1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39   1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40   1.52   thorpej  */
     41   1.19       cgd 
     42   1.19       cgd /*-
     43   1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     44   1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     45   1.19       cgd  * (c) UNIX System Laboratories, Inc.
     46   1.19       cgd  * All or some portions of this file are derived from material licensed
     47   1.19       cgd  * to the University of California by American Telephone and Telegraph
     48   1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49   1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     50   1.19       cgd  *
     51   1.19       cgd  * Redistribution and use in source and binary forms, with or without
     52   1.19       cgd  * modification, are permitted provided that the following conditions
     53   1.19       cgd  * are met:
     54   1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     55   1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     56   1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57   1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     58   1.19       cgd  *    documentation and/or other materials provided with the distribution.
     59   1.87       agc  * 3. Neither the name of the University nor the names of its contributors
     60   1.19       cgd  *    may be used to endorse or promote products derived from this software
     61   1.19       cgd  *    without specific prior written permission.
     62   1.19       cgd  *
     63   1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64   1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65   1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66   1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67   1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68   1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69   1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70   1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71   1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72   1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73   1.19       cgd  * SUCH DAMAGE.
     74   1.19       cgd  *
     75   1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     76   1.19       cgd  */
     77   1.78     lukem 
     78   1.78     lukem #include <sys/cdefs.h>
     79  1.111        ad __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.111 2007/10/03 11:05:58 ad Exp $");
     80   1.44  jonathan 
     81   1.44  jonathan #include "opt_ntp.h"
     82   1.86    martin #include "opt_multiprocessor.h"
     83   1.80    briggs #include "opt_perfctrs.h"
     84   1.19       cgd 
     85   1.19       cgd #include <sys/param.h>
     86   1.19       cgd #include <sys/systm.h>
     87   1.19       cgd #include <sys/callout.h>
     88   1.19       cgd #include <sys/kernel.h>
     89   1.19       cgd #include <sys/proc.h>
     90   1.19       cgd #include <sys/resourcevar.h>
     91   1.25  christos #include <sys/signalvar.h>
     92   1.26  christos #include <sys/sysctl.h>
     93   1.27  jonathan #include <sys/timex.h>
     94   1.45      ross #include <sys/sched.h>
     95   1.82   thorpej #include <sys/time.h>
     96   1.99    kardel #include <sys/timetc.h>
     97  1.109        ad #include <sys/cpu.h>
     98   1.25  christos 
     99   1.19       cgd #ifdef GPROF
    100   1.19       cgd #include <sys/gmon.h>
    101   1.19       cgd #endif
    102   1.19       cgd 
    103   1.19       cgd /*
    104   1.19       cgd  * Clock handling routines.
    105   1.19       cgd  *
    106   1.19       cgd  * This code is written to operate with two timers that run independently of
    107   1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    108   1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    109   1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    110   1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    111   1.90       wiz  * the randomization prevents an adversary from always giving up the CPU
    112   1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    113   1.90       wiz  * CPU ticks.  The mean frequency of the second timer is stathz.
    114   1.19       cgd  *
    115   1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    116   1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    117   1.19       cgd  * do not do it unless absolutely necessary.
    118   1.19       cgd  *
    119   1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    120   1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    121   1.19       cgd  * be an integral multiple of stathz.
    122   1.19       cgd  *
    123   1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    124   1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    125   1.19       cgd  */
    126   1.19       cgd 
    127   1.99    kardel #ifndef __HAVE_TIMECOUNTER
    128   1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    129   1.27  jonathan /*
    130   1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    131   1.27  jonathan  *
    132   1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    133   1.27  jonathan  * call.
    134   1.27  jonathan  *
    135   1.27  jonathan  * time_state shows the state of the system clock, with values defined
    136   1.27  jonathan  * in the timex.h header file.
    137   1.27  jonathan  *
    138   1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    139   1.27  jonathan  * in the timex.h header file.
    140   1.27  jonathan  *
    141   1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    142   1.27  jonathan  * increments.
    143   1.27  jonathan  *
    144   1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    145   1.27  jonathan  *
    146   1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    147   1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    148   1.27  jonathan  * in principle it could change as result of the presence of external
    149   1.27  jonathan  * discipline signals, for instance.
    150   1.27  jonathan  *
    151   1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    152   1.27  jonathan  * in cases where a precision clock counter or external clock is
    153   1.27  jonathan  * available, the resolution can be much less than this and depend on
    154   1.27  jonathan  * whether the external clock is working or not.
    155   1.27  jonathan  *
    156   1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    157   1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    158   1.27  jonathan  * growth.
    159   1.27  jonathan  *
    160   1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    161   1.27  jonathan  * otherwise not used by the kernel.
    162   1.27  jonathan  */
    163   1.27  jonathan int time_state = TIME_OK;	/* clock state */
    164   1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    165   1.27  jonathan long time_offset = 0;		/* time offset (us) */
    166   1.27  jonathan long time_constant = 0;		/* pll time constant */
    167   1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    168   1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    169   1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    170   1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    171   1.27  jonathan 
    172   1.27  jonathan /*
    173   1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    174   1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    175   1.27  jonathan  * factors are defined in the timex.h header file.
    176   1.27  jonathan  *
    177   1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    178   1.27  jonathan  * increment, respectively, of the kernel time variable.
    179   1.27  jonathan  *
    180   1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    181   1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    182   1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    183   1.27  jonathan  * daemon.
    184   1.27  jonathan  *
    185   1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    186   1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    187   1.27  jonathan  * seconds rollover.
    188   1.27  jonathan  *
    189   1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    190   1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    191   1.27  jonathan  * and to increase the time_maxerror as the time since last update
    192   1.27  jonathan  * increases.
    193   1.27  jonathan  */
    194   1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    195   1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    196   1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    197   1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    198   1.27  jonathan 
    199   1.27  jonathan #ifdef PPS_SYNC
    200   1.27  jonathan /*
    201   1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    202   1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    203   1.27  jonathan  * timex.h header file.
    204   1.27  jonathan  *
    205   1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    206   1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    207   1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    208   1.27  jonathan  * two.
    209   1.27  jonathan  *
    210   1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    211   1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    212   1.27  jonathan  * this filter.
    213   1.27  jonathan  *
    214   1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    215   1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    216   1.27  jonathan  * by this filter.
    217   1.27  jonathan  *
    218   1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    219   1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    220   1.27  jonathan  * contents plus the time_tv.usec as usual.
    221   1.27  jonathan  *
    222   1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    223   1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    224   1.27  jonathan  * PPS signal be lost.
    225   1.27  jonathan  *
    226   1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    227   1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    228   1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    229   1.27  jonathan  * PPS interrupt and timer interrupt.
    230   1.27  jonathan  *
    231   1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    232   1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    233   1.89    simonb  *
    234   1.89    simonb  * pps_kc_hardpps_source contains an arbitrary value that uniquely
    235   1.89    simonb  * identifies the currently bound source of the PPS signal, or NULL
    236   1.89    simonb  * if no source is bound.
    237   1.89    simonb  *
    238   1.89    simonb  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
    239   1.89    simonb  * signal should be reported.
    240   1.27  jonathan  */
    241   1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    242   1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    243   1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    244   1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    245   1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    246   1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    247   1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    248   1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    249   1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    250   1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    251   1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    252   1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    253   1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    254   1.89    simonb void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
    255   1.89    simonb int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
    256   1.27  jonathan 
    257   1.27  jonathan /*
    258   1.27  jonathan  * PPS signal quality monitors
    259   1.27  jonathan  *
    260   1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    261   1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    262   1.27  jonathan  * (100 us).
    263   1.27  jonathan  *
    264   1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    265   1.27  jonathan  * variable from 4 s to 256 s.
    266   1.27  jonathan  *
    267   1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    268   1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    269   1.27  jonathan  * calibration interval jitter exceeds two ticks.
