kern_clock.c revision 1.57 1 1.57 mycroft /* $NetBSD: kern_clock.c,v 1.57 2000/05/29 15:05:10 mycroft Exp $ */
2 1.52 thorpej
3 1.52 thorpej /*-
4 1.52 thorpej * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.52 thorpej * All rights reserved.
6 1.52 thorpej *
7 1.52 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.52 thorpej * NASA Ames Research Center.
10 1.52 thorpej *
11 1.52 thorpej * Redistribution and use in source and binary forms, with or without
12 1.52 thorpej * modification, are permitted provided that the following conditions
13 1.52 thorpej * are met:
14 1.52 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.52 thorpej * notice, this list of conditions and the following disclaimer.
16 1.52 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.52 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.52 thorpej * documentation and/or other materials provided with the distribution.
19 1.52 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.52 thorpej * must display the following acknowledgement:
21 1.52 thorpej * This product includes software developed by the NetBSD
22 1.52 thorpej * Foundation, Inc. and its contributors.
23 1.52 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.52 thorpej * contributors may be used to endorse or promote products derived
25 1.52 thorpej * from this software without specific prior written permission.
26 1.52 thorpej *
27 1.52 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.52 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.52 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.52 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.52 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.52 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.52 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.52 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.52 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.52 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.52 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.52 thorpej */
39 1.19 cgd
40 1.19 cgd /*-
41 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
42 1.19 cgd * The Regents of the University of California. All rights reserved.
43 1.19 cgd * (c) UNIX System Laboratories, Inc.
44 1.19 cgd * All or some portions of this file are derived from material licensed
45 1.19 cgd * to the University of California by American Telephone and Telegraph
46 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.19 cgd * the permission of UNIX System Laboratories, Inc.
48 1.19 cgd *
49 1.19 cgd * Redistribution and use in source and binary forms, with or without
50 1.19 cgd * modification, are permitted provided that the following conditions
51 1.19 cgd * are met:
52 1.19 cgd * 1. Redistributions of source code must retain the above copyright
53 1.19 cgd * notice, this list of conditions and the following disclaimer.
54 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.19 cgd * notice, this list of conditions and the following disclaimer in the
56 1.19 cgd * documentation and/or other materials provided with the distribution.
57 1.19 cgd * 3. All advertising materials mentioning features or use of this software
58 1.19 cgd * must display the following acknowledgement:
59 1.19 cgd * This product includes software developed by the University of
60 1.19 cgd * California, Berkeley and its contributors.
61 1.19 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.19 cgd * may be used to endorse or promote products derived from this software
63 1.19 cgd * without specific prior written permission.
64 1.19 cgd *
65 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.19 cgd * SUCH DAMAGE.
76 1.19 cgd *
77 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 1.19 cgd */
79 1.44 jonathan
80 1.44 jonathan #include "opt_ntp.h"
81 1.19 cgd
82 1.19 cgd #include <sys/param.h>
83 1.19 cgd #include <sys/systm.h>
84 1.19 cgd #include <sys/dkstat.h>
85 1.19 cgd #include <sys/callout.h>
86 1.19 cgd #include <sys/kernel.h>
87 1.19 cgd #include <sys/proc.h>
88 1.19 cgd #include <sys/resourcevar.h>
89 1.25 christos #include <sys/signalvar.h>
90 1.26 christos #include <vm/vm.h>
91 1.26 christos #include <sys/sysctl.h>
92 1.27 jonathan #include <sys/timex.h>
93 1.45 ross #include <sys/sched.h>
94 1.19 cgd
95 1.19 cgd #include <machine/cpu.h>
96 1.25 christos
97 1.19 cgd #ifdef GPROF
98 1.19 cgd #include <sys/gmon.h>
99 1.19 cgd #endif
100 1.19 cgd
101 1.19 cgd /*
102 1.19 cgd * Clock handling routines.
103 1.19 cgd *
104 1.19 cgd * This code is written to operate with two timers that run independently of
105 1.19 cgd * each other. The main clock, running hz times per second, is used to keep
106 1.19 cgd * track of real time. The second timer handles kernel and user profiling,
107 1.19 cgd * and does resource use estimation. If the second timer is programmable,
108 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example,
109 1.19 cgd * the randomization prevents an adversary from always giving up the cpu
110 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate
111 1.19 cgd * cpu ticks. The mean frequency of the second timer is stathz.
