kern_clock.c revision 1.26 1 1.26 christos /* $NetBSD: kern_clock.c,v 1.26 1996/02/09 18:59:24 christos Exp $ */
2 1.19 cgd
3 1.19 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.19 cgd * (c) UNIX System Laboratories, Inc.
7 1.19 cgd * All or some portions of this file are derived from material licensed
8 1.19 cgd * to the University of California by American Telephone and Telegraph
9 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.19 cgd * the permission of UNIX System Laboratories, Inc.
11 1.19 cgd *
12 1.19 cgd * Redistribution and use in source and binary forms, with or without
13 1.19 cgd * modification, are permitted provided that the following conditions
14 1.19 cgd * are met:
15 1.19 cgd * 1. Redistributions of source code must retain the above copyright
16 1.19 cgd * notice, this list of conditions and the following disclaimer.
17 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.19 cgd * notice, this list of conditions and the following disclaimer in the
19 1.19 cgd * documentation and/or other materials provided with the distribution.
20 1.19 cgd * 3. All advertising materials mentioning features or use of this software
21 1.19 cgd * must display the following acknowledgement:
22 1.19 cgd * This product includes software developed by the University of
23 1.19 cgd * California, Berkeley and its contributors.
24 1.19 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.19 cgd * may be used to endorse or promote products derived from this software
26 1.19 cgd * without specific prior written permission.
27 1.19 cgd *
28 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.19 cgd * SUCH DAMAGE.
39 1.19 cgd *
40 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 1.19 cgd */
42 1.19 cgd
43 1.19 cgd #include <sys/param.h>
44 1.19 cgd #include <sys/systm.h>
45 1.19 cgd #include <sys/dkstat.h>
46 1.19 cgd #include <sys/callout.h>
47 1.19 cgd #include <sys/kernel.h>
48 1.19 cgd #include <sys/proc.h>
49 1.19 cgd #include <sys/resourcevar.h>
50 1.25 christos #include <sys/signalvar.h>
51 1.26 christos #include <sys/cpu.h>
52 1.26 christos #include <vm/vm.h>
53 1.26 christos #include <sys/sysctl.h>
54 1.19 cgd
55 1.19 cgd #include <machine/cpu.h>
56 1.25 christos
57 1.19 cgd #ifdef GPROF
58 1.19 cgd #include <sys/gmon.h>
59 1.19 cgd #endif
60 1.19 cgd
61 1.19 cgd /*
62 1.19 cgd * Clock handling routines.
63 1.19 cgd *
64 1.19 cgd * This code is written to operate with two timers that run independently of
65 1.19 cgd * each other. The main clock, running hz times per second, is used to keep
66 1.19 cgd * track of real time. The second timer handles kernel and user profiling,
67 1.19 cgd * and does resource use estimation. If the second timer is programmable,
68 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example,
69 1.19 cgd * the randomization prevents an adversary from always giving up the cpu
70 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate
71 1.19 cgd * cpu ticks. The mean frequency of the second timer is stathz.
72 1.19 cgd *
73 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive
74 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate;
75 1.19 cgd * do not do it unless absolutely necessary.
76 1.19 cgd *
77 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while
78 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz
79 1.19 cgd * be an integral multiple of stathz.
80 1.19 cgd *
81 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio
82 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.)
83 1.19 cgd */
84 1.19 cgd
85 1.19 cgd /*
86 1.19 cgd * TODO:
87 1.19 cgd * allocate more timeout table slots when table overflows.
88 1.19 cgd */
89 1.19 cgd
90 1.19 cgd /*
91 1.19 cgd * Bump a timeval by a small number of usec's.
92 1.19 cgd */
93 1.19 cgd #define BUMPTIME(t, usec) { \
94 1.19 cgd register volatile struct timeval *tp = (t); \
95 1.19 cgd register long us; \
96 1.19 cgd \
97 1.19 cgd tp->tv_usec = us = tp->tv_usec + (usec); \
98 1.19 cgd if (us >= 1000000) { \
99 1.19 cgd tp->tv_usec = us - 1000000; \
100 1.19 cgd tp->tv_sec++; \
101 1.19 cgd } \
102 1.19 cgd }
103 1.19 cgd
104 1.19 cgd int stathz;
105 1.19 cgd int profhz;
106 1.19 cgd int profprocs;
107 1.19 cgd int ticks;
108 1.22 cgd static int psdiv, pscnt; /* prof => stat divider */
109 1.22 cgd int psratio; /* ratio: prof / stat */
110 1.22 cgd int tickfix, tickfixinterval; /* used if tick not really integral */
111 1.22 cgd static int tickfixcnt; /* number of ticks since last fix */
112 1.19 cgd
113 1.19 cgd volatile struct timeval time;
114 1.19 cgd volatile struct timeval mono_time;
115 1.19 cgd
116 1.19 cgd /*
117 1.19 cgd * Initialize clock frequencies and start both clocks running.