    270   1.27  jonathan  *
    271   1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    272   1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    273   1.27  jonathan  */
    274   1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    275   1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    276   1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    277   1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    278   1.27  jonathan #endif /* PPS_SYNC */
    279   1.27  jonathan 
    280   1.27  jonathan #ifdef EXT_CLOCK
    281   1.27  jonathan /*
    282   1.27  jonathan  * External clock definitions
    283   1.27  jonathan  *
    284   1.27  jonathan  * The following definitions and declarations are used only if an
    285   1.27  jonathan  * external clock is configured on the system.
    286   1.27  jonathan  */
    287   1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    288   1.27  jonathan 
    289   1.27  jonathan /*
    290   1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    291   1.27  jonathan  * interrupt and decremented once each second.
    292   1.27  jonathan  */
    293   1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    294   1.27  jonathan 
    295   1.27  jonathan #ifdef HIGHBALL
    296   1.27  jonathan /*
    297   1.27  jonathan  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    298   1.27  jonathan  * interface. The clock_offset variable defines the offset between
    299   1.27  jonathan  * system time and the HIGBALL counters. The clock_cpu variable contains
    300   1.27  jonathan  * the offset between the system clock and the HIGHBALL clock for use in
    301   1.27  jonathan  * disciplining the kernel time variable.
    302   1.27  jonathan  */
    303   1.27  jonathan extern struct timeval clock_offset; /* Highball clock offset */
    304   1.27  jonathan long clock_cpu = 0;		/* CPU clock adjust */
    305   1.27  jonathan #endif /* HIGHBALL */
    306   1.27  jonathan #endif /* EXT_CLOCK */
    307   1.27  jonathan #endif /* NTP */
    308   1.27  jonathan 
    309   1.19       cgd /*
    310   1.19       cgd  * Bump a timeval by a small number of usec's.
    311   1.19       cgd  */
    312   1.19       cgd #define BUMPTIME(t, usec) { \
    313   1.55  augustss 	volatile struct timeval *tp = (t); \
    314   1.55  augustss 	long us; \
    315   1.19       cgd  \
    316   1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    317   1.19       cgd 	if (us >= 1000000) { \
    318   1.19       cgd 		tp->tv_usec = us - 1000000; \
    319   1.19       cgd 		tp->tv_sec++; \
    320   1.19       cgd 	} \
    321   1.19       cgd }
    322   1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    323   1.19       cgd 
    324   1.19       cgd int	stathz;
    325   1.19       cgd int	profhz;
    326   1.80    briggs int	profsrc;
    327   1.75    simonb int	schedhz;
    328   1.19       cgd int	profprocs;
    329  1.100  drochner int	hardclock_ticks;
    330   1.91      yamt static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
    331   1.70  sommerfe static int psdiv;			/* prof => stat divider */
    332   1.22       cgd int	psratio;			/* ratio: prof / stat */
    333   1.99    kardel #ifndef __HAVE_TIMECOUNTER
    334   1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    335   1.34    briggs #ifndef NTP
    336   1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    337   1.34    briggs #else
    338   1.27  jonathan int	fixtick;			/* used by NTP for same */
    339   1.31   mycroft int	shifthz;
    340   1.31   mycroft #endif
    341   1.19       cgd 
    342   1.48  christos /*
    343   1.48  christos  * We might want ldd to load the both words from time at once.
    344   1.48  christos  * To succeed we need to be quadword aligned.
    345   1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    346   1.48  christos  */
    347   1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    348   1.19       cgd volatile struct	timeval mono_time;
    349   1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    350   1.19       cgd 
    351   1.99    kardel #ifdef __HAVE_TIMECOUNTER
    352   1.99    kardel static u_int get_intr_timecount(struct timecounter *);
    353   1.99    kardel 
    354   1.99    kardel static struct timecounter intr_timecounter = {
    355   1.99    kardel 	get_intr_timecount,	/* get_timecount */
    356   1.99    kardel 	0,			/* no poll_pps */
    357   1.99    kardel 	~0u,			/* counter_mask */
    358   1.99    kardel 	0,		        /* frequency */
    359   1.99    kardel 	"clockinterrupt",	/* name */
    360  1.102  christos 	0,			/* quality - minimum implementation level for a clock */
    361  1.102  christos 	NULL,			/* prev */
    362  1.102  christos 	NULL,			/* next */
    363   1.99    kardel };
    364   1.99    kardel 
    365   1.99    kardel static u_int
    366  1.104      yamt get_intr_timecount(struct timecounter *tc)
    367   1.99    kardel {
    368  1.104      yamt 
    369  1.100  drochner 	return (u_int)hardclock_ticks;
    370   1.99    kardel }
    371   1.99    kardel #endif
    372   1.73   thorpej 
    373   1.66   thorpej /*
    374   1.19       cgd  * Initialize clock frequencies and start both clocks running.
    375   1.19       cgd  */
    376   1.19       cgd void
    377   1.63   thorpej initclocks(void)
    378   1.19       cgd {
    379   1.55  augustss 	int i;
    380   1.19       cgd 
    381   1.19       cgd 	/*
    382   1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    383   1.19       cgd 	 * code do its bit.
    384   1.19       cgd 	 */
    385   1.70  sommerfe 	psdiv = 1;
    386   1.99    kardel #ifdef __HAVE_TIMECOUNTER
    387   1.99    kardel 	/*
    388   1.99    kardel 	 * provide minimum default time counter
    389   1.99    kardel 	 * will only run at interrupt resolution
    390   1.99    kardel 	 */
    391   1.99    kardel 	intr_timecounter.tc_frequency = hz;
    392   1.99    kardel 	tc_init(&intr_timecounter);
    393   1.99    kardel #endif
    394   1.19       cgd 	cpu_initclocks();
    395   1.19       cgd 
    396   1.19       cgd 	/*
    397  1.108      yamt 	 * Compute profhz and stathz, fix profhz if needed.