112 1.19 cgd *
113 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive
114 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate;
115 1.19 cgd * do not do it unless absolutely necessary.
116 1.19 cgd *
117 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while
118 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz
119 1.19 cgd * be an integral multiple of stathz.
120 1.19 cgd *
121 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio
122 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.)
123 1.19 cgd */
124 1.19 cgd
125 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
126 1.27 jonathan /*
127 1.27 jonathan * Phase/frequency-lock loop (PLL/FLL) definitions
128 1.27 jonathan *
129 1.27 jonathan * The following variables are read and set by the ntp_adjtime() system
130 1.27 jonathan * call.
131 1.27 jonathan *
132 1.27 jonathan * time_state shows the state of the system clock, with values defined
133 1.27 jonathan * in the timex.h header file.
134 1.27 jonathan *
135 1.27 jonathan * time_status shows the status of the system clock, with bits defined
136 1.27 jonathan * in the timex.h header file.
137 1.27 jonathan *
138 1.27 jonathan * time_offset is used by the PLL/FLL to adjust the system time in small
139 1.27 jonathan * increments.
140 1.27 jonathan *
141 1.27 jonathan * time_constant determines the bandwidth or "stiffness" of the PLL.
142 1.27 jonathan *
143 1.27 jonathan * time_tolerance determines maximum frequency error or tolerance of the
144 1.27 jonathan * CPU clock oscillator and is a property of the architecture; however,
145 1.27 jonathan * in principle it could change as result of the presence of external
146 1.27 jonathan * discipline signals, for instance.
147 1.27 jonathan *
148 1.27 jonathan * time_precision is usually equal to the kernel tick variable; however,
149 1.27 jonathan * in cases where a precision clock counter or external clock is
150 1.27 jonathan * available, the resolution can be much less than this and depend on
151 1.27 jonathan * whether the external clock is working or not.
152 1.27 jonathan *
153 1.27 jonathan * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 1.27 jonathan * the kernel once each second to reflect the maximum error bound
155 1.27 jonathan * growth.
156 1.27 jonathan *
157 1.27 jonathan * time_esterror is set and read by the ntp_adjtime() call, but
158 1.27 jonathan * otherwise not used by the kernel.
159 1.27 jonathan */
160 1.27 jonathan int time_state = TIME_OK; /* clock state */
161 1.27 jonathan int time_status = STA_UNSYNC; /* clock status bits */
162 1.27 jonathan long time_offset = 0; /* time offset (us) */
163 1.27 jonathan long time_constant = 0; /* pll time constant */
164 1.27 jonathan long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 1.27 jonathan long time_precision = 1; /* clock precision (us) */
166 1.27 jonathan long time_maxerror = MAXPHASE; /* maximum error (us) */
167 1.27 jonathan long time_esterror = MAXPHASE; /* estimated error (us) */
168 1.27 jonathan
169 1.27 jonathan /*
170 1.27 jonathan * The following variables establish the state of the PLL/FLL and the
171 1.27 jonathan * residual time and frequency offset of the local clock. The scale
172 1.27 jonathan * factors are defined in the timex.h header file.
173 1.27 jonathan *
174 1.27 jonathan * time_phase and time_freq are the phase increment and the frequency
175 1.27 jonathan * increment, respectively, of the kernel time variable.
176 1.27 jonathan *
177 1.27 jonathan * time_freq is set via ntp_adjtime() from a value stored in a file when
178 1.27 jonathan * the synchronization daemon is first started. Its value is retrieved
179 1.27 jonathan * via ntp_adjtime() and written to the file about once per hour by the
180 1.27 jonathan * daemon.
181 1.27 jonathan *
182 1.27 jonathan * time_adj is the adjustment added to the value of tick at each timer
183 1.27 jonathan * interrupt and is recomputed from time_phase and time_freq at each
184 1.27 jonathan * seconds rollover.
185 1.27 jonathan *
186 1.27 jonathan * time_reftime is the second's portion of the system time at the last
187 1.27 jonathan * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 1.27 jonathan * and to increase the time_maxerror as the time since last update
189 1.27 jonathan * increases.