118 1.19 cgd */
119 1.19 cgd void
120 1.19 cgd initclocks()
121 1.19 cgd {
122 1.19 cgd register int i;
123 1.19 cgd
124 1.19 cgd /*
125 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific
126 1.19 cgd * code do its bit.
127 1.19 cgd */
128 1.19 cgd psdiv = pscnt = 1;
129 1.19 cgd cpu_initclocks();
130 1.19 cgd
131 1.19 cgd /*
132 1.19 cgd * Compute profhz/stathz, and fix profhz if needed.
133 1.19 cgd */
134 1.19 cgd i = stathz ? stathz : hz;
135 1.19 cgd if (profhz == 0)
136 1.19 cgd profhz = i;
137 1.19 cgd psratio = profhz / i;
138 1.19 cgd }
139 1.19 cgd
140 1.19 cgd /*
141 1.19 cgd * The real-time timer, interrupting hz times per second.
142 1.19 cgd */
143 1.19 cgd void
144 1.19 cgd hardclock(frame)
145 1.19 cgd register struct clockframe *frame;
146 1.19 cgd {
147 1.19 cgd register struct callout *p1;
148 1.19 cgd register struct proc *p;
149 1.19 cgd register int delta, needsoft;
150 1.19 cgd extern int tickdelta;
151 1.19 cgd extern long timedelta;
152 1.19 cgd
153 1.19 cgd /*
154 1.19 cgd * Update real-time timeout queue.
155 1.19 cgd * At front of queue are some number of events which are ``due''.
156 1.19 cgd * The time to these is <= 0 and if negative represents the
157 1.19 cgd * number of ticks which have passed since it was supposed to happen.
158 1.19 cgd * The rest of the q elements (times > 0) are events yet to happen,
159 1.19 cgd * where the time for each is given as a delta from the previous.
160 1.19 cgd * Decrementing just the first of these serves to decrement the time
161 1.19 cgd * to all events.
162 1.19 cgd */
163 1.19 cgd needsoft = 0;
164 1.19 cgd for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
165 1.19 cgd if (--p1->c_time > 0)
166 1.19 cgd break;
167 1.19 cgd needsoft = 1;
168 1.19 cgd if (p1->c_time == 0)
169 1.19 cgd break;
170 1.19 cgd }
171 1.19 cgd
172 1.19 cgd p = curproc;
173 1.19 cgd if (p) {
174 1.19 cgd register struct pstats *pstats;
175 1.19 cgd
176 1.19 cgd /*
177 1.19 cgd * Run current process's virtual and profile time, as needed.
178 1.19 cgd */
179 1.19 cgd pstats = p->p_stats;
180 1.19 cgd if (CLKF_USERMODE(frame) &&
181 1.19 cgd timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
182 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
183 1.19 cgd psignal(p, SIGVTALRM);
184 1.19 cgd if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
185 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
186 1.19 cgd psignal(p, SIGPROF);
187 1.19 cgd }
188 1.19 cgd
189 1.19 cgd /*
190 1.19 cgd * If no separate statistics clock is available, run it from here.
191 1.19 cgd */
192 1.19 cgd if (stathz == 0)
193 1.19 cgd statclock(frame);
194 1.19 cgd
195 1.19 cgd /*
196 1.22 cgd * Increment the time-of-day. The increment is normally just
197 1.22 cgd * ``tick''. If the machine is one which has a clock frequency
198 1.22 cgd * such that ``hz'' would not divide the second evenly into
199 1.22 cgd * milliseconds, a periodic adjustment must be applied. Finally,
200 1.22 cgd * if we are still adjusting the time (see adjtime()),
201 1.22 cgd * ``tickdelta'' may also be added in.