    398   1.19       cgd 	 */
    399   1.19       cgd 	i = stathz ? stathz : hz;
    400   1.19       cgd 	if (profhz == 0)
    401   1.19       cgd 		profhz = i;
    402   1.19       cgd 	psratio = profhz / i;
    403   1.91      yamt 	if (schedhz == 0) {
    404   1.91      yamt 		/* 16Hz is best */
    405   1.91      yamt 		statscheddiv = i / 16;
    406   1.91      yamt 		if (statscheddiv <= 0)
    407   1.91      yamt 			panic("statscheddiv");
    408   1.91      yamt 	}
    409   1.31   mycroft 
    410   1.99    kardel #ifndef __HAVE_TIMECOUNTER
    411   1.31   mycroft #ifdef NTP
    412   1.31   mycroft 	switch (hz) {
    413   1.57   mycroft 	case 1:
    414   1.57   mycroft 		shifthz = SHIFT_SCALE - 0;
    415   1.57   mycroft 		break;
    416   1.57   mycroft 	case 2:
    417   1.57   mycroft 		shifthz = SHIFT_SCALE - 1;
    418   1.57   mycroft 		break;
    419   1.57   mycroft 	case 4:
    420   1.57   mycroft 		shifthz = SHIFT_SCALE - 2;
    421   1.57   mycroft 		break;
    422   1.57   mycroft 	case 8:
    423   1.57   mycroft 		shifthz = SHIFT_SCALE - 3;
    424   1.57   mycroft 		break;
    425   1.57   mycroft 	case 16:
    426   1.57   mycroft 		shifthz = SHIFT_SCALE - 4;
    427   1.57   mycroft 		break;
    428   1.57   mycroft 	case 32:
    429   1.57   mycroft 		shifthz = SHIFT_SCALE - 5;
    430   1.57   mycroft 		break;
    431   1.92       tls 	case 50:
    432   1.31   mycroft 	case 60:
    433   1.31   mycroft 	case 64:
    434   1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    435   1.31   mycroft 		break;
    436   1.31   mycroft 	case 96:
    437   1.31   mycroft 	case 100:
    438   1.31   mycroft 	case 128:
    439   1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    440   1.31   mycroft 		break;
    441   1.31   mycroft 	case 256:
    442   1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    443   1.41       tls 		break;
    444   1.41       tls 	case 512:
    445   1.41       tls 		shifthz = SHIFT_SCALE - 9;
    446   1.31   mycroft 		break;
    447   1.43      ross 	case 1000:
    448   1.31   mycroft 	case 1024:
    449   1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    450   1.31   mycroft 		break;
    451   1.57   mycroft 	case 1200:
    452   1.57   mycroft 	case 2048:
    453   1.57   mycroft 		shifthz = SHIFT_SCALE - 11;
    454   1.57   mycroft 		break;
    455   1.57   mycroft 	case 4096:
    456   1.57   mycroft 		shifthz = SHIFT_SCALE - 12;
    457   1.57   mycroft 		break;
    458   1.57   mycroft 	case 8192:
    459   1.57   mycroft 		shifthz = SHIFT_SCALE - 13;
    460   1.57   mycroft 		break;
    461   1.57   mycroft 	case 16384:
    462   1.57   mycroft 		shifthz = SHIFT_SCALE - 14;
    463   1.57   mycroft 		break;
    464   1.57   mycroft 	case 32768:
    465   1.57   mycroft 		shifthz = SHIFT_SCALE - 15;
    466   1.57   mycroft 		break;
    467   1.57   mycroft 	case 65536:
    468   1.57   mycroft 		shifthz = SHIFT_SCALE - 16;
    469   1.57   mycroft 		break;
    470   1.31   mycroft 	default:
    471   1.31   mycroft 		panic("weird hz");
    472   1.50  sommerfe 	}
    473   1.50  sommerfe 	if (fixtick == 0) {
    474   1.52   thorpej 		/*
    475   1.52   thorpej 		 * Give MD code a chance to set this to a better
    476   1.52   thorpej 		 * value; but, if it doesn't, we should.
    477   1.52   thorpej 		 */
    478   1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    479   1.31   mycroft 	}
    480   1.99    kardel #endif /* NTP */
    481   1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    482   1.19       cgd }
    483   1.19       cgd 
    484   1.19       cgd /*
    485   1.19       cgd  * The real-time timer, interrupting hz times per second.
    486   1.19       cgd  */
    487   1.19       cgd void
    488   1.63   thorpej hardclock(struct clockframe *frame)
    489   1.19       cgd {
    490   1.82   thorpej 	struct lwp *l;
    491   1.55  augustss 	struct proc *p;
    492   1.99    kardel 	struct cpu_info *ci = curcpu();
    493   1.99    kardel 	struct ptimer *pt;
    494   1.99    kardel #ifndef __HAVE_TIMECOUNTER
    495   1.55  augustss 	int delta;
    496   1.19       cgd 	extern int tickdelta;
    497   1.19       cgd 	extern long timedelta;
    498   1.30   mycroft #ifdef NTP
    499   1.55  augustss 	int time_update;
    500   1.55  augustss 	int ltemp;
    501   1.99    kardel #endif /* NTP */
    502   1.99    kardel #endif /* __HAVE_TIMECOUNTER */
    503   1.19       cgd 
    504   1.82   thorpej 	l = curlwp;
    505  1.108      yamt 	if (!CURCPU_IDLE_P()) {
    506   1.82   thorpej 		p = l->l_proc;
    507   1.19       cgd 		/*
    508   1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    509   1.19       cgd 		 */
    510   1.82   thorpej 		if (CLKF_USERMODE(frame) && p->p_timers &&
    511   1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    512   1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    513   1.82   thorpej 				itimerfire(pt);
    514   1.82   thorpej 		if (p->p_timers &&
    515   1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    516   1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    517   1.82   thorpej 				itimerfire(pt);
    518   1.19       cgd 	}
    519   1.19       cgd 
    520   1.19       cgd 	/*
    521   1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    522   1.19       cgd 	 */
    523   1.19       cgd 	if (stathz == 0)
    524   1.19       cgd 		statclock(frame);
    525  1.108      yamt 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    526  1.108      yamt 		sched_tick(ci);
    527   1.93     perry 
    528   1.60   thorpej #if defined(MULTIPROCESSOR)
    529   1.60   thorpej 	/*
    530   1.60   thorpej 	 * If we are not the primary CPU, we're not allowed to do
    531   1.60   thorpej 	 * any more work.
    532   1.60   thorpej 	 */
    533   1.70  sommerfe 	if (CPU_IS_PRIMARY(ci) == 0)
    534   1.60   thorpej 		return;
    535   1.60   thorpej #endif
    536   1.60   thorpej 
    537   1.99    kardel 	hardclock_ticks++;
    538   1.99    kardel 
    539   1.99    kardel #ifdef __HAVE_TIMECOUNTER
    540   1.99    kardel 	tc_ticktock();
    541   1.99    kardel #else /* __HAVE_TIMECOUNTER */
    542   1.19       cgd 	/*
    543   1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    544   1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    545   1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    546   1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    547   1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    548   1.22       cgd 	 * ``tickdelta'' may also be added in.
    549   1.19       cgd 	 */
    550   1.22       cgd 	delta = tick;
    551   1.27  jonathan 
    552   1.27  jonathan #ifndef NTP
    553   1.22       cgd 	if (tickfix) {
    554   1.39       cgd 		tickfixcnt += tickfix;
    555   1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    556   1.39       cgd 			delta++;
    557   1.39       cgd 			tickfixcnt -= tickfixinterval;
    558   1.22       cgd 		}
    559   1.22       cgd 	}
    560   1.27  jonathan #endif /* !NTP */
    561   1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    562   1.22       cgd 	if (timedelta != 0) {
    563   1.38       cgd 		delta += tickdelta;
    564   1.19       cgd 		timedelta -= tickdelta;
    565   1.19       cgd 	}
    566   1.27  jonathan 
    567   1.27  jonathan #ifdef notyet
    568   1.27  jonathan 	microset();
    569   1.27  jonathan #endif
    570   1.27  jonathan 
    571   1.27  jonathan #ifndef NTP
    572   1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    573   1.27  jonathan #endif
    574   1.19       cgd 	BUMPTIME(&mono_time, delta);
    575   1.27  jonathan 
    576   1.31   mycroft #ifdef NTP
    577   1.30   mycroft 	time_update = delta;
    578   1.27  jonathan 
    579   1.27  jonathan 	/*
    580   1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    581   1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    582   1.27  jonathan 	 * (time_update).
    583   1.27  jonathan 	 */
    584   1.27  jonathan 	time_phase += time_adj;
    585   1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    586   1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    587   1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    588   1.27  jonathan 		time_update -= ltemp;
    589   1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    590   1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    591   1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    592   1.27  jonathan 		time_update += ltemp;
    593   1.27  jonathan 	}
    594   1.27  jonathan 
    595   1.27  jonathan #ifdef HIGHBALL
    596   1.27  jonathan 	/*
    597   1.27  jonathan 	 * If the HIGHBALL board is installed, we need to adjust the
    598   1.27  jonathan 	 * external clock offset in order to close the hardware feedback
    599   1.27  jonathan 	 * loop. This will adjust the external clock phase and frequency
    600   1.27  jonathan 	 * in small amounts. The additional phase noise and frequency
    601   1.27  jonathan 	 * wander this causes should be minimal. We also need to
    602   1.27  jonathan 	 * discipline the kernel time variable, since the PLL is used to
    603   1.27  jonathan 	 * discipline the external clock. If the Highball board is not
    604   1.27  jonathan 	 * present, we discipline kernel time with the PLL as usual. We
    605   1.27  jonathan 	 * assume that the external clock phase adjustment (time_update)
    606   1.27  jonathan 	 * and kernel phase adjustment (clock_cpu) are less than the
    607   1.27  jonathan 	 * value of tick.
