Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.47.2.1
      1  1.47.2.1       cgd /*	$NetBSD: kern_clock.c,v 1.47.2.1 1999/10/10 23:21:19 cgd Exp $	*/
      2      1.19       cgd 
      3      1.19       cgd /*-
      4      1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
      5      1.19       cgd  *	The Regents of the University of California.  All rights reserved.
      6      1.19       cgd  * (c) UNIX System Laboratories, Inc.
      7      1.19       cgd  * All or some portions of this file are derived from material licensed
      8      1.19       cgd  * to the University of California by American Telephone and Telegraph
      9      1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10      1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     11      1.19       cgd  *
     12      1.19       cgd  * Redistribution and use in source and binary forms, with or without
     13      1.19       cgd  * modification, are permitted provided that the following conditions
     14      1.19       cgd  * are met:
     15      1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     16      1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     17      1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     18      1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     19      1.19       cgd  *    documentation and/or other materials provided with the distribution.
     20      1.19       cgd  * 3. All advertising materials mentioning features or use of this software
     21      1.19       cgd  *    must display the following acknowledgement:
     22      1.19       cgd  *	This product includes software developed by the University of
     23      1.19       cgd  *	California, Berkeley and its contributors.
     24      1.19       cgd  * 4. Neither the name of the University nor the names of its contributors
     25      1.19       cgd  *    may be used to endorse or promote products derived from this software
     26      1.19       cgd  *    without specific prior written permission.
     27      1.19       cgd  *
     28      1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29      1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30      1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31      1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32      1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33      1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34      1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35      1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36      1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37      1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38      1.19       cgd  * SUCH DAMAGE.
     39      1.19       cgd  *
     40      1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     41      1.19       cgd  */
     42      1.44  jonathan 
     43      1.44  jonathan #include "opt_ntp.h"
     44      1.19       cgd 
     45      1.19       cgd #include <sys/param.h>
     46      1.19       cgd #include <sys/systm.h>
     47      1.19       cgd #include <sys/dkstat.h>
     48      1.19       cgd #include <sys/callout.h>
     49      1.19       cgd #include <sys/kernel.h>
     50      1.19       cgd #include <sys/proc.h>
     51      1.19       cgd #include <sys/resourcevar.h>
     52      1.25  christos #include <sys/signalvar.h>
     53      1.26  christos #include <vm/vm.h>
     54      1.26  christos #include <sys/sysctl.h>
     55      1.27  jonathan #include <sys/timex.h>
     56      1.45      ross #include <sys/sched.h>
     57      1.19       cgd 
     58      1.19       cgd #include <machine/cpu.h>
     59      1.25  christos 
     60      1.19       cgd #ifdef GPROF
     61      1.19       cgd #include <sys/gmon.h>
     62      1.19       cgd #endif
     63      1.19       cgd 
     64      1.19       cgd /*
     65      1.19       cgd  * Clock handling routines.
     66      1.19       cgd  *
     67      1.19       cgd  * This code is written to operate with two timers that run independently of
     68      1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
     69      1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
     70      1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
     71      1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
     72      1.19       cgd  * the randomization prevents an adversary from always giving up the cpu
     73      1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
     74      1.19       cgd  * cpu ticks.  The mean frequency of the second timer is stathz.
     75      1.19       cgd  *
     76      1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
     77      1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
     78      1.19       cgd  * do not do it unless absolutely necessary.
     79      1.19       cgd  *
     80      1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
     81      1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
     82      1.19       cgd  * be an integral multiple of stathz.
     83      1.19       cgd  *
     84      1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
     85      1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
     86      1.19       cgd  */
     87      1.19       cgd 
     88      1.19       cgd /*
     89      1.19       cgd  * TODO:
     90      1.19       cgd  *	allocate more timeout table slots when table overflows.
     91      1.19       cgd  */
     92      1.19       cgd 
     93      1.27  jonathan 
     94      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
     95      1.27  jonathan /*
     96      1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
     97      1.27  jonathan  *
     98      1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
     99      1.27  jonathan  * call.
    100      1.27  jonathan  *
    101      1.27  jonathan  * time_state shows the state of the system clock, with values defined
    102      1.27  jonathan  * in the timex.h header file.
    103      1.27  jonathan  *
    104      1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    105      1.27  jonathan  * in the timex.h header file.
    106      1.27  jonathan  *
    107      1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    108      1.27  jonathan  * increments.
    109      1.27  jonathan  *
    110      1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    111      1.27  jonathan  *
    112      1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    113      1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    114      1.27  jonathan  * in principle it could change as result of the presence of external
    115      1.27  jonathan  * discipline signals, for instance.
    116      1.27  jonathan  *
    117      1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    118      1.27  jonathan  * in cases where a precision clock counter or external clock is
    119      1.27  jonathan  * available, the resolution can be much less than this and depend on
    120      1.27  jonathan  * whether the external clock is working or not.
    121      1.27  jonathan  *
    122      1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    123      1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    124      1.27  jonathan  * growth.
    125      1.27  jonathan  *
    126      1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    127      1.27  jonathan  * otherwise not used by the kernel.
    128      1.27  jonathan  */
    129      1.27  jonathan int time_state = TIME_OK;	/* clock state */
    130      1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    131      1.27  jonathan long time_offset = 0;		/* time offset (us) */
    132      1.27  jonathan long time_constant = 0;		/* pll time constant */
    133      1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    134      1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    135      1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    136      1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    137      1.27  jonathan 
    138      1.27  jonathan /*
    139      1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    140      1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    141      1.27  jonathan  * factors are defined in the timex.h header file.
    142      1.27  jonathan  *
    143      1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    144      1.27  jonathan  * increment, respectively, of the kernel time variable.
    145      1.27  jonathan  *
    146      1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    147      1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    148      1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    149      1.27  jonathan  * daemon.
    150      1.27  jonathan  *
    151      1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    152      1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    153      1.27  jonathan  * seconds rollover.
    154      1.27  jonathan  *
    155      1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    156      1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    157      1.27  jonathan  * and to increase the time_maxerror as the time since last update
    158      1.27  jonathan  * increases.
    159      1.27  jonathan  */
    160      1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    161      1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    162      1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    163      1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    164      1.27  jonathan 
    165      1.27  jonathan #ifdef PPS_SYNC
    166      1.27  jonathan /*
    167      1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    168      1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    169      1.27  jonathan  * timex.h header file.
    170      1.27  jonathan  *
    171      1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    172      1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    173      1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    174      1.27  jonathan  * two.
    175      1.27  jonathan  *
    176      1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    177      1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    178      1.27  jonathan  * this filter.
    179      1.27  jonathan  *
    180      1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    181      1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    182      1.27  jonathan  * by this filter.
    183      1.27  jonathan  *
    184      1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    185      1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    186      1.27  jonathan  * contents plus the time_tv.usec as usual.
    187      1.27  jonathan  *
    188      1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    189      1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    190      1.27  jonathan  * PPS signal be lost.
    191      1.27  jonathan  *
    192      1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    193      1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    194      1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    195      1.27  jonathan  * PPS interrupt and timer interrupt.
