kern_clock.c revision 1.144 1 1.144 riastrad /* $NetBSD: kern_clock.c,v 1.144 2021/01/16 02:20:00 riastradh Exp $ */
2 1.52 thorpej
3 1.52 thorpej /*-
4 1.118 ad * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.52 thorpej * All rights reserved.
6 1.52 thorpej *
7 1.52 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.52 thorpej * NASA Ames Research Center.
10 1.94 mycroft * This code is derived from software contributed to The NetBSD Foundation
11 1.94 mycroft * by Charles M. Hannum.
12 1.52 thorpej *
13 1.52 thorpej * Redistribution and use in source and binary forms, with or without
14 1.52 thorpej * modification, are permitted provided that the following conditions
15 1.52 thorpej * are met:
16 1.52 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.52 thorpej * notice, this list of conditions and the following disclaimer.
18 1.52 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.52 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.52 thorpej * documentation and/or other materials provided with the distribution.
21 1.52 thorpej *
22 1.52 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.52 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.52 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.52 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.52 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.52 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.52 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.52 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.52 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.52 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.52 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.52 thorpej */
34 1.19 cgd
35 1.19 cgd /*-
36 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
37 1.19 cgd * The Regents of the University of California. All rights reserved.
38 1.19 cgd * (c) UNIX System Laboratories, Inc.
39 1.19 cgd * All or some portions of this file are derived from material licensed
40 1.19 cgd * to the University of California by American Telephone and Telegraph
41 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.19 cgd * the permission of UNIX System Laboratories, Inc.
43 1.19 cgd *
44 1.19 cgd * Redistribution and use in source and binary forms, with or without
45 1.19 cgd * modification, are permitted provided that the following conditions
46 1.19 cgd * are met:
47 1.19 cgd * 1. Redistributions of source code must retain the above copyright
48 1.19 cgd * notice, this list of conditions and the following disclaimer.
49 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.19 cgd * notice, this list of conditions and the following disclaimer in the
51 1.19 cgd * documentation and/or other materials provided with the distribution.
52 1.87 agc * 3. Neither the name of the University nor the names of its contributors
53 1.19 cgd * may be used to endorse or promote products derived from this software
54 1.19 cgd * without specific prior written permission.
55 1.19 cgd *
56 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.19 cgd * SUCH DAMAGE.
67 1.19 cgd *
68 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
69 1.19 cgd */
70 1.78 lukem
71 1.78 lukem #include <sys/cdefs.h>
72 1.144 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.144 2021/01/16 02:20:00 riastradh Exp $");
73 1.44 jonathan
74 1.133 pooka #ifdef _KERNEL_OPT
75 1.131 chs #include "opt_dtrace.h"
76 1.136 maxv #include "opt_gprof.h"
77 1.133 pooka #endif
78 1.19 cgd
79 1.19 cgd #include <sys/param.h>
80 1.19 cgd #include <sys/systm.h>
81 1.19 cgd #include <sys/callout.h>
82 1.19 cgd #include <sys/kernel.h>
83 1.19 cgd #include <sys/proc.h>
84 1.19 cgd #include <sys/resourcevar.h>
85 1.25 christos #include <sys/signalvar.h>
86 1.26 christos #include <sys/sysctl.h>
87 1.27 jonathan #include <sys/timex.h>
88 1.45 ross #include <sys/sched.h>
89 1.82 thorpej #include <sys/time.h>
90 1.99 kardel #include <sys/timetc.h>
91 1.109 ad #include <sys/cpu.h>
92 1.118 ad #include <sys/atomic.h>
93 1.144 riastrad #include <sys/rndsource.h>
94 1.118 ad
95 1.19 cgd #ifdef GPROF
96 1.19 cgd #include <sys/gmon.h>
97 1.19 cgd #endif
98 1.19 cgd
99 1.131 chs #ifdef KDTRACE_HOOKS
100 1.131 chs #include <sys/dtrace_bsd.h>
101 1.131 chs #include <sys/cpu.h>
102 1.131 chs
103 1.131 chs cyclic_clock_func_t cyclic_clock_func[MAXCPUS];
104 1.131 chs #endif
105 1.131 chs
106 1.132 pooka static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
107 1.132 pooka
108 1.19 cgd /*
109 1.19 cgd * Clock handling routines.