    608   1.27  jonathan 	 */
    609   1.27  jonathan 	clock_offset.tv_usec += time_update;
    610   1.27  jonathan 	if (clock_offset.tv_usec >= 1000000) {
    611   1.27  jonathan 		clock_offset.tv_sec++;
    612   1.27  jonathan 		clock_offset.tv_usec -= 1000000;
    613   1.27  jonathan 	}
    614   1.27  jonathan 	if (clock_offset.tv_usec < 0) {
    615   1.27  jonathan 		clock_offset.tv_sec--;
    616   1.27  jonathan 		clock_offset.tv_usec += 1000000;
    617   1.27  jonathan 	}
    618   1.27  jonathan 	time.tv_usec += clock_cpu;
    619   1.27  jonathan 	clock_cpu = 0;
    620   1.27  jonathan #else
    621   1.27  jonathan 	time.tv_usec += time_update;
    622   1.27  jonathan #endif /* HIGHBALL */
    623   1.27  jonathan 
    624   1.27  jonathan 	/*
    625   1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    626   1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    627   1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    628   1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    629   1.27  jonathan 	 * CPU clock oscillator frequency error.
    630   1.27  jonathan 	 *
    631   1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    632   1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    633   1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    634   1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    635   1.27  jonathan 	 */
    636   1.27  jonathan 	if (time.tv_usec >= 1000000) {
    637   1.27  jonathan 		time.tv_usec -= 1000000;
    638   1.27  jonathan 		time.tv_sec++;
    639   1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    640   1.27  jonathan 
    641   1.27  jonathan 		/*
    642   1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    643   1.27  jonathan 		 * the end of the day, the system clock is set back one
    644   1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    645   1.27  jonathan 		 * set ahead one second. The microtime() routine or
    646   1.27  jonathan 		 * external clock driver will insure that reported time
    647   1.27  jonathan 		 * is always monotonic. The ugly divides should be
    648   1.27  jonathan 		 * replaced.
    649   1.27  jonathan 		 */
    650   1.27  jonathan 		switch (time_state) {
    651   1.31   mycroft 		case TIME_OK:
    652   1.27  jonathan 			if (time_status & STA_INS)
    653   1.27  jonathan 				time_state = TIME_INS;
    654   1.27  jonathan 			else if (time_status & STA_DEL)
    655   1.27  jonathan 				time_state = TIME_DEL;
    656   1.27  jonathan 			break;
    657   1.27  jonathan 
    658   1.31   mycroft 		case TIME_INS:
    659   1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    660   1.27  jonathan 				time.tv_sec--;
    661   1.27  jonathan 				time_state = TIME_OOP;
    662   1.27  jonathan 			}
    663   1.27  jonathan 			break;
    664   1.27  jonathan 
    665   1.31   mycroft 		case TIME_DEL:
    666   1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    667   1.27  jonathan 				time.tv_sec++;
    668   1.27  jonathan 				time_state = TIME_WAIT;
    669   1.27  jonathan 			}
    670   1.27  jonathan 			break;
    671   1.27  jonathan 
    672   1.31   mycroft 		case TIME_OOP:
    673   1.27  jonathan 			time_state = TIME_WAIT;
    674   1.27  jonathan 			break;
    675   1.27  jonathan 
    676   1.31   mycroft 		case TIME_WAIT:
    677   1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    678   1.27  jonathan 				time_state = TIME_OK;
    679   1.31   mycroft 			break;
    680   1.27  jonathan 		}
    681   1.27  jonathan 
    682   1.27  jonathan 		/*
    683   1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    684   1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    685   1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    686   1.27  jonathan 		 * used directly. In either mode, the maximum phase
    687   1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    688   1.27  jonathan 		 * the adjustment over not more than the number of
    689   1.27  jonathan 		 * seconds between updates.
    690   1.27  jonathan 		 */
    691   1.27  jonathan 		if (time_offset < 0) {
    692   1.27  jonathan 			ltemp = -time_offset;
    693   1.27  jonathan 			if (!(time_status & STA_FLL))
    694   1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    695   1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    696   1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    697   1.27  jonathan 				    SHIFT_UPDATE;
    698   1.27  jonathan 			time_offset += ltemp;
    699   1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    700   1.31   mycroft 		} else if (time_offset > 0) {
    701   1.27  jonathan 			ltemp = time_offset;
    702   1.27  jonathan 			if (!(time_status & STA_FLL))
    703   1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    704   1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    705   1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    706   1.27  jonathan 				    SHIFT_UPDATE;
    707   1.27  jonathan 			time_offset -= ltemp;
    708   1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    709   1.31   mycroft 		} else
    710   1.31   mycroft 			time_adj = 0;
    711   1.27  jonathan 
    712   1.27  jonathan 		/*
    713   1.27  jonathan 		 * Compute the frequency estimate and additional phase
    714   1.27  jonathan 		 * adjustment due to frequency error for the next
    715   1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    716   1.27  jonathan 		 * watchdog counter and update the frequency computed by
    717   1.27  jonathan 		 * the pll and the PPS signal.
    718   1.27  jonathan 		 */
    719   1.27  jonathan #ifdef PPS_SYNC
    720   1.27  jonathan 		pps_valid++;
    721   1.27  jonathan 		if (pps_valid == PPS_VALID) {
    722   1.27  jonathan 			pps_jitter = MAXTIME;
    723   1.27  jonathan 			pps_stabil = MAXFREQ;
    724   1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    725   1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    726   1.27  jonathan 		}
    727   1.27  jonathan 		ltemp = time_freq + pps_freq;
    728   1.27  jonathan #else
    729   1.27  jonathan 		ltemp = time_freq;
    730   1.27  jonathan #endif /* PPS_SYNC */
    731   1.27  jonathan 
    732   1.27  jonathan 		if (ltemp < 0)
    733   1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    734   1.27  jonathan 		else
    735   1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    736   1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    737   1.27  jonathan 
    738   1.27  jonathan 		/*
    739   1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    740   1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    741   1.31   mycroft 		 * scale factor.
    742   1.46   mycroft 		 *
    743   1.46   mycroft 		 * To determine the adjustment, you can do the following:
    744   1.46   mycroft 		 *   bc -q
    745   1.46   mycroft 		 *   scale=24
    746   1.46   mycroft 		 *   obase=2
    747   1.46   mycroft 		 *   idealhz/realhz
    748   1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    749   1.57   mycroft 		 * is the actual value.  You may need to factor this result
    750   1.57   mycroft 		 * into a sequence of 2 multipliers to get better precision.
    751   1.46   mycroft 		 *
    752   1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    753   1.46   mycroft 		 *   bc -q
    754   1.46   mycroft 		 *   scale=24
    755   1.57   mycroft 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    756   1.57   mycroft 		 * (and then multiply by 1000000 to get ppm).
