kern_clock.c revision 1.146 1 1.146 ryo /* $NetBSD: kern_clock.c,v 1.146 2021/08/14 21:17:11 ryo Exp $ */
2 1.52 thorpej
3 1.52 thorpej /*-
4 1.118 ad * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.52 thorpej * All rights reserved.
6 1.52 thorpej *
7 1.52 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.52 thorpej * NASA Ames Research Center.
10 1.94 mycroft * This code is derived from software contributed to The NetBSD Foundation
11 1.94 mycroft * by Charles M. Hannum.
12 1.52 thorpej *
13 1.52 thorpej * Redistribution and use in source and binary forms, with or without
14 1.52 thorpej * modification, are permitted provided that the following conditions
15 1.52 thorpej * are met:
16 1.52 thorpej * 1. Redistributions of source code must retain the above copyright
17 1.52 thorpej * notice, this list of conditions and the following disclaimer.
18 1.52 thorpej * 2. Redistributions in binary form must reproduce the above copyright
19 1.52 thorpej * notice, this list of conditions and the following disclaimer in the
20 1.52 thorpej * documentation and/or other materials provided with the distribution.
21 1.52 thorpej *
22 1.52 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.52 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.52 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.52 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.52 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.52 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.52 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.52 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.52 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.52 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.52 thorpej * POSSIBILITY OF SUCH DAMAGE.
33 1.52 thorpej */
34 1.19 cgd
35 1.19 cgd /*-
36 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
37 1.19 cgd * The Regents of the University of California. All rights reserved.
38 1.19 cgd * (c) UNIX System Laboratories, Inc.
39 1.19 cgd * All or some portions of this file are derived from material licensed
40 1.19 cgd * to the University of California by American Telephone and Telegraph
41 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 1.19 cgd * the permission of UNIX System Laboratories, Inc.
43 1.19 cgd *
44 1.19 cgd * Redistribution and use in source and binary forms, with or without
45 1.19 cgd * modification, are permitted provided that the following conditions
46 1.19 cgd * are met:
47 1.19 cgd * 1. Redistributions of source code must retain the above copyright
48 1.19 cgd * notice, this list of conditions and the following disclaimer.
49 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright
50 1.19 cgd * notice, this list of conditions and the following disclaimer in the
51 1.19 cgd * documentation and/or other materials provided with the distribution.
52 1.87 agc * 3. Neither the name of the University nor the names of its contributors
53 1.19 cgd * may be used to endorse or promote products derived from this software
54 1.19 cgd * without specific prior written permission.
55 1.19 cgd *
56 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.19 cgd * SUCH DAMAGE.
67 1.19 cgd *
68 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
69 1.19 cgd */
70 1.78 lukem
71 1.78 lukem #include <sys/cdefs.h>
72 1.146 ryo __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.146 2021/08/14 21:17:11 ryo Exp $");
73 1.44 jonathan
74 1.133 pooka #ifdef _KERNEL_OPT
75 1.131 chs #include "opt_dtrace.h"
76 1.136 maxv #include "opt_gprof.h"
77 1.145 ryo #include "opt_multiprocessor.h"
78 1.133 pooka #endif
79 1.19 cgd
80 1.19 cgd #include <sys/param.h>
81 1.19 cgd #include <sys/systm.h>
82 1.19 cgd #include <sys/callout.h>
83 1.19 cgd #include <sys/kernel.h>
84 1.19 cgd #include <sys/proc.h>
85 1.19 cgd #include <sys/resourcevar.h>
86 1.25 christos #include <sys/signalvar.h>
87 1.26 christos #include <sys/sysctl.h>
88 1.27 jonathan #include <sys/timex.h>
89 1.45 ross #include <sys/sched.h>
90 1.82 thorpej #include <sys/time.h>
91 1.99 kardel #include <sys/timetc.h>
92 1.109 ad #include <sys/cpu.h>
93 1.118 ad #include <sys/atomic.h>
94 1.144 riastrad #include <sys/rndsource.h>
95 1.118 ad
96 1.19 cgd #ifdef GPROF
97 1.19 cgd #include <sys/gmon.h>
98 1.19 cgd #endif
99 1.19 cgd
100 1.131 chs #ifdef KDTRACE_HOOKS
101 1.131 chs #include <sys/dtrace_bsd.h>
102 1.131 chs #include <sys/cpu.h>
103 1.131 chs
104 1.131 chs cyclic_clock_func_t cyclic_clock_func[MAXCPUS];
105 1.131 chs #endif
106 1.131 chs
107 1.132 pooka static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
108 1.132 pooka
109 1.19 cgd /*
110 1.19 cgd * Clock handling routines.
