Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.142.2.2
      1  1.142.2.2   thorpej /*	$NetBSD: kern_clock.c,v 1.142.2.2 2021/04/03 22:29:00 thorpej Exp $	*/
      2       1.52   thorpej 
      3       1.52   thorpej /*-
      4      1.118        ad  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.52   thorpej  * All rights reserved.
      6       1.52   thorpej  *
      7       1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.52   thorpej  * NASA Ames Research Center.
     10       1.94   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11       1.94   mycroft  * by Charles M. Hannum.
     12       1.52   thorpej  *
     13       1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.52   thorpej  * modification, are permitted provided that the following conditions
     15       1.52   thorpej  * are met:
     16       1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.52   thorpej  *
     22       1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23       1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24       1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25       1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26       1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27       1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28       1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29       1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30       1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31       1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32       1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     33       1.52   thorpej  */
     34       1.19       cgd 
     35       1.19       cgd /*-
     36       1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     37       1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     38       1.19       cgd  * (c) UNIX System Laboratories, Inc.
     39       1.19       cgd  * All or some portions of this file are derived from material licensed
     40       1.19       cgd  * to the University of California by American Telephone and Telegraph
     41       1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42       1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     43       1.19       cgd  *
     44       1.19       cgd  * Redistribution and use in source and binary forms, with or without
     45       1.19       cgd  * modification, are permitted provided that the following conditions
     46       1.19       cgd  * are met:
     47       1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     48       1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     49       1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     50       1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     51       1.19       cgd  *    documentation and/or other materials provided with the distribution.
     52       1.87       agc  * 3. Neither the name of the University nor the names of its contributors
     53       1.19       cgd  *    may be used to endorse or promote products derived from this software
     54       1.19       cgd  *    without specific prior written permission.
     55       1.19       cgd  *
     56       1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57       1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58       1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59       1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60       1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61       1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62       1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63       1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64       1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65       1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66       1.19       cgd  * SUCH DAMAGE.
     67       1.19       cgd  *
     68       1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     69       1.19       cgd  */
     70       1.78     lukem 
     71       1.78     lukem #include <sys/cdefs.h>
     72  1.142.2.2   thorpej __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.142.2.2 2021/04/03 22:29:00 thorpej Exp $");
     73       1.44  jonathan 
     74      1.133     pooka #ifdef _KERNEL_OPT
     75      1.131       chs #include "opt_dtrace.h"
     76      1.136      maxv #include "opt_gprof.h"
     77      1.133     pooka #endif
     78       1.19       cgd 
     79       1.19       cgd #include <sys/param.h>
     80       1.19       cgd #include <sys/systm.h>
     81       1.19       cgd #include <sys/callout.h>
     82       1.19       cgd #include <sys/kernel.h>
     83       1.19       cgd #include <sys/proc.h>
     84       1.19       cgd #include <sys/resourcevar.h>
     85       1.25  christos #include <sys/signalvar.h>
     86       1.26  christos #include <sys/sysctl.h>
     87       1.27  jonathan #include <sys/timex.h>
     88       1.45      ross #include <sys/sched.h>
     89       1.82   thorpej #include <sys/time.h>
     90       1.99    kardel #include <sys/timetc.h>
     91      1.109        ad #include <sys/cpu.h>
     92      1.118        ad #include <sys/atomic.h>
     93  1.142.2.2   thorpej #include <sys/rndsource.h>
     94      1.118        ad 
     95       1.19       cgd #ifdef GPROF
     96       1.19       cgd #include <sys/gmon.h>
     97       1.19       cgd #endif
     98       1.19       cgd 
     99      1.131       chs #ifdef KDTRACE_HOOKS
    100      1.131       chs #include <sys/dtrace_bsd.h>
    101      1.131       chs #include <sys/cpu.h>
    102      1.131       chs 
    103      1.131       chs cyclic_clock_func_t	cyclic_clock_func[MAXCPUS];
    104      1.131       chs #endif
    105      1.131       chs 
    106      1.132     pooka static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
    107      1.132     pooka 
    108       1.19       cgd /*
    109       1.19       cgd  * Clock handling routines.
    110       1.19       cgd  *
    111       1.19       cgd  * This code is written to operate with two timers that run independently of
    112       1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    113       1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    114       1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    115       1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    116       1.90       wiz  * the randomization prevents an adversary from always giving up the CPU
    117       1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    118       1.90       wiz  * CPU ticks.  The mean frequency of the second timer is stathz.