    757   1.27  jonathan 		 */
    758   1.31   mycroft 		switch (hz) {
    759   1.58   mycroft 		case 60:
    760   1.58   mycroft 			/* A factor of 1.000100010001 gives about 15ppm
    761   1.58   mycroft 			   error. */
    762   1.58   mycroft 			if (time_adj < 0) {
    763   1.58   mycroft 				time_adj -= (-time_adj >> 4);
    764   1.58   mycroft 				time_adj -= (-time_adj >> 8);
    765   1.58   mycroft 			} else {
    766   1.58   mycroft 				time_adj += (time_adj >> 4);
    767   1.58   mycroft 				time_adj += (time_adj >> 8);
    768   1.58   mycroft 			}
    769   1.58   mycroft 			break;
    770   1.58   mycroft 
    771   1.31   mycroft 		case 96:
    772   1.56   mycroft 			/* A factor of 1.0101010101 gives about 244ppm error. */
    773   1.46   mycroft 			if (time_adj < 0) {
    774   1.46   mycroft 				time_adj -= (-time_adj >> 2);
    775   1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    776   1.46   mycroft 			} else {
    777   1.46   mycroft 				time_adj += (time_adj >> 2);
    778   1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    779   1.46   mycroft 			}
    780   1.46   mycroft 			break;
    781   1.46   mycroft 
    782   1.92       tls 		case 50:
    783   1.31   mycroft 		case 100:
    784   1.56   mycroft 			/* A factor of 1.010001111010111 gives about 1ppm
    785   1.56   mycroft 			   error. */
    786   1.56   mycroft 			if (time_adj < 0) {
    787   1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    788   1.56   mycroft 				time_adj += (-time_adj >> 10);
    789   1.56   mycroft 			} else {
    790   1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    791   1.56   mycroft 				time_adj -= (time_adj >> 10);
    792   1.56   mycroft 			}
    793   1.43      ross 			break;
    794   1.46   mycroft 
    795   1.43      ross 		case 1000:
    796   1.56   mycroft 			/* A factor of 1.000001100010100001 gives about 50ppm
    797   1.56   mycroft 			   error. */
    798   1.56   mycroft 			if (time_adj < 0) {
    799   1.56   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    800   1.56   mycroft 				time_adj -= (-time_adj >> 7);
    801   1.56   mycroft 			} else {
    802   1.56   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    803   1.56   mycroft 				time_adj += (time_adj >> 7);
    804   1.56   mycroft 			}
    805   1.56   mycroft 			break;
    806   1.56   mycroft 
    807   1.56   mycroft 		case 1200:
    808   1.56   mycroft 			/* A factor of 1.1011010011100001 gives about 64ppm
    809   1.56   mycroft 			   error. */
    810   1.56   mycroft 			if (time_adj < 0) {
    811   1.56   mycroft 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    812   1.56   mycroft 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    813   1.56   mycroft 			} else {
    814   1.56   mycroft 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    815   1.56   mycroft 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    816   1.56   mycroft 			}
    817   1.31   mycroft 			break;
    818   1.27  jonathan 		}
    819   1.27  jonathan 
    820   1.27  jonathan #ifdef EXT_CLOCK
    821   1.27  jonathan 		/*
    822   1.27  jonathan 		 * If an external clock is present, it is necessary to
    823   1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    824   1.27  jonathan 		 * all system components use the microtime() interface.
    825   1.27  jonathan 		 * Here, the time offset between the external clock and
    826   1.27  jonathan 		 * kernel time variable is computed every so often.
    827   1.27  jonathan 		 */
    828   1.27  jonathan 		clock_count++;
    829   1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    830   1.27  jonathan 			clock_count = 0;
    831   1.27  jonathan 			microtime(&clock_ext);
    832   1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    833   1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    834   1.27  jonathan 			    time.tv_usec;
    835   1.27  jonathan 			if (delta.tv_usec < 0)
    836   1.27  jonathan 				delta.tv_sec--;
    837   1.27  jonathan 			if (delta.tv_usec >= 500000) {
    838   1.27  jonathan 				delta.tv_usec -= 1000000;
    839   1.27  jonathan 				delta.tv_sec++;
    840   1.27  jonathan 			}
    841   1.27  jonathan 			if (delta.tv_usec < -500000) {
    842   1.27  jonathan 				delta.tv_usec += 1000000;
    843   1.27  jonathan 				delta.tv_sec--;
    844   1.27  jonathan 			}
    845   1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    846   1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    847   1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    848   1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    849   1.27  jonathan 				time = clock_ext;
    850   1.27  jonathan 				delta.tv_sec = 0;
    851   1.27  jonathan 				delta.tv_usec = 0;
    852   1.27  jonathan 			}
    853   1.27  jonathan #ifdef HIGHBALL
    854   1.27  jonathan 			clock_cpu = delta.tv_usec;
    855   1.27  jonathan #else /* HIGHBALL */
    856   1.27  jonathan 			hardupdate(delta.tv_usec);
    857   1.27  jonathan #endif /* HIGHBALL */
    858   1.27  jonathan 		}
    859   1.27  jonathan #endif /* EXT_CLOCK */
    860   1.27  jonathan 	}
    861   1.27  jonathan 
    862   1.31   mycroft #endif /* NTP */
    863   1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
    864   1.19       cgd 
    865   1.19       cgd 	/*
    866  1.106        ad 	 * Update real-time timeout queue.  Callouts are processed at a
    867  1.106        ad 	 * very low CPU priority, so we don't keep the relatively high
    868  1.106        ad 	 * clock interrupt priority any longer than necessary.
    869  1.106        ad 	 */
    870  1.109        ad 	callout_hardclock();
    871   1.19       cgd }
    872   1.19       cgd 
    873   1.19       cgd /*
    874   1.19       cgd  * Start profiling on a process.
    875   1.19       cgd  *
    876   1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
    877   1.19       cgd  * keeps the profile clock running constantly.
    878   1.19       cgd  */
    879   1.19       cgd void
    880   1.63   thorpej startprofclock(struct proc *p)
    881   1.19       cgd {
    882   1.19       cgd 
    883  1.109        ad 	KASSERT(mutex_owned(&p->p_stmutex));
    884  1.105        ad 
    885  1.105        ad 	if ((p->p_stflag & PST_PROFIL) == 0) {
    886  1.105        ad 		p->p_stflag |= PST_PROFIL;
    887   1.80    briggs 		/*
    888   1.80    briggs 		 * This is only necessary if using the clock as the
    889   1.80    briggs 		 * profiling source.
    890   1.80    briggs 		 */
    891   1.70  sommerfe 		if (++profprocs == 1 && stathz != 0)
    892   1.70  sommerfe 			psdiv = psratio;
    893   1.19       cgd 	}
    894   1.19       cgd }
    895   1.19       cgd 
    896   1.19       cgd /*
    897   1.19       cgd  * Stop profiling on a process.
    898   1.19       cgd  */
    899   1.19       cgd void
    900   1.63   thorpej stopprofclock(struct proc *p)
    901   1.19       cgd {
    902   1.19       cgd 
    903  1.109        ad 	KASSERT(mutex_owned(&p->p_stmutex));
    904  1.105        ad 
    905  1.105        ad 	if (p->p_stflag & PST_PROFIL) {
    906  1.105        ad 		p->p_stflag &= ~PST_PROFIL;
    907   1.80    briggs 		/*
    908   1.80    briggs 		 * This is only necessary if using the clock as the
    909   1.80    briggs 		 * profiling source.
    910   1.80    briggs 		 */
    911   1.70  sommerfe 		if (--profprocs == 0 && stathz != 0)
    912   1.70  sommerfe 			psdiv = 1;
    913   1.19       cgd 	}
    914   1.19       cgd }
    915   1.19       cgd 
    916   1.80    briggs #if defined(PERFCTRS)
    917   1.80    briggs /*
    918   1.80    briggs  * Independent profiling "tick" in case we're using a separate
    919   1.80    briggs  * clock or profiling event source.  Currently, that's just
    920   1.80    briggs  * performance counters--hence the wrapper.