110 1.19 cgd *
111 1.19 cgd * This code is written to operate with two timers that run independently of
112 1.19 cgd * each other. The main clock, running hz times per second, is used to keep
113 1.19 cgd * track of real time. The second timer handles kernel and user profiling,
114 1.19 cgd * and does resource use estimation. If the second timer is programmable,
115 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example,
116 1.90 wiz * the randomization prevents an adversary from always giving up the CPU
117 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate
118 1.90 wiz * CPU ticks. The mean frequency of the second timer is stathz.
119 1.19 cgd *
120 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive
121 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate;
122 1.19 cgd * do not do it unless absolutely necessary.
123 1.19 cgd *
124 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while
125 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz
126 1.19 cgd * be an integral multiple of stathz.
127 1.19 cgd *
128 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio
129 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.)
130 1.19 cgd */
131 1.19 cgd
132 1.19 cgd int stathz;
133 1.19 cgd int profhz;
134 1.80 briggs int profsrc;
135 1.75 simonb int schedhz;
136 1.19 cgd int profprocs;
137 1.100 drochner int hardclock_ticks;
138 1.114 ad static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
139 1.70 sommerfe static int psdiv; /* prof => stat divider */
140 1.22 cgd int psratio; /* ratio: prof / stat */
141 1.19 cgd
142 1.144 riastrad struct clockrnd {
143 1.144 riastrad struct krndsource source;
144 1.144 riastrad unsigned needed;
145 1.144 riastrad };
146 1.144 riastrad
147 1.144 riastrad static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
148 1.144 riastrad static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
149 1.144 riastrad
150 1.144 riastrad static void
151 1.144 riastrad clockrnd_get(size_t needed, void *cookie)
152 1.144 riastrad {
153 1.144 riastrad struct clockrnd *C = cookie;
154 1.144 riastrad
155 1.144 riastrad /* Start sampling. */
156 1.144 riastrad atomic_store_relaxed(&C->needed, 2*NBBY*needed);
157 1.144 riastrad }
158 1.144 riastrad
159 1.144 riastrad static void
160 1.144 riastrad clockrnd_sample(struct clockrnd *C)
161 1.144 riastrad {
162 1.144 riastrad struct cpu_info *ci = curcpu();
163 1.144 riastrad
164 1.144 riastrad /* If there's nothing needed right now, stop here. */
165 1.144 riastrad if (__predict_true(C->needed == 0))
166 1.144 riastrad return;
167 1.144 riastrad
168 1.144 riastrad /*
169 1.144 riastrad * If we're not the primary core of a package, we're probably
170 1.144 riastrad * driven by the same clock as the primary core, so don't
171 1.144 riastrad * bother.
172 1.144 riastrad */
173 1.144 riastrad if (ci != ci->ci_package1st)
174 1.144 riastrad return;
175 1.144 riastrad
176 1.144 riastrad /* Take a sample and enter it into the pool. */
177 1.144 riastrad rnd_add_uint32(&C->source, 0);
178 1.144 riastrad
179 1.144 riastrad /*
180 1.144 riastrad * On the primary CPU, count down. Using an atomic decrement
181 1.144 riastrad * here isn't really necessary -- on every platform we care
182 1.144 riastrad * about, stores to unsigned int are atomic, and the only other
183 1.144 riastrad * memory operation that could happen here is for another CPU
184 1.144 riastrad * to store a higher value for needed. But using an atomic
185 1.144 riastrad * decrement avoids giving the impression of data races, and is
186 1.144 riastrad * unlikely to hurt because only one CPU will ever be writing
187 1.144 riastrad * to the location.
