kern_clock.c revision 1.39 1 1.39 cgd /* $NetBSD: kern_clock.c,v 1.39 1997/01/15 04:59:39 cgd Exp $ */
2 1.19 cgd
3 1.19 cgd /*-
4 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
5 1.19 cgd * The Regents of the University of California. All rights reserved.
6 1.19 cgd * (c) UNIX System Laboratories, Inc.
7 1.19 cgd * All or some portions of this file are derived from material licensed
8 1.19 cgd * to the University of California by American Telephone and Telegraph
9 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 1.19 cgd * the permission of UNIX System Laboratories, Inc.
11 1.19 cgd *
12 1.19 cgd * Redistribution and use in source and binary forms, with or without
13 1.19 cgd * modification, are permitted provided that the following conditions
14 1.19 cgd * are met:
15 1.19 cgd * 1. Redistributions of source code must retain the above copyright
16 1.19 cgd * notice, this list of conditions and the following disclaimer.
17 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright
18 1.19 cgd * notice, this list of conditions and the following disclaimer in the
19 1.19 cgd * documentation and/or other materials provided with the distribution.
20 1.19 cgd * 3. All advertising materials mentioning features or use of this software
21 1.19 cgd * must display the following acknowledgement:
22 1.19 cgd * This product includes software developed by the University of
23 1.19 cgd * California, Berkeley and its contributors.
24 1.19 cgd * 4. Neither the name of the University nor the names of its contributors
25 1.19 cgd * may be used to endorse or promote products derived from this software
26 1.19 cgd * without specific prior written permission.
27 1.19 cgd *
28 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.19 cgd * SUCH DAMAGE.
39 1.19 cgd *
40 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 1.19 cgd */
42 1.19 cgd
43 1.19 cgd #include <sys/param.h>
44 1.19 cgd #include <sys/systm.h>
45 1.19 cgd #include <sys/dkstat.h>
46 1.19 cgd #include <sys/callout.h>
47 1.19 cgd #include <sys/kernel.h>
48 1.19 cgd #include <sys/proc.h>
49 1.19 cgd #include <sys/resourcevar.h>
50 1.25 christos #include <sys/signalvar.h>
51 1.26 christos #include <vm/vm.h>
52 1.26 christos #include <sys/sysctl.h>
53 1.27 jonathan #include <sys/timex.h>
54 1.19 cgd
55 1.19 cgd #include <machine/cpu.h>
56 1.25 christos
57 1.19 cgd #ifdef GPROF
58 1.19 cgd #include <sys/gmon.h>
59 1.19 cgd #endif
60 1.19 cgd
61 1.19 cgd /*
62 1.19 cgd * Clock handling routines.
63 1.19 cgd *
64 1.19 cgd * This code is written to operate with two timers that run independently of
65 1.19 cgd * each other. The main clock, running hz times per second, is used to keep
66 1.19 cgd * track of real time. The second timer handles kernel and user profiling,
67 1.19 cgd * and does resource use estimation. If the second timer is programmable,
68 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example,
69 1.19 cgd * the randomization prevents an adversary from always giving up the cpu
70 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate
71 1.19 cgd * cpu ticks. The mean frequency of the second timer is stathz.
72 1.19 cgd *
73 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive
74 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate;
75 1.19 cgd * do not do it unless absolutely necessary.
76 1.19 cgd *
77 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while
78 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz
79 1.19 cgd * be an integral multiple of stathz.
80 1.19 cgd *
81 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio
82 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.)
83 1.19 cgd */
84 1.19 cgd
85 1.19 cgd /*
86 1.19 cgd * TODO:
87 1.19 cgd * allocate more timeout table slots when table overflows.
88 1.19 cgd */
89 1.19 cgd
90 1.27 jonathan
91 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
92 1.27 jonathan /*
93 1.27 jonathan * Phase/frequency-lock loop (PLL/FLL) definitions
94 1.27 jonathan *
95 1.27 jonathan * The following variables are read and set by the ntp_adjtime() system
96 1.27 jonathan * call.
97 1.27 jonathan *
98 1.27 jonathan * time_state shows the state of the system clock, with values defined
99 1.27 jonathan * in the timex.h header file.
100 1.27 jonathan *
101 1.27 jonathan * time_status shows the status of the system clock, with bits defined
102 1.27 jonathan * in the timex.h header file.
103 1.27 jonathan *
104 1.27 jonathan * time_offset is used by the PLL/FLL to adjust the system time in small
105 1.27 jonathan * increments.
106 1.27 jonathan *
107 1.27 jonathan * time_constant determines the bandwidth or "stiffness" of the PLL.
108 1.27 jonathan *
109 1.27 jonathan * time_tolerance determines maximum frequency error or tolerance of the
110 1.27 jonathan * CPU clock oscillator and is a property of the architecture; however,
111 1.27 jonathan * in principle it could change as result of the presence of external
112 1.27 jonathan * discipline signals, for instance.
113 1.27 jonathan *
114 1.27 jonathan * time_precision is usually equal to the kernel tick variable; however,
115 1.27 jonathan * in cases where a precision clock counter or external clock is
116 1.27 jonathan * available, the resolution can be much less than this and depend on
117 1.27 jonathan * whether the external clock is working or not.
118 1.27 jonathan *
119 1.27 jonathan * time_maxerror is initialized by a ntp_adjtime() call and increased by
120 1.27 jonathan * the kernel once each second to reflect the maximum error bound
121 1.27 jonathan * growth.
122 1.27 jonathan *
123 1.27 jonathan * time_esterror is set and read by the ntp_adjtime() call, but
124 1.27 jonathan * otherwise not used by the kernel.
125 1.27 jonathan */
126 1.27 jonathan int time_state = TIME_OK; /* clock state */
127 1.27 jonathan int time_status = STA_UNSYNC; /* clock status bits */
128 1.27 jonathan long time_offset = 0; /* time offset (us) */
129 1.27 jonathan long time_constant = 0; /* pll time constant */
130 1.27 jonathan long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
131 1.27 jonathan long time_precision = 1; /* clock precision (us) */
132 1.27 jonathan long time_maxerror = MAXPHASE; /* maximum error (us) */
133 1.27 jonathan long time_esterror = MAXPHASE; /* estimated error (us) */
134 1.27 jonathan
135 1.27 jonathan /*
136 1.27 jonathan * The following variables establish the state of the PLL/FLL and the
137 1.27 jonathan * residual time and frequency offset of the local clock. The scale
138 1.27 jonathan * factors are defined in the timex.h header file.
139 1.27 jonathan *
140 1.27 jonathan * time_phase and time_freq are the phase increment and the frequency
141 1.27 jonathan * increment, respectively, of the kernel time variable.
142 1.27 jonathan *
143 1.27 jonathan * time_freq is set via ntp_adjtime() from a value stored in a file when
144 1.27 jonathan * the synchronization daemon is first started. Its value is retrieved
145 1.27 jonathan * via ntp_adjtime() and written to the file about once per hour by the
146 1.27 jonathan * daemon.
147 1.27 jonathan *
148 1.27 jonathan * time_adj is the adjustment added to the value of tick at each timer
149 1.27 jonathan * interrupt and is recomputed from time_phase and time_freq at each
150 1.27 jonathan * seconds rollover.
151 1.27 jonathan *
152 1.27 jonathan * time_reftime is the second's portion of the system time at the last
153 1.27 jonathan * call to ntp_adjtime(). It is used to adjust the time_freq variable
154 1.27 jonathan * and to increase the time_maxerror as the time since last update
155 1.27 jonathan * increases.
156 1.27 jonathan */
157 1.27 jonathan long time_phase = 0; /* phase offset (scaled us) */
158 1.27 jonathan long time_freq = 0; /* frequency offset (scaled ppm) */
159 1.27 jonathan long time_adj = 0; /* tick adjust (scaled 1 / hz) */
160 1.27 jonathan long time_reftime = 0; /* time at last adjustment (s) */
161 1.27 jonathan
162 1.27 jonathan #ifdef PPS_SYNC
163 1.27 jonathan /*
164 1.27 jonathan * The following variables are used only if the kernel PPS discipline
165 1.27 jonathan * code is configured (PPS_SYNC). The scale factors are defined in the
166 1.27 jonathan * timex.h header file.
167 1.27 jonathan *
168 1.27 jonathan * pps_time contains the time at each calibration interval, as read by
169 1.27 jonathan * microtime(). pps_count counts the seconds of the calibration
170 1.27 jonathan * interval, the duration of which is nominally pps_shift in powers of
171 1.27 jonathan * two.
172 1.27 jonathan *
173 1.27 jonathan * pps_offset is the time offset produced by the time median filter
174 1.27 jonathan * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
175 1.27 jonathan * this filter.
176 1.27 jonathan *
177 1.27 jonathan * pps_freq is the frequency offset produced by the frequency median
178 1.27 jonathan * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
179 1.27 jonathan * by this filter.