    119       1.19       cgd  *
    120       1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    121       1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    122       1.19       cgd  * do not do it unless absolutely necessary.
    123       1.19       cgd  *
    124       1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    125       1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    126       1.19       cgd  * be an integral multiple of stathz.
    127       1.19       cgd  *
    128       1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    129       1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    130       1.19       cgd  */
    131       1.19       cgd 
    132       1.19       cgd int	stathz;
    133       1.19       cgd int	profhz;
    134       1.80    briggs int	profsrc;
    135       1.75    simonb int	schedhz;
    136       1.19       cgd int	profprocs;
    137      1.100  drochner int	hardclock_ticks;
    138      1.114        ad static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    139       1.70  sommerfe static int psdiv;			/* prof => stat divider */
    140       1.22       cgd int	psratio;			/* ratio: prof / stat */
    141       1.19       cgd 
    142  1.142.2.2   thorpej struct clockrnd {
    143  1.142.2.2   thorpej 	struct krndsource source;
    144  1.142.2.2   thorpej 	unsigned needed;
    145  1.142.2.2   thorpej };
    146  1.142.2.2   thorpej 
    147  1.142.2.2   thorpej static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
    148  1.142.2.2   thorpej static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
    149  1.142.2.2   thorpej 
    150  1.142.2.2   thorpej static void
    151  1.142.2.2   thorpej clockrnd_get(size_t needed, void *cookie)
    152  1.142.2.2   thorpej {
    153  1.142.2.2   thorpej 	struct clockrnd *C = cookie;
    154  1.142.2.2   thorpej 
    155  1.142.2.2   thorpej 	/* Start sampling.  */
    156  1.142.2.2   thorpej 	atomic_store_relaxed(&C->needed, 2*NBBY*needed);
    157  1.142.2.2   thorpej }
    158  1.142.2.2   thorpej 
    159  1.142.2.2   thorpej static void
    160  1.142.2.2   thorpej clockrnd_sample(struct clockrnd *C)
    161  1.142.2.2   thorpej {
    162  1.142.2.2   thorpej 	struct cpu_info *ci = curcpu();
    163  1.142.2.2   thorpej 
    164  1.142.2.2   thorpej 	/* If there's nothing needed right now, stop here.  */
    165  1.142.2.2   thorpej 	if (__predict_true(C->needed == 0))
    166  1.142.2.2   thorpej 		return;
    167  1.142.2.2   thorpej 
    168  1.142.2.2   thorpej 	/*
    169  1.142.2.2   thorpej 	 * If we're not the primary core of a package, we're probably
    170  1.142.2.2   thorpej 	 * driven by the same clock as the primary core, so don't
    171  1.142.2.2   thorpej 	 * bother.
    172  1.142.2.2   thorpej 	 */
    173  1.142.2.2   thorpej 	if (ci != ci->ci_package1st)
    174  1.142.2.2   thorpej 		return;
    175  1.142.2.2   thorpej 
    176  1.142.2.2   thorpej 	/* Take a sample and enter it into the pool.  */
    177  1.142.2.2   thorpej 	rnd_add_uint32(&C->source, 0);
    178  1.142.2.2   thorpej 
    179  1.142.2.2   thorpej 	/*
    180  1.142.2.2   thorpej 	 * On the primary CPU, count down.  Using an atomic decrement
    181  1.142.2.2   thorpej 	 * here isn't really necessary -- on every platform we care
    182  1.142.2.2   thorpej 	 * about, stores to unsigned int are atomic, and the only other
    183  1.142.2.2   thorpej 	 * memory operation that could happen here is for another CPU
    184  1.142.2.2   thorpej 	 * to store a higher value for needed.  But using an atomic
    185  1.142.2.2   thorpej 	 * decrement avoids giving the impression of data races, and is
    186  1.142.2.2   thorpej 	 * unlikely to hurt because only one CPU will ever be writing
    187  1.142.2.2   thorpej 	 * to the location.