    196      1.27  jonathan  *
    197      1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    198      1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    199      1.27  jonathan  */
    200      1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    201      1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    202      1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    203      1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    204      1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    205      1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    206      1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    207      1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    208      1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    209      1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    210      1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    211      1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    212      1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    213      1.27  jonathan 
    214      1.27  jonathan /*
    215      1.27  jonathan  * PPS signal quality monitors
    216      1.27  jonathan  *
    217      1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    218      1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    219      1.27  jonathan  * (100 us).
    220      1.27  jonathan  *
    221      1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    222      1.27  jonathan  * variable from 4 s to 256 s.
    223      1.27  jonathan  *
    224      1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    225      1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    226      1.27  jonathan  * calibration interval jitter exceeds two ticks.
    227      1.27  jonathan  *
    228      1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    229      1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    230      1.27  jonathan  */
    231      1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    232      1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    233      1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    234      1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    235      1.27  jonathan #endif /* PPS_SYNC */
    236      1.27  jonathan 
    237      1.27  jonathan #ifdef EXT_CLOCK
    238      1.27  jonathan /*
    239      1.27  jonathan  * External clock definitions
    240      1.27  jonathan  *
    241      1.27  jonathan  * The following definitions and declarations are used only if an
    242      1.27  jonathan  * external clock is configured on the system.
    243      1.27  jonathan  */
    244      1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    245      1.27  jonathan 
    246      1.27  jonathan /*
    247      1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    248      1.27  jonathan  * interrupt and decremented once each second.
    249      1.27  jonathan  */
    250      1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    251      1.27  jonathan 
    252      1.27  jonathan #ifdef HIGHBALL
    253      1.27  jonathan /*
    254      1.27  jonathan  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    255      1.27  jonathan  * interface. The clock_offset variable defines the offset between
    256      1.27  jonathan  * system time and the HIGBALL counters. The clock_cpu variable contains
    257      1.27  jonathan  * the offset between the system clock and the HIGHBALL clock for use in
    258      1.27  jonathan  * disciplining the kernel time variable.
    259      1.27  jonathan  */
    260      1.27  jonathan extern struct timeval clock_offset; /* Highball clock offset */
    261      1.27  jonathan long clock_cpu = 0;		/* CPU clock adjust */
    262      1.27  jonathan #endif /* HIGHBALL */
    263      1.27  jonathan #endif /* EXT_CLOCK */
    264      1.27  jonathan #endif /* NTP */
    265      1.27  jonathan 
    266      1.27  jonathan 
    267      1.19       cgd /*
    268      1.19       cgd  * Bump a timeval by a small number of usec's.
    269      1.19       cgd  */
    270      1.19       cgd #define BUMPTIME(t, usec) { \
    271      1.19       cgd 	register volatile struct timeval *tp = (t); \
    272      1.19       cgd 	register long us; \
    273      1.19       cgd  \
    274      1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    275      1.19       cgd 	if (us >= 1000000) { \
    276      1.19       cgd 		tp->tv_usec = us - 1000000; \
    277      1.19       cgd 		tp->tv_sec++; \
    278      1.19       cgd 	} \
    279      1.19       cgd }
    280      1.19       cgd 
    281      1.19       cgd int	stathz;
    282      1.19       cgd int	profhz;
    283      1.19       cgd int	profprocs;
    284      1.19       cgd int	ticks;
    285      1.22       cgd static int psdiv, pscnt;		/* prof => stat divider */
    286      1.22       cgd int	psratio;			/* ratio: prof / stat */
    287      1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    288      1.34    briggs #ifndef NTP
    289      1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    290      1.34    briggs #else
    291      1.27  jonathan int	fixtick;			/* used by NTP for same */
    292      1.31   mycroft int	shifthz;
    293      1.31   mycroft #endif
    294      1.19       cgd 
    295      1.19       cgd volatile struct	timeval time;
    296      1.19       cgd volatile struct	timeval mono_time;
    297      1.19       cgd 
    298      1.19       cgd /*
    299      1.19       cgd  * Initialize clock frequencies and start both clocks running.
    300      1.19       cgd  */
    301      1.19       cgd void
    302      1.19       cgd initclocks()
    303      1.19       cgd {
    304      1.19       cgd 	register int i;
    305      1.19       cgd 
    306      1.19       cgd 	/*
    307      1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    308      1.19       cgd 	 * code do its bit.
    309      1.19       cgd 	 */
    310      1.19       cgd 	psdiv = pscnt = 1;
    311      1.19       cgd 	cpu_initclocks();
    312      1.19       cgd 
    313      1.19       cgd 	/*
    314      1.19       cgd 	 * Compute profhz/stathz, and fix profhz if needed.
    315      1.19       cgd 	 */
    316      1.19       cgd 	i = stathz ? stathz : hz;
    317      1.19       cgd 	if (profhz == 0)
    318      1.19       cgd 		profhz = i;
    319      1.19       cgd 	psratio = profhz / i;
    320      1.31   mycroft 
    321      1.31   mycroft #ifdef NTP
    322      1.31   mycroft 	switch (hz) {
    323      1.31   mycroft 	case 60:
    324      1.31   mycroft 	case 64:
    325      1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    326      1.31   mycroft 		break;
    327      1.31   mycroft 	case 96:
    328      1.31   mycroft 	case 100:
    329      1.31   mycroft 	case 128:
    330      1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    331      1.31   mycroft 		break;
    332      1.31   mycroft 	case 256:
    333      1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    334      1.41       tls 		break;
    335      1.41       tls 	case 512:
    336      1.41       tls 		shifthz = SHIFT_SCALE - 9;
    337      1.31   mycroft 		break;
    338      1.43      ross 	case 1000:
    339      1.31   mycroft 	case 1024:
    340      1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    341      1.31   mycroft 		break;
    342      1.31   mycroft 	default:
    343      1.31   mycroft 		panic("weird hz");
    344  1.47.2.1       cgd 	}
    345  1.47.2.1       cgd 	if (fixtick == 0) {
    346  1.47.2.1       cgd 		/* give MD code a chance to set this to a better value; but, if it doesn't, we should.. */
    347  1.47.2.1       cgd 		fixtick = (1000000 - (hz*tick));
    348      1.31   mycroft 	}
    349      1.31   mycroft #endif
    350      1.19       cgd }
    351      1.19       cgd 
    352      1.19       cgd /*
    353      1.19       cgd  * The real-time timer, interrupting hz times per second.
    354      1.19       cgd  */
    355      1.19       cgd void
    356      1.19       cgd hardclock(frame)
    357      1.19       cgd 	register struct clockframe *frame;
    358      1.19       cgd {
    359      1.19       cgd 	register struct callout *p1;
    360      1.19       cgd 	register struct proc *p;
    361      1.19       cgd 	register int delta, needsoft;
    362      1.19       cgd 	extern int tickdelta;
    363      1.19       cgd 	extern long timedelta;
    364      1.30   mycroft #ifdef NTP
    365      1.29  christos 	register int time_update;
    366      1.29  christos 	register int ltemp;
    367      1.29  christos #endif
    368      1.19       cgd 
    369      1.19       cgd 	/*
    370      1.19       cgd 	 * Update real-time timeout queue.
    371      1.19       cgd 	 * At front of queue are some number of events which are ``due''.