180 1.27 jonathan *
181 1.27 jonathan * pps_usec is latched from a high resolution counter or external clock
182 1.27 jonathan * at pps_time. Here we want the hardware counter contents only, not the
183 1.27 jonathan * contents plus the time_tv.usec as usual.
184 1.27 jonathan *
185 1.27 jonathan * pps_valid counts the number of seconds since the last PPS update. It
186 1.27 jonathan * is used as a watchdog timer to disable the PPS discipline should the
187 1.27 jonathan * PPS signal be lost.
188 1.27 jonathan *
189 1.27 jonathan * pps_glitch counts the number of seconds since the beginning of an
190 1.27 jonathan * offset burst more than tick/2 from current nominal offset. It is used
191 1.27 jonathan * mainly to suppress error bursts due to priority conflicts between the
192 1.27 jonathan * PPS interrupt and timer interrupt.
193 1.27 jonathan *
194 1.27 jonathan * pps_intcnt counts the calibration intervals for use in the interval-
195 1.27 jonathan * adaptation algorithm. It's just too complicated for words.
196 1.27 jonathan */
197 1.27 jonathan struct timeval pps_time; /* kernel time at last interval */
198 1.27 jonathan long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
199 1.27 jonathan long pps_offset = 0; /* pps time offset (us) */
200 1.27 jonathan long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
201 1.27 jonathan long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
202 1.27 jonathan long pps_freq = 0; /* frequency offset (scaled ppm) */
203 1.27 jonathan long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
204 1.27 jonathan long pps_usec = 0; /* microsec counter at last interval */
205 1.27 jonathan long pps_valid = PPS_VALID; /* pps signal watchdog counter */
206 1.27 jonathan int pps_glitch = 0; /* pps signal glitch counter */
207 1.27 jonathan int pps_count = 0; /* calibration interval counter (s) */
208 1.27 jonathan int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
209 1.27 jonathan int pps_intcnt = 0; /* intervals at current duration */
210 1.27 jonathan
211 1.27 jonathan /*
212 1.27 jonathan * PPS signal quality monitors
213 1.27 jonathan *
214 1.27 jonathan * pps_jitcnt counts the seconds that have been discarded because the
215 1.27 jonathan * jitter measured by the time median filter exceeds the limit MAXTIME
216 1.27 jonathan * (100 us).
217 1.27 jonathan *
218 1.27 jonathan * pps_calcnt counts the frequency calibration intervals, which are
219 1.27 jonathan * variable from 4 s to 256 s.
220 1.27 jonathan *
221 1.27 jonathan * pps_errcnt counts the calibration intervals which have been discarded
222 1.27 jonathan * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
223 1.27 jonathan * calibration interval jitter exceeds two ticks.
224 1.27 jonathan *
225 1.27 jonathan * pps_stbcnt counts the calibration intervals that have been discarded
226 1.27 jonathan * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
227 1.27 jonathan */
228 1.27 jonathan long pps_jitcnt = 0; /* jitter limit exceeded */
229 1.27 jonathan long pps_calcnt = 0; /* calibration intervals */
230 1.27 jonathan long pps_errcnt = 0; /* calibration errors */
231 1.27 jonathan long pps_stbcnt = 0; /* stability limit exceeded */
232 1.27 jonathan #endif /* PPS_SYNC */
233 1.27 jonathan
234 1.27 jonathan #ifdef EXT_CLOCK
235 1.27 jonathan /*
236 1.27 jonathan * External clock definitions
237 1.27 jonathan *
238 1.27 jonathan * The following definitions and declarations are used only if an
239 1.27 jonathan * external clock is configured on the system.
240 1.27 jonathan */
241 1.27 jonathan #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
242 1.27 jonathan
243 1.27 jonathan /*
244 1.27 jonathan * The clock_count variable is set to CLOCK_INTERVAL at each PPS
245 1.27 jonathan * interrupt and decremented once each second.
246 1.27 jonathan */
247 1.27 jonathan int clock_count = 0; /* CPU clock counter */
248 1.27 jonathan
249 1.27 jonathan #ifdef HIGHBALL
250 1.27 jonathan /*
251 1.27 jonathan * The clock_offset and clock_cpu variables are used by the HIGHBALL
252 1.27 jonathan * interface. The clock_offset variable defines the offset between
253 1.27 jonathan * system time and the HIGBALL counters. The clock_cpu variable contains
254 1.27 jonathan * the offset between the system clock and the HIGHBALL clock for use in
255 1.27 jonathan * disciplining the kernel time variable.
256 1.27 jonathan */
257 1.27 jonathan extern struct timeval clock_offset; /* Highball clock offset */
258 1.27 jonathan long clock_cpu = 0; /* CPU clock adjust */
259 1.27 jonathan #endif /* HIGHBALL */
260 1.27 jonathan #endif /* EXT_CLOCK */
261 1.27 jonathan #endif /* NTP */
262 1.27 jonathan
263 1.27 jonathan
264 1.19 cgd /*
265 1.19 cgd * Bump a timeval by a small number of usec's.
266 1.19 cgd */
267 1.19 cgd #define BUMPTIME(t, usec) { \
268 1.19 cgd register volatile struct timeval *tp = (t); \
269 1.19 cgd register long us; \
270 1.19 cgd \
271 1.19 cgd tp->tv_usec = us = tp->tv_usec + (usec); \
272 1.19 cgd if (us >= 1000000) { \
273 1.19 cgd tp->tv_usec = us - 1000000; \
274 1.19 cgd tp->tv_sec++; \
275 1.19 cgd } \
276 1.19 cgd }
277 1.19 cgd
278 1.19 cgd int stathz;
279 1.19 cgd int profhz;
280 1.19 cgd int profprocs;
281 1.19 cgd int ticks;
282 1.22 cgd static int psdiv, pscnt; /* prof => stat divider */
283 1.22 cgd int psratio; /* ratio: prof / stat */
284 1.22 cgd int tickfix, tickfixinterval; /* used if tick not really integral */
285 1.34 briggs #ifndef NTP
286 1.39 cgd static int tickfixcnt; /* accumulated fractional error */
287 1.34 briggs #else
288 1.27 jonathan int fixtick; /* used by NTP for same */
289 1.31 mycroft int shifthz;
290 1.31 mycroft #endif
291 1.19 cgd
292 1.19 cgd volatile struct timeval time;
293 1.19 cgd volatile struct timeval mono_time;
294 1.19 cgd
295 1.19 cgd /*
296 1.19 cgd * Initialize clock frequencies and start both clocks running.
297 1.19 cgd */
298 1.19 cgd void
299 1.19 cgd initclocks()
300 1.19 cgd {
301 1.19 cgd register int i;
302 1.19 cgd
303 1.19 cgd /*
304 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific
305 1.19 cgd * code do its bit.
306 1.19 cgd */
307 1.19 cgd psdiv = pscnt = 1;
308 1.19 cgd cpu_initclocks();
309 1.19 cgd
310 1.19 cgd /*
311 1.19 cgd * Compute profhz/stathz, and fix profhz if needed.
312 1.19 cgd */
313 1.19 cgd i = stathz ? stathz : hz;
314 1.19 cgd if (profhz == 0)
315 1.19 cgd profhz = i;
316 1.19 cgd psratio = profhz / i;
317 1.31 mycroft
318 1.31 mycroft #ifdef NTP
319 1.31 mycroft switch (hz) {
320 1.31 mycroft case 60:
321 1.31 mycroft case 64:
322 1.31 mycroft shifthz = SHIFT_SCALE - 6;
323 1.31 mycroft break;
324 1.31 mycroft case 96:
325 1.31 mycroft case 100:
326 1.31 mycroft case 128:
327 1.31 mycroft shifthz = SHIFT_SCALE - 7;
328 1.31 mycroft break;
329 1.31 mycroft case 256:
330 1.31 mycroft shifthz = SHIFT_SCALE - 8;
331 1.31 mycroft break;
332 1.31 mycroft case 1024:
333 1.31 mycroft shifthz = SHIFT_SCALE - 10;
334 1.31 mycroft break;
335 1.31 mycroft default:
336 1.31 mycroft panic("weird hz");
337 1.31 mycroft }
338 1.31 mycroft #endif
339 1.19 cgd }
340 1.19 cgd
341 1.19 cgd /*
342 1.19 cgd * The real-time timer, interrupting hz times per second.
343 1.19 cgd */
344 1.19 cgd void
345 1.19 cgd hardclock(frame)
346 1.19 cgd register struct clockframe *frame;
347 1.19 cgd {
348 1.19 cgd register struct callout *p1;
349 1.19 cgd register struct proc *p;
350 1.19 cgd register int delta, needsoft;
351 1.19 cgd extern int tickdelta;
352 1.19 cgd extern long timedelta;
353 1.30 mycroft #ifdef NTP
354 1.29 christos register int time_update;
355 1.29 christos register int ltemp;
356 1.29 christos #endif
357 1.19 cgd
358 1.19 cgd /*
359 1.19 cgd * Update real-time timeout queue.