111 1.19 cgd *
112 1.19 cgd * This code is written to operate with two timers that run independently of
113 1.19 cgd * each other. The main clock, running hz times per second, is used to keep
114 1.19 cgd * track of real time. The second timer handles kernel and user profiling,
115 1.19 cgd * and does resource use estimation. If the second timer is programmable,
116 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example,
117 1.90 wiz * the randomization prevents an adversary from always giving up the CPU
118 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate
119 1.90 wiz * CPU ticks. The mean frequency of the second timer is stathz.
120 1.19 cgd *
121 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive
122 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate;
123 1.19 cgd * do not do it unless absolutely necessary.
124 1.19 cgd *
125 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while
126 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz
127 1.19 cgd * be an integral multiple of stathz.
128 1.19 cgd *
129 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio
130 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.)
131 1.19 cgd */
132 1.19 cgd
133 1.19 cgd int stathz;
134 1.19 cgd int profhz;
135 1.80 briggs int profsrc;
136 1.75 simonb int schedhz;
137 1.19 cgd int profprocs;
138 1.100 drochner int hardclock_ticks;
139 1.114 ad static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
140 1.70 sommerfe static int psdiv; /* prof => stat divider */
141 1.22 cgd int psratio; /* ratio: prof / stat */
142 1.19 cgd
143 1.144 riastrad struct clockrnd {
144 1.144 riastrad struct krndsource source;
145 1.144 riastrad unsigned needed;
146 1.144 riastrad };
147 1.144 riastrad
148 1.144 riastrad static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
149 1.144 riastrad static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
150 1.144 riastrad
151 1.144 riastrad static void
152 1.144 riastrad clockrnd_get(size_t needed, void *cookie)
153 1.144 riastrad {
154 1.144 riastrad struct clockrnd *C = cookie;
155 1.144 riastrad
156 1.144 riastrad /* Start sampling. */
157 1.144 riastrad atomic_store_relaxed(&C->needed, 2*NBBY*needed);
158 1.144 riastrad }
159 1.144 riastrad
160 1.144 riastrad static void
161 1.144 riastrad clockrnd_sample(struct clockrnd *C)
162 1.144 riastrad {
163 1.144 riastrad struct cpu_info *ci = curcpu();
164 1.144 riastrad
165 1.144 riastrad /* If there's nothing needed right now, stop here. */
166 1.144 riastrad if (__predict_true(C->needed == 0))
167 1.144 riastrad return;
168 1.144 riastrad
169 1.144 riastrad /*
170 1.144 riastrad * If we're not the primary core of a package, we're probably
171 1.144 riastrad * driven by the same clock as the primary core, so don't
172 1.144 riastrad * bother.
173 1.144 riastrad */
174 1.144 riastrad if (ci != ci->ci_package1st)
175 1.144 riastrad return;
176 1.144 riastrad
177 1.144 riastrad /* Take a sample and enter it into the pool. */
178 1.144 riastrad rnd_add_uint32(&C->source, 0);
179 1.144 riastrad
180 1.144 riastrad /*
181 1.144 riastrad * On the primary CPU, count down. Using an atomic decrement
182 1.144 riastrad * here isn't really necessary -- on every platform we care
183 1.144 riastrad * about, stores to unsigned int are atomic, and the only other
184 1.144 riastrad * memory operation that could happen here is for another CPU
185 1.144 riastrad * to store a higher value for needed. But using an atomic
186 1.144 riastrad * decrement avoids giving the impression of data races, and is
187 1.144 riastrad * unlikely to hurt because only one CPU will ever be writing
188 1.144 riastrad * to the location.