    921   1.80    briggs  */
    922   1.80    briggs void
    923   1.80    briggs proftick(struct clockframe *frame)
    924   1.80    briggs {
    925   1.80    briggs #ifdef GPROF
    926   1.93     perry         struct gmonparam *g;
    927   1.93     perry         intptr_t i;
    928   1.80    briggs #endif
    929  1.105        ad 	struct lwp *l;
    930   1.80    briggs 	struct proc *p;
    931   1.80    briggs 
    932  1.105        ad 	l = curlwp;
    933  1.105        ad 	p = (l ? l->l_proc : NULL);
    934   1.80    briggs 	if (CLKF_USERMODE(frame)) {
    935  1.105        ad 		mutex_spin_enter(&p->p_stmutex);
    936  1.105        ad 		if (p->p_stflag & PST_PROFIL)
    937  1.105        ad 			addupc_intr(l, CLKF_PC(frame));
    938  1.105        ad 		mutex_spin_exit(&p->p_stmutex);
    939   1.80    briggs 	} else {
    940   1.80    briggs #ifdef GPROF
    941   1.80    briggs 		g = &_gmonparam;
    942   1.80    briggs 		if (g->state == GMON_PROF_ON) {
    943   1.80    briggs 			i = CLKF_PC(frame) - g->lowpc;
    944   1.80    briggs 			if (i < g->textsize) {
    945   1.80    briggs 				i /= HISTFRACTION * sizeof(*g->kcount);
    946   1.80    briggs 				g->kcount[i]++;
    947   1.80    briggs 			}
    948   1.80    briggs 		}
    949   1.80    briggs #endif
    950  1.111        ad #ifdef LWP_PC
    951  1.111        ad 		if (p != NULL && (p->p_stflag & PST_PROFIL) != 0)
    952  1.111        ad 			addupc_intr(l, LWP_PC(p));
    953   1.93     perry #endif
    954   1.80    briggs 	}
    955   1.80    briggs }
    956   1.80    briggs #endif
    957   1.80    briggs 
    958  1.108      yamt void
    959  1.108      yamt schedclock(struct lwp *l)
    960  1.108      yamt {
    961  1.108      yamt 
    962  1.108      yamt 	if ((l->l_flag & LW_IDLE) != 0)
    963  1.108      yamt 		return;
    964  1.108      yamt 
    965  1.108      yamt 	sched_schedclock(l);
    966  1.108      yamt }
    967  1.108      yamt 
    968   1.19       cgd /*
    969   1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    970   1.19       cgd  * do process and kernel statistics.
    971   1.19       cgd  */
    972   1.19       cgd void
    973   1.63   thorpej statclock(struct clockframe *frame)
    974   1.19       cgd {
    975   1.19       cgd #ifdef GPROF
    976   1.55  augustss 	struct gmonparam *g;
    977   1.68       eeh 	intptr_t i;
    978   1.19       cgd #endif
    979   1.60   thorpej 	struct cpu_info *ci = curcpu();
    980   1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    981   1.55  augustss 	struct proc *p;
    982   1.98  christos 	struct lwp *l;
    983   1.19       cgd 
    984   1.70  sommerfe 	/*
    985   1.70  sommerfe 	 * Notice changes in divisor frequency, and adjust clock
    986   1.70  sommerfe 	 * frequency accordingly.
    987   1.70  sommerfe 	 */
    988   1.70  sommerfe 	if (spc->spc_psdiv != psdiv) {
    989   1.70  sommerfe 		spc->spc_psdiv = psdiv;
    990   1.70  sommerfe 		spc->spc_pscnt = psdiv;
    991   1.70  sommerfe 		if (psdiv == 1) {
    992   1.70  sommerfe 			setstatclockrate(stathz);
    993   1.70  sommerfe 		} else {
    994   1.93     perry 			setstatclockrate(profhz);
    995   1.70  sommerfe 		}
    996   1.70  sommerfe 	}
    997   1.98  christos 	l = curlwp;
    998  1.108      yamt 	if ((l->l_flag & LW_IDLE) != 0) {
    999  1.108      yamt 		/*
   1000  1.108      yamt 		 * don't account idle lwps as swapper.
   1001  1.108      yamt 		 */
   1002  1.108      yamt 		p = NULL;
   1003  1.108      yamt 	} else {
   1004  1.108      yamt 		p = l->l_proc;
   1005  1.105        ad 		mutex_spin_enter(&p->p_stmutex);
   1006  1.108      yamt 	}
   1007  1.108      yamt 
   1008   1.19       cgd 	if (CLKF_USERMODE(frame)) {
   1009  1.105        ad 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
   1010  1.105        ad 			addupc_intr(l, CLKF_PC(frame));
   1011  1.105        ad 		if (--spc->spc_pscnt > 0) {
   1012  1.105        ad 			mutex_spin_exit(&p->p_stmutex);
   1013   1.19       cgd 			return;
   1014  1.105        ad 		}
   1015  1.105        ad 
   1016   1.19       cgd 		/*
   1017   1.19       cgd 		 * Came from user mode; CPU was in user state.
   1018   1.19       cgd 		 * If this process is being profiled record the tick.
   1019   1.19       cgd 		 */
   1020   1.19       cgd 		p->p_uticks++;
   1021   1.19       cgd 		if (p->p_nice > NZERO)
   1022   1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
   1023   1.19       cgd 		else
   1024   1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
   1025   1.19       cgd 	} else {
   1026   1.19       cgd #ifdef GPROF
   1027   1.19       cgd 		/*
   1028   1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
   1029   1.19       cgd 		 */
   1030   1.19       cgd 		g = &_gmonparam;
   1031   1.80    briggs 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
   1032   1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1033   1.19       cgd 			if (i < g->textsize) {
   1034   1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1035   1.19       cgd 				g->kcount[i]++;
   1036   1.19       cgd 			}
   1037   1.19       cgd 		}
   1038   1.19       cgd #endif
   1039   1.82   thorpej #ifdef LWP_PC
   1040  1.108      yamt 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
   1041  1.108      yamt 		    (p->p_stflag & PST_PROFIL)) {
   1042  1.105        ad 			addupc_intr(l, LWP_PC(l));
   1043  1.108      yamt 		}
   1044   1.72   mycroft #endif
   1045  1.105        ad 		if (--spc->spc_pscnt > 0) {
   1046  1.105        ad 			if (p != NULL)
   1047  1.105        ad 				mutex_spin_exit(&p->p_stmutex);
   1048   1.19       cgd 			return;
   1049  1.105        ad 		}
   1050   1.19       cgd 		/*
   1051   1.19       cgd 		 * Came from kernel mode, so we were:
   1052   1.19       cgd 		 * - handling an interrupt,
   1053   1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1054   1.19       cgd 		 *   user process, or
   1055   1.19       cgd 		 * - spinning in the idle loop.
   1056   1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1057   1.19       cgd 		 * Note that we charge interrupts to the current process,
   1058   1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1059   1.19       cgd 		 * so that we know how much of its real time was spent
   1060   1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1061   1.19       cgd 		 */
   1062  1.109        ad 		if (CLKF_INTR(frame) || (l->l_flag & LW_INTR) != 0) {
   1063  1.108      yamt 			if (p != NULL) {
   1064   1.19       cgd 				p->p_iticks++;
   1065  1.108      yamt 			}
   1066   1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
   1067   1.19       cgd 		} else if (p != NULL) {
   1068   1.19       cgd 			p->p_sticks++;
   1069   1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
   1070  1.108      yamt 		} else {
   1071   1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
   1072  1.108      yamt 		}
   1073   1.19       cgd 	}
   1074   1.70  sommerfe 	spc->spc_pscnt = psdiv;
   1075   1.19       cgd 
   1076   1.97      elad 	if (p != NULL) {
   1077  1.108      yamt 		++l->l_cpticks;
   1078  1.105        ad 		mutex_spin_exit(&p->p_stmutex);
   1079  1.108      yamt 	}
   1080  1.105        ad 
   1081  1.108      yamt 	/*
   1082  1.108      yamt 	 * If no separate schedclock is provided, call it here
   1083  1.108      yamt 	 * at about 16 Hz.