202 1.19 cgd */
203 1.19 cgd ticks++;
204 1.22 cgd delta = tick;
205 1.22 cgd if (tickfix) {
206 1.22 cgd tickfixcnt++;
207 1.24 cgd if (tickfixcnt >= tickfixinterval) {
208 1.22 cgd delta += tickfix;
209 1.22 cgd tickfixcnt = 0;
210 1.22 cgd }
211 1.22 cgd }
212 1.22 cgd if (timedelta != 0) {
213 1.19 cgd delta = tick + tickdelta;
214 1.19 cgd timedelta -= tickdelta;
215 1.19 cgd }
216 1.19 cgd BUMPTIME(&time, delta);
217 1.19 cgd BUMPTIME(&mono_time, delta);
218 1.19 cgd
219 1.19 cgd /*
220 1.19 cgd * Process callouts at a very low cpu priority, so we don't keep the
221 1.19 cgd * relatively high clock interrupt priority any longer than necessary.
222 1.19 cgd */
223 1.19 cgd if (needsoft) {
224 1.19 cgd if (CLKF_BASEPRI(frame)) {
225 1.19 cgd /*
226 1.19 cgd * Save the overhead of a software interrupt;
227 1.19 cgd * it will happen as soon as we return, so do it now.
228 1.19 cgd */
229 1.19 cgd (void)splsoftclock();
230 1.19 cgd softclock();
231 1.19 cgd } else
232 1.19 cgd setsoftclock();
233 1.19 cgd }
234 1.19 cgd }
235 1.19 cgd
236 1.19 cgd /*
237 1.19 cgd * Software (low priority) clock interrupt.
238 1.19 cgd * Run periodic events from timeout queue.
239 1.19 cgd */
240 1.19 cgd /*ARGSUSED*/
241 1.19 cgd void
242 1.19 cgd softclock()
243 1.19 cgd {
244 1.19 cgd register struct callout *c;
245 1.19 cgd register void *arg;
246 1.19 cgd register void (*func) __P((void *));
247 1.19 cgd register int s;
248 1.19 cgd
249 1.19 cgd s = splhigh();
250 1.19 cgd while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
251 1.19 cgd func = c->c_func;
252 1.19 cgd arg = c->c_arg;
253 1.19 cgd calltodo.c_next = c->c_next;
254 1.19 cgd c->c_next = callfree;
255 1.19 cgd callfree = c;
256 1.19 cgd splx(s);
257 1.19 cgd (*func)(arg);
258 1.19 cgd (void) splhigh();
259 1.19 cgd }
260 1.19 cgd splx(s);
261 1.19 cgd }
262 1.19 cgd
263 1.19 cgd /*
264 1.19 cgd * timeout --
265 1.19 cgd * Execute a function after a specified length of time.
266 1.19 cgd *
267 1.19 cgd * untimeout --
268 1.19 cgd * Cancel previous timeout function call.
269 1.19 cgd *
270 1.19 cgd * See AT&T BCI Driver Reference Manual for specification. This
271 1.19 cgd * implementation differs from that one in that no identification
272 1.19 cgd * value is returned from timeout, rather, the original arguments
273 1.19 cgd * to timeout are used to identify entries for untimeout.
274 1.19 cgd */
275 1.19 cgd void
276 1.19 cgd timeout(ftn, arg, ticks)
277 1.19 cgd void (*ftn) __P((void *));
278 1.19 cgd void *arg;
279 1.19 cgd register int ticks;
280 1.19 cgd {
281 1.19 cgd register struct callout *new, *p, *t;
282 1.19 cgd register int s;
283 1.19 cgd
284 1.19 cgd if (ticks <= 0)
285 1.19 cgd ticks = 1;
286 1.19 cgd
287 1.19 cgd /* Lock out the clock. */
288 1.19 cgd s = splhigh();
289 1.19 cgd
290 1.19 cgd /* Fill in the next free callout structure. */
291 1.19 cgd if (callfree == NULL)
292 1.19 cgd panic("timeout table full");
293 1.19 cgd new = callfree;
294 1.19 cgd callfree = new->c_next;
295 1.19 cgd new->c_arg = arg;
296 1.19 cgd new->c_func = ftn;
297 1.19 cgd
298 1.19 cgd /*
299 1.19 cgd * The time for each event is stored as a difference from the time
300 1.19 cgd * of the previous event on the queue. Walk the queue, correcting
301 1.19 cgd * the ticks argument for queue entries passed. Correct the ticks
302 1.19 cgd * value for the queue entry immediately after the insertion point
303 1.19 cgd * as well. Watch out for negative c_time values; these represent
304 1.19 cgd * overdue events.
