Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.50.2.2
      1  1.50.2.2    bouyer /*	$NetBSD: kern_clock.c,v 1.50.2.2 2000/12/13 15:50:19 bouyer Exp $	*/
      2  1.50.2.1    bouyer 
      3  1.50.2.1    bouyer /*-
      4  1.50.2.1    bouyer  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  1.50.2.1    bouyer  * All rights reserved.
      6  1.50.2.1    bouyer  *
      7  1.50.2.1    bouyer  * This code is derived from software contributed to The NetBSD Foundation
      8  1.50.2.1    bouyer  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.50.2.1    bouyer  * NASA Ames Research Center.
     10  1.50.2.1    bouyer  *
     11  1.50.2.1    bouyer  * Redistribution and use in source and binary forms, with or without
     12  1.50.2.1    bouyer  * modification, are permitted provided that the following conditions
     13  1.50.2.1    bouyer  * are met:
     14  1.50.2.1    bouyer  * 1. Redistributions of source code must retain the above copyright
     15  1.50.2.1    bouyer  *    notice, this list of conditions and the following disclaimer.
     16  1.50.2.1    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.50.2.1    bouyer  *    notice, this list of conditions and the following disclaimer in the
     18  1.50.2.1    bouyer  *    documentation and/or other materials provided with the distribution.
     19  1.50.2.1    bouyer  * 3. All advertising materials mentioning features or use of this software
     20  1.50.2.1    bouyer  *    must display the following acknowledgement:
     21  1.50.2.1    bouyer  *	This product includes software developed by the NetBSD
     22  1.50.2.1    bouyer  *	Foundation, Inc. and its contributors.
     23  1.50.2.1    bouyer  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.50.2.1    bouyer  *    contributors may be used to endorse or promote products derived
     25  1.50.2.1    bouyer  *    from this software without specific prior written permission.
     26  1.50.2.1    bouyer  *
     27  1.50.2.1    bouyer  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.50.2.1    bouyer  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.50.2.1    bouyer  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.50.2.1    bouyer  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.50.2.1    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.50.2.1    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.50.2.1    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.50.2.1    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.50.2.1    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.50.2.1    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.50.2.1    bouyer  * POSSIBILITY OF SUCH DAMAGE.
     38  1.50.2.1    bouyer  */
     39      1.19       cgd 
     40      1.19       cgd /*-
     41      1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     42      1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     43      1.19       cgd  * (c) UNIX System Laboratories, Inc.
     44      1.19       cgd  * All or some portions of this file are derived from material licensed
     45      1.19       cgd  * to the University of California by American Telephone and Telegraph
     46      1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47      1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     48      1.19       cgd  *
     49      1.19       cgd  * Redistribution and use in source and binary forms, with or without
     50      1.19       cgd  * modification, are permitted provided that the following conditions
     51      1.19       cgd  * are met:
     52      1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     53      1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     54      1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55      1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     56      1.19       cgd  *    documentation and/or other materials provided with the distribution.
     57      1.19       cgd  * 3. All advertising materials mentioning features or use of this software
     58      1.19       cgd  *    must display the following acknowledgement:
     59      1.19       cgd  *	This product includes software developed by the University of
     60      1.19       cgd  *	California, Berkeley and its contributors.
     61      1.19       cgd  * 4. Neither the name of the University nor the names of its contributors
     62      1.19       cgd  *    may be used to endorse or promote products derived from this software
     63      1.19       cgd  *    without specific prior written permission.
     64      1.19       cgd  *
     65      1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66      1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67      1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68      1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69      1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70      1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71      1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72      1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73      1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74      1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75      1.19       cgd  * SUCH DAMAGE.
     76      1.19       cgd  *
     77      1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     78      1.19       cgd  */
     79      1.44  jonathan 
     80      1.44  jonathan #include "opt_ntp.h"
     81      1.19       cgd 
     82      1.19       cgd #include <sys/param.h>
     83      1.19       cgd #include <sys/systm.h>
     84      1.19       cgd #include <sys/dkstat.h>
     85      1.19       cgd #include <sys/callout.h>
     86      1.19       cgd #include <sys/kernel.h>
     87      1.19       cgd #include <sys/proc.h>
     88      1.19       cgd #include <sys/resourcevar.h>
     89      1.25  christos #include <sys/signalvar.h>
     90  1.50.2.1    bouyer #include <uvm/uvm_extern.h>
     91      1.26  christos #include <sys/sysctl.h>
     92      1.27  jonathan #include <sys/timex.h>
     93      1.45      ross #include <sys/sched.h>
     94      1.19       cgd 
     95      1.19       cgd #include <machine/cpu.h>
     96      1.25  christos 
     97      1.19       cgd #ifdef GPROF
     98      1.19       cgd #include <sys/gmon.h>
     99      1.19       cgd #endif
    100      1.19       cgd 
    101      1.19       cgd /*
    102      1.19       cgd  * Clock handling routines.
    103      1.19       cgd  *
    104      1.19       cgd  * This code is written to operate with two timers that run independently of
    105      1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    106      1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    107      1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    108      1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    109      1.19       cgd  * the randomization prevents an adversary from always giving up the cpu
    110      1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    111      1.19       cgd  * cpu ticks.  The mean frequency of the second timer is stathz.
    112      1.19       cgd  *
    113      1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    114      1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    115      1.19       cgd  * do not do it unless absolutely necessary.
    116      1.19       cgd  *
    117      1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    118      1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    119      1.19       cgd  * be an integral multiple of stathz.
    120      1.19       cgd  *
    121      1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    122      1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    123      1.19       cgd  */
    124      1.19       cgd 
    125      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    126      1.27  jonathan /*
    127      1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    128      1.27  jonathan  *
    129      1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    130      1.27  jonathan  * call.
    131      1.27  jonathan  *
    132      1.27  jonathan  * time_state shows the state of the system clock, with values defined
    133      1.27  jonathan  * in the timex.h header file.
    134      1.27  jonathan  *
    135      1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    136      1.27  jonathan  * in the timex.h header file.
    137      1.27  jonathan  *
    138      1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    139      1.27  jonathan  * increments.
    140      1.27  jonathan  *
    141      1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    142      1.27  jonathan  *
    143      1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    144      1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    145      1.27  jonathan  * in principle it could change as result of the presence of external
    146      1.27  jonathan  * discipline signals, for instance.
    147      1.27  jonathan  *
    148      1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    149      1.27  jonathan  * in cases where a precision clock counter or external clock is
    150      1.27  jonathan  * available, the resolution can be much less than this and depend on
    151      1.27  jonathan  * whether the external clock is working or not.
    152      1.27  jonathan  *
    153      1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    154      1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    155      1.27  jonathan  * growth.
    156      1.27  jonathan  *
    157      1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    158      1.27  jonathan  * otherwise not used by the kernel.
    159      1.27  jonathan  */
    160      1.27  jonathan int time_state = TIME_OK;	/* clock state */
    161      1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    162      1.27  jonathan long time_offset = 0;		/* time offset (us) */
    163      1.27  jonathan long time_constant = 0;		/* pll time constant */
    164      1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    165      1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    166      1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    167      1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    168      1.27  jonathan 
    169      1.27  jonathan /*
    170      1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    171      1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    172      1.27  jonathan  * factors are defined in the timex.h header file.
    173      1.27  jonathan  *
    174      1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    175      1.27  jonathan  * increment, respectively, of the kernel time variable.
    176      1.27  jonathan  *
    177      1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    178      1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    179      1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    180      1.27  jonathan  * daemon.
    181      1.27  jonathan  *
    182      1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    183      1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    184      1.27  jonathan  * seconds rollover.
    185      1.27  jonathan  *
    186      1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    187      1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    188      1.27  jonathan  * and to increase the time_maxerror as the time since last update
    189      1.27  jonathan  * increases.
    190      1.27  jonathan  */
    191      1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    192      1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    193      1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    194      1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    195      1.27  jonathan 
    196      1.27  jonathan #ifdef PPS_SYNC
    197      1.27  jonathan /*
    198      1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    199      1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    200      1.27  jonathan  * timex.h header file.
    201      1.27  jonathan  *
    202      1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    203      1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    204      1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    205      1.27  jonathan  * two.
    206      1.27  jonathan  *
    207      1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    208      1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    209      1.27  jonathan  * this filter.
    210      1.27  jonathan  *
    211      1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    212      1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    213      1.27  jonathan  * by this filter.
    214      1.27  jonathan  *
    215      1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    216      1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    217      1.27  jonathan  * contents plus the time_tv.usec as usual.
    218      1.27  jonathan  *
    219      1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    220      1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    221      1.27  jonathan  * PPS signal be lost.
    222      1.27  jonathan  *
    223      1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    224      1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    225      1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    226      1.27  jonathan  * PPS interrupt and timer interrupt.
    227      1.27  jonathan  *
    228      1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    229      1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    230      1.27  jonathan  */
    231      1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    232      1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    233      1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    234      1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    235      1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    236      1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    237      1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    238      1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    239      1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    240      1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    241      1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    242      1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    243      1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    244      1.27  jonathan 
    245      1.27  jonathan /*
    246      1.27  jonathan  * PPS signal quality monitors
    247      1.27  jonathan  *
    248      1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    249      1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    250      1.27  jonathan  * (100 us).
    251      1.27  jonathan  *
    252      1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    253      1.27  jonathan  * variable from 4 s to 256 s.
    254      1.27  jonathan  *
    255      1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    256      1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    257      1.27  jonathan  * calibration interval jitter exceeds two ticks.
    258      1.27  jonathan  *
    259      1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    260      1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    261      1.27  jonathan  */
    262      1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    263      1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    264      1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    265      1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    266      1.27  jonathan #endif /* PPS_SYNC */
    267      1.27  jonathan 
    268      1.27  jonathan #ifdef EXT_CLOCK
    269      1.27  jonathan /*
    270      1.27  jonathan  * External clock definitions
    271      1.27  jonathan  *
    272      1.27  jonathan  * The following definitions and declarations are used only if an
    273      1.27  jonathan  * external clock is configured on the system.