190 1.27 jonathan */
191 1.27 jonathan long time_phase = 0; /* phase offset (scaled us) */
192 1.27 jonathan long time_freq = 0; /* frequency offset (scaled ppm) */
193 1.27 jonathan long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 1.27 jonathan long time_reftime = 0; /* time at last adjustment (s) */
195 1.27 jonathan
196 1.27 jonathan #ifdef PPS_SYNC
197 1.27 jonathan /*
198 1.27 jonathan * The following variables are used only if the kernel PPS discipline
199 1.27 jonathan * code is configured (PPS_SYNC). The scale factors are defined in the
200 1.27 jonathan * timex.h header file.
201 1.27 jonathan *
202 1.27 jonathan * pps_time contains the time at each calibration interval, as read by
203 1.27 jonathan * microtime(). pps_count counts the seconds of the calibration
204 1.27 jonathan * interval, the duration of which is nominally pps_shift in powers of
205 1.27 jonathan * two.
206 1.27 jonathan *
207 1.27 jonathan * pps_offset is the time offset produced by the time median filter
208 1.27 jonathan * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 1.27 jonathan * this filter.
210 1.27 jonathan *
211 1.27 jonathan * pps_freq is the frequency offset produced by the frequency median
212 1.27 jonathan * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 1.27 jonathan * by this filter.
214 1.27 jonathan *
215 1.27 jonathan * pps_usec is latched from a high resolution counter or external clock
216 1.27 jonathan * at pps_time. Here we want the hardware counter contents only, not the
217 1.27 jonathan * contents plus the time_tv.usec as usual.
218 1.27 jonathan *
219 1.27 jonathan * pps_valid counts the number of seconds since the last PPS update. It
220 1.27 jonathan * is used as a watchdog timer to disable the PPS discipline should the
221 1.27 jonathan * PPS signal be lost.
222 1.27 jonathan *
223 1.27 jonathan * pps_glitch counts the number of seconds since the beginning of an
224 1.27 jonathan * offset burst more than tick/2 from current nominal offset. It is used
225 1.27 jonathan * mainly to suppress error bursts due to priority conflicts between the
226 1.27 jonathan * PPS interrupt and timer interrupt.
227 1.27 jonathan *
228 1.27 jonathan * pps_intcnt counts the calibration intervals for use in the interval-
229 1.27 jonathan * adaptation algorithm. It's just too complicated for words.
230 1.27 jonathan */
231 1.27 jonathan struct timeval pps_time; /* kernel time at last interval */
232 1.27 jonathan long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 1.27 jonathan long pps_offset = 0; /* pps time offset (us) */
234 1.27 jonathan long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 1.27 jonathan long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 1.27 jonathan long pps_freq = 0; /* frequency offset (scaled ppm) */
237 1.27 jonathan long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 1.27 jonathan long pps_usec = 0; /* microsec counter at last interval */
239 1.27 jonathan long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 1.27 jonathan int pps_glitch = 0; /* pps signal glitch counter */
241 1.27 jonathan int pps_count = 0; /* calibration interval counter (s) */
242 1.27 jonathan int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 1.27 jonathan int pps_intcnt = 0; /* intervals at current duration */
244 1.27 jonathan
245 1.27 jonathan /*
246 1.27 jonathan * PPS signal quality monitors
247 1.27 jonathan *
248 1.27 jonathan * pps_jitcnt counts the seconds that have been discarded because the
249 1.27 jonathan * jitter measured by the time median filter exceeds the limit MAXTIME
250 1.27 jonathan * (100 us).
251 1.27 jonathan *
252 1.27 jonathan * pps_calcnt counts the frequency calibration intervals, which are
253 1.27 jonathan * variable from 4 s to 256 s.
254 1.27 jonathan *
255 1.27 jonathan * pps_errcnt counts the calibration intervals which have been discarded
256 1.27 jonathan * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 1.27 jonathan * calibration interval jitter exceeds two ticks.