360 1.19 cgd * At front of queue are some number of events which are ``due''.
361 1.19 cgd * The time to these is <= 0 and if negative represents the
362 1.19 cgd * number of ticks which have passed since it was supposed to happen.
363 1.19 cgd * The rest of the q elements (times > 0) are events yet to happen,
364 1.19 cgd * where the time for each is given as a delta from the previous.
365 1.19 cgd * Decrementing just the first of these serves to decrement the time
366 1.19 cgd * to all events.
367 1.19 cgd */
368 1.19 cgd needsoft = 0;
369 1.19 cgd for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
370 1.19 cgd if (--p1->c_time > 0)
371 1.19 cgd break;
372 1.19 cgd needsoft = 1;
373 1.19 cgd if (p1->c_time == 0)
374 1.19 cgd break;
375 1.19 cgd }
376 1.19 cgd
377 1.19 cgd p = curproc;
378 1.19 cgd if (p) {
379 1.19 cgd register struct pstats *pstats;
380 1.19 cgd
381 1.19 cgd /*
382 1.19 cgd * Run current process's virtual and profile time, as needed.
383 1.19 cgd */
384 1.19 cgd pstats = p->p_stats;
385 1.19 cgd if (CLKF_USERMODE(frame) &&
386 1.19 cgd timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
387 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
388 1.19 cgd psignal(p, SIGVTALRM);
389 1.19 cgd if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
390 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
391 1.19 cgd psignal(p, SIGPROF);
392 1.19 cgd }
393 1.19 cgd
394 1.19 cgd /*
395 1.19 cgd * If no separate statistics clock is available, run it from here.
396 1.19 cgd */
397 1.19 cgd if (stathz == 0)
398 1.19 cgd statclock(frame);
399 1.19 cgd
400 1.19 cgd /*
401 1.22 cgd * Increment the time-of-day. The increment is normally just
402 1.22 cgd * ``tick''. If the machine is one which has a clock frequency
403 1.22 cgd * such that ``hz'' would not divide the second evenly into
404 1.22 cgd * milliseconds, a periodic adjustment must be applied. Finally,
405 1.22 cgd * if we are still adjusting the time (see adjtime()),
406 1.22 cgd * ``tickdelta'' may also be added in.
407 1.19 cgd */
408 1.19 cgd ticks++;
409 1.22 cgd delta = tick;
410 1.27 jonathan
411 1.27 jonathan #ifndef NTP
412 1.22 cgd if (tickfix) {
413 1.39 cgd tickfixcnt += tickfix;
414 1.24 cgd if (tickfixcnt >= tickfixinterval) {
415 1.39 cgd delta++;
416 1.39 cgd tickfixcnt -= tickfixinterval;
417 1.22 cgd }
418 1.22 cgd }
419 1.27 jonathan #endif /* !NTP */
420 1.27 jonathan /* Imprecise 4bsd adjtime() handling */
421 1.22 cgd if (timedelta != 0) {
422 1.38 cgd delta += tickdelta;
423 1.19 cgd timedelta -= tickdelta;
424 1.19 cgd }
425 1.27 jonathan
426 1.27 jonathan #ifdef notyet
427 1.27 jonathan microset();
428 1.27 jonathan #endif
429 1.27 jonathan
430 1.27 jonathan #ifndef NTP
431 1.27 jonathan BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
432 1.27 jonathan #endif
433 1.19 cgd BUMPTIME(&mono_time, delta);
434 1.27 jonathan
435 1.31 mycroft #ifdef NTP
436 1.30 mycroft time_update = delta;
437 1.27 jonathan
438 1.27 jonathan /*
439 1.27 jonathan * Compute the phase adjustment. If the low-order bits
440 1.27 jonathan * (time_phase) of the update overflow, bump the high-order bits
441 1.27 jonathan * (time_update).
442 1.27 jonathan */
443 1.27 jonathan time_phase += time_adj;
444 1.27 jonathan if (time_phase <= -FINEUSEC) {
445 1.27 jonathan ltemp = -time_phase >> SHIFT_SCALE;
446 1.27 jonathan time_phase += ltemp << SHIFT_SCALE;
447 1.27 jonathan time_update -= ltemp;
448 1.31 mycroft } else if (time_phase >= FINEUSEC) {
449 1.27 jonathan ltemp = time_phase >> SHIFT_SCALE;
450 1.27 jonathan time_phase -= ltemp << SHIFT_SCALE;
451 1.27 jonathan time_update += ltemp;
452 1.27 jonathan }
453 1.27 jonathan
454 1.27 jonathan #ifdef HIGHBALL
455 1.27 jonathan /*
456 1.27 jonathan * If the HIGHBALL board is installed, we need to adjust the
457 1.27 jonathan * external clock offset in order to close the hardware feedback
458 1.27 jonathan * loop. This will adjust the external clock phase and frequency
459 1.27 jonathan * in small amounts. The additional phase noise and frequency
460 1.27 jonathan * wander this causes should be minimal. We also need to
461 1.27 jonathan * discipline the kernel time variable, since the PLL is used to
462 1.27 jonathan * discipline the external clock. If the Highball board is not
463 1.27 jonathan * present, we discipline kernel time with the PLL as usual. We
464 1.27 jonathan * assume that the external clock phase adjustment (time_update)
465 1.27 jonathan * and kernel phase adjustment (clock_cpu) are less than the
466 1.27 jonathan * value of tick.
467 1.27 jonathan */
468 1.27 jonathan clock_offset.tv_usec += time_update;
469 1.27 jonathan if (clock_offset.tv_usec >= 1000000) {
470 1.27 jonathan clock_offset.tv_sec++;
471 1.27 jonathan clock_offset.tv_usec -= 1000000;
472 1.27 jonathan }
473 1.27 jonathan if (clock_offset.tv_usec < 0) {
474 1.27 jonathan clock_offset.tv_sec--;
475 1.27 jonathan clock_offset.tv_usec += 1000000;
476 1.27 jonathan }
477 1.27 jonathan time.tv_usec += clock_cpu;
478 1.27 jonathan clock_cpu = 0;
479 1.27 jonathan #else
480 1.27 jonathan time.tv_usec += time_update;
481 1.27 jonathan #endif /* HIGHBALL */
482 1.27 jonathan
483 1.27 jonathan /*
484 1.27 jonathan * On rollover of the second the phase adjustment to be used for
485 1.27 jonathan * the next second is calculated. Also, the maximum error is
486 1.27 jonathan * increased by the tolerance. If the PPS frequency discipline
487 1.27 jonathan * code is present, the phase is increased to compensate for the
488 1.27 jonathan * CPU clock oscillator frequency error.
489 1.27 jonathan *
490 1.27 jonathan * On a 32-bit machine and given parameters in the timex.h
491 1.27 jonathan * header file, the maximum phase adjustment is +-512 ms and
492 1.27 jonathan * maximum frequency offset is a tad less than) +-512 ppm. On a
493 1.27 jonathan * 64-bit machine, you shouldn't need to ask.
494 1.27 jonathan */
495 1.27 jonathan if (time.tv_usec >= 1000000) {
496 1.27 jonathan time.tv_usec -= 1000000;
497 1.27 jonathan time.tv_sec++;
498 1.27 jonathan time_maxerror += time_tolerance >> SHIFT_USEC;
499 1.27 jonathan
500 1.27 jonathan /*
501 1.27 jonathan * Leap second processing. If in leap-insert state at
502 1.27 jonathan * the end of the day, the system clock is set back one
503 1.27 jonathan * second; if in leap-delete state, the system clock is
504 1.27 jonathan * set ahead one second. The microtime() routine or
505 1.27 jonathan * external clock driver will insure that reported time
506 1.27 jonathan * is always monotonic. The ugly divides should be
507 1.27 jonathan * replaced.