    274      1.27  jonathan  */
    275      1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    276      1.27  jonathan 
    277      1.27  jonathan /*
    278      1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    279      1.27  jonathan  * interrupt and decremented once each second.
    280      1.27  jonathan  */
    281      1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    282      1.27  jonathan 
    283      1.27  jonathan #ifdef HIGHBALL
    284      1.27  jonathan /*
    285      1.27  jonathan  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    286      1.27  jonathan  * interface. The clock_offset variable defines the offset between
    287      1.27  jonathan  * system time and the HIGBALL counters. The clock_cpu variable contains
    288      1.27  jonathan  * the offset between the system clock and the HIGHBALL clock for use in
    289      1.27  jonathan  * disciplining the kernel time variable.
    290      1.27  jonathan  */
    291      1.27  jonathan extern struct timeval clock_offset; /* Highball clock offset */
    292      1.27  jonathan long clock_cpu = 0;		/* CPU clock adjust */
    293      1.27  jonathan #endif /* HIGHBALL */
    294      1.27  jonathan #endif /* EXT_CLOCK */
    295      1.27  jonathan #endif /* NTP */
    296      1.27  jonathan 
    297      1.27  jonathan 
    298      1.19       cgd /*
    299      1.19       cgd  * Bump a timeval by a small number of usec's.
    300      1.19       cgd  */
    301      1.19       cgd #define BUMPTIME(t, usec) { \
    302  1.50.2.1    bouyer 	volatile struct timeval *tp = (t); \
    303  1.50.2.1    bouyer 	long us; \
    304      1.19       cgd  \
    305      1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    306      1.19       cgd 	if (us >= 1000000) { \
    307      1.19       cgd 		tp->tv_usec = us - 1000000; \
    308      1.19       cgd 		tp->tv_sec++; \
    309      1.19       cgd 	} \
    310      1.19       cgd }
    311      1.19       cgd 
    312      1.19       cgd int	stathz;
    313      1.19       cgd int	profhz;
    314      1.19       cgd int	profprocs;
    315  1.50.2.1    bouyer int	softclock_running;		/* 1 => softclock() is running */
    316  1.50.2.1    bouyer static int psdiv;			/* prof => stat divider */
    317      1.22       cgd int	psratio;			/* ratio: prof / stat */
    318      1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    319      1.34    briggs #ifndef NTP
    320      1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    321      1.34    briggs #else
    322      1.27  jonathan int	fixtick;			/* used by NTP for same */
    323      1.31   mycroft int	shifthz;
    324      1.31   mycroft #endif
    325      1.19       cgd 
    326      1.48  christos /*
    327      1.48  christos  * We might want ldd to load the both words from time at once.
    328      1.48  christos  * To succeed we need to be quadword aligned.
    329      1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    330      1.48  christos  */
    331      1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    332      1.19       cgd volatile struct	timeval mono_time;
    333      1.19       cgd 
    334      1.19       cgd /*
    335  1.50.2.1    bouyer  * The callout mechanism is based on the work of Adam M. Costello and
    336  1.50.2.1    bouyer  * George Varghese, published in a technical report entitled "Redesigning
    337  1.50.2.1    bouyer  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
    338  1.50.2.1    bouyer  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
    339  1.50.2.1    bouyer  *
    340  1.50.2.1    bouyer  * The original work on the data structures used in this implementation
    341  1.50.2.1    bouyer  * was published by G. Varghese and A. Lauck in the paper "Hashed and
    342  1.50.2.1    bouyer  * Hierarchical Timing Wheels: Data Structures for the Efficient
    343  1.50.2.1    bouyer  * Implementation of a Timer Facility" in the Proceedings of the 11th
    344  1.50.2.1    bouyer  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
    345  1.50.2.1    bouyer  * November 1987.
    346  1.50.2.1    bouyer  */
    347  1.50.2.1    bouyer struct callout_queue *callwheel;
    348  1.50.2.1    bouyer int	callwheelsize, callwheelbits, callwheelmask;
    349  1.50.2.1    bouyer 
    350  1.50.2.1    bouyer static struct callout *nextsoftcheck;	/* next callout to be checked */
    351  1.50.2.1    bouyer 
    352  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
    353  1.50.2.1    bouyer int	callwheel_collisions;		/* number of hash collisions */
    354  1.50.2.1    bouyer int	callwheel_maxlength;		/* length of the longest hash chain */
    355  1.50.2.1    bouyer int	*callwheel_sizes;		/* per-bucket length count */
    356  1.50.2.1    bouyer u_int64_t callwheel_count;		/* # callouts currently */
    357  1.50.2.1    bouyer u_int64_t callwheel_established;	/* # callouts established */
    358  1.50.2.1    bouyer u_int64_t callwheel_fired;		/* # callouts that fired */
    359  1.50.2.1    bouyer u_int64_t callwheel_disestablished;	/* # callouts disestablished */
    360  1.50.2.1    bouyer u_int64_t callwheel_changed;		/* # callouts changed */
    361  1.50.2.1    bouyer u_int64_t callwheel_softclocks;		/* # times softclock() called */
    362  1.50.2.1    bouyer u_int64_t callwheel_softchecks;		/* # checks per softclock() */
    363  1.50.2.1    bouyer u_int64_t callwheel_softempty;		/* # empty buckets seen */
    364  1.50.2.1    bouyer #endif /* CALLWHEEL_STATS */
    365  1.50.2.1    bouyer 
    366  1.50.2.1    bouyer /*
    367  1.50.2.1    bouyer  * This value indicates the number of consecutive callouts that
    368  1.50.2.1    bouyer  * will be checked before we allow interrupts to have a chance
    369  1.50.2.1    bouyer  * again.
    370  1.50.2.1    bouyer  */
    371  1.50.2.1    bouyer #ifndef MAX_SOFTCLOCK_STEPS
    372  1.50.2.1    bouyer #define	MAX_SOFTCLOCK_STEPS	100
    373  1.50.2.1    bouyer #endif
    374  1.50.2.1    bouyer 
    375  1.50.2.1    bouyer struct simplelock callwheel_slock;
    376  1.50.2.1    bouyer 
    377  1.50.2.1    bouyer #define	CALLWHEEL_LOCK(s)						\
    378  1.50.2.1    bouyer do {									\
    379  1.50.2.1    bouyer 	s = splclock();							\
    380  1.50.2.1    bouyer 	simple_lock(&callwheel_slock);					\
    381  1.50.2.1    bouyer } while (0)
    382  1.50.2.1    bouyer 
    383  1.50.2.1    bouyer #define	CALLWHEEL_UNLOCK(s)						\
    384  1.50.2.1    bouyer do {									\
    385  1.50.2.1    bouyer 	simple_unlock(&callwheel_slock);				\
    386  1.50.2.1    bouyer 	splx(s);							\
    387  1.50.2.1    bouyer } while (0)
    388  1.50.2.1    bouyer 
    389  1.50.2.1    bouyer static void callout_stop_locked(struct callout *);
    390  1.50.2.1    bouyer 
    391  1.50.2.1    bouyer /*
    392  1.50.2.1    bouyer  * These are both protected by callwheel_lock.
    393  1.50.2.1    bouyer  * XXX SHOULD BE STATIC!!
    394  1.50.2.1    bouyer  */
    395  1.50.2.1    bouyer u_int64_t hardclock_ticks, softclock_ticks;
    396  1.50.2.1    bouyer 
    397  1.50.2.1    bouyer /*
    398      1.19       cgd  * Initialize clock frequencies and start both clocks running.
    399      1.19       cgd  */
    400      1.19       cgd void
    401  1.50.2.1    bouyer initclocks(void)
    402      1.19       cgd {
    403  1.50.2.1    bouyer 	int i;
    404      1.19       cgd 
    405      1.19       cgd 	/*
    406      1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    407      1.19       cgd 	 * code do its bit.
    408      1.19       cgd 	 */
    409  1.50.2.1    bouyer 	psdiv = 1;
    410      1.19       cgd 	cpu_initclocks();
    411      1.19       cgd 
    412      1.19       cgd 	/*
    413  1.50.2.1    bouyer 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    414      1.19       cgd 	 */
    415      1.19       cgd 	i = stathz ? stathz : hz;
    416      1.19       cgd 	if (profhz == 0)
    417      1.19       cgd 		profhz = i;
    418      1.19       cgd 	psratio = profhz / i;
    419  1.50.2.1    bouyer 	rrticks = hz / 10;
    420      1.31   mycroft 
    421      1.31   mycroft #ifdef NTP
    422      1.31   mycroft 	switch (hz) {
    423  1.50.2.1    bouyer 	case 1:
    424  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 0;
    425  1.50.2.1    bouyer 		break;
    426  1.50.2.1    bouyer 	case 2:
    427  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 1;
    428  1.50.2.1    bouyer 		break;
    429  1.50.2.1    bouyer 	case 4:
    430  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 2;
    431  1.50.2.1    bouyer 		break;
    432  1.50.2.1    bouyer 	case 8:
    433  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 3;
    434  1.50.2.1    bouyer 		break;
    435  1.50.2.1    bouyer 	case 16:
    436  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 4;
    437  1.50.2.1    bouyer 		break;
    438  1.50.2.1    bouyer 	case 32:
    439  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 5;
    440  1.50.2.1    bouyer 		break;
    441      1.31   mycroft 	case 60:
    442      1.31   mycroft 	case 64:
    443      1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    444      1.31   mycroft 		break;
    445      1.31   mycroft 	case 96:
    446      1.31   mycroft 	case 100:
    447      1.31   mycroft 	case 128:
    448      1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    449      1.31   mycroft 		break;
    450      1.31   mycroft 	case 256:
    451      1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    452      1.41       tls 		break;
    453      1.41       tls 	case 512:
    454      1.41       tls 		shifthz = SHIFT_SCALE - 9;
    455      1.31   mycroft 		break;
    456      1.43      ross 	case 1000:
    457      1.31   mycroft 	case 1024:
    458      1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    459      1.31   mycroft 		break;
    460  1.50.2.1    bouyer 	case 1200:
    461  1.50.2.1    bouyer 	case 2048:
    462  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 11;
    463  1.50.2.1    bouyer 		break;
    464  1.50.2.1    bouyer 	case 4096:
    465  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 12;
    466  1.50.2.1    bouyer 		break;
    467  1.50.2.1    bouyer 	case 8192:
    468  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 13;
    469  1.50.2.1    bouyer 		break;
    470  1.50.2.1    bouyer 	case 16384:
    471  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 14;
    472  1.50.2.1    bouyer 		break;
    473  1.50.2.1    bouyer 	case 32768:
    474  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 15;
    475  1.50.2.1    bouyer 		break;
    476  1.50.2.1    bouyer 	case 65536:
    477  1.50.2.1    bouyer 		shifthz = SHIFT_SCALE - 16;
    478  1.50.2.1    bouyer 		break;
    479      1.31   mycroft 	default:
    480      1.31   mycroft 		panic("weird hz");
    481      1.50  sommerfe 	}
    482      1.50  sommerfe 	if (fixtick == 0) {
    483  1.50.2.1    bouyer 		/*
    484  1.50.2.1    bouyer 		 * Give MD code a chance to set this to a better
    485  1.50.2.1    bouyer 		 * value; but, if it doesn't, we should.