    372      1.19       cgd 	 * The time to these is <= 0 and if negative represents the
    373      1.19       cgd 	 * number of ticks which have passed since it was supposed to happen.
    374      1.19       cgd 	 * The rest of the q elements (times > 0) are events yet to happen,
    375      1.19       cgd 	 * where the time for each is given as a delta from the previous.
    376      1.19       cgd 	 * Decrementing just the first of these serves to decrement the time
    377      1.19       cgd 	 * to all events.
    378      1.19       cgd 	 */
    379      1.19       cgd 	needsoft = 0;
    380      1.19       cgd 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
    381      1.19       cgd 		if (--p1->c_time > 0)
    382      1.19       cgd 			break;
    383      1.19       cgd 		needsoft = 1;
    384      1.19       cgd 		if (p1->c_time == 0)
    385      1.19       cgd 			break;
    386      1.19       cgd 	}
    387      1.19       cgd 
    388      1.19       cgd 	p = curproc;
    389      1.19       cgd 	if (p) {
    390      1.19       cgd 		register struct pstats *pstats;
    391      1.19       cgd 
    392      1.19       cgd 		/*
    393      1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    394      1.19       cgd 		 */
    395      1.19       cgd 		pstats = p->p_stats;
    396      1.19       cgd 		if (CLKF_USERMODE(frame) &&
    397      1.19       cgd 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    398      1.19       cgd 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    399      1.19       cgd 			psignal(p, SIGVTALRM);
    400      1.19       cgd 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    401      1.19       cgd 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    402      1.19       cgd 			psignal(p, SIGPROF);
    403      1.19       cgd 	}
    404      1.19       cgd 
    405      1.19       cgd 	/*
    406      1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    407      1.19       cgd 	 */
    408      1.19       cgd 	if (stathz == 0)
    409      1.19       cgd 		statclock(frame);
    410      1.19       cgd 
    411      1.19       cgd 	/*
    412      1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    413      1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    414      1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    415      1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    416      1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    417      1.22       cgd 	 * ``tickdelta'' may also be added in.
    418      1.19       cgd 	 */
    419      1.19       cgd 	ticks++;
    420      1.22       cgd 	delta = tick;
    421      1.27  jonathan 
    422      1.27  jonathan #ifndef NTP
    423      1.22       cgd 	if (tickfix) {
    424      1.39       cgd 		tickfixcnt += tickfix;
    425      1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    426      1.39       cgd 			delta++;
    427      1.39       cgd 			tickfixcnt -= tickfixinterval;
    428      1.22       cgd 		}
    429      1.22       cgd 	}
    430      1.27  jonathan #endif /* !NTP */
    431      1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    432      1.22       cgd 	if (timedelta != 0) {
    433      1.38       cgd 		delta += tickdelta;
    434      1.19       cgd 		timedelta -= tickdelta;
    435      1.19       cgd 	}
    436      1.27  jonathan 
    437      1.27  jonathan #ifdef notyet
    438      1.27  jonathan 	microset();
    439      1.27  jonathan #endif
    440      1.27  jonathan 
    441      1.27  jonathan #ifndef NTP
    442      1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    443      1.27  jonathan #endif
    444      1.19       cgd 	BUMPTIME(&mono_time, delta);
    445      1.27  jonathan 
    446      1.31   mycroft #ifdef NTP
    447      1.30   mycroft 	time_update = delta;
    448      1.27  jonathan 
    449      1.27  jonathan 	/*
    450      1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    451      1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    452      1.27  jonathan 	 * (time_update).
    453      1.27  jonathan 	 */
    454      1.27  jonathan 	time_phase += time_adj;
    455      1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    456      1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    457      1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    458      1.27  jonathan 		time_update -= ltemp;
    459      1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    460      1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    461      1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    462      1.27  jonathan 		time_update += ltemp;
    463      1.27  jonathan 	}
    464      1.27  jonathan 
    465      1.27  jonathan #ifdef HIGHBALL
    466      1.27  jonathan 	/*
    467      1.27  jonathan 	 * If the HIGHBALL board is installed, we need to adjust the
    468      1.27  jonathan 	 * external clock offset in order to close the hardware feedback
    469      1.27  jonathan 	 * loop. This will adjust the external clock phase and frequency
    470      1.27  jonathan 	 * in small amounts. The additional phase noise and frequency
    471      1.27  jonathan 	 * wander this causes should be minimal. We also need to
    472      1.27  jonathan 	 * discipline the kernel time variable, since the PLL is used to
    473      1.27  jonathan 	 * discipline the external clock. If the Highball board is not
    474      1.27  jonathan 	 * present, we discipline kernel time with the PLL as usual. We
    475      1.27  jonathan 	 * assume that the external clock phase adjustment (time_update)
    476      1.27  jonathan 	 * and kernel phase adjustment (clock_cpu) are less than the
    477      1.27  jonathan 	 * value of tick.
    478      1.27  jonathan 	 */
    479      1.27  jonathan 	clock_offset.tv_usec += time_update;
    480      1.27  jonathan 	if (clock_offset.tv_usec >= 1000000) {
    481      1.27  jonathan 		clock_offset.tv_sec++;
    482      1.27  jonathan 		clock_offset.tv_usec -= 1000000;
    483      1.27  jonathan 	}
    484      1.27  jonathan 	if (clock_offset.tv_usec < 0) {
    485      1.27  jonathan 		clock_offset.tv_sec--;
    486      1.27  jonathan 		clock_offset.tv_usec += 1000000;
    487      1.27  jonathan 	}
    488      1.27  jonathan 	time.tv_usec += clock_cpu;
    489      1.27  jonathan 	clock_cpu = 0;
    490      1.27  jonathan #else
    491      1.27  jonathan 	time.tv_usec += time_update;
    492      1.27  jonathan #endif /* HIGHBALL */
    493      1.27  jonathan 
    494      1.27  jonathan 	/*
    495      1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    496      1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    497      1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    498      1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    499      1.27  jonathan 	 * CPU clock oscillator frequency error.
    500      1.27  jonathan 	 *
    501      1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    502      1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    503      1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    504      1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    505      1.27  jonathan 	 */
    506      1.27  jonathan 	if (time.tv_usec >= 1000000) {
    507      1.27  jonathan 		time.tv_usec -= 1000000;
    508      1.27  jonathan 		time.tv_sec++;
    509      1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    510      1.27  jonathan 
    511      1.27  jonathan 		/*
    512      1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    513      1.27  jonathan 		 * the end of the day, the system clock is set back one
    514      1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    515      1.27  jonathan 		 * set ahead one second. The microtime() routine or
    516      1.27  jonathan 		 * external clock driver will insure that reported time
    517      1.27  jonathan 		 * is always monotonic. The ugly divides should be
    518      1.27  jonathan 		 * replaced.