508 1.27 jonathan */
509 1.27 jonathan switch (time_state) {
510 1.31 mycroft case TIME_OK:
511 1.27 jonathan if (time_status & STA_INS)
512 1.27 jonathan time_state = TIME_INS;
513 1.27 jonathan else if (time_status & STA_DEL)
514 1.27 jonathan time_state = TIME_DEL;
515 1.27 jonathan break;
516 1.27 jonathan
517 1.31 mycroft case TIME_INS:
518 1.27 jonathan if (time.tv_sec % 86400 == 0) {
519 1.27 jonathan time.tv_sec--;
520 1.27 jonathan time_state = TIME_OOP;
521 1.27 jonathan }
522 1.27 jonathan break;
523 1.27 jonathan
524 1.31 mycroft case TIME_DEL:
525 1.27 jonathan if ((time.tv_sec + 1) % 86400 == 0) {
526 1.27 jonathan time.tv_sec++;
527 1.27 jonathan time_state = TIME_WAIT;
528 1.27 jonathan }
529 1.27 jonathan break;
530 1.27 jonathan
531 1.31 mycroft case TIME_OOP:
532 1.27 jonathan time_state = TIME_WAIT;
533 1.27 jonathan break;
534 1.27 jonathan
535 1.31 mycroft case TIME_WAIT:
536 1.27 jonathan if (!(time_status & (STA_INS | STA_DEL)))
537 1.27 jonathan time_state = TIME_OK;
538 1.31 mycroft break;
539 1.27 jonathan }
540 1.27 jonathan
541 1.27 jonathan /*
542 1.27 jonathan * Compute the phase adjustment for the next second. In
543 1.27 jonathan * PLL mode, the offset is reduced by a fixed factor
544 1.27 jonathan * times the time constant. In FLL mode the offset is
545 1.27 jonathan * used directly. In either mode, the maximum phase
546 1.27 jonathan * adjustment for each second is clamped so as to spread
547 1.27 jonathan * the adjustment over not more than the number of
548 1.27 jonathan * seconds between updates.
549 1.27 jonathan */
550 1.27 jonathan if (time_offset < 0) {
551 1.27 jonathan ltemp = -time_offset;
552 1.27 jonathan if (!(time_status & STA_FLL))
553 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
554 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
555 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
556 1.27 jonathan SHIFT_UPDATE;
557 1.27 jonathan time_offset += ltemp;
558 1.31 mycroft time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
559 1.31 mycroft } else if (time_offset > 0) {
560 1.27 jonathan ltemp = time_offset;
561 1.27 jonathan if (!(time_status & STA_FLL))
562 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
563 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
564 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
565 1.27 jonathan SHIFT_UPDATE;
566 1.27 jonathan time_offset -= ltemp;
567 1.31 mycroft time_adj = ltemp << (shifthz - SHIFT_UPDATE);
568 1.31 mycroft } else
569 1.31 mycroft time_adj = 0;
570 1.27 jonathan
571 1.27 jonathan /*
572 1.27 jonathan * Compute the frequency estimate and additional phase
573 1.27 jonathan * adjustment due to frequency error for the next
574 1.27 jonathan * second. When the PPS signal is engaged, gnaw on the
575 1.27 jonathan * watchdog counter and update the frequency computed by
576 1.27 jonathan * the pll and the PPS signal.
577 1.27 jonathan */
578 1.27 jonathan #ifdef PPS_SYNC
579 1.27 jonathan pps_valid++;
580 1.27 jonathan if (pps_valid == PPS_VALID) {
581 1.27 jonathan pps_jitter = MAXTIME;
582 1.27 jonathan pps_stabil = MAXFREQ;
583 1.27 jonathan time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
584 1.27 jonathan STA_PPSWANDER | STA_PPSERROR);
585 1.27 jonathan }
586 1.27 jonathan ltemp = time_freq + pps_freq;
587 1.27 jonathan #else
588 1.27 jonathan ltemp = time_freq;
589 1.27 jonathan #endif /* PPS_SYNC */
590 1.27 jonathan
591 1.27 jonathan if (ltemp < 0)
592 1.31 mycroft time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
593 1.27 jonathan else
594 1.31 mycroft time_adj += ltemp >> (SHIFT_USEC - shifthz);
595 1.31 mycroft time_adj += (long)fixtick << shifthz;
596 1.27 jonathan
597 1.27 jonathan /*
598 1.27 jonathan * When the CPU clock oscillator frequency is not a
599 1.31 mycroft * power of 2 in Hz, shifthz is only an approximate
600 1.31 mycroft * scale factor.
601 1.27 jonathan */
602 1.31 mycroft switch (hz) {
603 1.31 mycroft case 96:
604 1.31 mycroft case 100:
605 1.31 mycroft /*
606 1.31 mycroft * In the following code the overall gain is increased
607 1.31 mycroft * by a factor of 1.25, which results in a residual
608 1.31 mycroft * error less than 3 percent.
609 1.31 mycroft */
610 1.27 jonathan if (time_adj < 0)
611 1.27 jonathan time_adj -= -time_adj >> 2;
612 1.27 jonathan else
613 1.27 jonathan time_adj += time_adj >> 2;
614 1.31 mycroft break;
615 1.31 mycroft case 60:
616 1.31 mycroft /*
617 1.31 mycroft * 60 Hz m68k and vaxes have a PLL gain factor of of
618 1.31 mycroft * 60/64 (15/16) of what it should be. In the following code
619 1.31 mycroft * the overall gain is increased by a factor of 1.0625,
620 1.31 mycroft * (17/16) which results in a residual error of just less
621 1.31 mycroft * than 0.4 percent.
622 1.31 mycroft */
623 1.27 jonathan if (time_adj < 0)
624 1.27 jonathan time_adj -= -time_adj >> 4;
625 1.27 jonathan else
626 1.27 jonathan time_adj += time_adj >> 4;
627 1.31 mycroft break;
628 1.27 jonathan }
629 1.27 jonathan
630 1.27 jonathan #ifdef EXT_CLOCK
631 1.27 jonathan /*
632 1.27 jonathan * If an external clock is present, it is necessary to
633 1.27 jonathan * discipline the kernel time variable anyway, since not
634 1.27 jonathan * all system components use the microtime() interface.
635 1.27 jonathan * Here, the time offset between the external clock and
636 1.27 jonathan * kernel time variable is computed every so often.
637 1.27 jonathan */
638 1.27 jonathan clock_count++;
639 1.27 jonathan if (clock_count > CLOCK_INTERVAL) {
640 1.27 jonathan clock_count = 0;
641 1.27 jonathan microtime(&clock_ext);
642 1.27 jonathan delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
643 1.27 jonathan delta.tv_usec = clock_ext.tv_usec -
644 1.27 jonathan time.tv_usec;
645 1.27 jonathan if (delta.tv_usec < 0)
646 1.27 jonathan delta.tv_sec--;
647 1.27 jonathan if (delta.tv_usec >= 500000) {
648 1.27 jonathan delta.tv_usec -= 1000000;
649 1.27 jonathan delta.tv_sec++;
650 1.27 jonathan }
651 1.27 jonathan if (delta.tv_usec < -500000) {
652 1.27 jonathan delta.tv_usec += 1000000;
653 1.27 jonathan delta.tv_sec--;
654 1.27 jonathan }
655 1.27 jonathan if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
656 1.27 jonathan delta.tv_usec > MAXPHASE) ||
657 1.27 jonathan delta.tv_sec < -1 || (delta.tv_sec == -1 &&
658 1.27 jonathan delta.tv_usec < -MAXPHASE)) {
659 1.27 jonathan time = clock_ext;
660 1.27 jonathan delta.tv_sec = 0;
661 1.27 jonathan delta.tv_usec = 0;
662 1.27 jonathan }
663 1.27 jonathan #ifdef HIGHBALL
664 1.27 jonathan clock_cpu = delta.tv_usec;
665 1.27 jonathan #else /* HIGHBALL */
666 1.27 jonathan hardupdate(delta.tv_usec);
667 1.27 jonathan #endif /* HIGHBALL */
668 1.27 jonathan }
669 1.27 jonathan #endif /* EXT_CLOCK */
670 1.27 jonathan }
671 1.27 jonathan
672 1.31 mycroft #endif /* NTP */
673 1.19 cgd
674 1.19 cgd /*
675 1.19 cgd * Process callouts at a very low cpu priority, so we don't keep the
676 1.19 cgd * relatively high clock interrupt priority any longer than necessary.
677 1.19 cgd */
678 1.19 cgd if (needsoft) {
679 1.19 cgd if (CLKF_BASEPRI(frame)) {
680 1.19 cgd /*
681 1.19 cgd * Save the overhead of a software interrupt;
682 1.19 cgd * it will happen as soon as we return, so do it now.
683 1.19 cgd */
684 1.19 cgd (void)splsoftclock();
685 1.19 cgd softclock();
686 1.19 cgd } else
687 1.19 cgd setsoftclock();
688 1.19 cgd }
689 1.19 cgd }
690 1.19 cgd
691 1.19 cgd /*
692 1.19 cgd * Software (low priority) clock interrupt.
693 1.19 cgd * Run periodic events from timeout queue.
694 1.19 cgd */
695 1.19 cgd /*ARGSUSED*/
696 1.19 cgd void
697 1.19 cgd softclock()
698 1.19 cgd {
699 1.19 cgd register struct callout *c;
700 1.19 cgd register void *arg;
701 1.19 cgd register void (*func) __P((void *));
702 1.19 cgd register int s;
703 1.19 cgd
704 1.19 cgd s = splhigh();
705 1.19 cgd while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
706 1.19 cgd func = c->c_func;
707 1.19 cgd arg = c->c_arg;
708 1.19 cgd calltodo.c_next = c->c_next;
709 1.19 cgd c->c_next = callfree;
710 1.19 cgd callfree = c;
711 1.19 cgd splx(s);
712 1.19 cgd (*func)(arg);
713 1.19 cgd (void) splhigh();
714 1.19 cgd }
715 1.19 cgd splx(s);
716 1.19 cgd }
717 1.19 cgd
718 1.19 cgd /*
719 1.19 cgd * timeout --
720 1.19 cgd * Execute a function after a specified length of time.