    188  1.142.2.2   thorpej 	 */
    189  1.142.2.2   thorpej 	if (CPU_IS_PRIMARY(curcpu())) {
    190  1.142.2.2   thorpej 		unsigned needed __diagused;
    191  1.142.2.2   thorpej 
    192  1.142.2.2   thorpej 		needed = atomic_dec_uint_nv(&C->needed);
    193  1.142.2.2   thorpej 		KASSERT(needed != UINT_MAX);
    194  1.142.2.2   thorpej 	}
    195  1.142.2.2   thorpej }
    196  1.142.2.2   thorpej 
    197       1.99    kardel static u_int get_intr_timecount(struct timecounter *);
    198       1.99    kardel 
    199       1.99    kardel static struct timecounter intr_timecounter = {
    200      1.138  riastrad 	.tc_get_timecount	= get_intr_timecount,
    201      1.138  riastrad 	.tc_poll_pps		= NULL,
    202      1.138  riastrad 	.tc_counter_mask	= ~0u,
    203      1.138  riastrad 	.tc_frequency		= 0,
    204      1.138  riastrad 	.tc_name		= "clockinterrupt",
    205      1.138  riastrad 	/* quality - minimum implementation level for a clock */
    206      1.138  riastrad 	.tc_quality		= 0,
    207      1.138  riastrad 	.tc_priv		= NULL,
    208       1.99    kardel };
    209       1.99    kardel 
    210       1.99    kardel static u_int
    211      1.104      yamt get_intr_timecount(struct timecounter *tc)
    212       1.99    kardel {
    213      1.104      yamt 
    214      1.140      maxv 	return (u_int)getticks();
    215      1.140      maxv }
    216      1.140      maxv 
    217      1.140      maxv int
    218      1.140      maxv getticks(void)
    219      1.140      maxv {
    220      1.140      maxv 	return atomic_load_relaxed(&hardclock_ticks);
    221       1.99    kardel }
    222       1.73   thorpej 
    223       1.66   thorpej /*
    224       1.19       cgd  * Initialize clock frequencies and start both clocks running.
    225       1.19       cgd  */
    226       1.19       cgd void
    227       1.63   thorpej initclocks(void)
    228       1.19       cgd {
    229      1.132     pooka 	static struct sysctllog *clog;
    230       1.55  augustss 	int i;
    231       1.19       cgd 
    232       1.19       cgd 	/*
    233       1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    234       1.19       cgd 	 * code do its bit.
    235       1.19       cgd 	 */
    236       1.70  sommerfe 	psdiv = 1;
    237      1.142   thorpej 
    238      1.142   thorpej 	/*
    239      1.142   thorpej 	 * Call cpu_initclocks() before registering the default
    240      1.142   thorpej 	 * timecounter, in case it needs to adjust hz.
    241      1.142   thorpej 	 */
    242      1.142   thorpej 	const int old_hz = hz;
    243      1.142   thorpej 	cpu_initclocks();
    244      1.142   thorpej 	if (old_hz != hz) {
    245      1.142   thorpej 		tick = 1000000 / hz;
    246      1.142   thorpej 		tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
    247      1.142   thorpej 	}
    248      1.142   thorpej 
    249       1.99    kardel 	/*
    250       1.99    kardel 	 * provide minimum default time counter
    251       1.99    kardel 	 * will only run at interrupt resolution
    252       1.99    kardel 	 */
    253       1.99    kardel 	intr_timecounter.tc_frequency = hz;
    254       1.99    kardel 	tc_init(&intr_timecounter);
    255       1.19       cgd 
    256       1.19       cgd 	/*
    257      1.108      yamt 	 * Compute profhz and stathz, fix profhz if needed.