    519      1.27  jonathan 		 */
    520      1.27  jonathan 		switch (time_state) {
    521      1.31   mycroft 		case TIME_OK:
    522      1.27  jonathan 			if (time_status & STA_INS)
    523      1.27  jonathan 				time_state = TIME_INS;
    524      1.27  jonathan 			else if (time_status & STA_DEL)
    525      1.27  jonathan 				time_state = TIME_DEL;
    526      1.27  jonathan 			break;
    527      1.27  jonathan 
    528      1.31   mycroft 		case TIME_INS:
    529      1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    530      1.27  jonathan 				time.tv_sec--;
    531      1.27  jonathan 				time_state = TIME_OOP;
    532      1.27  jonathan 			}
    533      1.27  jonathan 			break;
    534      1.27  jonathan 
    535      1.31   mycroft 		case TIME_DEL:
    536      1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    537      1.27  jonathan 				time.tv_sec++;
    538      1.27  jonathan 				time_state = TIME_WAIT;
    539      1.27  jonathan 			}
    540      1.27  jonathan 			break;
    541      1.27  jonathan 
    542      1.31   mycroft 		case TIME_OOP:
    543      1.27  jonathan 			time_state = TIME_WAIT;
    544      1.27  jonathan 			break;
    545      1.27  jonathan 
    546      1.31   mycroft 		case TIME_WAIT:
    547      1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    548      1.27  jonathan 				time_state = TIME_OK;
    549      1.31   mycroft 			break;
    550      1.27  jonathan 		}
    551      1.27  jonathan 
    552      1.27  jonathan 		/*
    553      1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    554      1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    555      1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    556      1.27  jonathan 		 * used directly. In either mode, the maximum phase
    557      1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    558      1.27  jonathan 		 * the adjustment over not more than the number of
    559      1.27  jonathan 		 * seconds between updates.
    560      1.27  jonathan 		 */
    561      1.27  jonathan 		if (time_offset < 0) {
    562      1.27  jonathan 			ltemp = -time_offset;
    563      1.27  jonathan 			if (!(time_status & STA_FLL))
    564      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    565      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    566      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    567      1.27  jonathan 				    SHIFT_UPDATE;
    568      1.27  jonathan 			time_offset += ltemp;
    569      1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    570      1.31   mycroft 		} else if (time_offset > 0) {
    571      1.27  jonathan 			ltemp = time_offset;
    572      1.27  jonathan 			if (!(time_status & STA_FLL))
    573      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    574      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    575      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    576      1.27  jonathan 				    SHIFT_UPDATE;
    577      1.27  jonathan 			time_offset -= ltemp;
    578      1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    579      1.31   mycroft 		} else
    580      1.31   mycroft 			time_adj = 0;
    581      1.27  jonathan 
    582      1.27  jonathan 		/*
    583      1.27  jonathan 		 * Compute the frequency estimate and additional phase
    584      1.27  jonathan 		 * adjustment due to frequency error for the next
    585      1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    586      1.27  jonathan 		 * watchdog counter and update the frequency computed by
    587      1.27  jonathan 		 * the pll and the PPS signal.
    588      1.27  jonathan 		 */
    589      1.27  jonathan #ifdef PPS_SYNC
    590      1.27  jonathan 		pps_valid++;
    591      1.27  jonathan 		if (pps_valid == PPS_VALID) {
    592      1.27  jonathan 			pps_jitter = MAXTIME;
    593      1.27  jonathan 			pps_stabil = MAXFREQ;
    594      1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    595      1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    596      1.27  jonathan 		}
    597      1.27  jonathan 		ltemp = time_freq + pps_freq;
    598      1.27  jonathan #else
    599      1.27  jonathan 		ltemp = time_freq;
    600      1.27  jonathan #endif /* PPS_SYNC */
    601      1.27  jonathan 
    602      1.27  jonathan 		if (ltemp < 0)
    603      1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    604      1.27  jonathan 		else
    605      1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    606      1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    607      1.27  jonathan 
    608      1.27  jonathan 		/*
    609      1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    610      1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    611      1.31   mycroft 		 * scale factor.
    612      1.46   mycroft 		 *
    613      1.46   mycroft 		 * To determine the adjustment, you can do the following:
    614      1.46   mycroft 		 *   bc -q
    615      1.46   mycroft 		 *   scale=24
    616      1.46   mycroft 		 *   obase=2
    617      1.46   mycroft 		 *   idealhz/realhz
    618      1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    619      1.46   mycroft 		 * is the actual value.
    620      1.46   mycroft 		 *
    621      1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    622      1.46   mycroft 		 *   bc -q
    623      1.46   mycroft 		 *   scale=24
    624      1.46   mycroft 		 *   ((1+2^-2+2^-5)*realhz-idealhz)/idealhz
    625      1.46   mycroft 		 * (and then multiply by 100 to get %).
    626      1.27  jonathan 		 */
    627      1.31   mycroft 		switch (hz) {
    628      1.31   mycroft 		case 96:
    629      1.46   mycroft 			/* A factor of 1.0101010101 gives about .025% error. */
    630      1.46   mycroft 			if (time_adj < 0) {
    631      1.46   mycroft 				time_adj -= (-time_adj >> 2);
    632      1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    633      1.46   mycroft 			} else {
    634      1.46   mycroft 				time_adj += (time_adj >> 2);
    635      1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    636      1.46   mycroft 			}
    637      1.46   mycroft 			break;
    638      1.46   mycroft 
    639      1.31   mycroft 		case 100:
    640      1.46   mycroft 			/* A factor of 1.01001 gives about .1% error. */
    641      1.27  jonathan 			if (time_adj < 0)
    642      1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    643      1.27  jonathan 			else
    644      1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    645      1.31   mycroft 			break;
    646      1.46   mycroft 
    647      1.31   mycroft 		case 60:
    648      1.46   mycroft 			/* A factor of 1.00010001 gives about .025% error. */
    649      1.27  jonathan 			if (time_adj < 0)
    650      1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    651      1.27  jonathan 			else
    652      1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    653      1.43      ross 			break;
    654      1.46   mycroft 
    655      1.43      ross 		case 1000:
    656      1.46   mycroft 			 /* A factor of 1.0000011 gives about .055% error. */
    657      1.46   mycroft 			if (time_adj < 0)
    658      1.46   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
    659      1.46   mycroft 			else
    660      1.46   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 7);
    661      1.31   mycroft 			break;
    662      1.27  jonathan 		}
    663      1.27  jonathan 
    664      1.27  jonathan #ifdef EXT_CLOCK
    665      1.27  jonathan 		/*
    666      1.27  jonathan 		 * If an external clock is present, it is necessary to
    667      1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    668      1.27  jonathan 		 * all system components use the microtime() interface.
    669      1.27  jonathan 		 * Here, the time offset between the external clock and
    670      1.27  jonathan 		 * kernel time variable is computed every so often.