721 1.19 cgd *
722 1.19 cgd * untimeout --
723 1.19 cgd * Cancel previous timeout function call.
724 1.19 cgd *
725 1.19 cgd * See AT&T BCI Driver Reference Manual for specification. This
726 1.19 cgd * implementation differs from that one in that no identification
727 1.19 cgd * value is returned from timeout, rather, the original arguments
728 1.19 cgd * to timeout are used to identify entries for untimeout.
729 1.19 cgd */
730 1.19 cgd void
731 1.19 cgd timeout(ftn, arg, ticks)
732 1.19 cgd void (*ftn) __P((void *));
733 1.19 cgd void *arg;
734 1.19 cgd register int ticks;
735 1.19 cgd {
736 1.19 cgd register struct callout *new, *p, *t;
737 1.19 cgd register int s;
738 1.19 cgd
739 1.19 cgd if (ticks <= 0)
740 1.19 cgd ticks = 1;
741 1.19 cgd
742 1.19 cgd /* Lock out the clock. */
743 1.19 cgd s = splhigh();
744 1.19 cgd
745 1.19 cgd /* Fill in the next free callout structure. */
746 1.19 cgd if (callfree == NULL)
747 1.19 cgd panic("timeout table full");
748 1.19 cgd new = callfree;
749 1.19 cgd callfree = new->c_next;
750 1.19 cgd new->c_arg = arg;
751 1.19 cgd new->c_func = ftn;
752 1.19 cgd
753 1.19 cgd /*
754 1.19 cgd * The time for each event is stored as a difference from the time
755 1.19 cgd * of the previous event on the queue. Walk the queue, correcting
756 1.19 cgd * the ticks argument for queue entries passed. Correct the ticks
757 1.19 cgd * value for the queue entry immediately after the insertion point
758 1.19 cgd * as well. Watch out for negative c_time values; these represent
759 1.19 cgd * overdue events.
760 1.19 cgd */
761 1.19 cgd for (p = &calltodo;
762 1.19 cgd (t = p->c_next) != NULL && ticks > t->c_time; p = t)
763 1.19 cgd if (t->c_time > 0)
764 1.19 cgd ticks -= t->c_time;
765 1.19 cgd new->c_time = ticks;
766 1.19 cgd if (t != NULL)
767 1.19 cgd t->c_time -= ticks;
768 1.19 cgd
769 1.19 cgd /* Insert the new entry into the queue. */
770 1.19 cgd p->c_next = new;
771 1.19 cgd new->c_next = t;
772 1.19 cgd splx(s);
773 1.19 cgd }
774 1.19 cgd
775 1.19 cgd void
776 1.19 cgd untimeout(ftn, arg)
777 1.19 cgd void (*ftn) __P((void *));
778 1.19 cgd void *arg;
779 1.19 cgd {
780 1.19 cgd register struct callout *p, *t;
781 1.19 cgd register int s;
782 1.19 cgd
783 1.19 cgd s = splhigh();
784 1.19 cgd for (p = &calltodo; (t = p->c_next) != NULL; p = t)
785 1.19 cgd if (t->c_func == ftn && t->c_arg == arg) {
786 1.19 cgd /* Increment next entry's tick count. */
787 1.19 cgd if (t->c_next && t->c_time > 0)
788 1.19 cgd t->c_next->c_time += t->c_time;
789 1.19 cgd
790 1.19 cgd /* Move entry from callout queue to callfree queue. */
791 1.19 cgd p->c_next = t->c_next;
792 1.19 cgd t->c_next = callfree;
793 1.19 cgd callfree = t;
794 1.19 cgd break;
795 1.19 cgd }
796 1.19 cgd splx(s);
797 1.19 cgd }
798 1.19 cgd
799 1.19 cgd /*
800 1.19 cgd * Compute number of hz until specified time. Used to
801 1.19 cgd * compute third argument to timeout() from an absolute time.
802 1.19 cgd */
803 1.19 cgd int
804 1.19 cgd hzto(tv)
805 1.19 cgd struct timeval *tv;
806 1.19 cgd {
807 1.19 cgd register long ticks, sec;
808 1.19 cgd int s;
809 1.19 cgd
810 1.19 cgd /*
811 1.22 cgd * If number of microseconds will fit in 32 bit arithmetic,
812 1.22 cgd * then compute number of microseconds to time and scale to
813 1.19 cgd * ticks. Otherwise just compute number of hz in time, rounding
814 1.22 cgd * times greater than representible to maximum value. (We must
815 1.22 cgd * compute in microseconds, because hz can be greater than 1000,
816 1.22 cgd * and thus tick can be less than one millisecond).
817 1.19 cgd *
818 1.22 cgd * Delta times less than 14 hours can be computed ``exactly''.
819 1.22 cgd * (Note that if hz would yeild a non-integral number of us per
820 1.22 cgd * tick, i.e. tickfix is nonzero, timouts can be a tick longer
821 1.22 cgd * than they should be.) Maximum value for any timeout in 10ms
822 1.22 cgd * ticks is 250 days.
823 1.19 cgd */
824 1.19 cgd s = splhigh();
825 1.19 cgd sec = tv->tv_sec - time.tv_sec;
826 1.22 cgd if (sec <= 0x7fffffff / 1000000 - 1)
827 1.22 cgd ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
828 1.22 cgd (tv->tv_usec - time.tv_usec)) / tick;
829 1.19 cgd else if (sec <= 0x7fffffff / hz)
830 1.19 cgd ticks = sec * hz;
831 1.19 cgd else
832 1.19 cgd ticks = 0x7fffffff;
833 1.19 cgd splx(s);
834 1.19 cgd return (ticks);
835 1.19 cgd }
836 1.19 cgd
837 1.19 cgd /*
838 1.19 cgd * Start profiling on a process.
839 1.19 cgd *
840 1.19 cgd * Kernel profiling passes proc0 which never exits and hence
841 1.19 cgd * keeps the profile clock running constantly.
842 1.19 cgd */
843 1.19 cgd void
844 1.19 cgd startprofclock(p)
845 1.19 cgd register struct proc *p;
846 1.19 cgd {
847 1.19 cgd int s;
848 1.19 cgd
849 1.19 cgd if ((p->p_flag & P_PROFIL) == 0) {
850 1.19 cgd p->p_flag |= P_PROFIL;
851 1.19 cgd if (++profprocs == 1 && stathz != 0) {
852 1.19 cgd s = splstatclock();
853 1.19 cgd psdiv = pscnt = psratio;
854 1.19 cgd setstatclockrate(profhz);
855 1.19 cgd splx(s);
856 1.19 cgd }
857 1.19 cgd }
858 1.19 cgd }
859 1.19 cgd
860 1.19 cgd /*
861 1.19 cgd * Stop profiling on a process.
862 1.19 cgd */
863 1.19 cgd void
864 1.19 cgd stopprofclock(p)
865 1.19 cgd register struct proc *p;
866 1.19 cgd {
867 1.19 cgd int s;
868 1.19 cgd
869 1.19 cgd if (p->p_flag & P_PROFIL) {
870 1.19 cgd p->p_flag &= ~P_PROFIL;
871 1.19 cgd if (--profprocs == 0 && stathz != 0) {
872 1.19 cgd s = splstatclock();
873 1.19 cgd psdiv = pscnt = 1;
874 1.19 cgd setstatclockrate(stathz);
875 1.19 cgd splx(s);
876 1.19 cgd }
877 1.19 cgd }
878 1.19 cgd }
879 1.19 cgd
880 1.19 cgd /*
881 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0,
882 1.19 cgd * do process and kernel statistics.
883 1.19 cgd */
884 1.19 cgd void
885 1.19 cgd statclock(frame)
886 1.19 cgd register struct clockframe *frame;
887 1.19 cgd {
888 1.19 cgd #ifdef GPROF
889 1.19 cgd register struct gmonparam *g;
890 1.36 abrown register int i;
891 1.19 cgd #endif
892 1.19 cgd register struct proc *p;
893 1.19 cgd
894 1.19 cgd if (CLKF_USERMODE(frame)) {
895 1.19 cgd p = curproc;
896 1.19 cgd if (p->p_flag & P_PROFIL)
897 1.19 cgd addupc_intr(p, CLKF_PC(frame), 1);
898 1.19 cgd if (--pscnt > 0)
899 1.19 cgd return;
900 1.19 cgd /*
901 1.19 cgd * Came from user mode; CPU was in user state.
902 1.19 cgd * If this process is being profiled record the tick.