189 1.144 riastrad */
190 1.144 riastrad if (CPU_IS_PRIMARY(curcpu())) {
191 1.144 riastrad unsigned needed __diagused;
192 1.144 riastrad
193 1.144 riastrad needed = atomic_dec_uint_nv(&C->needed);
194 1.144 riastrad KASSERT(needed != UINT_MAX);
195 1.144 riastrad }
196 1.144 riastrad }
197 1.144 riastrad
198 1.99 kardel static u_int get_intr_timecount(struct timecounter *);
199 1.99 kardel
200 1.99 kardel static struct timecounter intr_timecounter = {
201 1.138 riastrad .tc_get_timecount = get_intr_timecount,
202 1.138 riastrad .tc_poll_pps = NULL,
203 1.138 riastrad .tc_counter_mask = ~0u,
204 1.138 riastrad .tc_frequency = 0,
205 1.138 riastrad .tc_name = "clockinterrupt",
206 1.138 riastrad /* quality - minimum implementation level for a clock */
207 1.138 riastrad .tc_quality = 0,
208 1.138 riastrad .tc_priv = NULL,
209 1.99 kardel };
210 1.99 kardel
211 1.99 kardel static u_int
212 1.104 yamt get_intr_timecount(struct timecounter *tc)
213 1.99 kardel {
214 1.104 yamt
215 1.140 maxv return (u_int)getticks();
216 1.140 maxv }
217 1.140 maxv
218 1.140 maxv int
219 1.140 maxv getticks(void)
220 1.140 maxv {
221 1.140 maxv return atomic_load_relaxed(&hardclock_ticks);
222 1.99 kardel }
223 1.73 thorpej
224 1.66 thorpej /*
225 1.19 cgd * Initialize clock frequencies and start both clocks running.
226 1.19 cgd */
227 1.19 cgd void
228 1.63 thorpej initclocks(void)
229 1.19 cgd {
230 1.132 pooka static struct sysctllog *clog;
231 1.55 augustss int i;
232 1.19 cgd
233 1.19 cgd /*
234 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific
235 1.19 cgd * code do its bit.
236 1.19 cgd */
237 1.70 sommerfe psdiv = 1;
238 1.142 thorpej
239 1.142 thorpej /*
240 1.142 thorpej * Call cpu_initclocks() before registering the default
241 1.142 thorpej * timecounter, in case it needs to adjust hz.
242 1.142 thorpej */
243 1.142 thorpej const int old_hz = hz;
244 1.142 thorpej cpu_initclocks();
245 1.142 thorpej if (old_hz != hz) {
246 1.142 thorpej tick = 1000000 / hz;
247 1.142 thorpej tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
248 1.142 thorpej }
249 1.142 thorpej
250 1.99 kardel /*
251 1.99 kardel * provide minimum default time counter
252 1.99 kardel * will only run at interrupt resolution
253 1.99 kardel */
254 1.99 kardel intr_timecounter.tc_frequency = hz;
255 1.99 kardel tc_init(&intr_timecounter);
256 1.19 cgd
257 1.19 cgd /*
258 1.108 yamt * Compute profhz and stathz, fix profhz if needed.
259 1.19 cgd */
260 1.19 cgd i = stathz ? stathz : hz;
261 1.19 cgd if (profhz == 0)
262 1.19 cgd profhz = i;
263 1.19 cgd psratio = profhz / i;
264 1.91 yamt if (schedhz == 0) {
265 1.91 yamt /* 16Hz is best */
266 1.114 ad hardscheddiv = hz / 16;
267 1.114 ad if (hardscheddiv <= 0)
268 1.114 ad panic("hardscheddiv");
269 1.91 yamt }
270 1.31 mycroft
271 1.132 pooka sysctl_createv(&clog, 0, NULL, NULL,
272 1.132 pooka CTLFLAG_PERMANENT,
273 1.132 pooka CTLTYPE_STRUCT, "clockrate",
274 1.132 pooka SYSCTL_DESCR("Kernel clock rates"),
275 1.132 pooka sysctl_kern_clockrate, 0, NULL,
276 1.132 pooka sizeof(struct clockinfo),
277 1.132 pooka CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
278 1.132 pooka sysctl_createv(&clog, 0, NULL, NULL,
279 1.132 pooka CTLFLAG_PERMANENT,
280 1.132 pooka CTLTYPE_INT, "hardclock_ticks",
281 1.132 pooka SYSCTL_DESCR("Number of hardclock ticks"),
282 1.132 pooka NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
283 1.132 pooka CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
284 1.144 riastrad
285 1.144 riastrad rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
286 1.144 riastrad rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
287 1.144 riastrad RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
288 1.144 riastrad if (stathz) {
289 1.144 riastrad rndsource_setcb(&statclockrnd.source, clockrnd_get,
290 1.144 riastrad &statclockrnd);
291 1.144 riastrad rnd_attach_source(&statclockrnd.source, "statclock",
292 1.144 riastrad RND_TYPE_SKEW, RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
293 1.144 riastrad }
294 1.19 cgd }
295 1.19 cgd
296 1.19 cgd /*
297 1.19 cgd * The real-time timer, interrupting hz times per second.