   1084  1.108      yamt 	 */
   1085  1.108      yamt 	if (schedhz == 0) {
   1086  1.108      yamt 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
   1087  1.108      yamt 			schedclock(l);
   1088  1.108      yamt 			ci->ci_schedstate.spc_schedticks = statscheddiv;
   1089  1.108      yamt 		}
   1090   1.19       cgd 	}
   1091   1.19       cgd }
   1092   1.27  jonathan 
   1093   1.99    kardel #ifndef __HAVE_TIMECOUNTER
   1094   1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1095   1.27  jonathan /*
   1096   1.27  jonathan  * hardupdate() - local clock update
   1097   1.27  jonathan  *
   1098   1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1099   1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1100   1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1101   1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1102   1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1103   1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1104   1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1105   1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1106   1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1107   1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1108   1.27  jonathan  *
   1109   1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1110   1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1111   1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1112   1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1113   1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1114   1.27  jonathan  *
   1115   1.27  jonathan  * Note: splclock() is in effect.
   1116   1.27  jonathan  */
   1117   1.27  jonathan void
   1118   1.63   thorpej hardupdate(long offset)
   1119   1.27  jonathan {
   1120   1.27  jonathan 	long ltemp, mtemp;
   1121   1.27  jonathan 
   1122   1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1123   1.27  jonathan 		return;
   1124   1.27  jonathan 	ltemp = offset;
   1125   1.27  jonathan #ifdef PPS_SYNC
   1126   1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1127   1.27  jonathan 		ltemp = pps_offset;
   1128   1.27  jonathan #endif /* PPS_SYNC */
   1129   1.27  jonathan 
   1130   1.27  jonathan 	/*
   1131   1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1132   1.27  jonathan 	 */
   1133   1.27  jonathan 	if (ltemp > MAXPHASE)
   1134   1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1135   1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1136   1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1137   1.27  jonathan 	else
   1138   1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1139   1.27  jonathan 
   1140   1.27  jonathan 	/*
   1141   1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1142   1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1143   1.27  jonathan 	 * multiply/divide should be replaced someday.
   1144   1.27  jonathan 	 */
   1145   1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1146   1.27  jonathan 		time_reftime = time.tv_sec;
   1147   1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1148   1.27  jonathan 	time_reftime = time.tv_sec;
   1149   1.27  jonathan 	if (time_status & STA_FLL) {
   1150   1.27  jonathan 		if (mtemp >= MINSEC) {
   1151   1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1152   1.27  jonathan 			    SHIFT_UPDATE));
   1153   1.27  jonathan 			if (ltemp < 0)
   1154   1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1155   1.27  jonathan 			else
   1156   1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1157   1.27  jonathan 		}
   1158   1.27  jonathan 	} else {
   1159   1.27  jonathan 		if (mtemp < MAXSEC) {
   1160   1.27  jonathan 			ltemp *= mtemp;
   1161   1.27  jonathan 			if (ltemp < 0)
   1162   1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1163   1.27  jonathan 				    time_constant + SHIFT_KF -
   1164   1.27  jonathan 				    SHIFT_USEC);
   1165   1.27  jonathan 			else
   1166   1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1167   1.27  jonathan 				    time_constant + SHIFT_KF -
   1168   1.27  jonathan 				    SHIFT_USEC);
   1169   1.27  jonathan 		}
   1170   1.27  jonathan 	}
   1171   1.27  jonathan 	if (time_freq > time_tolerance)
   1172   1.27  jonathan 		time_freq = time_tolerance;
   1173   1.27  jonathan 	else if (time_freq < -time_tolerance)
   1174   1.27  jonathan 		time_freq = -time_tolerance;
   1175   1.27  jonathan }
   1176   1.27  jonathan 
   1177   1.27  jonathan #ifdef PPS_SYNC
   1178   1.27  jonathan /*
   1179   1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1180   1.27  jonathan  *
   1181   1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1182   1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1183   1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1184   1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1185   1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1186   1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1187   1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1188   1.27  jonathan  * value at the on-time PPS signal transition.
   1189   1.27  jonathan  *
   1190   1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1191   1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1192   1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1193   1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1194   1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1195   1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1196   1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1197   1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1198   1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1199   1.27  jonathan  * routine.
   1200   1.27  jonathan  */
   1201   1.27  jonathan void
   1202   1.63   thorpej hardpps(struct timeval *tvp,		/* time at PPS */
   1203   1.63   thorpej 	long usec			/* hardware counter at PPS */)
   1204   1.27  jonathan {
   1205   1.27  jonathan 	long u_usec, v_usec, bigtick;
   1206   1.27  jonathan 	long cal_sec, cal_usec;
   1207   1.27  jonathan 
   1208   1.27  jonathan 	/*
   1209   1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1210   1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1211   1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1212   1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1213   1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1214   1.27  jonathan 	 */
   1215   1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1216   1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1217   1.27  jonathan 	pps_valid = 0;
   1218   1.27  jonathan 	u_usec = -tvp->tv_usec;
   1219   1.27  jonathan 	if (u_usec < -500000)
   1220   1.27  jonathan 		u_usec += 1000000;
   1221   1.27  jonathan 	v_usec = pps_offset - u_usec;
   1222   1.27  jonathan 	if (v_usec < 0)
   1223   1.27  jonathan 		v_usec = -v_usec;
   1224   1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1225   1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1226   1.27  jonathan 			pps_glitch = 0;
   1227   1.27  jonathan 			pps_tf[2] = u_usec;
   1228   1.27  jonathan 			pps_tf[1] = u_usec;
   1229   1.27  jonathan 		} else {
   1230   1.27  jonathan 			pps_glitch++;
   1231   1.27  jonathan 			u_usec = pps_offset;
   1232   1.27  jonathan 		}
   1233   1.27  jonathan 	} else
   1234   1.27  jonathan 		pps_glitch = 0;
   1235   1.27  jonathan 
   1236   1.27  jonathan 	/*
   1237   1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1238   1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1239   1.27  jonathan 	 * difference between the other two samples becomes the time
   1240   1.27  jonathan 	 * dispersion (jitter) estimate.
   1241   1.27  jonathan 	 */
   1242   1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1243   1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1244   1.27  jonathan 	pps_tf[0] = u_usec;
   1245   1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1246   1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1247   1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1248   1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1249   1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1250   1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1251   1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1252   1.27  jonathan 		} else {
   1253   1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1254   1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1255   1.27  jonathan 		}
   1256   1.27  jonathan 	} else {
   1257   1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1258   1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1259   1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1260   1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1261   1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1262   1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1263   1.27  jonathan 		} else {
   1264   1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1265   1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1266   1.27  jonathan 		}
   1267   1.27  jonathan 	}
   1268   1.27  jonathan 	if (v_usec > MAXTIME)
   1269   1.27  jonathan 		pps_jitcnt++;
   1270   1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1271   1.27  jonathan 	if (v_usec < 0)
   1272   1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1273   1.27  jonathan 	else
   1274   1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1275   1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1276   1.27  jonathan 		time_status |= STA_PPSJITTER;
   1277   1.27  jonathan 
   1278   1.27  jonathan 	/*
   1279   1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1280   1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1281   1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1282   1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1283   1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1284   1.27  jonathan 	 * exceed the value of tick when using long calibration
   1285   1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1286   1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1287   1.27  jonathan 	 * the values returned and used here are correct.