903 1.19 cgd */
904 1.19 cgd p->p_uticks++;
905 1.19 cgd if (p->p_nice > NZERO)
906 1.19 cgd cp_time[CP_NICE]++;
907 1.19 cgd else
908 1.19 cgd cp_time[CP_USER]++;
909 1.19 cgd } else {
910 1.19 cgd #ifdef GPROF
911 1.19 cgd /*
912 1.19 cgd * Kernel statistics are just like addupc_intr, only easier.
913 1.19 cgd */
914 1.19 cgd g = &_gmonparam;
915 1.19 cgd if (g->state == GMON_PROF_ON) {
916 1.19 cgd i = CLKF_PC(frame) - g->lowpc;
917 1.19 cgd if (i < g->textsize) {
918 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount);
919 1.19 cgd g->kcount[i]++;
920 1.19 cgd }
921 1.19 cgd }
922 1.19 cgd #endif
923 1.19 cgd if (--pscnt > 0)
924 1.19 cgd return;
925 1.19 cgd /*
926 1.19 cgd * Came from kernel mode, so we were:
927 1.19 cgd * - handling an interrupt,
928 1.19 cgd * - doing syscall or trap work on behalf of the current
929 1.19 cgd * user process, or
930 1.19 cgd * - spinning in the idle loop.
931 1.19 cgd * Whichever it is, charge the time as appropriate.
932 1.19 cgd * Note that we charge interrupts to the current process,
933 1.19 cgd * regardless of whether they are ``for'' that process,
934 1.19 cgd * so that we know how much of its real time was spent
935 1.19 cgd * in ``non-process'' (i.e., interrupt) work.
936 1.19 cgd */
937 1.19 cgd p = curproc;
938 1.19 cgd if (CLKF_INTR(frame)) {
939 1.19 cgd if (p != NULL)
940 1.19 cgd p->p_iticks++;
941 1.19 cgd cp_time[CP_INTR]++;
942 1.19 cgd } else if (p != NULL) {
943 1.19 cgd p->p_sticks++;
944 1.19 cgd cp_time[CP_SYS]++;
945 1.19 cgd } else
946 1.19 cgd cp_time[CP_IDLE]++;
947 1.19 cgd }
948 1.19 cgd pscnt = psdiv;
949 1.19 cgd
950 1.19 cgd /*
951 1.19 cgd * We adjust the priority of the current process. The priority of
952 1.19 cgd * a process gets worse as it accumulates CPU time. The cpu usage
953 1.19 cgd * estimator (p_estcpu) is increased here. The formula for computing
954 1.19 cgd * priorities (in kern_synch.c) will compute a different value each
955 1.19 cgd * time p_estcpu increases by 4. The cpu usage estimator ramps up
956 1.19 cgd * quite quickly when the process is running (linearly), and decays
957 1.19 cgd * away exponentially, at a rate which is proportionally slower when
958 1.19 cgd * the system is busy. The basic principal is that the system will
959 1.19 cgd * 90% forget that the process used a lot of CPU time in 5 * loadav
960 1.19 cgd * seconds. This causes the system to favor processes which haven't
961 1.19 cgd * run much recently, and to round-robin among other processes.
962 1.19 cgd */
963 1.19 cgd if (p != NULL) {
964 1.19 cgd p->p_cpticks++;
965 1.19 cgd if (++p->p_estcpu == 0)
966 1.19 cgd p->p_estcpu--;
967 1.19 cgd if ((p->p_estcpu & 3) == 0) {
968 1.19 cgd resetpriority(p);
969 1.19 cgd if (p->p_priority >= PUSER)
970 1.19 cgd p->p_priority = p->p_usrpri;
971 1.19 cgd }
972 1.19 cgd }
973 1.19 cgd }
974 1.27 jonathan
975 1.27 jonathan
976 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
977 1.27 jonathan
978 1.27 jonathan /*
979 1.27 jonathan * hardupdate() - local clock update
980 1.27 jonathan *
981 1.27 jonathan * This routine is called by ntp_adjtime() to update the local clock
982 1.27 jonathan * phase and frequency. The implementation is of an adaptive-parameter,
983 1.27 jonathan * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
984 1.27 jonathan * time and frequency offset estimates for each call. If the kernel PPS
985 1.27 jonathan * discipline code is configured (PPS_SYNC), the PPS signal itself
986 1.27 jonathan * determines the new time offset, instead of the calling argument.
987 1.27 jonathan * Presumably, calls to ntp_adjtime() occur only when the caller
988 1.27 jonathan * believes the local clock is valid within some bound (+-128 ms with
989 1.27 jonathan * NTP). If the caller's time is far different than the PPS time, an
990 1.27 jonathan * argument will ensue, and it's not clear who will lose.
991 1.27 jonathan *
992 1.27 jonathan * For uncompensated quartz crystal oscillatores and nominal update
993 1.27 jonathan * intervals less than 1024 s, operation should be in phase-lock mode
994 1.27 jonathan * (STA_FLL = 0), where the loop is disciplined to phase. For update
995 1.27 jonathan * intervals greater than thiss, operation should be in frequency-lock
996 1.27 jonathan * mode (STA_FLL = 1), where the loop is disciplined to frequency.
997 1.27 jonathan *
998 1.27 jonathan * Note: splclock() is in effect.
999 1.27 jonathan */
1000 1.27 jonathan void
1001 1.27 jonathan hardupdate(offset)
1002 1.27 jonathan long offset;
1003 1.27 jonathan {
1004 1.27 jonathan long ltemp, mtemp;
1005 1.27 jonathan
1006 1.27 jonathan if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1007 1.27 jonathan return;
1008 1.27 jonathan ltemp = offset;
1009 1.27 jonathan #ifdef PPS_SYNC
1010 1.27 jonathan if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1011 1.27 jonathan ltemp = pps_offset;
1012 1.27 jonathan #endif /* PPS_SYNC */
1013 1.27 jonathan
1014 1.27 jonathan /*
1015 1.27 jonathan * Scale the phase adjustment and clamp to the operating range.
1016 1.27 jonathan */
1017 1.27 jonathan if (ltemp > MAXPHASE)
1018 1.27 jonathan time_offset = MAXPHASE << SHIFT_UPDATE;
1019 1.27 jonathan else if (ltemp < -MAXPHASE)
1020 1.27 jonathan time_offset = -(MAXPHASE << SHIFT_UPDATE);
1021 1.27 jonathan else
1022 1.27 jonathan time_offset = ltemp << SHIFT_UPDATE;
1023 1.27 jonathan
1024 1.27 jonathan /*
1025 1.27 jonathan * Select whether the frequency is to be controlled and in which
1026 1.27 jonathan * mode (PLL or FLL). Clamp to the operating range. Ugly
1027 1.27 jonathan * multiply/divide should be replaced someday.
1028 1.27 jonathan */
1029 1.27 jonathan if (time_status & STA_FREQHOLD || time_reftime == 0)
1030 1.27 jonathan time_reftime = time.tv_sec;
1031 1.27 jonathan mtemp = time.tv_sec - time_reftime;
1032 1.27 jonathan time_reftime = time.tv_sec;
1033 1.27 jonathan if (time_status & STA_FLL) {
1034 1.27 jonathan if (mtemp >= MINSEC) {
1035 1.27 jonathan ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1036 1.27 jonathan SHIFT_UPDATE));
1037 1.27 jonathan if (ltemp < 0)
1038 1.27 jonathan time_freq -= -ltemp >> SHIFT_KH;
1039 1.27 jonathan else
1040 1.27 jonathan time_freq += ltemp >> SHIFT_KH;
1041 1.27 jonathan }
1042 1.27 jonathan } else {
1043 1.27 jonathan if (mtemp < MAXSEC) {
1044 1.27 jonathan ltemp *= mtemp;
1045 1.27 jonathan if (ltemp < 0)
1046 1.27 jonathan time_freq -= -ltemp >> (time_constant +
1047 1.27 jonathan time_constant + SHIFT_KF -
1048 1.27 jonathan SHIFT_USEC);
1049 1.27 jonathan else
1050 1.27 jonathan time_freq += ltemp >> (time_constant +
1051 1.27 jonathan time_constant + SHIFT_KF -
1052 1.27 jonathan SHIFT_USEC);
1053 1.27 jonathan }
1054 1.27 jonathan }
1055 1.27 jonathan if (time_freq > time_tolerance)
1056 1.27 jonathan time_freq = time_tolerance;
1057 1.27 jonathan else if (time_freq < -time_tolerance)
1058 1.27 jonathan time_freq = -time_tolerance;
1059 1.27 jonathan }
1060 1.27 jonathan
1061 1.27 jonathan #ifdef PPS_SYNC
1062 1.27 jonathan /*
1063 1.27 jonathan * hardpps() - discipline CPU clock oscillator to external PPS signal
1064 1.27 jonathan *
1065 1.27 jonathan * This routine is called at each PPS interrupt in order to discipline
1066 1.27 jonathan * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1067 1.27 jonathan * and leaves it in a handy spot for the hardclock() routine. It
1068 1.27 jonathan * integrates successive PPS phase differences and calculates the
1069 1.27 jonathan * frequency offset. This is used in hardclock() to discipline the CPU
1070 1.27 jonathan * clock oscillator so that intrinsic frequency error is cancelled out.