    486  1.50.2.1    bouyer 		 */
    487      1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    488      1.31   mycroft 	}
    489      1.31   mycroft #endif
    490      1.19       cgd }
    491      1.19       cgd 
    492      1.19       cgd /*
    493      1.19       cgd  * The real-time timer, interrupting hz times per second.
    494      1.19       cgd  */
    495      1.19       cgd void
    496  1.50.2.1    bouyer hardclock(struct clockframe *frame)
    497      1.19       cgd {
    498  1.50.2.1    bouyer 	struct proc *p;
    499  1.50.2.1    bouyer 	int delta;
    500      1.19       cgd 	extern int tickdelta;
    501      1.19       cgd 	extern long timedelta;
    502  1.50.2.1    bouyer 	struct cpu_info *ci = curcpu();
    503      1.30   mycroft #ifdef NTP
    504  1.50.2.1    bouyer 	int time_update;
    505  1.50.2.1    bouyer 	int ltemp;
    506      1.29  christos #endif
    507      1.19       cgd 
    508      1.19       cgd 	p = curproc;
    509      1.19       cgd 	if (p) {
    510  1.50.2.1    bouyer 		struct pstats *pstats;
    511      1.19       cgd 
    512      1.19       cgd 		/*
    513      1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    514      1.19       cgd 		 */
    515      1.19       cgd 		pstats = p->p_stats;
    516      1.19       cgd 		if (CLKF_USERMODE(frame) &&
    517      1.19       cgd 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    518      1.19       cgd 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    519      1.19       cgd 			psignal(p, SIGVTALRM);
    520      1.19       cgd 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    521      1.19       cgd 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    522      1.19       cgd 			psignal(p, SIGPROF);
    523      1.19       cgd 	}
    524      1.19       cgd 
    525      1.19       cgd 	/*
    526      1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    527      1.19       cgd 	 */
    528      1.19       cgd 	if (stathz == 0)
    529      1.19       cgd 		statclock(frame);
    530  1.50.2.1    bouyer 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    531  1.50.2.1    bouyer 		roundrobin(ci);
    532  1.50.2.1    bouyer 
    533  1.50.2.1    bouyer #if defined(MULTIPROCESSOR)
    534  1.50.2.1    bouyer 	/*
    535  1.50.2.1    bouyer 	 * If we are not the primary CPU, we're not allowed to do
    536  1.50.2.1    bouyer 	 * any more work.
    537  1.50.2.1    bouyer 	 */
    538  1.50.2.1    bouyer 	if (CPU_IS_PRIMARY(ci) == 0)
    539  1.50.2.1    bouyer 		return;
    540  1.50.2.1    bouyer #endif
    541      1.19       cgd 
    542      1.19       cgd 	/*
    543      1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    544      1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    545      1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    546      1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    547      1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    548      1.22       cgd 	 * ``tickdelta'' may also be added in.
    549      1.19       cgd 	 */
    550      1.22       cgd 	delta = tick;
    551      1.27  jonathan 
    552      1.27  jonathan #ifndef NTP
    553      1.22       cgd 	if (tickfix) {
    554      1.39       cgd 		tickfixcnt += tickfix;
    555      1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    556      1.39       cgd 			delta++;
    557      1.39       cgd 			tickfixcnt -= tickfixinterval;
    558      1.22       cgd 		}
    559      1.22       cgd 	}
    560      1.27  jonathan #endif /* !NTP */
    561      1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    562      1.22       cgd 	if (timedelta != 0) {
    563      1.38       cgd 		delta += tickdelta;
    564      1.19       cgd 		timedelta -= tickdelta;
    565      1.19       cgd 	}
    566      1.27  jonathan 
    567      1.27  jonathan #ifdef notyet
    568      1.27  jonathan 	microset();
    569      1.27  jonathan #endif
    570      1.27  jonathan 
    571      1.27  jonathan #ifndef NTP
    572      1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    573      1.27  jonathan #endif
    574      1.19       cgd 	BUMPTIME(&mono_time, delta);
    575      1.27  jonathan 
    576      1.31   mycroft #ifdef NTP
    577      1.30   mycroft 	time_update = delta;
    578      1.27  jonathan 
    579      1.27  jonathan 	/*
    580      1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    581      1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    582      1.27  jonathan 	 * (time_update).
    583      1.27  jonathan 	 */
    584      1.27  jonathan 	time_phase += time_adj;
    585      1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    586      1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    587      1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    588      1.27  jonathan 		time_update -= ltemp;
    589      1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    590      1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    591      1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    592      1.27  jonathan 		time_update += ltemp;
    593      1.27  jonathan 	}
    594      1.27  jonathan 
    595      1.27  jonathan #ifdef HIGHBALL
    596      1.27  jonathan 	/*
    597      1.27  jonathan 	 * If the HIGHBALL board is installed, we need to adjust the
    598      1.27  jonathan 	 * external clock offset in order to close the hardware feedback
    599      1.27  jonathan 	 * loop. This will adjust the external clock phase and frequency
    600      1.27  jonathan 	 * in small amounts. The additional phase noise and frequency
    601      1.27  jonathan 	 * wander this causes should be minimal. We also need to
    602      1.27  jonathan 	 * discipline the kernel time variable, since the PLL is used to
    603      1.27  jonathan 	 * discipline the external clock. If the Highball board is not
    604      1.27  jonathan 	 * present, we discipline kernel time with the PLL as usual. We
    605      1.27  jonathan 	 * assume that the external clock phase adjustment (time_update)
    606      1.27  jonathan 	 * and kernel phase adjustment (clock_cpu) are less than the
    607      1.27  jonathan 	 * value of tick.
    608      1.27  jonathan 	 */
    609      1.27  jonathan 	clock_offset.tv_usec += time_update;
    610      1.27  jonathan 	if (clock_offset.tv_usec >= 1000000) {
    611      1.27  jonathan 		clock_offset.tv_sec++;
    612      1.27  jonathan 		clock_offset.tv_usec -= 1000000;
    613      1.27  jonathan 	}
    614      1.27  jonathan 	if (clock_offset.tv_usec < 0) {
    615      1.27  jonathan 		clock_offset.tv_sec--;
    616      1.27  jonathan 		clock_offset.tv_usec += 1000000;
    617      1.27  jonathan 	}
    618      1.27  jonathan 	time.tv_usec += clock_cpu;
    619      1.27  jonathan 	clock_cpu = 0;
    620      1.27  jonathan #else
    621      1.27  jonathan 	time.tv_usec += time_update;
    622      1.27  jonathan #endif /* HIGHBALL */
    623      1.27  jonathan 
    624      1.27  jonathan 	/*
    625      1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    626      1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    627      1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    628      1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    629      1.27  jonathan 	 * CPU clock oscillator frequency error.
    630      1.27  jonathan 	 *
    631      1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    632      1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    633      1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    634      1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    635      1.27  jonathan 	 */
    636      1.27  jonathan 	if (time.tv_usec >= 1000000) {
    637      1.27  jonathan 		time.tv_usec -= 1000000;
    638      1.27  jonathan 		time.tv_sec++;
    639      1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    640      1.27  jonathan 
    641      1.27  jonathan 		/*
    642      1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    643      1.27  jonathan 		 * the end of the day, the system clock is set back one
    644      1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    645      1.27  jonathan 		 * set ahead one second. The microtime() routine or
    646      1.27  jonathan 		 * external clock driver will insure that reported time
    647      1.27  jonathan 		 * is always monotonic. The ugly divides should be
    648      1.27  jonathan 		 * replaced.
    649      1.27  jonathan 		 */
    650      1.27  jonathan 		switch (time_state) {
    651      1.31   mycroft 		case TIME_OK:
    652      1.27  jonathan 			if (time_status & STA_INS)
    653      1.27  jonathan 				time_state = TIME_INS;
    654      1.27  jonathan 			else if (time_status & STA_DEL)
    655      1.27  jonathan 				time_state = TIME_DEL;
    656      1.27  jonathan 			break;
    657      1.27  jonathan 
    658      1.31   mycroft 		case TIME_INS:
    659      1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    660      1.27  jonathan 				time.tv_sec--;
    661      1.27  jonathan 				time_state = TIME_OOP;
    662      1.27  jonathan 			}
    663      1.27  jonathan 			break;
    664      1.27  jonathan 
    665      1.31   mycroft 		case TIME_DEL:
    666      1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    667      1.27  jonathan 				time.tv_sec++;
    668      1.27  jonathan 				time_state = TIME_WAIT;
    669      1.27  jonathan 			}
    670      1.27  jonathan 			break;
    671      1.27  jonathan 
    672      1.31   mycroft 		case TIME_OOP:
    673      1.27  jonathan 			time_state = TIME_WAIT;
    674      1.27  jonathan 			break;
    675      1.27  jonathan 
    676      1.31   mycroft 		case TIME_WAIT:
    677      1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    678      1.27  jonathan 				time_state = TIME_OK;
    679      1.31   mycroft 			break;
    680      1.27  jonathan 		}
    681      1.27  jonathan 
    682      1.27  jonathan 		/*
    683      1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    684      1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    685      1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    686      1.27  jonathan 		 * used directly. In either mode, the maximum phase
    687      1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    688      1.27  jonathan 		 * the adjustment over not more than the number of
    689      1.27  jonathan 		 * seconds between updates.