   1288   1.27  jonathan 	 */
   1289   1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1290   1.27  jonathan 	pps_usec -= pps_freq;
   1291   1.27  jonathan 	if (pps_usec >= bigtick)
   1292   1.27  jonathan 		pps_usec -= bigtick;
   1293   1.27  jonathan 	if (pps_usec < 0)
   1294   1.27  jonathan 		pps_usec += bigtick;
   1295   1.27  jonathan 	pps_time.tv_sec++;
   1296   1.27  jonathan 	pps_count++;
   1297   1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1298   1.27  jonathan 		return;
   1299   1.27  jonathan 	pps_count = 0;
   1300   1.27  jonathan 	pps_calcnt++;
   1301   1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1302   1.27  jonathan 	v_usec = pps_usec - u_usec;
   1303   1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1304   1.27  jonathan 		v_usec -= bigtick;
   1305   1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1306   1.27  jonathan 		v_usec += bigtick;
   1307   1.27  jonathan 	if (v_usec < 0)
   1308   1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1309   1.27  jonathan 	else
   1310   1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1311   1.27  jonathan 	pps_usec = u_usec;
   1312   1.27  jonathan 	cal_sec = tvp->tv_sec;
   1313   1.27  jonathan 	cal_usec = tvp->tv_usec;
   1314   1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1315   1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1316   1.27  jonathan 	if (cal_usec < 0) {
   1317   1.27  jonathan 		cal_usec += 1000000;
   1318   1.27  jonathan 		cal_sec--;
   1319   1.27  jonathan 	}
   1320   1.27  jonathan 	pps_time = *tvp;
   1321   1.27  jonathan 
   1322   1.27  jonathan 	/*
   1323   1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1324   1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1325   1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1326   1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1327   1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1328   1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1329   1.27  jonathan 	 */
   1330   1.27  jonathan 	u_usec = (long)tick << 1;
   1331   1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1332   1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1333   1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1334   1.27  jonathan 		pps_errcnt++;
   1335   1.27  jonathan 		pps_shift = PPS_SHIFT;
   1336   1.27  jonathan 		pps_intcnt = 0;
   1337   1.27  jonathan 		time_status |= STA_PPSERROR;
   1338   1.27  jonathan 		return;
   1339   1.27  jonathan 	}
   1340   1.27  jonathan 
   1341   1.27  jonathan 	/*
   1342   1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1343   1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1344   1.27  jonathan 	 * estimate; the difference between the other two samples
   1345   1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1346   1.27  jonathan 	 */
   1347   1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1348   1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1349   1.27  jonathan 	pps_ff[0] = v_usec;
   1350   1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1351   1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1352   1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1353   1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1354   1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1355   1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1356   1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1357   1.27  jonathan 		} else {
   1358   1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1359   1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1360   1.27  jonathan 		}
   1361   1.27  jonathan 	} else {
   1362   1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1363   1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1364   1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1365   1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1366   1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1367   1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1368   1.27  jonathan 		} else {
   1369   1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1370   1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1371   1.27  jonathan 		}
   1372   1.27  jonathan 	}
   1373   1.27  jonathan 
   1374   1.27  jonathan 	/*
   1375   1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1376   1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1377   1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1378   1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1379   1.27  jonathan 	 */
   1380   1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1381   1.27  jonathan 	if (v_usec < 0)
   1382   1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1383   1.27  jonathan 	else
   1384   1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1385   1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1386   1.27  jonathan 		pps_stbcnt++;
   1387   1.27  jonathan 		time_status |= STA_PPSWANDER;
   1388   1.27  jonathan 		return;
   1389   1.27  jonathan 	}
   1390   1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1391   1.27  jonathan 		if (u_usec < 0) {
   1392   1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1393   1.27  jonathan 			if (pps_freq < -time_tolerance)
   1394   1.27  jonathan 				pps_freq = -time_tolerance;
   1395   1.27  jonathan 			u_usec = -u_usec;
   1396   1.27  jonathan 		} else {
   1397   1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1398   1.27  jonathan 			if (pps_freq > time_tolerance)
   1399   1.27  jonathan 				pps_freq = time_tolerance;
   1400   1.27  jonathan 		}
   1401   1.27  jonathan 	}
   1402   1.27  jonathan 
   1403   1.27  jonathan 	/*
   1404   1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1405   1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1406   1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1407   1.27  jonathan 	 * intervals, double the interval.
   1408   1.27  jonathan 	 */
   1409   1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1410   1.27  jonathan 		pps_intcnt = 0;
   1411   1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1412   1.27  jonathan 			pps_shift--;
   1413   1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1414   1.27  jonathan 		pps_intcnt = 0;
   1415   1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1416   1.27  jonathan 			pps_shift++;
   1417   1.27  jonathan 	} else
   1418   1.27  jonathan 		pps_intcnt++;
   1419   1.27  jonathan }
   1420   1.27  jonathan #endif /* PPS_SYNC */
   1421   1.27  jonathan #endif /* NTP  */
   1422   1.95  christos 
   1423   1.99    kardel /* timecounter compat functions */
   1424   1.99    kardel void
   1425   1.95  christos nanotime(struct timespec *ts)
   1426   1.95  christos {
   1427   1.95  christos 	struct timeval tv;
   1428   1.95  christos 
   1429   1.95  christos 	microtime(&tv);
   1430   1.95  christos 	TIMEVAL_TO_TIMESPEC(&tv, ts);
   1431   1.95  christos }
   1432   1.99    kardel 
   1433   1.99    kardel void
   1434   1.99    kardel getbinuptime(struct bintime *bt)
   1435   1.99    kardel {
   1436   1.99    kardel 	struct timeval tv;
   1437   1.99    kardel 
   1438   1.99    kardel 	microtime(&tv);
   1439   1.99    kardel 	timeval2bintime(&tv, bt);
   1440   1.99    kardel }
   1441   1.99    kardel 
   1442   1.99    kardel void
   1443   1.99    kardel nanouptime(struct timespec *tsp)
   1444   1.99    kardel {
   1445   1.99    kardel 	int s;
   1446   1.99    kardel 
   1447   1.99    kardel 	s = splclock();
   1448   1.99    kardel 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1449   1.99    kardel 	splx(s);
   1450   1.99    kardel }
   1451   1.99    kardel 
   1452   1.99    kardel void
   1453   1.99    kardel getnanouptime(struct timespec *tsp)
   1454   1.99    kardel {
   1455   1.99    kardel 	int s;
   1456   1.99    kardel 
   1457   1.99    kardel 	s = splclock();
   1458   1.99    kardel 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1459   1.99    kardel 	splx(s);
   1460   1.99    kardel }
   1461   1.99    kardel 
   1462   1.99    kardel void
   1463   1.99    kardel getmicrouptime(struct timeval *tvp)
   1464   1.99    kardel {
   1465   1.99    kardel 	int s;
   1466   1.99    kardel 
   1467   1.99    kardel 	s = splclock();
   1468   1.99    kardel 	*tvp = mono_time;
   1469   1.99    kardel 	splx(s);
   1470   1.99    kardel }
   1471   1.99    kardel 
   1472   1.99    kardel void
   1473   1.99    kardel getnanotime(struct timespec *tsp)
   1474   1.99    kardel {
   1475   1.99    kardel 	int s;
   1476   1.99    kardel 
   1477   1.99    kardel 	s = splclock();
   1478   1.99    kardel 	TIMEVAL_TO_TIMESPEC(&time, tsp);
   1479   1.99    kardel 	splx(s);
   1480   1.99    kardel }
   1481   1.99    kardel 
   1482   1.99    kardel void
   1483   1.99    kardel getmicrotime(struct timeval *tvp)
   1484   1.99    kardel {
   1485   1.99    kardel 	int s;
   1486   1.99    kardel 
   1487   1.99    kardel 	s = splclock();
   1488   1.99    kardel 	*tvp = time;
   1489   1.99    kardel 	splx(s);
   1490   1.99    kardel }
   1491  1.107       dsl 
   1492  1.107       dsl u_int64_t
   1493  1.107       dsl tc_getfrequency(void)
   1494  1.107       dsl {
   1495  1.107       dsl 	return hz;
   1496  1.107       dsl }
   1497   1.99    kardel #endif /* !__HAVE_TIMECOUNTER */
   1498