1071 1.27 jonathan * The code requires the caller to capture the time and hardware counter
1072 1.27 jonathan * value at the on-time PPS signal transition.
1073 1.27 jonathan *
1074 1.27 jonathan * Note that, on some Unix systems, this routine runs at an interrupt
1075 1.27 jonathan * priority level higher than the timer interrupt routine hardclock().
1076 1.27 jonathan * Therefore, the variables used are distinct from the hardclock()
1077 1.27 jonathan * variables, except for certain exceptions: The PPS frequency pps_freq
1078 1.27 jonathan * and phase pps_offset variables are determined by this routine and
1079 1.27 jonathan * updated atomically. The time_tolerance variable can be considered a
1080 1.27 jonathan * constant, since it is infrequently changed, and then only when the
1081 1.27 jonathan * PPS signal is disabled. The watchdog counter pps_valid is updated
1082 1.27 jonathan * once per second by hardclock() and is atomically cleared in this
1083 1.27 jonathan * routine.
1084 1.27 jonathan */
1085 1.27 jonathan void
1086 1.27 jonathan hardpps(tvp, usec)
1087 1.27 jonathan struct timeval *tvp; /* time at PPS */
1088 1.27 jonathan long usec; /* hardware counter at PPS */
1089 1.27 jonathan {
1090 1.27 jonathan long u_usec, v_usec, bigtick;
1091 1.27 jonathan long cal_sec, cal_usec;
1092 1.27 jonathan
1093 1.27 jonathan /*
1094 1.27 jonathan * An occasional glitch can be produced when the PPS interrupt
1095 1.27 jonathan * occurs in the hardclock() routine before the time variable is
1096 1.27 jonathan * updated. Here the offset is discarded when the difference
1097 1.27 jonathan * between it and the last one is greater than tick/2, but not
1098 1.27 jonathan * if the interval since the first discard exceeds 30 s.
1099 1.27 jonathan */
1100 1.27 jonathan time_status |= STA_PPSSIGNAL;
1101 1.27 jonathan time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1102 1.27 jonathan pps_valid = 0;
1103 1.27 jonathan u_usec = -tvp->tv_usec;
1104 1.27 jonathan if (u_usec < -500000)
1105 1.27 jonathan u_usec += 1000000;
1106 1.27 jonathan v_usec = pps_offset - u_usec;
1107 1.27 jonathan if (v_usec < 0)
1108 1.27 jonathan v_usec = -v_usec;
1109 1.27 jonathan if (v_usec > (tick >> 1)) {
1110 1.27 jonathan if (pps_glitch > MAXGLITCH) {
1111 1.27 jonathan pps_glitch = 0;
1112 1.27 jonathan pps_tf[2] = u_usec;
1113 1.27 jonathan pps_tf[1] = u_usec;
1114 1.27 jonathan } else {
1115 1.27 jonathan pps_glitch++;
1116 1.27 jonathan u_usec = pps_offset;
1117 1.27 jonathan }
1118 1.27 jonathan } else
1119 1.27 jonathan pps_glitch = 0;
1120 1.27 jonathan
1121 1.27 jonathan /*
1122 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1123 1.27 jonathan * time. The median sample becomes the time offset estimate; the
1124 1.27 jonathan * difference between the other two samples becomes the time
1125 1.27 jonathan * dispersion (jitter) estimate.
1126 1.27 jonathan */
1127 1.27 jonathan pps_tf[2] = pps_tf[1];
1128 1.27 jonathan pps_tf[1] = pps_tf[0];
1129 1.27 jonathan pps_tf[0] = u_usec;
1130 1.27 jonathan if (pps_tf[0] > pps_tf[1]) {
1131 1.27 jonathan if (pps_tf[1] > pps_tf[2]) {
1132 1.27 jonathan pps_offset = pps_tf[1]; /* 0 1 2 */
1133 1.27 jonathan v_usec = pps_tf[0] - pps_tf[2];
1134 1.27 jonathan } else if (pps_tf[2] > pps_tf[0]) {
1135 1.27 jonathan pps_offset = pps_tf[0]; /* 2 0 1 */
1136 1.27 jonathan v_usec = pps_tf[2] - pps_tf[1];
1137 1.27 jonathan } else {
1138 1.27 jonathan pps_offset = pps_tf[2]; /* 0 2 1 */
1139 1.27 jonathan v_usec = pps_tf[0] - pps_tf[1];
1140 1.27 jonathan }
1141 1.27 jonathan } else {
1142 1.27 jonathan if (pps_tf[1] < pps_tf[2]) {
1143 1.27 jonathan pps_offset = pps_tf[1]; /* 2 1 0 */
1144 1.27 jonathan v_usec = pps_tf[2] - pps_tf[0];
1145 1.27 jonathan } else if (pps_tf[2] < pps_tf[0]) {
1146 1.27 jonathan pps_offset = pps_tf[0]; /* 1 0 2 */
1147 1.27 jonathan v_usec = pps_tf[1] - pps_tf[2];
1148 1.27 jonathan } else {
1149 1.27 jonathan pps_offset = pps_tf[2]; /* 1 2 0 */
1150 1.27 jonathan v_usec = pps_tf[1] - pps_tf[0];
1151 1.27 jonathan }
1152 1.27 jonathan }
1153 1.27 jonathan if (v_usec > MAXTIME)
1154 1.27 jonathan pps_jitcnt++;
1155 1.27 jonathan v_usec = (v_usec << PPS_AVG) - pps_jitter;
1156 1.27 jonathan if (v_usec < 0)
1157 1.27 jonathan pps_jitter -= -v_usec >> PPS_AVG;
1158 1.27 jonathan else
1159 1.27 jonathan pps_jitter += v_usec >> PPS_AVG;
1160 1.27 jonathan if (pps_jitter > (MAXTIME >> 1))
1161 1.27 jonathan time_status |= STA_PPSJITTER;
1162 1.27 jonathan
1163 1.27 jonathan /*
1164 1.27 jonathan * During the calibration interval adjust the starting time when
1165 1.27 jonathan * the tick overflows. At the end of the interval compute the
1166 1.27 jonathan * duration of the interval and the difference of the hardware
1167 1.27 jonathan * counters at the beginning and end of the interval. This code
1168 1.27 jonathan * is deliciously complicated by the fact valid differences may
1169 1.27 jonathan * exceed the value of tick when using long calibration
1170 1.27 jonathan * intervals and small ticks. Note that the counter can be
1171 1.27 jonathan * greater than tick if caught at just the wrong instant, but
1172 1.27 jonathan * the values returned and used here are correct.
1173 1.27 jonathan */
1174 1.27 jonathan bigtick = (long)tick << SHIFT_USEC;
1175 1.27 jonathan pps_usec -= pps_freq;
1176 1.27 jonathan if (pps_usec >= bigtick)
1177 1.27 jonathan pps_usec -= bigtick;
1178 1.27 jonathan if (pps_usec < 0)
1179 1.27 jonathan pps_usec += bigtick;
1180 1.27 jonathan pps_time.tv_sec++;
1181 1.27 jonathan pps_count++;
1182 1.27 jonathan if (pps_count < (1 << pps_shift))
1183 1.27 jonathan return;
1184 1.27 jonathan pps_count = 0;
1185 1.27 jonathan pps_calcnt++;
1186 1.27 jonathan u_usec = usec << SHIFT_USEC;
1187 1.27 jonathan v_usec = pps_usec - u_usec;
1188 1.27 jonathan if (v_usec >= bigtick >> 1)
1189 1.27 jonathan v_usec -= bigtick;
1190 1.27 jonathan if (v_usec < -(bigtick >> 1))
1191 1.27 jonathan v_usec += bigtick;
1192 1.27 jonathan if (v_usec < 0)
1193 1.27 jonathan v_usec = -(-v_usec >> pps_shift);
1194 1.27 jonathan else
1195 1.27 jonathan v_usec = v_usec >> pps_shift;
1196 1.27 jonathan pps_usec = u_usec;
1197 1.27 jonathan cal_sec = tvp->tv_sec;
1198 1.27 jonathan cal_usec = tvp->tv_usec;
1199 1.27 jonathan cal_sec -= pps_time.tv_sec;
1200 1.27 jonathan cal_usec -= pps_time.tv_usec;
1201 1.27 jonathan if (cal_usec < 0) {
1202 1.27 jonathan cal_usec += 1000000;
1203 1.27 jonathan cal_sec--;
1204 1.27 jonathan }
1205 1.27 jonathan pps_time = *tvp;
1206 1.27 jonathan
1207 1.27 jonathan /*
1208 1.27 jonathan * Check for lost interrupts, noise, excessive jitter and
1209 1.27 jonathan * excessive frequency error. The number of timer ticks during
1210 1.27 jonathan * the interval may vary +-1 tick. Add to this a margin of one
1211 1.27 jonathan * tick for the PPS signal jitter and maximum frequency
1212 1.27 jonathan * deviation. If the limits are exceeded, the calibration
1213 1.27 jonathan * interval is reset to the minimum and we start over.