    690      1.27  jonathan 		 */
    691      1.27  jonathan 		if (time_offset < 0) {
    692      1.27  jonathan 			ltemp = -time_offset;
    693      1.27  jonathan 			if (!(time_status & STA_FLL))
    694      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    695      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    696      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    697      1.27  jonathan 				    SHIFT_UPDATE;
    698      1.27  jonathan 			time_offset += ltemp;
    699      1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    700      1.31   mycroft 		} else if (time_offset > 0) {
    701      1.27  jonathan 			ltemp = time_offset;
    702      1.27  jonathan 			if (!(time_status & STA_FLL))
    703      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    704      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    705      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    706      1.27  jonathan 				    SHIFT_UPDATE;
    707      1.27  jonathan 			time_offset -= ltemp;
    708      1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    709      1.31   mycroft 		} else
    710      1.31   mycroft 			time_adj = 0;
    711      1.27  jonathan 
    712      1.27  jonathan 		/*
    713      1.27  jonathan 		 * Compute the frequency estimate and additional phase
    714      1.27  jonathan 		 * adjustment due to frequency error for the next
    715      1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    716      1.27  jonathan 		 * watchdog counter and update the frequency computed by
    717      1.27  jonathan 		 * the pll and the PPS signal.
    718      1.27  jonathan 		 */
    719      1.27  jonathan #ifdef PPS_SYNC
    720      1.27  jonathan 		pps_valid++;
    721      1.27  jonathan 		if (pps_valid == PPS_VALID) {
    722      1.27  jonathan 			pps_jitter = MAXTIME;
    723      1.27  jonathan 			pps_stabil = MAXFREQ;
    724      1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    725      1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    726      1.27  jonathan 		}
    727      1.27  jonathan 		ltemp = time_freq + pps_freq;
    728      1.27  jonathan #else
    729      1.27  jonathan 		ltemp = time_freq;
    730      1.27  jonathan #endif /* PPS_SYNC */
    731      1.27  jonathan 
    732      1.27  jonathan 		if (ltemp < 0)
    733      1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    734      1.27  jonathan 		else
    735      1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    736      1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    737      1.27  jonathan 
    738      1.27  jonathan 		/*
    739      1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    740      1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    741      1.31   mycroft 		 * scale factor.
    742      1.46   mycroft 		 *
    743      1.46   mycroft 		 * To determine the adjustment, you can do the following:
    744      1.46   mycroft 		 *   bc -q
    745      1.46   mycroft 		 *   scale=24
    746      1.46   mycroft 		 *   obase=2
    747      1.46   mycroft 		 *   idealhz/realhz
    748      1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    749  1.50.2.1    bouyer 		 * is the actual value.  You may need to factor this result
    750  1.50.2.1    bouyer 		 * into a sequence of 2 multipliers to get better precision.
    751      1.46   mycroft 		 *
    752      1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    753      1.46   mycroft 		 *   bc -q
    754      1.46   mycroft 		 *   scale=24
    755  1.50.2.1    bouyer 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    756  1.50.2.1    bouyer 		 * (and then multiply by 1000000 to get ppm).
    757      1.27  jonathan 		 */
    758      1.31   mycroft 		switch (hz) {
    759  1.50.2.1    bouyer 		case 60:
    760  1.50.2.1    bouyer 			/* A factor of 1.000100010001 gives about 15ppm
    761  1.50.2.1    bouyer 			   error. */
    762  1.50.2.1    bouyer 			if (time_adj < 0) {
    763  1.50.2.1    bouyer 				time_adj -= (-time_adj >> 4);
    764  1.50.2.1    bouyer 				time_adj -= (-time_adj >> 8);
    765  1.50.2.1    bouyer 			} else {
    766  1.50.2.1    bouyer 				time_adj += (time_adj >> 4);
    767  1.50.2.1    bouyer 				time_adj += (time_adj >> 8);
    768  1.50.2.1    bouyer 			}
    769  1.50.2.1    bouyer 			break;
    770  1.50.2.1    bouyer 
    771      1.31   mycroft 		case 96:
    772  1.50.2.1    bouyer 			/* A factor of 1.0101010101 gives about 244ppm error. */
    773      1.46   mycroft 			if (time_adj < 0) {
    774      1.46   mycroft 				time_adj -= (-time_adj >> 2);
    775      1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    776      1.46   mycroft 			} else {
    777      1.46   mycroft 				time_adj += (time_adj >> 2);
    778      1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    779      1.46   mycroft 			}
    780      1.46   mycroft 			break;
    781      1.46   mycroft 
    782      1.31   mycroft 		case 100:
    783  1.50.2.1    bouyer 			/* A factor of 1.010001111010111 gives about 1ppm
    784  1.50.2.1    bouyer 			   error. */
    785  1.50.2.1    bouyer 			if (time_adj < 0) {
    786      1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    787  1.50.2.1    bouyer 				time_adj += (-time_adj >> 10);
    788  1.50.2.1    bouyer 			} else {
    789      1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    790  1.50.2.1    bouyer 				time_adj -= (time_adj >> 10);
    791  1.50.2.1    bouyer 			}
    792      1.31   mycroft 			break;
    793      1.46   mycroft 
    794  1.50.2.1    bouyer 		case 1000:
    795  1.50.2.1    bouyer 			/* A factor of 1.000001100010100001 gives about 50ppm
    796  1.50.2.1    bouyer 			   error. */
    797  1.50.2.1    bouyer 			if (time_adj < 0) {
    798  1.50.2.1    bouyer 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    799  1.50.2.1    bouyer 				time_adj -= (-time_adj >> 7);
    800  1.50.2.1    bouyer 			} else {
    801  1.50.2.1    bouyer 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    802  1.50.2.1    bouyer 				time_adj += (time_adj >> 7);
    803  1.50.2.1    bouyer 			}
    804      1.43      ross 			break;
    805      1.46   mycroft 
    806  1.50.2.1    bouyer 		case 1200:
    807  1.50.2.1    bouyer 			/* A factor of 1.1011010011100001 gives about 64ppm
    808  1.50.2.1    bouyer 			   error. */
    809  1.50.2.1    bouyer 			if (time_adj < 0) {
    810  1.50.2.1    bouyer 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    811  1.50.2.1    bouyer 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    812  1.50.2.1    bouyer 			} else {
    813  1.50.2.1    bouyer 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    814  1.50.2.1    bouyer 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    815  1.50.2.1    bouyer 			}
    816      1.31   mycroft 			break;
    817      1.27  jonathan 		}
    818      1.27  jonathan 
    819      1.27  jonathan #ifdef EXT_CLOCK
    820      1.27  jonathan 		/*
    821      1.27  jonathan 		 * If an external clock is present, it is necessary to
    822      1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    823      1.27  jonathan 		 * all system components use the microtime() interface.
    824      1.27  jonathan 		 * Here, the time offset between the external clock and
    825      1.27  jonathan 		 * kernel time variable is computed every so often.
    826      1.27  jonathan 		 */
    827      1.27  jonathan 		clock_count++;
    828      1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    829      1.27  jonathan 			clock_count = 0;
    830      1.27  jonathan 			microtime(&clock_ext);
    831      1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    832      1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    833      1.27  jonathan 			    time.tv_usec;
    834      1.27  jonathan 			if (delta.tv_usec < 0)
    835      1.27  jonathan 				delta.tv_sec--;
    836      1.27  jonathan 			if (delta.tv_usec >= 500000) {
    837      1.27  jonathan 				delta.tv_usec -= 1000000;
    838      1.27  jonathan 				delta.tv_sec++;
    839      1.27  jonathan 			}
    840      1.27  jonathan 			if (delta.tv_usec < -500000) {
    841      1.27  jonathan 				delta.tv_usec += 1000000;
    842      1.27  jonathan 				delta.tv_sec--;
    843      1.27  jonathan 			}
    844      1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    845      1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    846      1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    847      1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    848      1.27  jonathan 				time = clock_ext;
    849      1.27  jonathan 				delta.tv_sec = 0;
    850      1.27  jonathan 				delta.tv_usec = 0;
    851      1.27  jonathan 			}
    852      1.27  jonathan #ifdef HIGHBALL
    853      1.27  jonathan 			clock_cpu = delta.tv_usec;
    854      1.27  jonathan #else /* HIGHBALL */
    855      1.27  jonathan 			hardupdate(delta.tv_usec);
    856      1.27  jonathan #endif /* HIGHBALL */
    857      1.27  jonathan 		}
    858      1.27  jonathan #endif /* EXT_CLOCK */
    859      1.27  jonathan 	}
    860      1.27  jonathan 
    861      1.31   mycroft #endif /* NTP */
    862      1.19       cgd 
    863      1.19       cgd 	/*
    864      1.19       cgd 	 * Process callouts at a very low cpu priority, so we don't keep the
    865      1.19       cgd 	 * relatively high clock interrupt priority any longer than necessary.
    866      1.19       cgd 	 */
    867  1.50.2.1    bouyer 	simple_lock(&callwheel_slock);	/* already at splclock() */
    868  1.50.2.1    bouyer 	hardclock_ticks++;
    869  1.50.2.1    bouyer 	if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
    870  1.50.2.1    bouyer 		simple_unlock(&callwheel_slock);
    871      1.19       cgd 		if (CLKF_BASEPRI(frame)) {
    872      1.19       cgd 			/*
    873      1.19       cgd 			 * Save the overhead of a software interrupt;
    874  1.50.2.1    bouyer 			 * it will happen as soon as we return, so do
    875  1.50.2.1    bouyer 			 * it now.