    258       1.19       cgd 	 */
    259       1.19       cgd 	i = stathz ? stathz : hz;
    260       1.19       cgd 	if (profhz == 0)
    261       1.19       cgd 		profhz = i;
    262       1.19       cgd 	psratio = profhz / i;
    263       1.91      yamt 	if (schedhz == 0) {
    264       1.91      yamt 		/* 16Hz is best */
    265      1.114        ad 		hardscheddiv = hz / 16;
    266      1.114        ad 		if (hardscheddiv <= 0)
    267      1.114        ad 			panic("hardscheddiv");
    268       1.91      yamt 	}
    269       1.31   mycroft 
    270      1.132     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    271      1.132     pooka 		       CTLFLAG_PERMANENT,
    272      1.132     pooka 		       CTLTYPE_STRUCT, "clockrate",
    273      1.132     pooka 		       SYSCTL_DESCR("Kernel clock rates"),
    274      1.132     pooka 		       sysctl_kern_clockrate, 0, NULL,
    275      1.132     pooka 		       sizeof(struct clockinfo),
    276      1.132     pooka 		       CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
    277      1.132     pooka 	sysctl_createv(&clog, 0, NULL, NULL,
    278      1.132     pooka 		       CTLFLAG_PERMANENT,
    279      1.132     pooka 		       CTLTYPE_INT, "hardclock_ticks",
    280      1.132     pooka 		       SYSCTL_DESCR("Number of hardclock ticks"),
    281      1.132     pooka 		       NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
    282      1.132     pooka 		       CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
    283  1.142.2.2   thorpej 
    284  1.142.2.2   thorpej 	rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
    285  1.142.2.2   thorpej 	rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
    286  1.142.2.2   thorpej 	    RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
    287  1.142.2.2   thorpej 	if (stathz) {
    288  1.142.2.2   thorpej 		rndsource_setcb(&statclockrnd.source, clockrnd_get,
    289  1.142.2.2   thorpej 		    &statclockrnd);
    290  1.142.2.2   thorpej 		rnd_attach_source(&statclockrnd.source, "statclock",
    291  1.142.2.2   thorpej 		    RND_TYPE_SKEW, RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
    292  1.142.2.2   thorpej 	}
    293       1.19       cgd }
    294       1.19       cgd 
    295       1.19       cgd /*
    296       1.19       cgd  * The real-time timer, interrupting hz times per second.
    297       1.19       cgd  */
    298       1.19       cgd void
    299       1.63   thorpej hardclock(struct clockframe *frame)
    300       1.19       cgd {
    301       1.82   thorpej 	struct lwp *l;
    302      1.120        ad 	struct cpu_info *ci;
    303       1.19       cgd 
    304  1.142.2.2   thorpej 	clockrnd_sample(&hardclockrnd);
    305  1.142.2.2   thorpej 
    306      1.120        ad 	ci = curcpu();
    307      1.139        ad 	l = ci->ci_onproc;
    308      1.120        ad 
    309  1.142.2.1   thorpej 	ptimer_tick(l, CLKF_USERMODE(frame));
    310       1.19       cgd 
    311       1.19       cgd 	/*
    312       1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    313       1.19       cgd 	 */
    314       1.19       cgd 	if (stathz == 0)
    315       1.19       cgd 		statclock(frame);
    316      1.114        ad 	/*
    317      1.114        ad 	 * If no separate schedclock is provided, call it here
    318      1.114        ad 	 * at about 16 Hz.
    319      1.114        ad 	 */
    320      1.114        ad 	if (schedhz == 0) {
    321      1.114        ad 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    322      1.114        ad 			schedclock(l);
    323      1.114        ad 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    324      1.114        ad 		}
    325      1.114        ad 	}
    326      1.108      yamt 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    327      1.108      yamt 		sched_tick(ci);
    328       1.93     perry 
    329      1.123        ad 	if (CPU_IS_PRIMARY(ci)) {
    330      1.140      maxv 		atomic_store_relaxed(&hardclock_ticks,
    331      1.140      maxv 		    atomic_load_relaxed(&hardclock_ticks) + 1);
    332      1.121        ad 		tc_ticktock();
    333      1.121        ad 	}
    334       1.19       cgd 
    335       1.19       cgd 	/*
    336      1.126     pooka 	 * Update real-time timeout queue.
    337      1.106        ad 	 */
    338      1.109        ad 	callout_hardclock();
    339       1.19       cgd }
    340       1.19       cgd 
    341       1.19       cgd /*
    342       1.19       cgd  * Start profiling on a process.
    343       1.19       cgd  *
    344       1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
    345       1.19       cgd  * keeps the profile clock running constantly.
    346       1.19       cgd  */
    347       1.19       cgd void
    348       1.63   thorpej startprofclock(struct proc *p)
    349       1.19       cgd {
    350       1.19       cgd 
    351      1.109        ad 	KASSERT(mutex_owned(&p->p_stmutex));
    352      1.105        ad 
    353      1.105        ad 	if ((p->p_stflag & PST_PROFIL) == 0) {
    354      1.105        ad 		p->p_stflag |= PST_PROFIL;
    355       1.80    briggs 		/*
    356       1.80    briggs 		 * This is only necessary if using the clock as the
    357       1.80    briggs 		 * profiling source.
    358       1.80    briggs 		 */
    359       1.70  sommerfe 		if (++profprocs == 1 && stathz != 0)
    360       1.70  sommerfe 			psdiv = psratio;
    361       1.19       cgd 	}
    362       1.19       cgd }
    363       1.19       cgd 
    364       1.19       cgd /*
    365       1.19       cgd  * Stop profiling on a process.