1214 1.27 jonathan */
1215 1.27 jonathan u_usec = (long)tick << 1;
1216 1.27 jonathan if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1217 1.27 jonathan || (cal_sec == 0 && cal_usec < u_usec))
1218 1.27 jonathan || v_usec > time_tolerance || v_usec < -time_tolerance) {
1219 1.27 jonathan pps_errcnt++;
1220 1.27 jonathan pps_shift = PPS_SHIFT;
1221 1.27 jonathan pps_intcnt = 0;
1222 1.27 jonathan time_status |= STA_PPSERROR;
1223 1.27 jonathan return;
1224 1.27 jonathan }
1225 1.27 jonathan
1226 1.27 jonathan /*
1227 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1228 1.27 jonathan * frequency. The median sample becomes the frequency offset
1229 1.27 jonathan * estimate; the difference between the other two samples
1230 1.27 jonathan * becomes the frequency dispersion (stability) estimate.
1231 1.27 jonathan */
1232 1.27 jonathan pps_ff[2] = pps_ff[1];
1233 1.27 jonathan pps_ff[1] = pps_ff[0];
1234 1.27 jonathan pps_ff[0] = v_usec;
1235 1.27 jonathan if (pps_ff[0] > pps_ff[1]) {
1236 1.27 jonathan if (pps_ff[1] > pps_ff[2]) {
1237 1.27 jonathan u_usec = pps_ff[1]; /* 0 1 2 */
1238 1.27 jonathan v_usec = pps_ff[0] - pps_ff[2];
1239 1.27 jonathan } else if (pps_ff[2] > pps_ff[0]) {
1240 1.27 jonathan u_usec = pps_ff[0]; /* 2 0 1 */
1241 1.27 jonathan v_usec = pps_ff[2] - pps_ff[1];
1242 1.27 jonathan } else {
1243 1.27 jonathan u_usec = pps_ff[2]; /* 0 2 1 */
1244 1.27 jonathan v_usec = pps_ff[0] - pps_ff[1];
1245 1.27 jonathan }
1246 1.27 jonathan } else {
1247 1.27 jonathan if (pps_ff[1] < pps_ff[2]) {
1248 1.27 jonathan u_usec = pps_ff[1]; /* 2 1 0 */
1249 1.27 jonathan v_usec = pps_ff[2] - pps_ff[0];
1250 1.27 jonathan } else if (pps_ff[2] < pps_ff[0]) {
1251 1.27 jonathan u_usec = pps_ff[0]; /* 1 0 2 */
1252 1.27 jonathan v_usec = pps_ff[1] - pps_ff[2];
1253 1.27 jonathan } else {
1254 1.27 jonathan u_usec = pps_ff[2]; /* 1 2 0 */
1255 1.27 jonathan v_usec = pps_ff[1] - pps_ff[0];
1256 1.27 jonathan }
1257 1.27 jonathan }
1258 1.27 jonathan
1259 1.27 jonathan /*
1260 1.27 jonathan * Here the frequency dispersion (stability) is updated. If it
1261 1.27 jonathan * is less than one-fourth the maximum (MAXFREQ), the frequency
1262 1.27 jonathan * offset is updated as well, but clamped to the tolerance. It
1263 1.27 jonathan * will be processed later by the hardclock() routine.
1264 1.27 jonathan */
1265 1.27 jonathan v_usec = (v_usec >> 1) - pps_stabil;
1266 1.27 jonathan if (v_usec < 0)
1267 1.27 jonathan pps_stabil -= -v_usec >> PPS_AVG;
1268 1.27 jonathan else
1269 1.27 jonathan pps_stabil += v_usec >> PPS_AVG;
1270 1.27 jonathan if (pps_stabil > MAXFREQ >> 2) {
1271 1.27 jonathan pps_stbcnt++;
1272 1.27 jonathan time_status |= STA_PPSWANDER;
1273 1.27 jonathan return;
1274 1.27 jonathan }
1275 1.27 jonathan if (time_status & STA_PPSFREQ) {
1276 1.27 jonathan if (u_usec < 0) {
1277 1.27 jonathan pps_freq -= -u_usec >> PPS_AVG;
1278 1.27 jonathan if (pps_freq < -time_tolerance)
1279 1.27 jonathan pps_freq = -time_tolerance;
1280 1.27 jonathan u_usec = -u_usec;
1281 1.27 jonathan } else {
1282 1.27 jonathan pps_freq += u_usec >> PPS_AVG;
1283 1.27 jonathan if (pps_freq > time_tolerance)
1284 1.27 jonathan pps_freq = time_tolerance;
1285 1.27 jonathan }
1286 1.27 jonathan }
1287 1.27 jonathan
1288 1.27 jonathan /*
1289 1.27 jonathan * Here the calibration interval is adjusted. If the maximum
1290 1.27 jonathan * time difference is greater than tick / 4, reduce the interval
1291 1.27 jonathan * by half. If this is not the case for four consecutive
1292 1.27 jonathan * intervals, double the interval.
1293 1.27 jonathan */
1294 1.27 jonathan if (u_usec << pps_shift > bigtick >> 2) {
1295 1.27 jonathan pps_intcnt = 0;
1296 1.27 jonathan if (pps_shift > PPS_SHIFT)
1297 1.27 jonathan pps_shift--;
1298 1.27 jonathan } else if (pps_intcnt >= 4) {
1299 1.27 jonathan pps_intcnt = 0;
1300 1.27 jonathan if (pps_shift < PPS_SHIFTMAX)
1301 1.27 jonathan pps_shift++;
1302 1.27 jonathan } else
1303 1.27 jonathan pps_intcnt++;
1304 1.27 jonathan }
1305 1.27 jonathan #endif /* PPS_SYNC */
1306 1.27 jonathan #endif /* NTP */
1307 1.27 jonathan
1308 1.19 cgd
1309 1.19 cgd /*
1310 1.19 cgd * Return information about system clocks.
1311 1.19 cgd */
1312 1.25 christos int
1313 1.19 cgd sysctl_clockrate(where, sizep)
1314 1.19 cgd register char *where;
1315 1.19 cgd size_t *sizep;
1316 1.19 cgd {
1317 1.19 cgd struct clockinfo clkinfo;
1318 1.19 cgd
1319 1.19 cgd /*
1320 1.19 cgd * Construct clockinfo structure.
1321 1.19 cgd */
1322 1.20 mycroft clkinfo.tick = tick;
1323 1.20 mycroft clkinfo.tickadj = tickadj;
1324 1.19 cgd clkinfo.hz = hz;
1325 1.19 cgd clkinfo.profhz = profhz;
1326 1.19 cgd clkinfo.stathz = stathz ? stathz : hz;
1327 1.19 cgd return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1328 1.19 cgd }
1329 1.19 cgd
1330 1.19 cgd #ifdef DDB
1331 1.21 mycroft #include <machine/db_machdep.h>
1332 1.21 mycroft
1333 1.25 christos #include <ddb/db_interface.h>
1334 1.19 cgd #include <ddb/db_access.h>
1335 1.19 cgd #include <ddb/db_sym.h>
1336 1.25 christos #include <ddb/db_output.h>
1337 1.19 cgd
1338 1.25 christos void db_show_callout(addr, haddr, count, modif)
1339 1.25 christos db_expr_t addr;
1340 1.25 christos int haddr;
1341 1.25 christos db_expr_t count;
1342 1.25 christos char *modif;
1343 1.19 cgd {
1344 1.19 cgd register struct callout *p1;
1345 1.19 cgd register int cum;
1346 1.19 cgd register int s;
1347 1.19 cgd db_expr_t offset;
1348 1.19 cgd char *name;
1349 1.19 cgd
1350 1.37 cgd db_printf(" cum ticks arg func\n");
1351 1.19 cgd s = splhigh();
1352 1.19 cgd for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
1353 1.19 cgd register int t = p1->c_time;
1354 1.19 cgd
1355 1.19 cgd if (t > 0)
1356 1.19 cgd cum += t;
1357 1.19 cgd
1358 1.21 mycroft db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
1359 1.19 cgd if (name == NULL)
1360 1.19 cgd name = "?";
1361 1.19 cgd
1362 1.37 cgd db_printf("%9d %9d %p %s (%p)\n",
1363 1.19 cgd cum, t, p1->c_arg, name, p1->c_func);
1364 1.19 cgd }
1365 1.19 cgd splx(s);
1366 1.19 cgd }
1367 1.19 cgd #endif
1368