    876  1.50.2.1    bouyer 			 *
    877  1.50.2.1    bouyer 			 * NOTE: If we're at ``base priority'', softclock()
    878  1.50.2.1    bouyer 			 * was not already running.
    879      1.19       cgd 			 */
    880  1.50.2.1    bouyer 			spllowersoftclock();
    881  1.50.2.1    bouyer 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    882      1.19       cgd 			softclock();
    883  1.50.2.1    bouyer 			KERNEL_UNLOCK();
    884      1.19       cgd 		} else
    885      1.19       cgd 			setsoftclock();
    886  1.50.2.1    bouyer 		return;
    887  1.50.2.1    bouyer 	} else if (softclock_running == 0 &&
    888  1.50.2.1    bouyer 		   (softclock_ticks + 1) == hardclock_ticks) {
    889  1.50.2.1    bouyer 		softclock_ticks++;
    890      1.19       cgd 	}
    891  1.50.2.1    bouyer 	simple_unlock(&callwheel_slock);
    892      1.19       cgd }
    893      1.19       cgd 
    894      1.19       cgd /*
    895      1.19       cgd  * Software (low priority) clock interrupt.
    896      1.19       cgd  * Run periodic events from timeout queue.
    897      1.19       cgd  */
    898      1.19       cgd /*ARGSUSED*/
    899      1.19       cgd void
    900  1.50.2.1    bouyer softclock(void)
    901      1.19       cgd {
    902  1.50.2.1    bouyer 	struct callout_queue *bucket;
    903  1.50.2.1    bouyer 	struct callout *c;
    904  1.50.2.1    bouyer 	void (*func)(void *);
    905  1.50.2.1    bouyer 	void *arg;
    906  1.50.2.1    bouyer 	int s, idx;
    907  1.50.2.1    bouyer 	int steps = 0;
    908  1.50.2.1    bouyer 
    909  1.50.2.1    bouyer 	CALLWHEEL_LOCK(s);
    910  1.50.2.1    bouyer 
    911  1.50.2.1    bouyer 	softclock_running = 1;
    912  1.50.2.1    bouyer 
    913  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
    914  1.50.2.1    bouyer 	callwheel_softclocks++;
    915  1.50.2.1    bouyer #endif
    916  1.50.2.1    bouyer 
    917  1.50.2.1    bouyer 	while (softclock_ticks != hardclock_ticks) {
    918  1.50.2.1    bouyer 		softclock_ticks++;
    919  1.50.2.1    bouyer 		idx = (int)(softclock_ticks & callwheelmask);
    920  1.50.2.1    bouyer 		bucket = &callwheel[idx];
    921  1.50.2.1    bouyer 		c = TAILQ_FIRST(bucket);
    922  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
    923  1.50.2.1    bouyer 		if (c == NULL)
    924  1.50.2.1    bouyer 			callwheel_softempty++;
    925  1.50.2.1    bouyer #endif
    926  1.50.2.1    bouyer 		while (c != NULL) {
    927  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
    928  1.50.2.1    bouyer 			callwheel_softchecks++;
    929  1.50.2.1    bouyer #endif
    930  1.50.2.1    bouyer 			if (c->c_time != softclock_ticks) {
    931  1.50.2.1    bouyer 				c = TAILQ_NEXT(c, c_link);
    932  1.50.2.1    bouyer 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
    933  1.50.2.1    bouyer 					nextsoftcheck = c;
    934  1.50.2.1    bouyer 					/* Give interrupts a chance. */
    935  1.50.2.1    bouyer 					CALLWHEEL_UNLOCK(s);
    936  1.50.2.1    bouyer 					CALLWHEEL_LOCK(s);
    937  1.50.2.1    bouyer 					c = nextsoftcheck;
    938  1.50.2.1    bouyer 					steps = 0;
    939  1.50.2.1    bouyer 				}
    940  1.50.2.1    bouyer 			} else {
    941  1.50.2.1    bouyer 				nextsoftcheck = TAILQ_NEXT(c, c_link);
    942  1.50.2.1    bouyer 				TAILQ_REMOVE(bucket, c, c_link);
    943  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
    944  1.50.2.1    bouyer 				callwheel_sizes[idx]--;
    945  1.50.2.1    bouyer 				callwheel_fired++;
    946  1.50.2.1    bouyer 				callwheel_count--;
    947  1.50.2.1    bouyer #endif
    948  1.50.2.1    bouyer 				func = c->c_func;
    949  1.50.2.1    bouyer 				arg = c->c_arg;
    950  1.50.2.1    bouyer 				c->c_func = NULL;
    951  1.50.2.1    bouyer 				c->c_flags &= ~CALLOUT_PENDING;
    952  1.50.2.1    bouyer 				CALLWHEEL_UNLOCK(s);
    953  1.50.2.1    bouyer 				(*func)(arg);
    954  1.50.2.1    bouyer 				CALLWHEEL_LOCK(s);
    955  1.50.2.1    bouyer 				steps = 0;
    956  1.50.2.1    bouyer 				c = nextsoftcheck;
    957  1.50.2.1    bouyer 			}
    958  1.50.2.1    bouyer 		}
    959      1.19       cgd 	}
    960  1.50.2.1    bouyer 	nextsoftcheck = NULL;
    961  1.50.2.1    bouyer 	softclock_running = 0;
    962  1.50.2.1    bouyer 	CALLWHEEL_UNLOCK(s);
    963      1.19       cgd }
    964      1.19       cgd 
    965      1.19       cgd /*
    966  1.50.2.1    bouyer  * callout_setsize:
    967      1.19       cgd  *
    968  1.50.2.1    bouyer  *	Determine how many callwheels are necessary and
    969  1.50.2.1    bouyer  *	set hash mask.  Called from allocsys().
    970  1.50.2.1    bouyer  */
    971  1.50.2.1    bouyer void
    972  1.50.2.1    bouyer callout_setsize(void)
    973  1.50.2.1    bouyer {
    974  1.50.2.1    bouyer 
    975  1.50.2.1    bouyer 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
    976  1.50.2.1    bouyer 		/* loop */ ;
    977  1.50.2.1    bouyer 	callwheelmask = callwheelsize - 1;
    978  1.50.2.1    bouyer }
    979  1.50.2.1    bouyer 
    980  1.50.2.1    bouyer /*
    981  1.50.2.1    bouyer  * callout_startup:
    982      1.19       cgd  *
    983  1.50.2.1    bouyer  *	Initialize the callwheel buckets.
    984      1.19       cgd  */
    985      1.19       cgd void
    986  1.50.2.1    bouyer callout_startup(void)
    987      1.19       cgd {
    988  1.50.2.1    bouyer 	int i;
    989  1.50.2.1    bouyer 
    990  1.50.2.1    bouyer 	for (i = 0; i < callwheelsize; i++)
    991  1.50.2.1    bouyer 		TAILQ_INIT(&callwheel[i]);
    992  1.50.2.1    bouyer 
    993  1.50.2.1    bouyer 	simple_lock_init(&callwheel_slock);
    994  1.50.2.1    bouyer }
    995  1.50.2.1    bouyer 
    996  1.50.2.1    bouyer /*
    997  1.50.2.1    bouyer  * callout_init:
    998  1.50.2.1    bouyer  *
    999  1.50.2.1    bouyer  *	Initialize a callout structure so that it can be used
   1000  1.50.2.1    bouyer  *	by callout_reset() and callout_stop().
   1001  1.50.2.1    bouyer  */
   1002  1.50.2.1    bouyer void
   1003  1.50.2.1    bouyer callout_init(struct callout *c)
   1004  1.50.2.1    bouyer {
   1005  1.50.2.1    bouyer 
   1006  1.50.2.1    bouyer 	memset(c, 0, sizeof(*c));
   1007  1.50.2.1    bouyer }
   1008  1.50.2.1    bouyer 
   1009  1.50.2.1    bouyer /*
   1010  1.50.2.1    bouyer  * callout_reset:
   1011  1.50.2.1    bouyer  *
   1012  1.50.2.1    bouyer  *	Establish or change a timeout.
   1013  1.50.2.1    bouyer  */
   1014  1.50.2.1    bouyer void
   1015  1.50.2.1    bouyer callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
   1016  1.50.2.1    bouyer {
   1017  1.50.2.1    bouyer 	struct callout_queue *bucket;
   1018  1.50.2.1    bouyer 	int s;
   1019      1.19       cgd 
   1020      1.19       cgd 	if (ticks <= 0)
   1021      1.19       cgd 		ticks = 1;
   1022      1.19       cgd 
   1023  1.50.2.1    bouyer 	CALLWHEEL_LOCK(s);
   1024      1.19       cgd 
   1025  1.50.2.1    bouyer 	/*
   1026  1.50.2.1    bouyer 	 * If this callout's timer is already running, cancel it
   1027  1.50.2.1    bouyer 	 * before we modify it.
   1028  1.50.2.1    bouyer 	 */
   1029  1.50.2.1    bouyer 	if (c->c_flags & CALLOUT_PENDING) {
   1030  1.50.2.1    bouyer 		callout_stop_locked(c);	/* Already locked */
   1031  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
   1032  1.50.2.1    bouyer 		callwheel_changed++;
   1033  1.50.2.1    bouyer #endif
   1034  1.50.2.1    bouyer 	}
   1035  1.50.2.1    bouyer 
   1036  1.50.2.1    bouyer 	c->c_arg = arg;
   1037  1.50.2.1    bouyer 	c->c_func = func;
   1038  1.50.2.1    bouyer 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
   1039  1.50.2.1    bouyer 	c->c_time = hardclock_ticks + ticks;
   1040  1.50.2.1    bouyer 
   1041  1.50.2.1    bouyer 	bucket = &callwheel[c->c_time & callwheelmask];
   1042  1.50.2.1    bouyer 
   1043  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
   1044  1.50.2.1    bouyer 	if (TAILQ_FIRST(bucket) != NULL)
   1045  1.50.2.1    bouyer 		callwheel_collisions++;
   1046  1.50.2.1    bouyer #endif
   1047  1.50.2.1    bouyer 
   1048  1.50.2.1    bouyer 	TAILQ_INSERT_TAIL(bucket, c, c_link);
   1049  1.50.2.1    bouyer 
   1050  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
   1051  1.50.2.1    bouyer 	callwheel_count++;
   1052  1.50.2.1    bouyer 	callwheel_established++;
   1053  1.50.2.1    bouyer 	if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
   1054  1.50.2.1    bouyer 		callwheel_maxlength =
   1055  1.50.2.1    bouyer 		    callwheel_sizes[c->c_time & callwheelmask];
   1056  1.50.2.1    bouyer #endif
   1057  1.50.2.1    bouyer 
   1058  1.50.2.1    bouyer 	CALLWHEEL_UNLOCK(s);
   1059  1.50.2.1    bouyer }
   1060  1.50.2.1    bouyer 
   1061  1.50.2.1    bouyer /*
   1062  1.50.2.1    bouyer  * callout_stop_locked:
   1063  1.50.2.1    bouyer  *
   1064  1.50.2.1    bouyer  *	Disestablish a timeout.  Callwheel is locked.