258 1.27 jonathan *
259 1.27 jonathan * pps_stbcnt counts the calibration intervals that have been discarded
260 1.27 jonathan * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 1.27 jonathan */
262 1.27 jonathan long pps_jitcnt = 0; /* jitter limit exceeded */
263 1.27 jonathan long pps_calcnt = 0; /* calibration intervals */
264 1.27 jonathan long pps_errcnt = 0; /* calibration errors */
265 1.27 jonathan long pps_stbcnt = 0; /* stability limit exceeded */
266 1.27 jonathan #endif /* PPS_SYNC */
267 1.27 jonathan
268 1.27 jonathan #ifdef EXT_CLOCK
269 1.27 jonathan /*
270 1.27 jonathan * External clock definitions
271 1.27 jonathan *
272 1.27 jonathan * The following definitions and declarations are used only if an
273 1.27 jonathan * external clock is configured on the system.
274 1.27 jonathan */
275 1.27 jonathan #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276 1.27 jonathan
277 1.27 jonathan /*
278 1.27 jonathan * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 1.27 jonathan * interrupt and decremented once each second.
280 1.27 jonathan */
281 1.27 jonathan int clock_count = 0; /* CPU clock counter */
282 1.27 jonathan
283 1.27 jonathan #ifdef HIGHBALL
284 1.27 jonathan /*
285 1.27 jonathan * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 1.27 jonathan * interface. The clock_offset variable defines the offset between
287 1.27 jonathan * system time and the HIGBALL counters. The clock_cpu variable contains
288 1.27 jonathan * the offset between the system clock and the HIGHBALL clock for use in
289 1.27 jonathan * disciplining the kernel time variable.
290 1.27 jonathan */
291 1.27 jonathan extern struct timeval clock_offset; /* Highball clock offset */
292 1.27 jonathan long clock_cpu = 0; /* CPU clock adjust */
293 1.27 jonathan #endif /* HIGHBALL */
294 1.27 jonathan #endif /* EXT_CLOCK */
295 1.27 jonathan #endif /* NTP */
296 1.27 jonathan
297 1.27 jonathan
298 1.19 cgd /*
299 1.19 cgd * Bump a timeval by a small number of usec's.
300 1.19 cgd */
301 1.19 cgd #define BUMPTIME(t, usec) { \
302 1.55 augustss volatile struct timeval *tp = (t); \
303 1.55 augustss long us; \
304 1.19 cgd \
305 1.19 cgd tp->tv_usec = us = tp->tv_usec + (usec); \
306 1.19 cgd if (us >= 1000000) { \
307 1.19 cgd tp->tv_usec = us - 1000000; \
308 1.19 cgd tp->tv_sec++; \
309 1.19 cgd } \
310 1.19 cgd }
311 1.19 cgd
312 1.19 cgd int stathz;
313 1.19 cgd int profhz;
314 1.19 cgd int profprocs;
315 1.52 thorpej u_int64_t hardclock_ticks, softclock_ticks;
316 1.52 thorpej int softclock_running; /* 1 => softclock() is running */
317 1.22 cgd static int psdiv, pscnt; /* prof => stat divider */
318 1.22 cgd int psratio; /* ratio: prof / stat */
319 1.22 cgd int tickfix, tickfixinterval; /* used if tick not really integral */
320 1.34 briggs #ifndef NTP
321 1.39 cgd static int tickfixcnt; /* accumulated fractional error */
322 1.34 briggs #else
323 1.27 jonathan int fixtick; /* used by NTP for same */
324 1.31 mycroft int shifthz;
325 1.31 mycroft #endif
326 1.19 cgd
327 1.48 christos /*
328 1.48 christos * We might want ldd to load the both words from time at once.
329 1.48 christos * To succeed we need to be quadword aligned.
330 1.48 christos * The sparc already does that, and that it has worked so far is a fluke.
331 1.48 christos */
332 1.48 christos volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
333 1.19 cgd volatile struct timeval mono_time;
334 1.19 cgd
335 1.19 cgd /*
336 1.52 thorpej * The callout mechanism is based on the work of Adam M. Costello and
337 1.52 thorpej * George Varghese, published in a technical report entitled "Redesigning
338 1.52 thorpej * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
339 1.52 thorpej * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
340 1.52 thorpej *
341 1.52 thorpej * The original work on the data structures used in this implementation
342 1.52 thorpej * was published by G. Varghese and A. Lauck in the paper "Hashed and
343 1.52 thorpej * Hierarchical Timing Wheels: Data Structures for the Efficient
344 1.52 thorpej * Implementation of a Timer Facility" in the Proceedings of the 11th
345 1.52 thorpej * ACM Annual Symposium on Operating System Principles, Austin, Texas,
346 1.52 thorpej * November 1987.