188 1.144 riastrad */
189 1.144 riastrad if (CPU_IS_PRIMARY(curcpu())) {
190 1.144 riastrad unsigned needed __diagused;
191 1.144 riastrad
192 1.144 riastrad needed = atomic_dec_uint_nv(&C->needed);
193 1.144 riastrad KASSERT(needed != UINT_MAX);
194 1.144 riastrad }
195 1.144 riastrad }
196 1.144 riastrad
197 1.99 kardel static u_int get_intr_timecount(struct timecounter *);
198 1.99 kardel
199 1.99 kardel static struct timecounter intr_timecounter = {
200 1.138 riastrad .tc_get_timecount = get_intr_timecount,
201 1.138 riastrad .tc_poll_pps = NULL,
202 1.138 riastrad .tc_counter_mask = ~0u,
203 1.138 riastrad .tc_frequency = 0,
204 1.138 riastrad .tc_name = "clockinterrupt",
205 1.138 riastrad /* quality - minimum implementation level for a clock */
206 1.138 riastrad .tc_quality = 0,
207 1.138 riastrad .tc_priv = NULL,
208 1.99 kardel };
209 1.99 kardel
210 1.99 kardel static u_int
211 1.104 yamt get_intr_timecount(struct timecounter *tc)
212 1.99 kardel {
213 1.104 yamt
214 1.140 maxv return (u_int)getticks();
215 1.140 maxv }
216 1.140 maxv
217 1.140 maxv int
218 1.140 maxv getticks(void)
219 1.140 maxv {
220 1.140 maxv return atomic_load_relaxed(&hardclock_ticks);
221 1.99 kardel }
222 1.73 thorpej
223 1.66 thorpej /*
224 1.19 cgd * Initialize clock frequencies and start both clocks running.
225 1.19 cgd */
226 1.19 cgd void
227 1.63 thorpej initclocks(void)
228 1.19 cgd {
229 1.132 pooka static struct sysctllog *clog;
230 1.55 augustss int i;
231 1.19 cgd
232 1.19 cgd /*
233 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific
234 1.19 cgd * code do its bit.
235 1.19 cgd */
236 1.70 sommerfe psdiv = 1;
237 1.142 thorpej
238 1.142 thorpej /*
239 1.142 thorpej * Call cpu_initclocks() before registering the default
240 1.142 thorpej * timecounter, in case it needs to adjust hz.
241 1.142 thorpej */
242 1.142 thorpej const int old_hz = hz;
243 1.142 thorpej cpu_initclocks();
244 1.142 thorpej if (old_hz != hz) {
245 1.142 thorpej tick = 1000000 / hz;
246 1.142 thorpej tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
247 1.142 thorpej }
248 1.142 thorpej
249 1.99 kardel /*
250 1.99 kardel * provide minimum default time counter
251 1.99 kardel * will only run at interrupt resolution
252 1.99 kardel */
253 1.99 kardel intr_timecounter.tc_frequency = hz;
254 1.99 kardel tc_init(&intr_timecounter);
255 1.19 cgd
256 1.19 cgd /*
257 1.108 yamt * Compute profhz and stathz, fix profhz if needed.
258 1.19 cgd */
259 1.19 cgd i = stathz ? stathz : hz;
260 1.19 cgd if (profhz == 0)
261 1.19 cgd profhz = i;
262 1.19 cgd psratio = profhz / i;
263 1.91 yamt if (schedhz == 0) {
264 1.91 yamt /* 16Hz is best */
265 1.114 ad hardscheddiv = hz / 16;
266 1.114 ad if (hardscheddiv <= 0)
267 1.114 ad panic("hardscheddiv");
268 1.91 yamt }
269 1.31 mycroft
270 1.132 pooka sysctl_createv(&clog, 0, NULL, NULL,
271 1.132 pooka CTLFLAG_PERMANENT,
272 1.132 pooka CTLTYPE_STRUCT, "clockrate",
273 1.132 pooka SYSCTL_DESCR("Kernel clock rates"),
274 1.132 pooka sysctl_kern_clockrate, 0, NULL,
275 1.132 pooka sizeof(struct clockinfo),
276 1.132 pooka CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
277 1.132 pooka sysctl_createv(&clog, 0, NULL, NULL,
278 1.132 pooka CTLFLAG_PERMANENT,
279 1.132 pooka CTLTYPE_INT, "hardclock_ticks",
280 1.132 pooka SYSCTL_DESCR("Number of hardclock ticks"),
281 1.132 pooka NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
282 1.132 pooka CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
283 1.144 riastrad
284 1.144 riastrad rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
285 1.144 riastrad rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
286 1.144 riastrad RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
287 1.144 riastrad if (stathz) {
288 1.144 riastrad rndsource_setcb(&statclockrnd.source, clockrnd_get,
289 1.144 riastrad &statclockrnd);
290 1.144 riastrad rnd_attach_source(&statclockrnd.source, "statclock",
291 1.144 riastrad RND_TYPE_SKEW, RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
292 1.144 riastrad }
293 1.19 cgd }
294 1.19 cgd
295 1.19 cgd /*
296 1.19 cgd * The real-time timer, interrupting hz times per second.