   1065  1.50.2.1    bouyer  */
   1066  1.50.2.1    bouyer static void
   1067  1.50.2.1    bouyer callout_stop_locked(struct callout *c)
   1068  1.50.2.1    bouyer {
   1069  1.50.2.1    bouyer 
   1070  1.50.2.1    bouyer 	/*
   1071  1.50.2.1    bouyer 	 * Don't attempt to delete a callout that's not on the queue.
   1072  1.50.2.1    bouyer 	 */
   1073  1.50.2.1    bouyer 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
   1074  1.50.2.1    bouyer 		c->c_flags &= ~CALLOUT_ACTIVE;
   1075  1.50.2.1    bouyer 		return;
   1076  1.50.2.1    bouyer 	}
   1077  1.50.2.1    bouyer 
   1078  1.50.2.1    bouyer 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
   1079  1.50.2.1    bouyer 
   1080  1.50.2.1    bouyer 	if (nextsoftcheck == c)
   1081  1.50.2.1    bouyer 		nextsoftcheck = TAILQ_NEXT(c, c_link);
   1082  1.50.2.1    bouyer 
   1083  1.50.2.1    bouyer 	TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
   1084  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
   1085  1.50.2.1    bouyer 	callwheel_count--;
   1086  1.50.2.1    bouyer 	callwheel_disestablished++;
   1087  1.50.2.1    bouyer 	callwheel_sizes[c->c_time & callwheelmask]--;
   1088  1.50.2.1    bouyer #endif
   1089  1.50.2.1    bouyer 
   1090  1.50.2.1    bouyer 	c->c_func = NULL;
   1091      1.19       cgd }
   1092      1.19       cgd 
   1093  1.50.2.1    bouyer /*
   1094  1.50.2.1    bouyer  * callout_stop:
   1095  1.50.2.1    bouyer  *
   1096  1.50.2.1    bouyer  *	Disestablish a timeout.  Callwheel is unlocked.  This is
   1097  1.50.2.1    bouyer  *	the standard entry point.
   1098  1.50.2.1    bouyer  */
   1099      1.19       cgd void
   1100  1.50.2.1    bouyer callout_stop(struct callout *c)
   1101      1.19       cgd {
   1102  1.50.2.1    bouyer 	int s;
   1103      1.19       cgd 
   1104  1.50.2.1    bouyer 	CALLWHEEL_LOCK(s);
   1105  1.50.2.1    bouyer 	callout_stop_locked(c);
   1106  1.50.2.1    bouyer 	CALLWHEEL_UNLOCK(s);
   1107  1.50.2.1    bouyer }
   1108  1.50.2.1    bouyer 
   1109  1.50.2.1    bouyer #ifdef CALLWHEEL_STATS
   1110  1.50.2.1    bouyer /*
   1111  1.50.2.1    bouyer  * callout_showstats:
   1112  1.50.2.1    bouyer  *
   1113  1.50.2.1    bouyer  *	Display callout statistics.  Call it from DDB.
   1114  1.50.2.1    bouyer  */
   1115  1.50.2.1    bouyer void
   1116  1.50.2.1    bouyer callout_showstats(void)
   1117  1.50.2.1    bouyer {
   1118  1.50.2.1    bouyer 	u_int64_t curticks;
   1119  1.50.2.1    bouyer 	int s;
   1120  1.50.2.1    bouyer 
   1121  1.50.2.1    bouyer 	s = splclock();
   1122  1.50.2.1    bouyer 	curticks = softclock_ticks;
   1123      1.19       cgd 	splx(s);
   1124  1.50.2.1    bouyer 
   1125  1.50.2.1    bouyer 	printf("Callwheel statistics:\n");
   1126  1.50.2.1    bouyer 	printf("\tCallouts currently queued: %llu\n", callwheel_count);
   1127  1.50.2.1    bouyer 	printf("\tCallouts established: %llu\n", callwheel_established);
   1128  1.50.2.1    bouyer 	printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
   1129  1.50.2.1    bouyer 	if (callwheel_changed != 0)
   1130  1.50.2.1    bouyer 		printf("\t\tOf those, %llu were changes\n", callwheel_changed);
   1131  1.50.2.1    bouyer 	printf("\tCallouts that fired: %llu\n", callwheel_fired);
   1132  1.50.2.1    bouyer 	printf("\tNumber of buckets: %d\n", callwheelsize);
   1133  1.50.2.1    bouyer 	printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
   1134  1.50.2.1    bouyer 	printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
   1135  1.50.2.1    bouyer 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
   1136  1.50.2.1    bouyer 	    callwheel_softclocks, callwheel_softchecks);
   1137  1.50.2.1    bouyer 	printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
   1138      1.19       cgd }
   1139  1.50.2.1    bouyer #endif
   1140      1.19       cgd 
   1141      1.19       cgd /*
   1142  1.50.2.1    bouyer  * Compute number of hz until specified time.  Used to compute second
   1143  1.50.2.1    bouyer  * argument to callout_reset() from an absolute time.
   1144      1.19       cgd  */
   1145      1.19       cgd int
   1146  1.50.2.1    bouyer hzto(struct timeval *tv)
   1147      1.19       cgd {
   1148  1.50.2.1    bouyer 	unsigned long ticks;
   1149  1.50.2.1    bouyer 	long sec, usec;
   1150      1.19       cgd 	int s;
   1151      1.19       cgd 
   1152      1.19       cgd 	/*
   1153  1.50.2.1    bouyer 	 * If the number of usecs in the whole seconds part of the time
   1154  1.50.2.1    bouyer 	 * difference fits in a long, then the total number of usecs will
   1155  1.50.2.1    bouyer 	 * fit in an unsigned long.  Compute the total and convert it to
   1156  1.50.2.1    bouyer 	 * ticks, rounding up and adding 1 to allow for the current tick
   1157  1.50.2.1    bouyer 	 * to expire.  Rounding also depends on unsigned long arithmetic
   1158  1.50.2.1    bouyer 	 * to avoid overflow.
   1159      1.19       cgd 	 *
   1160  1.50.2.1    bouyer 	 * Otherwise, if the number of ticks in the whole seconds part of
   1161  1.50.2.1    bouyer 	 * the time difference fits in a long, then convert the parts to
   1162  1.50.2.1    bouyer 	 * ticks separately and add, using similar rounding methods and
   1163  1.50.2.1    bouyer 	 * overflow avoidance.  This method would work in the previous
   1164  1.50.2.1    bouyer 	 * case, but it is slightly slower and assume that hz is integral.
   1165  1.50.2.1    bouyer 	 *
   1166  1.50.2.1    bouyer 	 * Otherwise, round the time difference down to the maximum
   1167  1.50.2.1    bouyer 	 * representable value.
   1168  1.50.2.1    bouyer 	 *
   1169  1.50.2.1    bouyer 	 * If ints are 32-bit, then the maximum value for any timeout in
   1170  1.50.2.1    bouyer 	 * 10ms ticks is 248 days.
   1171      1.19       cgd 	 */
   1172      1.40   mycroft 	s = splclock();
   1173      1.19       cgd 	sec = tv->tv_sec - time.tv_sec;
   1174  1.50.2.1    bouyer 	usec = tv->tv_usec - time.tv_usec;
   1175      1.19       cgd 	splx(s);
   1176  1.50.2.1    bouyer 
   1177  1.50.2.1    bouyer 	if (usec < 0) {
   1178  1.50.2.1    bouyer 		sec--;
   1179  1.50.2.1    bouyer 		usec += 1000000;
   1180  1.50.2.1    bouyer 	}
   1181  1.50.2.1    bouyer 
   1182  1.50.2.1    bouyer 	if (sec < 0 || (sec == 0 && usec <= 0)) {
   1183  1.50.2.1    bouyer 		/*
   1184  1.50.2.1    bouyer 		 * Would expire now or in the past.  Return 0 ticks.
   1185  1.50.2.1    bouyer 		 * This is different from the legacy hzto() interface,
   1186  1.50.2.1    bouyer 		 * and callers need to check for it.
   1187  1.50.2.1    bouyer 		 */
   1188  1.50.2.1    bouyer 		ticks = 0;
   1189  1.50.2.1    bouyer 	} else if (sec <= (LONG_MAX / 1000000))
   1190  1.50.2.1    bouyer 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
   1191  1.50.2.1    bouyer 		    / tick) + 1;
   1192  1.50.2.1    bouyer 	else if (sec <= (LONG_MAX / hz))
   1193  1.50.2.1    bouyer 		ticks = (sec * hz) +
   1194  1.50.2.1    bouyer 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
   1195  1.50.2.1    bouyer 	else
   1196  1.50.2.1    bouyer 		ticks = LONG_MAX;
   1197  1.50.2.1    bouyer 
   1198  1.50.2.1    bouyer 	if (ticks > INT_MAX)
   1199  1.50.2.1    bouyer 		ticks = INT_MAX;
   1200  1.50.2.1    bouyer 
   1201  1.50.2.1    bouyer 	return ((int)ticks);
   1202      1.19       cgd }
   1203      1.19       cgd 
   1204      1.19       cgd /*
   1205      1.19       cgd  * Start profiling on a process.