    671      1.27  jonathan 		 */
    672      1.27  jonathan 		clock_count++;
    673      1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    674      1.27  jonathan 			clock_count = 0;
    675      1.27  jonathan 			microtime(&clock_ext);
    676      1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    677      1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    678      1.27  jonathan 			    time.tv_usec;
    679      1.27  jonathan 			if (delta.tv_usec < 0)
    680      1.27  jonathan 				delta.tv_sec--;
    681      1.27  jonathan 			if (delta.tv_usec >= 500000) {
    682      1.27  jonathan 				delta.tv_usec -= 1000000;
    683      1.27  jonathan 				delta.tv_sec++;
    684      1.27  jonathan 			}
    685      1.27  jonathan 			if (delta.tv_usec < -500000) {
    686      1.27  jonathan 				delta.tv_usec += 1000000;
    687      1.27  jonathan 				delta.tv_sec--;
    688      1.27  jonathan 			}
    689      1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    690      1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    691      1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    692      1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    693      1.27  jonathan 				time = clock_ext;
    694      1.27  jonathan 				delta.tv_sec = 0;
    695      1.27  jonathan 				delta.tv_usec = 0;
    696      1.27  jonathan 			}
    697      1.27  jonathan #ifdef HIGHBALL
    698      1.27  jonathan 			clock_cpu = delta.tv_usec;
    699      1.27  jonathan #else /* HIGHBALL */
    700      1.27  jonathan 			hardupdate(delta.tv_usec);
    701      1.27  jonathan #endif /* HIGHBALL */
    702      1.27  jonathan 		}
    703      1.27  jonathan #endif /* EXT_CLOCK */
    704      1.27  jonathan 	}
    705      1.27  jonathan 
    706      1.31   mycroft #endif /* NTP */
    707      1.19       cgd 
    708      1.19       cgd 	/*
    709      1.19       cgd 	 * Process callouts at a very low cpu priority, so we don't keep the
    710      1.19       cgd 	 * relatively high clock interrupt priority any longer than necessary.
    711      1.19       cgd 	 */
    712      1.19       cgd 	if (needsoft) {
    713      1.19       cgd 		if (CLKF_BASEPRI(frame)) {
    714      1.19       cgd 			/*
    715      1.19       cgd 			 * Save the overhead of a software interrupt;
    716      1.19       cgd 			 * it will happen as soon as we return, so do it now.
    717      1.19       cgd 			 */
    718      1.19       cgd 			(void)splsoftclock();
    719      1.19       cgd 			softclock();
    720      1.19       cgd 		} else
    721      1.19       cgd 			setsoftclock();
    722      1.19       cgd 	}
    723      1.19       cgd }
    724      1.19       cgd 
    725      1.19       cgd /*
    726      1.19       cgd  * Software (low priority) clock interrupt.
    727      1.19       cgd  * Run periodic events from timeout queue.
    728      1.19       cgd  */
    729      1.19       cgd /*ARGSUSED*/
    730      1.19       cgd void
    731      1.19       cgd softclock()
    732      1.19       cgd {
    733      1.19       cgd 	register struct callout *c;
    734      1.19       cgd 	register void *arg;
    735      1.19       cgd 	register void (*func) __P((void *));
    736      1.19       cgd 	register int s;
    737      1.19       cgd 
    738      1.19       cgd 	s = splhigh();
    739      1.19       cgd 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
    740      1.19       cgd 		func = c->c_func;
    741      1.19       cgd 		arg = c->c_arg;
    742      1.19       cgd 		calltodo.c_next = c->c_next;
    743      1.19       cgd 		c->c_next = callfree;
    744      1.19       cgd 		callfree = c;
    745      1.19       cgd 		splx(s);
    746      1.19       cgd 		(*func)(arg);
    747      1.19       cgd 		(void) splhigh();
    748      1.19       cgd 	}
    749      1.19       cgd 	splx(s);
    750      1.19       cgd }
    751      1.19       cgd 
    752      1.19       cgd /*
    753      1.19       cgd  * timeout --
    754      1.19       cgd  *	Execute a function after a specified length of time.
    755      1.19       cgd  *
    756      1.19       cgd  * untimeout --
    757      1.19       cgd  *	Cancel previous timeout function call.
    758      1.19       cgd  *
    759      1.19       cgd  *	See AT&T BCI Driver Reference Manual for specification.  This
    760      1.19       cgd  *	implementation differs from that one in that no identification
    761      1.19       cgd  *	value is returned from timeout, rather, the original arguments
    762      1.19       cgd  *	to timeout are used to identify entries for untimeout.
    763      1.19       cgd  */
    764      1.19       cgd void
    765      1.19       cgd timeout(ftn, arg, ticks)
    766      1.19       cgd 	void (*ftn) __P((void *));
    767      1.19       cgd 	void *arg;
    768      1.19       cgd 	register int ticks;
    769      1.19       cgd {
    770      1.19       cgd 	register struct callout *new, *p, *t;
    771      1.19       cgd 	register int s;
    772      1.19       cgd 
    773      1.19       cgd 	if (ticks <= 0)
    774      1.19       cgd 		ticks = 1;
    775      1.19       cgd 
    776      1.19       cgd 	/* Lock out the clock. */
    777      1.19       cgd 	s = splhigh();
    778      1.19       cgd 
    779      1.19       cgd 	/* Fill in the next free callout structure. */
    780      1.19       cgd 	if (callfree == NULL)
    781      1.19       cgd 		panic("timeout table full");
    782      1.19       cgd 	new = callfree;
    783      1.19       cgd 	callfree = new->c_next;
    784      1.19       cgd 	new->c_arg = arg;
    785      1.19       cgd 	new->c_func = ftn;
    786      1.19       cgd 
    787      1.19       cgd 	/*
    788      1.19       cgd 	 * The time for each event is stored as a difference from the time
    789      1.19       cgd 	 * of the previous event on the queue.  Walk the queue, correcting
    790      1.19       cgd 	 * the ticks argument for queue entries passed.  Correct the ticks
    791      1.19       cgd 	 * value for the queue entry immediately after the insertion point
    792      1.19       cgd 	 * as well.  Watch out for negative c_time values; these represent
    793      1.19       cgd 	 * overdue events.
    794      1.19       cgd 	 */
    795      1.19       cgd 	for (p = &calltodo;
    796      1.19       cgd 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
    797      1.19       cgd 		if (t->c_time > 0)
    798      1.19       cgd 			ticks -= t->c_time;
    799      1.19       cgd 	new->c_time = ticks;
    800      1.19       cgd 	if (t != NULL)
    801      1.19       cgd 		t->c_time -= ticks;
    802      1.19       cgd 
    803      1.19       cgd 	/* Insert the new entry into the queue. */
    804      1.19       cgd 	p->c_next = new;
    805      1.19       cgd 	new->c_next = t;
    806      1.19       cgd 	splx(s);
    807      1.19       cgd }
    808      1.19       cgd 
    809      1.19       cgd void
    810      1.19       cgd untimeout(ftn, arg)
    811      1.19       cgd 	void (*ftn) __P((void *));
    812      1.19       cgd 	void *arg;
    813      1.19       cgd {
    814      1.19       cgd 	register struct callout *p, *t;
    815      1.19       cgd 	register int s;
    816      1.19       cgd 
    817      1.19       cgd 	s = splhigh();
    818      1.19       cgd 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
    819      1.19       cgd 		if (t->c_func == ftn && t->c_arg == arg) {
    820      1.19       cgd 			/* Increment next entry's tick count. */
    821      1.19       cgd 			if (t->c_next && t->c_time > 0)
    822      1.19       cgd 				t->c_next->c_time += t->c_time;
    823      1.19       cgd 
    824      1.19       cgd 			/* Move entry from callout queue to callfree queue. */
    825      1.19       cgd 			p->c_next = t->c_next;
    826      1.19       cgd 			t->c_next = callfree;
    827      1.19       cgd 			callfree = t;
    828      1.19       cgd 			break;
    829      1.19       cgd 		}
    830      1.19       cgd 	splx(s);
    831      1.19       cgd }
    832      1.19       cgd 
    833      1.19       cgd /*
    834      1.19       cgd  * Compute number of hz until specified time.  Used to
    835      1.19       cgd  * compute third argument to timeout() from an absolute time.