305 1.19 cgd */
306 1.19 cgd for (p = &calltodo;
307 1.19 cgd (t = p->c_next) != NULL && ticks > t->c_time; p = t)
308 1.19 cgd if (t->c_time > 0)
309 1.19 cgd ticks -= t->c_time;
310 1.19 cgd new->c_time = ticks;
311 1.19 cgd if (t != NULL)
312 1.19 cgd t->c_time -= ticks;
313 1.19 cgd
314 1.19 cgd /* Insert the new entry into the queue. */
315 1.19 cgd p->c_next = new;
316 1.19 cgd new->c_next = t;
317 1.19 cgd splx(s);
318 1.19 cgd }
319 1.19 cgd
320 1.19 cgd void
321 1.19 cgd untimeout(ftn, arg)
322 1.19 cgd void (*ftn) __P((void *));
323 1.19 cgd void *arg;
324 1.19 cgd {
325 1.19 cgd register struct callout *p, *t;
326 1.19 cgd register int s;
327 1.19 cgd
328 1.19 cgd s = splhigh();
329 1.19 cgd for (p = &calltodo; (t = p->c_next) != NULL; p = t)
330 1.19 cgd if (t->c_func == ftn && t->c_arg == arg) {
331 1.19 cgd /* Increment next entry's tick count. */
332 1.19 cgd if (t->c_next && t->c_time > 0)
333 1.19 cgd t->c_next->c_time += t->c_time;
334 1.19 cgd
335 1.19 cgd /* Move entry from callout queue to callfree queue. */
336 1.19 cgd p->c_next = t->c_next;
337 1.19 cgd t->c_next = callfree;
338 1.19 cgd callfree = t;
339 1.19 cgd break;
340 1.19 cgd }
341 1.19 cgd splx(s);
342 1.19 cgd }
343 1.19 cgd
344 1.19 cgd /*
345 1.19 cgd * Compute number of hz until specified time. Used to
346 1.19 cgd * compute third argument to timeout() from an absolute time.
347 1.19 cgd */
348 1.19 cgd int
349 1.19 cgd hzto(tv)
350 1.19 cgd struct timeval *tv;
351 1.19 cgd {
352 1.19 cgd register long ticks, sec;
353 1.19 cgd int s;
354 1.19 cgd
355 1.19 cgd /*
356 1.22 cgd * If number of microseconds will fit in 32 bit arithmetic,
357 1.22 cgd * then compute number of microseconds to time and scale to
358 1.19 cgd * ticks. Otherwise just compute number of hz in time, rounding
359 1.22 cgd * times greater than representible to maximum value. (We must
360 1.22 cgd * compute in microseconds, because hz can be greater than 1000,
361 1.22 cgd * and thus tick can be less than one millisecond).
362 1.19 cgd *
363 1.22 cgd * Delta times less than 14 hours can be computed ``exactly''.
364 1.22 cgd * (Note that if hz would yeild a non-integral number of us per
365 1.22 cgd * tick, i.e. tickfix is nonzero, timouts can be a tick longer
366 1.22 cgd * than they should be.) Maximum value for any timeout in 10ms
367 1.22 cgd * ticks is 250 days.
368 1.19 cgd */
369 1.19 cgd s = splhigh();
370 1.19 cgd sec = tv->tv_sec - time.tv_sec;
371 1.22 cgd if (sec <= 0x7fffffff / 1000000 - 1)
372 1.22 cgd ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
373 1.22 cgd (tv->tv_usec - time.tv_usec)) / tick;
374 1.19 cgd else if (sec <= 0x7fffffff / hz)
375 1.19 cgd ticks = sec * hz;
376 1.19 cgd else
377 1.19 cgd ticks = 0x7fffffff;
378 1.19 cgd splx(s);
379 1.19 cgd return (ticks);
380 1.19 cgd }
381 1.19 cgd
382 1.19 cgd /*
383 1.19 cgd * Start profiling on a process.
384 1.19 cgd *
385 1.19 cgd * Kernel profiling passes proc0 which never exits and hence
386 1.19 cgd * keeps the profile clock running constantly.
387 1.19 cgd */
388 1.19 cgd void
389 1.19 cgd startprofclock(p)
390 1.19 cgd register struct proc *p;
391 1.19 cgd {
392 1.19 cgd int s;
393 1.19 cgd
394 1.19 cgd if ((p->p_flag & P_PROFIL) == 0) {
395 1.19 cgd p->p_flag |= P_PROFIL;
396 1.19 cgd if (++profprocs == 1 && stathz != 0) {
397 1.19 cgd s = splstatclock();
398 1.19 cgd psdiv = pscnt = psratio;
399 1.19 cgd setstatclockrate(profhz);
400 1.19 cgd splx(s);
401 1.19 cgd }
402 1.19 cgd }
403 1.19 cgd }
404 1.19 cgd
405 1.19 cgd /*
406 1.19 cgd * Stop profiling on a process.