298 1.19 cgd */
299 1.19 cgd void
300 1.63 thorpej hardclock(struct clockframe *frame)
301 1.19 cgd {
302 1.82 thorpej struct lwp *l;
303 1.120 ad struct cpu_info *ci;
304 1.19 cgd
305 1.144 riastrad clockrnd_sample(&hardclockrnd);
306 1.144 riastrad
307 1.120 ad ci = curcpu();
308 1.139 ad l = ci->ci_onproc;
309 1.120 ad
310 1.143 thorpej ptimer_tick(l, CLKF_USERMODE(frame));
311 1.19 cgd
312 1.19 cgd /*
313 1.19 cgd * If no separate statistics clock is available, run it from here.
314 1.19 cgd */
315 1.19 cgd if (stathz == 0)
316 1.19 cgd statclock(frame);
317 1.114 ad /*
318 1.114 ad * If no separate schedclock is provided, call it here
319 1.114 ad * at about 16 Hz.
320 1.114 ad */
321 1.114 ad if (schedhz == 0) {
322 1.114 ad if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
323 1.114 ad schedclock(l);
324 1.114 ad ci->ci_schedstate.spc_schedticks = hardscheddiv;
325 1.114 ad }
326 1.114 ad }
327 1.108 yamt if ((--ci->ci_schedstate.spc_ticks) <= 0)
328 1.108 yamt sched_tick(ci);
329 1.93 perry
330 1.123 ad if (CPU_IS_PRIMARY(ci)) {
331 1.140 maxv atomic_store_relaxed(&hardclock_ticks,
332 1.140 maxv atomic_load_relaxed(&hardclock_ticks) + 1);
333 1.121 ad tc_ticktock();
334 1.121 ad }
335 1.19 cgd
336 1.19 cgd /*
337 1.126 pooka * Update real-time timeout queue.
338 1.106 ad */
339 1.109 ad callout_hardclock();
340 1.19 cgd }
341 1.19 cgd
342 1.19 cgd /*
343 1.19 cgd * Start profiling on a process.
344 1.19 cgd *
345 1.19 cgd * Kernel profiling passes proc0 which never exits and hence
346 1.19 cgd * keeps the profile clock running constantly.
347 1.19 cgd */
348 1.19 cgd void
349 1.63 thorpej startprofclock(struct proc *p)
350 1.19 cgd {
351 1.19 cgd
352 1.109 ad KASSERT(mutex_owned(&p->p_stmutex));
353 1.105 ad
354 1.105 ad if ((p->p_stflag & PST_PROFIL) == 0) {
355 1.105 ad p->p_stflag |= PST_PROFIL;
356 1.80 briggs /*
357 1.80 briggs * This is only necessary if using the clock as the
358 1.80 briggs * profiling source.
359 1.80 briggs */
360 1.70 sommerfe if (++profprocs == 1 && stathz != 0)
361 1.70 sommerfe psdiv = psratio;
362 1.19 cgd }
363 1.19 cgd }
364 1.19 cgd
365 1.19 cgd /*
366 1.19 cgd * Stop profiling on a process.