    366       1.19       cgd  */
    367       1.19       cgd void
    368       1.63   thorpej stopprofclock(struct proc *p)
    369       1.19       cgd {
    370       1.19       cgd 
    371      1.109        ad 	KASSERT(mutex_owned(&p->p_stmutex));
    372      1.105        ad 
    373      1.105        ad 	if (p->p_stflag & PST_PROFIL) {
    374      1.105        ad 		p->p_stflag &= ~PST_PROFIL;
    375       1.80    briggs 		/*
    376       1.80    briggs 		 * This is only necessary if using the clock as the
    377       1.80    briggs 		 * profiling source.
    378       1.80    briggs 		 */
    379       1.70  sommerfe 		if (--profprocs == 0 && stathz != 0)
    380       1.70  sommerfe 			psdiv = 1;
    381       1.19       cgd 	}
    382       1.19       cgd }
    383       1.19       cgd 
    384      1.108      yamt void
    385      1.108      yamt schedclock(struct lwp *l)
    386      1.108      yamt {
    387      1.108      yamt 	if ((l->l_flag & LW_IDLE) != 0)
    388      1.108      yamt 		return;
    389      1.108      yamt 
    390      1.108      yamt 	sched_schedclock(l);
    391      1.108      yamt }
    392      1.108      yamt 
    393       1.19       cgd /*
    394       1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    395       1.19       cgd  * do process and kernel statistics.
    396       1.19       cgd  */
    397       1.19       cgd void
    398       1.63   thorpej statclock(struct clockframe *frame)
    399       1.19       cgd {
    400       1.19       cgd #ifdef GPROF
    401       1.55  augustss 	struct gmonparam *g;
    402       1.68       eeh 	intptr_t i;
    403       1.19       cgd #endif
    404       1.60   thorpej 	struct cpu_info *ci = curcpu();
    405       1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    406       1.55  augustss 	struct proc *p;
    407       1.98  christos 	struct lwp *l;
    408       1.19       cgd 
    409  1.142.2.2   thorpej 	if (stathz)
    410  1.142.2.2   thorpej 		clockrnd_sample(&statclockrnd);
    411  1.142.2.2   thorpej 
    412       1.70  sommerfe 	/*
    413       1.70  sommerfe 	 * Notice changes in divisor frequency, and adjust clock
    414       1.70  sommerfe 	 * frequency accordingly.
    415       1.70  sommerfe 	 */
    416       1.70  sommerfe 	if (spc->spc_psdiv != psdiv) {
    417       1.70  sommerfe 		spc->spc_psdiv = psdiv;
    418       1.70  sommerfe 		spc->spc_pscnt = psdiv;
    419       1.70  sommerfe 		if (psdiv == 1) {
    420       1.70  sommerfe 			setstatclockrate(stathz);
    421       1.70  sommerfe 		} else {
    422       1.93     perry 			setstatclockrate(profhz);
    423       1.70  sommerfe 		}
    424       1.70  sommerfe 	}
    425      1.139        ad 	l = ci->ci_onproc;
    426      1.108      yamt 	if ((l->l_flag & LW_IDLE) != 0) {
    427      1.108      yamt 		/*
    428      1.108      yamt 		 * don't account idle lwps as swapper.
    429      1.108      yamt 		 */
    430      1.108      yamt 		p = NULL;
    431      1.108      yamt 	} else {
    432      1.108      yamt 		p = l->l_proc;
    433      1.105        ad 		mutex_spin_enter(&p->p_stmutex);
    434      1.108      yamt 	}
    435      1.108      yamt 
    436       1.19       cgd 	if (CLKF_USERMODE(frame)) {
    437      1.135      maxv 		KASSERT(p != NULL);
    438      1.105        ad 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    439      1.105        ad 			addupc_intr(l, CLKF_PC(frame));
    440      1.105        ad 		if (--spc->spc_pscnt > 0) {
    441      1.105        ad 			mutex_spin_exit(&p->p_stmutex);
    442       1.19       cgd 			return;
    443      1.105        ad 		}
    444      1.105        ad 
    445       1.19       cgd 		/*
    446       1.19       cgd 		 * Came from user mode; CPU was in user state.
    447       1.19       cgd 		 * If this process is being profiled record the tick.