    836      1.19       cgd  */
    837      1.19       cgd int
    838      1.19       cgd hzto(tv)
    839      1.19       cgd 	struct timeval *tv;
    840      1.19       cgd {
    841      1.19       cgd 	register long ticks, sec;
    842      1.19       cgd 	int s;
    843      1.19       cgd 
    844      1.19       cgd 	/*
    845      1.22       cgd 	 * If number of microseconds will fit in 32 bit arithmetic,
    846      1.22       cgd 	 * then compute number of microseconds to time and scale to
    847      1.19       cgd 	 * ticks.  Otherwise just compute number of hz in time, rounding
    848      1.22       cgd 	 * times greater than representible to maximum value.  (We must
    849      1.22       cgd 	 * compute in microseconds, because hz can be greater than 1000,
    850      1.22       cgd 	 * and thus tick can be less than one millisecond).
    851      1.19       cgd 	 *
    852      1.22       cgd 	 * Delta times less than 14 hours can be computed ``exactly''.
    853      1.22       cgd 	 * (Note that if hz would yeild a non-integral number of us per
    854      1.22       cgd 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
    855      1.22       cgd 	 * than they should be.)  Maximum value for any timeout in 10ms
    856      1.22       cgd 	 * ticks is 250 days.
    857      1.19       cgd 	 */
    858      1.40   mycroft 	s = splclock();
    859      1.19       cgd 	sec = tv->tv_sec - time.tv_sec;
    860      1.22       cgd 	if (sec <= 0x7fffffff / 1000000 - 1)
    861      1.22       cgd 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
    862      1.22       cgd 			(tv->tv_usec - time.tv_usec)) / tick;
    863      1.19       cgd 	else if (sec <= 0x7fffffff / hz)
    864      1.19       cgd 		ticks = sec * hz;
    865      1.19       cgd 	else
    866      1.19       cgd 		ticks = 0x7fffffff;
    867      1.19       cgd 	splx(s);
    868      1.19       cgd 	return (ticks);
    869      1.19       cgd }
    870      1.19       cgd 
    871      1.19       cgd /*
    872      1.19       cgd  * Start profiling on a process.
    873      1.19       cgd  *
    874      1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
    875      1.19       cgd  * keeps the profile clock running constantly.
    876      1.19       cgd  */
    877      1.19       cgd void
    878      1.19       cgd startprofclock(p)
    879      1.19       cgd 	register struct proc *p;
    880      1.19       cgd {
    881      1.19       cgd 	int s;
    882      1.19       cgd 
    883      1.19       cgd 	if ((p->p_flag & P_PROFIL) == 0) {
    884      1.19       cgd 		p->p_flag |= P_PROFIL;
    885      1.19       cgd 		if (++profprocs == 1 && stathz != 0) {
    886      1.19       cgd 			s = splstatclock();
    887      1.19       cgd 			psdiv = pscnt = psratio;
    888      1.19       cgd 			setstatclockrate(profhz);
    889      1.19       cgd 			splx(s);
    890      1.19       cgd 		}
    891      1.19       cgd 	}
    892      1.19       cgd }
    893      1.19       cgd 
    894      1.19       cgd /*
    895      1.19       cgd  * Stop profiling on a process.
    896      1.19       cgd  */
    897      1.19       cgd void
    898      1.19       cgd stopprofclock(p)
    899      1.19       cgd 	register struct proc *p;
    900      1.19       cgd {
    901      1.19       cgd 	int s;
    902      1.19       cgd 
    903      1.19       cgd 	if (p->p_flag & P_PROFIL) {
    904      1.19       cgd 		p->p_flag &= ~P_PROFIL;
    905      1.19       cgd 		if (--profprocs == 0 && stathz != 0) {
    906      1.19       cgd 			s = splstatclock();
    907      1.19       cgd 			psdiv = pscnt = 1;
    908      1.19       cgd 			setstatclockrate(stathz);
    909      1.19       cgd 			splx(s);
    910      1.19       cgd 		}
    911      1.19       cgd 	}
    912      1.19       cgd }
    913      1.19       cgd 
    914      1.19       cgd /*
    915      1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    916      1.19       cgd  * do process and kernel statistics.
    917      1.19       cgd  */
    918      1.19       cgd void
    919      1.19       cgd statclock(frame)
    920      1.19       cgd 	register struct clockframe *frame;
    921      1.19       cgd {
    922      1.19       cgd #ifdef GPROF
    923      1.19       cgd 	register struct gmonparam *g;
    924      1.36    abrown 	register int i;
    925      1.19       cgd #endif
    926      1.47      ross 	static int schedclk;
    927      1.19       cgd 	register struct proc *p;
    928      1.19       cgd 
    929      1.19       cgd 	if (CLKF_USERMODE(frame)) {
    930      1.19       cgd 		p = curproc;
    931      1.19       cgd 		if (p->p_flag & P_PROFIL)
    932      1.19       cgd 			addupc_intr(p, CLKF_PC(frame), 1);
    933      1.19       cgd 		if (--pscnt > 0)
    934      1.19       cgd 			return;
    935      1.19       cgd 		/*
    936      1.19       cgd 		 * Came from user mode; CPU was in user state.
    937      1.19       cgd 		 * If this process is being profiled record the tick.
    938      1.19       cgd 		 */
    939      1.19       cgd 		p->p_uticks++;
    940      1.19       cgd 		if (p->p_nice > NZERO)
    941      1.19       cgd 			cp_time[CP_NICE]++;
    942      1.19       cgd 		else
    943      1.19       cgd 			cp_time[CP_USER]++;
    944      1.19       cgd 	} else {
    945      1.19       cgd #ifdef GPROF
    946      1.19       cgd 		/*
    947      1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
    948      1.19       cgd 		 */
    949      1.19       cgd 		g = &_gmonparam;
    950      1.19       cgd 		if (g->state == GMON_PROF_ON) {
    951      1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
    952      1.19       cgd 			if (i < g->textsize) {
    953      1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
    954      1.19       cgd 				g->kcount[i]++;
    955      1.19       cgd 			}
    956      1.19       cgd 		}
    957      1.19       cgd #endif
    958      1.19       cgd 		if (--pscnt > 0)
    959      1.19       cgd 			return;
    960      1.19       cgd 		/*
    961      1.19       cgd 		 * Came from kernel mode, so we were:
    962      1.19       cgd 		 * - handling an interrupt,
    963      1.19       cgd 		 * - doing syscall or trap work on behalf of the current
    964      1.19       cgd 		 *   user process, or
    965      1.19       cgd 		 * - spinning in the idle loop.
    966      1.19       cgd 		 * Whichever it is, charge the time as appropriate.