367 1.19 cgd */
368 1.19 cgd void
369 1.63 thorpej stopprofclock(struct proc *p)
370 1.19 cgd {
371 1.19 cgd
372 1.109 ad KASSERT(mutex_owned(&p->p_stmutex));
373 1.105 ad
374 1.105 ad if (p->p_stflag & PST_PROFIL) {
375 1.105 ad p->p_stflag &= ~PST_PROFIL;
376 1.80 briggs /*
377 1.80 briggs * This is only necessary if using the clock as the
378 1.80 briggs * profiling source.
379 1.80 briggs */
380 1.70 sommerfe if (--profprocs == 0 && stathz != 0)
381 1.70 sommerfe psdiv = 1;
382 1.19 cgd }
383 1.19 cgd }
384 1.19 cgd
385 1.108 yamt void
386 1.108 yamt schedclock(struct lwp *l)
387 1.108 yamt {
388 1.108 yamt if ((l->l_flag & LW_IDLE) != 0)
389 1.108 yamt return;
390 1.108 yamt
391 1.108 yamt sched_schedclock(l);
392 1.108 yamt }
393 1.108 yamt
394 1.19 cgd /*
395 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0,
396 1.19 cgd * do process and kernel statistics.
397 1.19 cgd */
398 1.19 cgd void
399 1.63 thorpej statclock(struct clockframe *frame)
400 1.19 cgd {
401 1.19 cgd #ifdef GPROF
402 1.55 augustss struct gmonparam *g;
403 1.68 eeh intptr_t i;
404 1.19 cgd #endif
405 1.60 thorpej struct cpu_info *ci = curcpu();
406 1.60 thorpej struct schedstate_percpu *spc = &ci->ci_schedstate;
407 1.55 augustss struct proc *p;
408 1.98 christos struct lwp *l;
409 1.19 cgd
410 1.144 riastrad if (stathz)
411 1.144 riastrad clockrnd_sample(&statclockrnd);
412 1.144 riastrad
413 1.70 sommerfe /*
414 1.70 sommerfe * Notice changes in divisor frequency, and adjust clock
415 1.70 sommerfe * frequency accordingly.
416 1.70 sommerfe */
417 1.70 sommerfe if (spc->spc_psdiv != psdiv) {
418 1.70 sommerfe spc->spc_psdiv = psdiv;
419 1.70 sommerfe spc->spc_pscnt = psdiv;
420 1.70 sommerfe if (psdiv == 1) {
421 1.70 sommerfe setstatclockrate(stathz);
422 1.70 sommerfe } else {
423 1.93 perry setstatclockrate(profhz);
424 1.70 sommerfe }
425 1.70 sommerfe }
426 1.139 ad l = ci->ci_onproc;
427 1.108 yamt if ((l->l_flag & LW_IDLE) != 0) {
428 1.108 yamt /*
429 1.108 yamt * don't account idle lwps as swapper.
430 1.108 yamt */
431 1.108 yamt p = NULL;
432 1.108 yamt } else {
433 1.108 yamt p = l->l_proc;
434 1.105 ad mutex_spin_enter(&p->p_stmutex);
435 1.108 yamt }
436 1.108 yamt
437 1.19 cgd if (CLKF_USERMODE(frame)) {
438 1.135 maxv KASSERT(p != NULL);
439 1.105 ad if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
440 1.105 ad addupc_intr(l, CLKF_PC(frame));
441 1.105 ad if (--spc->spc_pscnt > 0) {
442 1.105 ad mutex_spin_exit(&p->p_stmutex);
443 1.19 cgd return;
444 1.105 ad }
445 1.105 ad
446 1.19 cgd /*
447 1.19 cgd * Came from user mode; CPU was in user state.
448 1.19 cgd * If this process is being profiled record the tick.
449 1.19 cgd */
450 1.19 cgd p->p_uticks++;
451 1.19 cgd if (p->p_nice > NZERO)
452 1.60 thorpej spc->spc_cp_time[CP_NICE]++;
453 1.19 cgd else
454 1.60 thorpej spc->spc_cp_time[CP_USER]++;
455 1.19 cgd } else {
456 1.19 cgd #ifdef GPROF
457 1.19 cgd /*
458 1.19 cgd * Kernel statistics are just like addupc_intr, only easier.