   1206      1.19       cgd  *
   1207      1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
   1208      1.19       cgd  * keeps the profile clock running constantly.
   1209      1.19       cgd  */
   1210      1.19       cgd void
   1211  1.50.2.1    bouyer startprofclock(struct proc *p)
   1212      1.19       cgd {
   1213      1.19       cgd 
   1214      1.19       cgd 	if ((p->p_flag & P_PROFIL) == 0) {
   1215      1.19       cgd 		p->p_flag |= P_PROFIL;
   1216  1.50.2.1    bouyer 		if (++profprocs == 1 && stathz != 0)
   1217  1.50.2.1    bouyer 			psdiv = psratio;
   1218      1.19       cgd 	}
   1219      1.19       cgd }
   1220      1.19       cgd 
   1221      1.19       cgd /*
   1222      1.19       cgd  * Stop profiling on a process.
   1223      1.19       cgd  */
   1224      1.19       cgd void
   1225  1.50.2.1    bouyer stopprofclock(struct proc *p)
   1226      1.19       cgd {
   1227      1.19       cgd 
   1228      1.19       cgd 	if (p->p_flag & P_PROFIL) {
   1229      1.19       cgd 		p->p_flag &= ~P_PROFIL;
   1230  1.50.2.1    bouyer 		if (--profprocs == 0 && stathz != 0)
   1231  1.50.2.1    bouyer 			psdiv = 1;
   1232      1.19       cgd 	}
   1233      1.19       cgd }
   1234      1.19       cgd 
   1235      1.19       cgd /*
   1236      1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1237      1.19       cgd  * do process and kernel statistics.
   1238      1.19       cgd  */
   1239      1.19       cgd void
   1240  1.50.2.1    bouyer statclock(struct clockframe *frame)
   1241      1.19       cgd {
   1242      1.19       cgd #ifdef GPROF
   1243  1.50.2.1    bouyer 	struct gmonparam *g;
   1244  1.50.2.1    bouyer 	intptr_t i;
   1245      1.19       cgd #endif
   1246  1.50.2.1    bouyer 	struct cpu_info *ci = curcpu();
   1247  1.50.2.1    bouyer 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1248  1.50.2.1    bouyer 	struct proc *p;
   1249      1.19       cgd 
   1250  1.50.2.1    bouyer 	/*
   1251  1.50.2.1    bouyer 	 * Notice changes in divisor frequency, and adjust clock
   1252  1.50.2.1    bouyer 	 * frequency accordingly.
   1253  1.50.2.1    bouyer 	 */
   1254  1.50.2.1    bouyer 	if (spc->spc_psdiv != psdiv) {
   1255  1.50.2.1    bouyer 		spc->spc_psdiv = psdiv;
   1256  1.50.2.1    bouyer 		spc->spc_pscnt = psdiv;
   1257  1.50.2.1    bouyer 		if (psdiv == 1) {
   1258  1.50.2.1    bouyer 			setstatclockrate(stathz);
   1259  1.50.2.1    bouyer 		} else {
   1260  1.50.2.1    bouyer 			setstatclockrate(profhz);
   1261  1.50.2.1    bouyer 		}
   1262  1.50.2.1    bouyer 	}
   1263  1.50.2.2    bouyer 	p = curproc;
   1264      1.19       cgd 	if (CLKF_USERMODE(frame)) {
   1265      1.19       cgd 		if (p->p_flag & P_PROFIL)
   1266  1.50.2.2    bouyer 			addupc_intr(p, CLKF_PC(frame));
   1267  1.50.2.1    bouyer 		if (--spc->spc_pscnt > 0)
   1268      1.19       cgd 			return;
   1269      1.19       cgd 		/*
   1270      1.19       cgd 		 * Came from user mode; CPU was in user state.
   1271      1.19       cgd 		 * If this process is being profiled record the tick.
   1272      1.19       cgd 		 */
   1273      1.19       cgd 		p->p_uticks++;
   1274      1.19       cgd 		if (p->p_nice > NZERO)
   1275  1.50.2.1    bouyer 			spc->spc_cp_time[CP_NICE]++;
   1276      1.19       cgd 		else
   1277  1.50.2.1    bouyer 			spc->spc_cp_time[CP_USER]++;
   1278      1.19       cgd 	} else {
   1279      1.19       cgd #ifdef GPROF
   1280      1.19       cgd 		/*
   1281      1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
   1282      1.19       cgd 		 */
   1283      1.19       cgd 		g = &_gmonparam;
   1284      1.19       cgd 		if (g->state == GMON_PROF_ON) {
   1285      1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1286      1.19       cgd 			if (i < g->textsize) {
   1287      1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1288      1.19       cgd 				g->kcount[i]++;
   1289      1.19       cgd 			}
   1290      1.19       cgd 		}
   1291      1.19       cgd #endif
   1292  1.50.2.2    bouyer #ifdef PROC_PC
   1293  1.50.2.2    bouyer 		if (p && p->p_flag & P_PROFIL)
   1294  1.50.2.2    bouyer 			addupc_intr(p, PROC_PC(p));
   1295  1.50.2.2    bouyer #endif
   1296  1.50.2.1    bouyer 		if (--spc->spc_pscnt > 0)
   1297      1.19       cgd 			return;
   1298      1.19       cgd 		/*
   1299      1.19       cgd 		 * Came from kernel mode, so we were:
   1300      1.19       cgd 		 * - handling an interrupt,
   1301      1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1302      1.19       cgd 		 *   user process, or
   1303      1.19       cgd 		 * - spinning in the idle loop.
   1304      1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1305      1.19       cgd 		 * Note that we charge interrupts to the current process,
   1306      1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1307      1.19       cgd 		 * so that we know how much of its real time was spent
   1308      1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1309      1.19       cgd 		 */
   1310      1.19       cgd 		if (CLKF_INTR(frame)) {
   1311      1.19       cgd 			if (p != NULL)
   1312      1.19       cgd 				p->p_iticks++;
   1313  1.50.2.1    bouyer 			spc->spc_cp_time[CP_INTR]++;
   1314      1.19       cgd 		} else if (p != NULL) {
   1315      1.19       cgd 			p->p_sticks++;
   1316  1.50.2.1    bouyer 			spc->spc_cp_time[CP_SYS]++;
   1317      1.19       cgd 		} else
   1318  1.50.2.1    bouyer 			spc->spc_cp_time[CP_IDLE]++;
   1319      1.19       cgd 	}
   1320  1.50.2.1    bouyer 	spc->spc_pscnt = psdiv;
   1321      1.19       cgd 
   1322      1.19       cgd 	if (p != NULL) {
   1323      1.45      ross 		++p->p_cpticks;
   1324      1.45      ross 		/*
   1325  1.50.2.1    bouyer 		 * If no separate schedclock is provided, call it here
   1326  1.50.2.1    bouyer 		 * at ~~12-25 Hz, ~~16 Hz is best
   1327      1.45      ross 		 */
   1328  1.50.2.1    bouyer 		if (schedhz == 0)
   1329  1.50.2.1    bouyer 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1330      1.47      ross 				schedclock(p);
   1331      1.19       cgd 	}
   1332      1.19       cgd }
   1333      1.27  jonathan 
   1334      1.27  jonathan 
   1335      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1336      1.27  jonathan 
   1337      1.27  jonathan /*
   1338      1.27  jonathan  * hardupdate() - local clock update
   1339      1.27  jonathan  *
   1340      1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1341      1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1342      1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1343      1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1344      1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1345      1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1346      1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1347      1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1348      1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1349      1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1350      1.27  jonathan  *
   1351      1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1352      1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1353      1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1354      1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1355      1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1356      1.27  jonathan  *
   1357      1.27  jonathan  * Note: splclock() is in effect.
   1358      1.27  jonathan  */
   1359      1.27  jonathan void
   1360  1.50.2.1    bouyer hardupdate(long offset)
   1361      1.27  jonathan {
   1362      1.27  jonathan 	long ltemp, mtemp;
   1363      1.27  jonathan 
   1364      1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1365      1.27  jonathan 		return;
   1366      1.27  jonathan 	ltemp = offset;
   1367      1.27  jonathan #ifdef PPS_SYNC
   1368      1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1369      1.27  jonathan 		ltemp = pps_offset;
   1370      1.27  jonathan #endif /* PPS_SYNC */
   1371      1.27  jonathan 
   1372      1.27  jonathan 	/*
   1373      1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1374      1.27  jonathan 	 */
   1375      1.27  jonathan 	if (ltemp > MAXPHASE)
   1376      1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1377      1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1378      1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1379      1.27  jonathan 	else
   1380      1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1381      1.27  jonathan 
   1382      1.27  jonathan 	/*
   1383      1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1384      1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1385      1.27  jonathan 	 * multiply/divide should be replaced someday.
   1386      1.27  jonathan 	 */
   1387      1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1388      1.27  jonathan 		time_reftime = time.tv_sec;
   1389      1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1390      1.27  jonathan 	time_reftime = time.tv_sec;
   1391      1.27  jonathan 	if (time_status & STA_FLL) {
   1392      1.27  jonathan 		if (mtemp >= MINSEC) {
   1393      1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1394      1.27  jonathan 			    SHIFT_UPDATE));
   1395      1.27  jonathan 			if (ltemp < 0)
   1396      1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1397      1.27  jonathan 			else
   1398      1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1399      1.27  jonathan 		}
   1400      1.27  jonathan 	} else {
   1401      1.27  jonathan 		if (mtemp < MAXSEC) {
   1402      1.27  jonathan 			ltemp *= mtemp;
   1403      1.27  jonathan 			if (ltemp < 0)
   1404      1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1405      1.27  jonathan 				    time_constant + SHIFT_KF -
   1406      1.27  jonathan 				    SHIFT_USEC);
   1407      1.27  jonathan 			else
   1408      1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1409      1.27  jonathan 				    time_constant + SHIFT_KF -
   1410      1.27  jonathan 				    SHIFT_USEC);
   1411      1.27  jonathan 		}
   1412      1.27  jonathan 	}
   1413      1.27  jonathan 	if (time_freq > time_tolerance)
   1414      1.27  jonathan 		time_freq = time_tolerance;
   1415      1.27  jonathan 	else if (time_freq < -time_tolerance)
   1416      1.27  jonathan 		time_freq = -time_tolerance;
   1417      1.27  jonathan }
   1418      1.27  jonathan 
   1419      1.27  jonathan #ifdef PPS_SYNC
   1420      1.27  jonathan /*
   1421      1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1422      1.27  jonathan  *
   1423      1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1424      1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1425      1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1426      1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1427      1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1428      1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1429      1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1430      1.27  jonathan  * value at the on-time PPS signal transition.