347 1.52 thorpej */
348 1.52 thorpej struct callout_queue *callwheel;
349 1.52 thorpej int callwheelsize, callwheelbits, callwheelmask;
350 1.52 thorpej
351 1.52 thorpej static struct callout *nextsoftcheck; /* next callout to be checked */
352 1.52 thorpej
353 1.52 thorpej #ifdef CALLWHEEL_STATS
354 1.52 thorpej int callwheel_collisions; /* number of hash collisions */
355 1.52 thorpej int callwheel_maxlength; /* length of the longest hash chain */
356 1.52 thorpej int *callwheel_sizes; /* per-bucket length count */
357 1.52 thorpej u_int64_t callwheel_count; /* # callouts currently */
358 1.52 thorpej u_int64_t callwheel_established; /* # callouts established */
359 1.52 thorpej u_int64_t callwheel_fired; /* # callouts that fired */
360 1.52 thorpej u_int64_t callwheel_disestablished; /* # callouts disestablished */
361 1.52 thorpej u_int64_t callwheel_changed; /* # callouts changed */
362 1.52 thorpej u_int64_t callwheel_softclocks; /* # times softclock() called */
363 1.52 thorpej u_int64_t callwheel_softchecks; /* # checks per softclock() */
364 1.52 thorpej u_int64_t callwheel_softempty; /* # empty buckets seen */
365 1.52 thorpej #endif /* CALLWHEEL_STATS */
366 1.52 thorpej
367 1.52 thorpej /*
368 1.52 thorpej * This value indicates the number of consecutive callouts that
369 1.52 thorpej * will be checked before we allow interrupts to have a chance
370 1.52 thorpej * again.
371 1.52 thorpej */
372 1.52 thorpej #ifndef MAX_SOFTCLOCK_STEPS
373 1.52 thorpej #define MAX_SOFTCLOCK_STEPS 100
374 1.52 thorpej #endif
375 1.52 thorpej
376 1.52 thorpej /*
377 1.19 cgd * Initialize clock frequencies and start both clocks running.
378 1.19 cgd */
379 1.19 cgd void
380 1.19 cgd initclocks()
381 1.19 cgd {
382 1.55 augustss int i;
383 1.19 cgd
384 1.19 cgd /*
385 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific
386 1.19 cgd * code do its bit.
387 1.19 cgd */
388 1.19 cgd psdiv = pscnt = 1;
389 1.19 cgd cpu_initclocks();
390 1.19 cgd
391 1.19 cgd /*
392 1.19 cgd * Compute profhz/stathz, and fix profhz if needed.
393 1.19 cgd */
394 1.19 cgd i = stathz ? stathz : hz;
395 1.19 cgd if (profhz == 0)
396 1.19 cgd profhz = i;
397 1.19 cgd psratio = profhz / i;
398 1.31 mycroft
399 1.31 mycroft #ifdef NTP
400 1.31 mycroft switch (hz) {
401 1.57 mycroft case 1:
402 1.57 mycroft shifthz = SHIFT_SCALE - 0;
403 1.57 mycroft break;
404 1.57 mycroft case 2:
405 1.57 mycroft shifthz = SHIFT_SCALE - 1;
406 1.57 mycroft break;
407 1.57 mycroft case 4:
408 1.57 mycroft shifthz = SHIFT_SCALE - 2;
409 1.57 mycroft break;
410 1.57 mycroft case 8:
411 1.57 mycroft shifthz = SHIFT_SCALE - 3;
412 1.57 mycroft break;
413 1.57 mycroft case 16:
414 1.57 mycroft shifthz = SHIFT_SCALE - 4;
415 1.57 mycroft break;
416 1.57 mycroft case 32:
417 1.57 mycroft shifthz = SHIFT_SCALE - 5;
418 1.57 mycroft break;
419 1.31 mycroft case 60:
420 1.31 mycroft case 64:
421 1.31 mycroft shifthz = SHIFT_SCALE - 6;
422 1.31 mycroft break;
423 1.31 mycroft case 96:
424 1.31 mycroft case 100:
425 1.31 mycroft case 128:
426 1.31 mycroft shifthz = SHIFT_SCALE - 7;