    448       1.19       cgd 		 */
    449       1.19       cgd 		p->p_uticks++;
    450       1.19       cgd 		if (p->p_nice > NZERO)
    451       1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
    452       1.19       cgd 		else
    453       1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
    454       1.19       cgd 	} else {
    455       1.19       cgd #ifdef GPROF
    456       1.19       cgd 		/*
    457       1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
    458       1.19       cgd 		 */
    459       1.19       cgd 		g = &_gmonparam;
    460       1.80    briggs 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    461       1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
    462       1.19       cgd 			if (i < g->textsize) {
    463       1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
    464       1.19       cgd 				g->kcount[i]++;
    465       1.19       cgd 			}
    466       1.19       cgd 		}
    467       1.19       cgd #endif
    468       1.82   thorpej #ifdef LWP_PC
    469      1.108      yamt 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
    470      1.108      yamt 		    (p->p_stflag & PST_PROFIL)) {
    471      1.105        ad 			addupc_intr(l, LWP_PC(l));
    472      1.108      yamt 		}
    473       1.72   mycroft #endif
    474      1.105        ad 		if (--spc->spc_pscnt > 0) {
    475      1.105        ad 			if (p != NULL)
    476      1.105        ad 				mutex_spin_exit(&p->p_stmutex);
    477       1.19       cgd 			return;
    478      1.105        ad 		}
    479       1.19       cgd 		/*
    480       1.19       cgd 		 * Came from kernel mode, so we were:
    481       1.19       cgd 		 * - handling an interrupt,
    482       1.19       cgd 		 * - doing syscall or trap work on behalf of the current
    483       1.19       cgd 		 *   user process, or
    484       1.19       cgd 		 * - spinning in the idle loop.
    485       1.19       cgd 		 * Whichever it is, charge the time as appropriate.
    486       1.19       cgd 		 * Note that we charge interrupts to the current process,
    487       1.19       cgd 		 * regardless of whether they are ``for'' that process,
    488       1.19       cgd 		 * so that we know how much of its real time was spent
    489       1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
    490       1.19       cgd 		 */
    491      1.114        ad 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
    492      1.108      yamt 			if (p != NULL) {
    493       1.19       cgd 				p->p_iticks++;
    494      1.108      yamt 			}
    495       1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
    496       1.19       cgd 		} else if (p != NULL) {
    497       1.19       cgd 			p->p_sticks++;
    498       1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
    499      1.108      yamt 		} else {
    500       1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
    501      1.108      yamt 		}
    502       1.19       cgd 	}
    503       1.70  sommerfe 	spc->spc_pscnt = psdiv;
    504       1.19       cgd 
    505       1.97      elad 	if (p != NULL) {
    506      1.125     rmind 		atomic_inc_uint(&l->l_cpticks);
    507      1.105        ad 		mutex_spin_exit(&p->p_stmutex);
    508      1.108      yamt 	}
    509      1.141        ad 
    510      1.141        ad #ifdef KDTRACE_HOOKS
    511      1.141        ad 	cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
    512      1.141        ad 	if (func) {
    513      1.141        ad 		(*func)((struct clockframe *)frame);
    514      1.141        ad 	}
    515      1.141        ad #endif
    516       1.19       cgd }
    517      1.132     pooka 
    518      1.132     pooka /*
    519      1.132     pooka  * sysctl helper routine for kern.clockrate. Assembles a struct on
    520      1.132     pooka  * the fly to be returned to the caller.
    521      1.132     pooka  */
    522      1.132     pooka static int
    523      1.132     pooka sysctl_kern_clockrate(SYSCTLFN_ARGS)
    524      1.132     pooka {
    525      1.132     pooka 	struct clockinfo clkinfo;
    526      1.132     pooka 	struct sysctlnode node;
    527      1.132     pooka 
    528      1.132     pooka 	clkinfo.tick = tick;
    529      1.132     pooka 	clkinfo.tickadj = tickadj;
    530      1.132     pooka 	clkinfo.hz = hz;
    531      1.132     pooka 	clkinfo.profhz = profhz;
    532      1.132     pooka 	clkinfo.stathz = stathz ? stathz : hz;
    533      1.132     pooka 
    534      1.132     pooka 	node = *rnode;
    535      1.132     pooka 	node.sysctl_data = &clkinfo;
    536      1.132     pooka 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    537      1.132     pooka }
    538