   1431      1.27  jonathan  *
   1432      1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1433      1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1434      1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1435      1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1436      1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1437      1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1438      1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1439      1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1440      1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1441      1.27  jonathan  * routine.
   1442      1.27  jonathan  */
   1443      1.27  jonathan void
   1444  1.50.2.1    bouyer hardpps(struct timeval *tvp,		/* time at PPS */
   1445  1.50.2.1    bouyer 	long usec			/* hardware counter at PPS */)
   1446      1.27  jonathan {
   1447      1.27  jonathan 	long u_usec, v_usec, bigtick;
   1448      1.27  jonathan 	long cal_sec, cal_usec;
   1449      1.27  jonathan 
   1450      1.27  jonathan 	/*
   1451      1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1452      1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1453      1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1454      1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1455      1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1456      1.27  jonathan 	 */
   1457      1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1458      1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1459      1.27  jonathan 	pps_valid = 0;
   1460      1.27  jonathan 	u_usec = -tvp->tv_usec;
   1461      1.27  jonathan 	if (u_usec < -500000)
   1462      1.27  jonathan 		u_usec += 1000000;
   1463      1.27  jonathan 	v_usec = pps_offset - u_usec;
   1464      1.27  jonathan 	if (v_usec < 0)
   1465      1.27  jonathan 		v_usec = -v_usec;
   1466      1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1467      1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1468      1.27  jonathan 			pps_glitch = 0;
   1469      1.27  jonathan 			pps_tf[2] = u_usec;
   1470      1.27  jonathan 			pps_tf[1] = u_usec;
   1471      1.27  jonathan 		} else {
   1472      1.27  jonathan 			pps_glitch++;
   1473      1.27  jonathan 			u_usec = pps_offset;
   1474      1.27  jonathan 		}
   1475      1.27  jonathan 	} else
   1476      1.27  jonathan 		pps_glitch = 0;
   1477      1.27  jonathan 
   1478      1.27  jonathan 	/*
   1479      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1480      1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1481      1.27  jonathan 	 * difference between the other two samples becomes the time
   1482      1.27  jonathan 	 * dispersion (jitter) estimate.
   1483      1.27  jonathan 	 */
   1484      1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1485      1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1486      1.27  jonathan 	pps_tf[0] = u_usec;
   1487      1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1488      1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1489      1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1490      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1491      1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1492      1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1493      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1494      1.27  jonathan 		} else {
   1495      1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1496      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1497      1.27  jonathan 		}
   1498      1.27  jonathan 	} else {
   1499      1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1500      1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1501      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1502      1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1503      1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1504      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1505      1.27  jonathan 		} else {
   1506      1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1507      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1508      1.27  jonathan 		}
   1509      1.27  jonathan 	}
   1510      1.27  jonathan 	if (v_usec > MAXTIME)
   1511      1.27  jonathan 		pps_jitcnt++;
   1512      1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1513      1.27  jonathan 	if (v_usec < 0)
   1514      1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1515      1.27  jonathan 	else
   1516      1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1517      1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1518      1.27  jonathan 		time_status |= STA_PPSJITTER;
   1519      1.27  jonathan 
   1520      1.27  jonathan 	/*
   1521      1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1522      1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1523      1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1524      1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1525      1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1526      1.27  jonathan 	 * exceed the value of tick when using long calibration
   1527      1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1528      1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1529      1.27  jonathan 	 * the values returned and used here are correct.
   1530      1.27  jonathan 	 */
   1531      1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1532      1.27  jonathan 	pps_usec -= pps_freq;
   1533      1.27  jonathan 	if (pps_usec >= bigtick)
   1534      1.27  jonathan 		pps_usec -= bigtick;
   1535      1.27  jonathan 	if (pps_usec < 0)
   1536      1.27  jonathan 		pps_usec += bigtick;
   1537      1.27  jonathan 	pps_time.tv_sec++;
   1538      1.27  jonathan 	pps_count++;
   1539      1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1540      1.27  jonathan 		return;
   1541      1.27  jonathan 	pps_count = 0;
   1542      1.27  jonathan 	pps_calcnt++;
   1543      1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1544      1.27  jonathan 	v_usec = pps_usec - u_usec;
   1545      1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1546      1.27  jonathan 		v_usec -= bigtick;
   1547      1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1548      1.27  jonathan 		v_usec += bigtick;
   1549      1.27  jonathan 	if (v_usec < 0)
   1550      1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1551      1.27  jonathan 	else
   1552      1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1553      1.27  jonathan 	pps_usec = u_usec;
   1554      1.27  jonathan 	cal_sec = tvp->tv_sec;
   1555      1.27  jonathan 	cal_usec = tvp->tv_usec;
   1556      1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1557      1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1558      1.27  jonathan 	if (cal_usec < 0) {
   1559      1.27  jonathan 		cal_usec += 1000000;
   1560      1.27  jonathan 		cal_sec--;
   1561      1.27  jonathan 	}
   1562      1.27  jonathan 	pps_time = *tvp;
   1563      1.27  jonathan 
   1564      1.27  jonathan 	/*
   1565      1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1566      1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1567      1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1568      1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1569      1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1570      1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1571      1.27  jonathan 	 */
   1572      1.27  jonathan 	u_usec = (long)tick << 1;
   1573      1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1574      1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1575      1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1576      1.27  jonathan 		pps_errcnt++;
   1577      1.27  jonathan 		pps_shift = PPS_SHIFT;
   1578      1.27  jonathan 		pps_intcnt = 0;
   1579      1.27  jonathan 		time_status |= STA_PPSERROR;
   1580      1.27  jonathan 		return;
   1581      1.27  jonathan 	}
   1582      1.27  jonathan 
   1583      1.27  jonathan 	/*
   1584      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1585      1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1586      1.27  jonathan 	 * estimate; the difference between the other two samples
   1587      1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1588      1.27  jonathan 	 */
   1589      1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1590      1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1591      1.27  jonathan 	pps_ff[0] = v_usec;
   1592      1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1593      1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1594      1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1595      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1596      1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1597      1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1598      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1599      1.27  jonathan 		} else {
   1600      1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1601      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1602      1.27  jonathan 		}
   1603      1.27  jonathan 	} else {
   1604      1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1605      1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1606      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1607      1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1608      1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1609      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1610      1.27  jonathan 		} else {
   1611      1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1612      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1613      1.27  jonathan 		}
   1614      1.27  jonathan 	}
   1615      1.27  jonathan 
   1616      1.27  jonathan 	/*
   1617      1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1618      1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1619      1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1620      1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1621      1.27  jonathan 	 */
   1622      1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1623      1.27  jonathan 	if (v_usec < 0)
   1624      1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1625      1.27  jonathan 	else
   1626      1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1627      1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1628      1.27  jonathan 		pps_stbcnt++;
   1629      1.27  jonathan 		time_status |= STA_PPSWANDER;
   1630      1.27  jonathan 		return;
   1631      1.27  jonathan 	}
   1632      1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1633      1.27  jonathan 		if (u_usec < 0) {
   1634      1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1635      1.27  jonathan 			if (pps_freq < -time_tolerance)
   1636      1.27  jonathan 				pps_freq = -time_tolerance;
   1637      1.27  jonathan 			u_usec = -u_usec;
   1638      1.27  jonathan 		} else {
   1639      1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1640      1.27  jonathan 			if (pps_freq > time_tolerance)
   1641      1.27  jonathan 				pps_freq = time_tolerance;
   1642      1.27  jonathan 		}
   1643      1.27  jonathan 	}
   1644      1.27  jonathan 
   1645      1.27  jonathan 	/*
   1646      1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1647      1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1648      1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1649      1.27  jonathan 	 * intervals, double the interval.
   1650      1.27  jonathan 	 */
   1651      1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1652      1.27  jonathan 		pps_intcnt = 0;
   1653      1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1654      1.27  jonathan 			pps_shift--;
   1655      1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1656      1.27  jonathan 		pps_intcnt = 0;
   1657      1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1658      1.27  jonathan 			pps_shift++;
   1659      1.27  jonathan 	} else
   1660      1.27  jonathan 		pps_intcnt++;
   1661      1.27  jonathan }
   1662      1.27  jonathan #endif /* PPS_SYNC */
   1663      1.27  jonathan #endif /* NTP  */
   1664      1.27  jonathan 
   1665      1.19       cgd /*
   1666      1.19       cgd  * Return information about system clocks.
   1667      1.19       cgd  */
   1668      1.25  christos int
   1669  1.50.2.1    bouyer sysctl_clockrate(void *where, size_t *sizep)
   1670      1.19       cgd {
   1671      1.19       cgd 	struct clockinfo clkinfo;
   1672      1.19       cgd 
   1673      1.19       cgd 	/*
   1674      1.19       cgd 	 * Construct clockinfo structure.
   1675      1.19       cgd 	 */
   1676      1.20   mycroft 	clkinfo.tick = tick;
   1677      1.20   mycroft 	clkinfo.tickadj = tickadj;
   1678      1.19       cgd 	clkinfo.hz = hz;
   1679      1.19       cgd 	clkinfo.profhz = profhz;
   1680      1.19       cgd 	clkinfo.stathz = stathz ? stathz : hz;
   1681      1.19       cgd 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1682      1.19       cgd }
   1683