427 1.31 mycroft break;
428 1.31 mycroft case 256:
429 1.31 mycroft shifthz = SHIFT_SCALE - 8;
430 1.41 tls break;
431 1.41 tls case 512:
432 1.41 tls shifthz = SHIFT_SCALE - 9;
433 1.31 mycroft break;
434 1.43 ross case 1000:
435 1.31 mycroft case 1024:
436 1.31 mycroft shifthz = SHIFT_SCALE - 10;
437 1.31 mycroft break;
438 1.57 mycroft case 1200:
439 1.57 mycroft case 2048:
440 1.57 mycroft shifthz = SHIFT_SCALE - 11;
441 1.57 mycroft break;
442 1.57 mycroft case 4096:
443 1.57 mycroft shifthz = SHIFT_SCALE - 12;
444 1.57 mycroft break;
445 1.57 mycroft case 8192:
446 1.57 mycroft shifthz = SHIFT_SCALE - 13;
447 1.57 mycroft break;
448 1.57 mycroft case 16384:
449 1.57 mycroft shifthz = SHIFT_SCALE - 14;
450 1.57 mycroft break;
451 1.57 mycroft case 32768:
452 1.57 mycroft shifthz = SHIFT_SCALE - 15;
453 1.57 mycroft break;
454 1.57 mycroft case 65536:
455 1.57 mycroft shifthz = SHIFT_SCALE - 16;
456 1.57 mycroft break;
457 1.31 mycroft default:
458 1.31 mycroft panic("weird hz");
459 1.50 sommerfe }
460 1.50 sommerfe if (fixtick == 0) {
461 1.52 thorpej /*
462 1.52 thorpej * Give MD code a chance to set this to a better
463 1.52 thorpej * value; but, if it doesn't, we should.
464 1.52 thorpej */
465 1.50 sommerfe fixtick = (1000000 - (hz*tick));
466 1.31 mycroft }
467 1.31 mycroft #endif
468 1.19 cgd }
469 1.19 cgd
470 1.19 cgd /*
471 1.19 cgd * The real-time timer, interrupting hz times per second.
472 1.19 cgd */
473 1.19 cgd void
474 1.19 cgd hardclock(frame)
475 1.55 augustss struct clockframe *frame;
476 1.19 cgd {
477 1.55 augustss struct proc *p;
478 1.55 augustss int delta;
479 1.19 cgd extern int tickdelta;
480 1.19 cgd extern long timedelta;
481 1.30 mycroft #ifdef NTP
482 1.55 augustss int time_update;
483 1.55 augustss int ltemp;
484 1.29 christos #endif
485 1.19 cgd
486 1.19 cgd p = curproc;
487 1.19 cgd if (p) {
488 1.55 augustss struct pstats *pstats;
489 1.19 cgd
490 1.19 cgd /*
491 1.19 cgd * Run current process's virtual and profile time, as needed.
492 1.19 cgd */
493 1.19 cgd pstats = p->p_stats;
494 1.19 cgd if (CLKF_USERMODE(frame) &&
495 1.19 cgd timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
496 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
497 1.19 cgd psignal(p, SIGVTALRM);
498 1.19 cgd if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
499 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
500 1.19 cgd psignal(p, SIGPROF);
501 1.19 cgd }
502 1.19 cgd
503 1.19 cgd /*
504 1.19 cgd * If no separate statistics clock is available, run it from here.
505 1.19 cgd */
506 1.19 cgd if (stathz == 0)
507 1.19 cgd statclock(frame);
508 1.19 cgd
509 1.19 cgd /*
510 1.22 cgd * Increment the time-of-day. The increment is normally just
511 1.22 cgd * ``tick''. If the machine is one which has a clock frequency
512 1.22 cgd * such that ``hz'' would not divide the second evenly into
513 1.22 cgd * milliseconds, a periodic adjustment must be applied. Finally,
514 1.22 cgd * if we are still adjusting the time (see adjtime()),
515 1.22 cgd * ``tickdelta'' may also be added in.