407 1.19 cgd */
408 1.19 cgd void
409 1.19 cgd stopprofclock(p)
410 1.19 cgd register struct proc *p;
411 1.19 cgd {
412 1.19 cgd int s;
413 1.19 cgd
414 1.19 cgd if (p->p_flag & P_PROFIL) {
415 1.19 cgd p->p_flag &= ~P_PROFIL;
416 1.19 cgd if (--profprocs == 0 && stathz != 0) {
417 1.19 cgd s = splstatclock();
418 1.19 cgd psdiv = pscnt = 1;
419 1.19 cgd setstatclockrate(stathz);
420 1.19 cgd splx(s);
421 1.19 cgd }
422 1.19 cgd }
423 1.19 cgd }
424 1.19 cgd
425 1.19 cgd /*
426 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0,
427 1.19 cgd * do process and kernel statistics.
428 1.19 cgd */
429 1.19 cgd void
430 1.19 cgd statclock(frame)
431 1.19 cgd register struct clockframe *frame;
432 1.19 cgd {
433 1.19 cgd #ifdef GPROF
434 1.19 cgd register struct gmonparam *g;
435 1.19 cgd #endif
436 1.19 cgd register struct proc *p;
437 1.19 cgd register int i;
438 1.19 cgd
439 1.19 cgd if (CLKF_USERMODE(frame)) {
440 1.19 cgd p = curproc;
441 1.19 cgd if (p->p_flag & P_PROFIL)
442 1.19 cgd addupc_intr(p, CLKF_PC(frame), 1);
443 1.19 cgd if (--pscnt > 0)
444 1.19 cgd return;
445 1.19 cgd /*
446 1.19 cgd * Came from user mode; CPU was in user state.
447 1.19 cgd * If this process is being profiled record the tick.
448 1.19 cgd */
449 1.19 cgd p->p_uticks++;
450 1.19 cgd if (p->p_nice > NZERO)
451 1.19 cgd cp_time[CP_NICE]++;
452 1.19 cgd else
453 1.19 cgd cp_time[CP_USER]++;
454 1.19 cgd } else {
455 1.19 cgd #ifdef GPROF
456 1.19 cgd /*
457 1.19 cgd * Kernel statistics are just like addupc_intr, only easier.
458 1.19 cgd */
459 1.19 cgd g = &_gmonparam;
460 1.19 cgd if (g->state == GMON_PROF_ON) {
461 1.19 cgd i = CLKF_PC(frame) - g->lowpc;
462 1.19 cgd if (i < g->textsize) {
463 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount);
464 1.19 cgd g->kcount[i]++;
465 1.19 cgd }
466 1.19 cgd }
467 1.19 cgd #endif
468 1.19 cgd if (--pscnt > 0)
469 1.19 cgd return;
470 1.19 cgd /*
471 1.19 cgd * Came from kernel mode, so we were:
472 1.19 cgd * - handling an interrupt,
473 1.19 cgd * - doing syscall or trap work on behalf of the current
474 1.19 cgd * user process, or
475 1.19 cgd * - spinning in the idle loop.
476 1.19 cgd * Whichever it is, charge the time as appropriate.
477 1.19 cgd * Note that we charge interrupts to the current process,
478 1.19 cgd * regardless of whether they are ``for'' that process,
479 1.19 cgd * so that we know how much of its real time was spent
480 1.19 cgd * in ``non-process'' (i.e., interrupt) work.
481 1.19 cgd */
482 1.19 cgd p = curproc;
483 1.19 cgd if (CLKF_INTR(frame)) {
484 1.19 cgd if (p != NULL)
485 1.19 cgd p->p_iticks++;
486 1.19 cgd cp_time[CP_INTR]++;
487 1.19 cgd } else if (p != NULL) {
488 1.19 cgd p->p_sticks++;
489 1.19 cgd cp_time[CP_SYS]++;
490 1.19 cgd } else
491 1.19 cgd cp_time[CP_IDLE]++;
492 1.19 cgd }
493 1.19 cgd pscnt = psdiv;
494 1.19 cgd
495 1.19 cgd /*
496 1.23 thorpej * XXX Support old-style instrumentation for now.
497 1.23 thorpej *
498 1.19 cgd * We maintain statistics shown by user-level statistics
499 1.19 cgd * programs: the amount of time in each cpu state, and
500 1.19 cgd * the amount of time each of DK_NDRIVE ``drives'' is busy.