    967      1.19       cgd 		 * Note that we charge interrupts to the current process,
    968      1.19       cgd 		 * regardless of whether they are ``for'' that process,
    969      1.19       cgd 		 * so that we know how much of its real time was spent
    970      1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
    971      1.19       cgd 		 */
    972      1.19       cgd 		p = curproc;
    973      1.19       cgd 		if (CLKF_INTR(frame)) {
    974      1.19       cgd 			if (p != NULL)
    975      1.19       cgd 				p->p_iticks++;
    976      1.19       cgd 			cp_time[CP_INTR]++;
    977      1.19       cgd 		} else if (p != NULL) {
    978      1.19       cgd 			p->p_sticks++;
    979      1.19       cgd 			cp_time[CP_SYS]++;
    980      1.19       cgd 		} else
    981      1.19       cgd 			cp_time[CP_IDLE]++;
    982      1.19       cgd 	}
    983      1.19       cgd 	pscnt = psdiv;
    984      1.19       cgd 
    985      1.19       cgd 	if (p != NULL) {
    986      1.45      ross 		++p->p_cpticks;
    987      1.45      ross 		/*
    988      1.47      ross 		 * If no schedclock is provided, call it here at ~~12-25 Hz,
    989      1.45      ross 		 * ~~16 Hz is best
    990      1.45      ross 		 */
    991      1.45      ross 		if(schedhz == 0)
    992      1.47      ross 			if ((++schedclk & 3) == 0)
    993      1.47      ross 				schedclock(p);
    994      1.19       cgd 	}
    995      1.19       cgd }
    996      1.27  jonathan 
    997      1.27  jonathan 
    998      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    999      1.27  jonathan 
   1000      1.27  jonathan /*
   1001      1.27  jonathan  * hardupdate() - local clock update
   1002      1.27  jonathan  *
   1003      1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1004      1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1005      1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1006      1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1007      1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1008      1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1009      1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1010      1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1011      1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1012      1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1013      1.27  jonathan  *
   1014      1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1015      1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1016      1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1017      1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1018      1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1019      1.27  jonathan  *
   1020      1.27  jonathan  * Note: splclock() is in effect.
   1021      1.27  jonathan  */
   1022      1.27  jonathan void
   1023      1.27  jonathan hardupdate(offset)
   1024      1.27  jonathan 	long offset;
   1025      1.27  jonathan {
   1026      1.27  jonathan 	long ltemp, mtemp;
   1027      1.27  jonathan 
   1028      1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1029      1.27  jonathan 		return;
   1030      1.27  jonathan 	ltemp = offset;
   1031      1.27  jonathan #ifdef PPS_SYNC
   1032      1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1033      1.27  jonathan 		ltemp = pps_offset;
   1034      1.27  jonathan #endif /* PPS_SYNC */
   1035      1.27  jonathan 
   1036      1.27  jonathan 	/*
   1037      1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1038      1.27  jonathan 	 */
   1039      1.27  jonathan 	if (ltemp > MAXPHASE)
   1040      1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1041      1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1042      1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1043      1.27  jonathan 	else
   1044      1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1045      1.27  jonathan 
   1046      1.27  jonathan 	/*
   1047      1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1048      1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1049      1.27  jonathan 	 * multiply/divide should be replaced someday.
   1050      1.27  jonathan 	 */
   1051      1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1052      1.27  jonathan 		time_reftime = time.tv_sec;
   1053      1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1054      1.27  jonathan 	time_reftime = time.tv_sec;
   1055      1.27  jonathan 	if (time_status & STA_FLL) {
   1056      1.27  jonathan 		if (mtemp >= MINSEC) {
   1057      1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1058      1.27  jonathan 			    SHIFT_UPDATE));
   1059      1.27  jonathan 			if (ltemp < 0)
   1060      1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1061      1.27  jonathan 			else
   1062      1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1063      1.27  jonathan 		}
   1064      1.27  jonathan 	} else {
   1065      1.27  jonathan 		if (mtemp < MAXSEC) {
   1066      1.27  jonathan 			ltemp *= mtemp;
   1067      1.27  jonathan 			if (ltemp < 0)
   1068      1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1069      1.27  jonathan 				    time_constant + SHIFT_KF -
   1070      1.27  jonathan 				    SHIFT_USEC);
   1071      1.27  jonathan 			else
   1072      1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1073      1.27  jonathan 				    time_constant + SHIFT_KF -
   1074      1.27  jonathan 				    SHIFT_USEC);
   1075      1.27  jonathan 		}
   1076      1.27  jonathan 	}
   1077      1.27  jonathan 	if (time_freq > time_tolerance)
   1078      1.27  jonathan 		time_freq = time_tolerance;
   1079      1.27  jonathan 	else if (time_freq < -time_tolerance)
   1080      1.27  jonathan 		time_freq = -time_tolerance;
   1081      1.27  jonathan }
   1082      1.27  jonathan 
   1083      1.27  jonathan #ifdef PPS_SYNC
   1084      1.27  jonathan /*
   1085      1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1086      1.27  jonathan  *
   1087      1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1088      1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1089      1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1090      1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1091      1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1092      1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1093      1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1094      1.27  jonathan  * value at the on-time PPS signal transition.
   1095      1.27  jonathan  *
   1096      1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1097      1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1098      1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1099      1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1100      1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1101      1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1102      1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1103      1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1104      1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1105      1.27  jonathan  * routine.
   1106      1.27  jonathan  */
   1107      1.27  jonathan void
   1108      1.27  jonathan hardpps(tvp, usec)
   1109      1.27  jonathan 	struct timeval *tvp;		/* time at PPS */
   1110      1.27  jonathan 	long usec;			/* hardware counter at PPS */
   1111      1.27  jonathan {
   1112      1.27  jonathan 	long u_usec, v_usec, bigtick;
   1113      1.27  jonathan 	long cal_sec, cal_usec;
   1114      1.27  jonathan 
   1115      1.27  jonathan 	/*
   1116      1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1117      1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1118      1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1119      1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1120      1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1121      1.27  jonathan 	 */
   1122      1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1123      1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1124      1.27  jonathan 	pps_valid = 0;
   1125      1.27  jonathan 	u_usec = -tvp->tv_usec;
   1126      1.27  jonathan 	if (u_usec < -500000)
   1127      1.27  jonathan 		u_usec += 1000000;
   1128      1.27  jonathan 	v_usec = pps_offset - u_usec;
   1129      1.27  jonathan 	if (v_usec < 0)
   1130      1.27  jonathan 		v_usec = -v_usec;
   1131      1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1132      1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1133      1.27  jonathan 			pps_glitch = 0;
   1134      1.27  jonathan 			pps_tf[2] = u_usec;
   1135      1.27  jonathan 			pps_tf[1] = u_usec;
   1136      1.27  jonathan 		} else {
   1137      1.27  jonathan 			pps_glitch++;
   1138      1.27  jonathan 			u_usec = pps_offset;
   1139      1.27  jonathan 		}
   1140      1.27  jonathan 	} else
   1141      1.27  jonathan 		pps_glitch = 0;
   1142      1.27  jonathan 
   1143      1.27  jonathan 	/*
   1144      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1145      1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1146      1.27  jonathan 	 * difference between the other two samples becomes the time
   1147      1.27  jonathan 	 * dispersion (jitter) estimate.