297 1.19 cgd */
298 1.19 cgd void
299 1.63 thorpej hardclock(struct clockframe *frame)
300 1.19 cgd {
301 1.82 thorpej struct lwp *l;
302 1.120 ad struct cpu_info *ci;
303 1.19 cgd
304 1.144 riastrad clockrnd_sample(&hardclockrnd);
305 1.144 riastrad
306 1.120 ad ci = curcpu();
307 1.139 ad l = ci->ci_onproc;
308 1.120 ad
309 1.143 thorpej ptimer_tick(l, CLKF_USERMODE(frame));
310 1.19 cgd
311 1.19 cgd /*
312 1.19 cgd * If no separate statistics clock is available, run it from here.
313 1.19 cgd */
314 1.19 cgd if (stathz == 0)
315 1.19 cgd statclock(frame);
316 1.114 ad /*
317 1.114 ad * If no separate schedclock is provided, call it here
318 1.114 ad * at about 16 Hz.
319 1.114 ad */
320 1.114 ad if (schedhz == 0) {
321 1.114 ad if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
322 1.114 ad schedclock(l);
323 1.114 ad ci->ci_schedstate.spc_schedticks = hardscheddiv;
324 1.114 ad }
325 1.114 ad }
326 1.108 yamt if ((--ci->ci_schedstate.spc_ticks) <= 0)
327 1.108 yamt sched_tick(ci);
328 1.93 perry
329 1.123 ad if (CPU_IS_PRIMARY(ci)) {
330 1.140 maxv atomic_store_relaxed(&hardclock_ticks,
331 1.140 maxv atomic_load_relaxed(&hardclock_ticks) + 1);
332 1.121 ad tc_ticktock();
333 1.121 ad }
334 1.19 cgd
335 1.19 cgd /*
336 1.126 pooka * Update real-time timeout queue.
337 1.106 ad */
338 1.109 ad callout_hardclock();
339 1.19 cgd }
340 1.19 cgd
341 1.19 cgd /*
342 1.19 cgd * Start profiling on a process.
343 1.19 cgd *
344 1.19 cgd * Kernel profiling passes proc0 which never exits and hence
345 1.19 cgd * keeps the profile clock running constantly.
346 1.19 cgd */
347 1.19 cgd void
348 1.63 thorpej startprofclock(struct proc *p)
349 1.19 cgd {
350 1.19 cgd
351 1.109 ad KASSERT(mutex_owned(&p->p_stmutex));
352 1.105 ad
353 1.105 ad if ((p->p_stflag & PST_PROFIL) == 0) {
354 1.105 ad p->p_stflag |= PST_PROFIL;
355 1.80 briggs /*
356 1.80 briggs * This is only necessary if using the clock as the
357 1.80 briggs * profiling source.
358 1.80 briggs */
359 1.70 sommerfe if (++profprocs == 1 && stathz != 0)
360 1.70 sommerfe psdiv = psratio;
361 1.19 cgd }
362 1.19 cgd }
363 1.19 cgd
364 1.19 cgd /*
365 1.19 cgd * Stop profiling on a process.