501 1.19 cgd *
502 1.19 cgd * XXX should either run linked list of drives, or (better)
503 1.19 cgd * grab timestamps in the start & done code.
504 1.19 cgd */
505 1.19 cgd for (i = 0; i < DK_NDRIVE; i++)
506 1.19 cgd if (dk_busy & (1 << i))
507 1.19 cgd dk_time[i]++;
508 1.19 cgd
509 1.19 cgd /*
510 1.19 cgd * We adjust the priority of the current process. The priority of
511 1.19 cgd * a process gets worse as it accumulates CPU time. The cpu usage
512 1.19 cgd * estimator (p_estcpu) is increased here. The formula for computing
513 1.19 cgd * priorities (in kern_synch.c) will compute a different value each
514 1.19 cgd * time p_estcpu increases by 4. The cpu usage estimator ramps up
515 1.19 cgd * quite quickly when the process is running (linearly), and decays
516 1.19 cgd * away exponentially, at a rate which is proportionally slower when
517 1.19 cgd * the system is busy. The basic principal is that the system will
518 1.19 cgd * 90% forget that the process used a lot of CPU time in 5 * loadav
519 1.19 cgd * seconds. This causes the system to favor processes which haven't
520 1.19 cgd * run much recently, and to round-robin among other processes.
521 1.19 cgd */
522 1.19 cgd if (p != NULL) {
523 1.19 cgd p->p_cpticks++;
524 1.19 cgd if (++p->p_estcpu == 0)
525 1.19 cgd p->p_estcpu--;
526 1.19 cgd if ((p->p_estcpu & 3) == 0) {
527 1.19 cgd resetpriority(p);
528 1.19 cgd if (p->p_priority >= PUSER)
529 1.19 cgd p->p_priority = p->p_usrpri;
530 1.19 cgd }
531 1.19 cgd }
532 1.19 cgd }
533 1.19 cgd
534 1.19 cgd /*
535 1.19 cgd * Return information about system clocks.
536 1.19 cgd */
537 1.25 christos int
538 1.19 cgd sysctl_clockrate(where, sizep)
539 1.19 cgd register char *where;
540 1.19 cgd size_t *sizep;
541 1.19 cgd {
542 1.19 cgd struct clockinfo clkinfo;
543 1.19 cgd
544 1.19 cgd /*
545 1.19 cgd * Construct clockinfo structure.
546 1.19 cgd */
547 1.20 mycroft clkinfo.tick = tick;
548 1.20 mycroft clkinfo.tickadj = tickadj;
549 1.19 cgd clkinfo.hz = hz;
550 1.19 cgd clkinfo.profhz = profhz;
551 1.19 cgd clkinfo.stathz = stathz ? stathz : hz;
552 1.19 cgd return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
553 1.19 cgd }
554 1.19 cgd
555 1.19 cgd #ifdef DDB
556 1.21 mycroft #include <machine/db_machdep.h>
557 1.21 mycroft
558 1.25 christos #include <ddb/db_interface.h>
559 1.19 cgd #include <ddb/db_access.h>
560 1.19 cgd #include <ddb/db_sym.h>
561 1.25 christos #include <ddb/db_output.h>
562 1.19 cgd
563 1.25 christos void db_show_callout(addr, haddr, count, modif)
564 1.25 christos db_expr_t addr;
565 1.25 christos int haddr;
566 1.25 christos db_expr_t count;
567 1.25 christos char *modif;
568 1.19 cgd {
569 1.19 cgd register struct callout *p1;
570 1.19 cgd register int cum;
571 1.19 cgd register int s;
572 1.19 cgd db_expr_t offset;
573 1.19 cgd char *name;
574 1.19 cgd
575 1.19 cgd db_printf(" cum ticks arg func\n");
576 1.19 cgd s = splhigh();
577 1.19 cgd for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
578 1.19 cgd register int t = p1->c_time;
579 1.19 cgd
580 1.19 cgd if (t > 0)
581 1.19 cgd cum += t;
582 1.19 cgd
583 1.21 mycroft db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
584 1.19 cgd if (name == NULL)
585 1.19 cgd name = "?";
586 1.19 cgd
587 1.19 cgd db_printf("%9d %9d %8x %s (%x)\n",
588 1.19 cgd cum, t, p1->c_arg, name, p1->c_func);
589 1.19 cgd }
590 1.19 cgd splx(s);
591 1.19 cgd }
592 1.19 cgd #endif
593