459 1.19 cgd */
460 1.146 ryo #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL)
461 1.145 ryo g = curcpu()->ci_gmon;
462 1.145 ryo if (g != NULL &&
463 1.145 ryo profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
464 1.145 ryo #else
465 1.19 cgd g = &_gmonparam;
466 1.80 briggs if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
467 1.145 ryo #endif
468 1.19 cgd i = CLKF_PC(frame) - g->lowpc;
469 1.19 cgd if (i < g->textsize) {
470 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount);
471 1.19 cgd g->kcount[i]++;
472 1.19 cgd }
473 1.19 cgd }
474 1.19 cgd #endif
475 1.82 thorpej #ifdef LWP_PC
476 1.108 yamt if (p != NULL && profsrc == PROFSRC_CLOCK &&
477 1.108 yamt (p->p_stflag & PST_PROFIL)) {
478 1.105 ad addupc_intr(l, LWP_PC(l));
479 1.108 yamt }
480 1.72 mycroft #endif
481 1.105 ad if (--spc->spc_pscnt > 0) {
482 1.105 ad if (p != NULL)
483 1.105 ad mutex_spin_exit(&p->p_stmutex);
484 1.19 cgd return;
485 1.105 ad }
486 1.19 cgd /*
487 1.19 cgd * Came from kernel mode, so we were:
488 1.19 cgd * - handling an interrupt,
489 1.19 cgd * - doing syscall or trap work on behalf of the current
490 1.19 cgd * user process, or
491 1.19 cgd * - spinning in the idle loop.
492 1.19 cgd * Whichever it is, charge the time as appropriate.
493 1.19 cgd * Note that we charge interrupts to the current process,
494 1.19 cgd * regardless of whether they are ``for'' that process,
495 1.19 cgd * so that we know how much of its real time was spent
496 1.19 cgd * in ``non-process'' (i.e., interrupt) work.
497 1.19 cgd */
498 1.114 ad if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
499 1.108 yamt if (p != NULL) {
500 1.19 cgd p->p_iticks++;
501 1.108 yamt }
502 1.60 thorpej spc->spc_cp_time[CP_INTR]++;
503 1.19 cgd } else if (p != NULL) {
504 1.19 cgd p->p_sticks++;
505 1.60 thorpej spc->spc_cp_time[CP_SYS]++;
506 1.108 yamt } else {
507 1.60 thorpej spc->spc_cp_time[CP_IDLE]++;
508 1.108 yamt }
509 1.19 cgd }
510 1.70 sommerfe spc->spc_pscnt = psdiv;
511 1.19 cgd
512 1.97 elad if (p != NULL) {
513 1.125 rmind atomic_inc_uint(&l->l_cpticks);
514 1.105 ad mutex_spin_exit(&p->p_stmutex);
515 1.108 yamt }
516 1.141 ad
517 1.141 ad #ifdef KDTRACE_HOOKS
518 1.141 ad cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
519 1.141 ad if (func) {
520 1.141 ad (*func)((struct clockframe *)frame);
521 1.141 ad }
522 1.141 ad #endif
523 1.19 cgd }
524 1.132 pooka
525 1.132 pooka /*
526 1.132 pooka * sysctl helper routine for kern.clockrate. Assembles a struct on
527 1.132 pooka * the fly to be returned to the caller.
528 1.132 pooka */
529 1.132 pooka static int
530 1.132 pooka sysctl_kern_clockrate(SYSCTLFN_ARGS)
531 1.132 pooka {
532 1.132 pooka struct clockinfo clkinfo;
533 1.132 pooka struct sysctlnode node;
534 1.132 pooka
535 1.132 pooka clkinfo.tick = tick;
536 1.132 pooka clkinfo.tickadj = tickadj;
537 1.132 pooka clkinfo.hz = hz;
538 1.132 pooka clkinfo.profhz = profhz;
539 1.132 pooka clkinfo.stathz = stathz ? stathz : hz;
540 1.132 pooka
541 1.132 pooka node = *rnode;
542 1.132 pooka node.sysctl_data = &clkinfo;
543 1.132 pooka return (sysctl_lookup(SYSCTLFN_CALL(&node)));
544 1.132 pooka }
545