366 1.19 cgd */
367 1.19 cgd void
368 1.63 thorpej stopprofclock(struct proc *p)
369 1.19 cgd {
370 1.19 cgd
371 1.109 ad KASSERT(mutex_owned(&p->p_stmutex));
372 1.105 ad
373 1.105 ad if (p->p_stflag & PST_PROFIL) {
374 1.105 ad p->p_stflag &= ~PST_PROFIL;
375 1.80 briggs /*
376 1.80 briggs * This is only necessary if using the clock as the
377 1.80 briggs * profiling source.
378 1.80 briggs */
379 1.70 sommerfe if (--profprocs == 0 && stathz != 0)
380 1.70 sommerfe psdiv = 1;
381 1.19 cgd }
382 1.19 cgd }
383 1.19 cgd
384 1.108 yamt void
385 1.108 yamt schedclock(struct lwp *l)
386 1.108 yamt {
387 1.108 yamt if ((l->l_flag & LW_IDLE) != 0)
388 1.108 yamt return;
389 1.108 yamt
390 1.108 yamt sched_schedclock(l);
391 1.108 yamt }
392 1.108 yamt
393 1.19 cgd /*
394 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0,
395 1.19 cgd * do process and kernel statistics.
396 1.19 cgd */
397 1.19 cgd void
398 1.63 thorpej statclock(struct clockframe *frame)
399 1.19 cgd {
400 1.19 cgd #ifdef GPROF
401 1.55 augustss struct gmonparam *g;
402 1.68 eeh intptr_t i;
403 1.19 cgd #endif
404 1.60 thorpej struct cpu_info *ci = curcpu();
405 1.60 thorpej struct schedstate_percpu *spc = &ci->ci_schedstate;
406 1.55 augustss struct proc *p;
407 1.98 christos struct lwp *l;
408 1.19 cgd
409 1.144 riastrad if (stathz)
410 1.144 riastrad clockrnd_sample(&statclockrnd);
411 1.144 riastrad
412 1.70 sommerfe /*
413 1.70 sommerfe * Notice changes in divisor frequency, and adjust clock
414 1.70 sommerfe * frequency accordingly.
415 1.70 sommerfe */
416 1.70 sommerfe if (spc->spc_psdiv != psdiv) {
417 1.70 sommerfe spc->spc_psdiv = psdiv;
418 1.70 sommerfe spc->spc_pscnt = psdiv;
419 1.70 sommerfe if (psdiv == 1) {
420 1.70 sommerfe setstatclockrate(stathz);
421 1.70 sommerfe } else {
422 1.93 perry setstatclockrate(profhz);
423 1.70 sommerfe }
424 1.70 sommerfe }
425 1.139 ad l = ci->ci_onproc;
426 1.108 yamt if ((l->l_flag & LW_IDLE) != 0) {
427 1.108 yamt /*
428 1.108 yamt * don't account idle lwps as swapper.
429 1.108 yamt */
430 1.108 yamt p = NULL;
431 1.108 yamt } else {
432 1.108 yamt p = l->l_proc;
433 1.105 ad mutex_spin_enter(&p->p_stmutex);
434 1.108 yamt }
435 1.108 yamt
436 1.19 cgd if (CLKF_USERMODE(frame)) {
437 1.135 maxv KASSERT(p != NULL);
438 1.105 ad if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
439 1.105 ad addupc_intr(l, CLKF_PC(frame));
440 1.105 ad if (--spc->spc_pscnt > 0) {
441 1.105 ad mutex_spin_exit(&p->p_stmutex);
442 1.19 cgd return;
443 1.105 ad }
444 1.105 ad
445 1.19 cgd /*
446 1.19 cgd * Came from user mode; CPU was in user state.
447 1.19 cgd * If this process is being profiled record the tick.
448 1.19 cgd */
449 1.19 cgd p->p_uticks++;
450 1.19 cgd if (p->p_nice > NZERO)
451 1.60 thorpej spc->spc_cp_time[CP_NICE]++;
452 1.19 cgd else
453 1.60 thorpej spc->spc_cp_time[CP_USER]++;
454 1.19 cgd } else {
455 1.19 cgd #ifdef GPROF
456 1.19 cgd /*
457 1.19 cgd * Kernel statistics are just like addupc_intr, only easier.