   1148      1.27  jonathan 	 */
   1149      1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1150      1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1151      1.27  jonathan 	pps_tf[0] = u_usec;
   1152      1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1153      1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1154      1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1155      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1156      1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1157      1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1158      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1159      1.27  jonathan 		} else {
   1160      1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1161      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1162      1.27  jonathan 		}
   1163      1.27  jonathan 	} else {
   1164      1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1165      1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1166      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1167      1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1168      1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1169      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1170      1.27  jonathan 		} else {
   1171      1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1172      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1173      1.27  jonathan 		}
   1174      1.27  jonathan 	}
   1175      1.27  jonathan 	if (v_usec > MAXTIME)
   1176      1.27  jonathan 		pps_jitcnt++;
   1177      1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1178      1.27  jonathan 	if (v_usec < 0)
   1179      1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1180      1.27  jonathan 	else
   1181      1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1182      1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1183      1.27  jonathan 		time_status |= STA_PPSJITTER;
   1184      1.27  jonathan 
   1185      1.27  jonathan 	/*
   1186      1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1187      1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1188      1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1189      1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1190      1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1191      1.27  jonathan 	 * exceed the value of tick when using long calibration
   1192      1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1193      1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1194      1.27  jonathan 	 * the values returned and used here are correct.
   1195      1.27  jonathan 	 */
   1196      1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1197      1.27  jonathan 	pps_usec -= pps_freq;
   1198      1.27  jonathan 	if (pps_usec >= bigtick)
   1199      1.27  jonathan 		pps_usec -= bigtick;
   1200      1.27  jonathan 	if (pps_usec < 0)
   1201      1.27  jonathan 		pps_usec += bigtick;
   1202      1.27  jonathan 	pps_time.tv_sec++;
   1203      1.27  jonathan 	pps_count++;
   1204      1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1205      1.27  jonathan 		return;
   1206      1.27  jonathan 	pps_count = 0;
   1207      1.27  jonathan 	pps_calcnt++;
   1208      1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1209      1.27  jonathan 	v_usec = pps_usec - u_usec;
   1210      1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1211      1.27  jonathan 		v_usec -= bigtick;
   1212      1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1213      1.27  jonathan 		v_usec += bigtick;
   1214      1.27  jonathan 	if (v_usec < 0)
   1215      1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1216      1.27  jonathan 	else
   1217      1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1218      1.27  jonathan 	pps_usec = u_usec;
   1219      1.27  jonathan 	cal_sec = tvp->tv_sec;
   1220      1.27  jonathan 	cal_usec = tvp->tv_usec;
   1221      1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1222      1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1223      1.27  jonathan 	if (cal_usec < 0) {
   1224      1.27  jonathan 		cal_usec += 1000000;
   1225      1.27  jonathan 		cal_sec--;
   1226      1.27  jonathan 	}
   1227      1.27  jonathan 	pps_time = *tvp;
   1228      1.27  jonathan 
   1229      1.27  jonathan 	/*
   1230      1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1231      1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1232      1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1233      1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1234      1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1235      1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1236      1.27  jonathan 	 */
   1237      1.27  jonathan 	u_usec = (long)tick << 1;
   1238      1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1239      1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1240      1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1241      1.27  jonathan 		pps_errcnt++;
   1242      1.27  jonathan 		pps_shift = PPS_SHIFT;
   1243      1.27  jonathan 		pps_intcnt = 0;
   1244      1.27  jonathan 		time_status |= STA_PPSERROR;
   1245      1.27  jonathan 		return;
   1246      1.27  jonathan 	}
   1247      1.27  jonathan 
   1248      1.27  jonathan 	/*
   1249      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1250      1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1251      1.27  jonathan 	 * estimate; the difference between the other two samples
   1252      1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1253      1.27  jonathan 	 */
   1254      1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1255      1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1256      1.27  jonathan 	pps_ff[0] = v_usec;
   1257      1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1258      1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1259      1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1260      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1261      1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1262      1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1263      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1264      1.27  jonathan 		} else {
   1265      1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1266      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1267      1.27  jonathan 		}
   1268      1.27  jonathan 	} else {
   1269      1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1270      1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1271      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1272      1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1273      1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1274      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1275      1.27  jonathan 		} else {
   1276      1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1277      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1278      1.27  jonathan 		}
   1279      1.27  jonathan 	}
   1280      1.27  jonathan 
   1281      1.27  jonathan 	/*
   1282      1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1283      1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1284      1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1285      1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1286      1.27  jonathan 	 */
   1287      1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1288      1.27  jonathan 	if (v_usec < 0)
   1289      1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1290      1.27  jonathan 	else
   1291      1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1292      1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1293      1.27  jonathan 		pps_stbcnt++;
   1294      1.27  jonathan 		time_status |= STA_PPSWANDER;
   1295      1.27  jonathan 		return;
   1296      1.27  jonathan 	}
   1297      1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1298      1.27  jonathan 		if (u_usec < 0) {
   1299      1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1300      1.27  jonathan 			if (pps_freq < -time_tolerance)
   1301      1.27  jonathan 				pps_freq = -time_tolerance;
   1302      1.27  jonathan 			u_usec = -u_usec;
   1303      1.27  jonathan 		} else {
   1304      1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1305      1.27  jonathan 			if (pps_freq > time_tolerance)
   1306      1.27  jonathan 				pps_freq = time_tolerance;
   1307      1.27  jonathan 		}
   1308      1.27  jonathan 	}
   1309      1.27  jonathan 
   1310      1.27  jonathan 	/*
   1311      1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1312      1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1313      1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1314      1.27  jonathan 	 * intervals, double the interval.
   1315      1.27  jonathan 	 */
   1316      1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1317      1.27  jonathan 		pps_intcnt = 0;
   1318      1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1319      1.27  jonathan 			pps_shift--;
   1320      1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1321      1.27  jonathan 		pps_intcnt = 0;
   1322      1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1323      1.27  jonathan 			pps_shift++;
   1324      1.27  jonathan 	} else
   1325      1.27  jonathan 		pps_intcnt++;
   1326      1.27  jonathan }
   1327      1.27  jonathan #endif /* PPS_SYNC */
   1328      1.27  jonathan #endif /* NTP  */
   1329      1.27  jonathan 
   1330      1.19       cgd 
   1331      1.19       cgd /*
   1332      1.19       cgd  * Return information about system clocks.
   1333      1.19       cgd  */
   1334      1.25  christos int
   1335      1.19       cgd sysctl_clockrate(where, sizep)
   1336      1.19       cgd 	register char *where;
   1337      1.19       cgd 	size_t *sizep;
   1338      1.19       cgd {
   1339      1.19       cgd 	struct clockinfo clkinfo;
   1340      1.19       cgd 
   1341      1.19       cgd 	/*
   1342      1.19       cgd 	 * Construct clockinfo structure.
   1343      1.19       cgd 	 */
   1344      1.20   mycroft 	clkinfo.tick = tick;
   1345      1.20   mycroft 	clkinfo.tickadj = tickadj;
   1346      1.19       cgd 	clkinfo.hz = hz;
   1347      1.19       cgd 	clkinfo.profhz = profhz;
   1348      1.19       cgd 	clkinfo.stathz = stathz ? stathz : hz;
   1349      1.19       cgd 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1350      1.19       cgd }
   1351      1.19       cgd 
   1352