458 1.19 cgd */
459 1.19 cgd g = &_gmonparam;
460 1.80 briggs if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
461 1.19 cgd i = CLKF_PC(frame) - g->lowpc;
462 1.19 cgd if (i < g->textsize) {
463 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount);
464 1.19 cgd g->kcount[i]++;
465 1.19 cgd }
466 1.19 cgd }
467 1.19 cgd #endif
468 1.82 thorpej #ifdef LWP_PC
469 1.108 yamt if (p != NULL && profsrc == PROFSRC_CLOCK &&
470 1.108 yamt (p->p_stflag & PST_PROFIL)) {
471 1.105 ad addupc_intr(l, LWP_PC(l));
472 1.108 yamt }
473 1.72 mycroft #endif
474 1.105 ad if (--spc->spc_pscnt > 0) {
475 1.105 ad if (p != NULL)
476 1.105 ad mutex_spin_exit(&p->p_stmutex);
477 1.19 cgd return;
478 1.105 ad }
479 1.19 cgd /*
480 1.19 cgd * Came from kernel mode, so we were:
481 1.19 cgd * - handling an interrupt,
482 1.19 cgd * - doing syscall or trap work on behalf of the current
483 1.19 cgd * user process, or
484 1.19 cgd * - spinning in the idle loop.
485 1.19 cgd * Whichever it is, charge the time as appropriate.
486 1.19 cgd * Note that we charge interrupts to the current process,
487 1.19 cgd * regardless of whether they are ``for'' that process,
488 1.19 cgd * so that we know how much of its real time was spent
489 1.19 cgd * in ``non-process'' (i.e., interrupt) work.
490 1.19 cgd */
491 1.114 ad if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
492 1.108 yamt if (p != NULL) {
493 1.19 cgd p->p_iticks++;
494 1.108 yamt }
495 1.60 thorpej spc->spc_cp_time[CP_INTR]++;
496 1.19 cgd } else if (p != NULL) {
497 1.19 cgd p->p_sticks++;
498 1.60 thorpej spc->spc_cp_time[CP_SYS]++;
499 1.108 yamt } else {
500 1.60 thorpej spc->spc_cp_time[CP_IDLE]++;
501 1.108 yamt }
502 1.19 cgd }
503 1.70 sommerfe spc->spc_pscnt = psdiv;
504 1.19 cgd
505 1.97 elad if (p != NULL) {
506 1.125 rmind atomic_inc_uint(&l->l_cpticks);
507 1.105 ad mutex_spin_exit(&p->p_stmutex);
508 1.108 yamt }
509 1.141 ad
510 1.141 ad #ifdef KDTRACE_HOOKS
511 1.141 ad cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
512 1.141 ad if (func) {
513 1.141 ad (*func)((struct clockframe *)frame);
514 1.141 ad }
515 1.141 ad #endif
516 1.19 cgd }
517 1.132 pooka
518 1.132 pooka /*
519 1.132 pooka * sysctl helper routine for kern.clockrate. Assembles a struct on
520 1.132 pooka * the fly to be returned to the caller.
521 1.132 pooka */
522 1.132 pooka static int
523 1.132 pooka sysctl_kern_clockrate(SYSCTLFN_ARGS)
524 1.132 pooka {
525 1.132 pooka struct clockinfo clkinfo;
526 1.132 pooka struct sysctlnode node;
527 1.132 pooka
528 1.132 pooka clkinfo.tick = tick;
529 1.132 pooka clkinfo.tickadj = tickadj;
530 1.132 pooka clkinfo.hz = hz;
531 1.132 pooka clkinfo.profhz = profhz;
532 1.132 pooka clkinfo.stathz = stathz ? stathz : hz;
533 1.132 pooka
534 1.132 pooka node = *rnode;
535 1.132 pooka node.sysctl_data = &clkinfo;
536 1.132 pooka return (sysctl_lookup(SYSCTLFN_CALL(&node)));
537 1.132 pooka }
538