516 1.19 cgd */
517 1.52 thorpej hardclock_ticks++;
518 1.22 cgd delta = tick;
519 1.27 jonathan
520 1.27 jonathan #ifndef NTP
521 1.22 cgd if (tickfix) {
522 1.39 cgd tickfixcnt += tickfix;
523 1.24 cgd if (tickfixcnt >= tickfixinterval) {
524 1.39 cgd delta++;
525 1.39 cgd tickfixcnt -= tickfixinterval;
526 1.22 cgd }
527 1.22 cgd }
528 1.27 jonathan #endif /* !NTP */
529 1.27 jonathan /* Imprecise 4bsd adjtime() handling */
530 1.22 cgd if (timedelta != 0) {
531 1.38 cgd delta += tickdelta;
532 1.19 cgd timedelta -= tickdelta;
533 1.19 cgd }
534 1.27 jonathan
535 1.27 jonathan #ifdef notyet
536 1.27 jonathan microset();
537 1.27 jonathan #endif
538 1.27 jonathan
539 1.27 jonathan #ifndef NTP
540 1.27 jonathan BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
541 1.27 jonathan #endif
542 1.19 cgd BUMPTIME(&mono_time, delta);
543 1.27 jonathan
544 1.31 mycroft #ifdef NTP
545 1.30 mycroft time_update = delta;
546 1.27 jonathan
547 1.27 jonathan /*
548 1.27 jonathan * Compute the phase adjustment. If the low-order bits
549 1.27 jonathan * (time_phase) of the update overflow, bump the high-order bits
550 1.27 jonathan * (time_update).
551 1.27 jonathan */
552 1.27 jonathan time_phase += time_adj;
553 1.27 jonathan if (time_phase <= -FINEUSEC) {
554 1.27 jonathan ltemp = -time_phase >> SHIFT_SCALE;
555 1.27 jonathan time_phase += ltemp << SHIFT_SCALE;
556 1.27 jonathan time_update -= ltemp;
557 1.31 mycroft } else if (time_phase >= FINEUSEC) {
558 1.27 jonathan ltemp = time_phase >> SHIFT_SCALE;
559 1.27 jonathan time_phase -= ltemp << SHIFT_SCALE;
560 1.27 jonathan time_update += ltemp;
561 1.27 jonathan }
562 1.27 jonathan
563 1.27 jonathan #ifdef HIGHBALL
564 1.27 jonathan /*
565 1.27 jonathan * If the HIGHBALL board is installed, we need to adjust the
566 1.27 jonathan * external clock offset in order to close the hardware feedback
567 1.27 jonathan * loop. This will adjust the external clock phase and frequency
568 1.27 jonathan * in small amounts. The additional phase noise and frequency
569 1.27 jonathan * wander this causes should be minimal. We also need to
570 1.27 jonathan * discipline the kernel time variable, since the PLL is used to
571 1.27 jonathan * discipline the external clock. If the Highball board is not
572 1.27 jonathan * present, we discipline kernel time with the PLL as usual. We
573 1.27 jonathan * assume that the external clock phase adjustment (time_update)
574 1.27 jonathan * and kernel phase adjustment (clock_cpu) are less than the
575 1.27 jonathan * value of tick.
576 1.27 jonathan */
577 1.27 jonathan clock_offset.tv_usec += time_update;
578 1.27 jonathan if (clock_offset.tv_usec >= 1000000) {
579 1.27 jonathan clock_offset.tv_sec++;
580 1.27 jonathan clock_offset.tv_usec -= 1000000;
581 1.27 jonathan }
582 1.27 jonathan if (clock_offset.tv_usec < 0) {
583 1.27 jonathan clock_offset.tv_sec--;
584 1.27 jonathan clock_offset.tv_usec += 1000000;
585 1.27 jonathan }
586 1.27 jonathan time.tv_usec += clock_cpu;
587 1.27 jonathan clock_cpu = 0;
588 1.27 jonathan #else
589 1.27 jonathan time.tv_usec += time_update;
590 1.27 jonathan #endif /* HIGHBALL */
591 1.27 jonathan
592 1.27 jonathan /*
593 1.27 jonathan * On rollover of the second the phase adjustment to be used for
594 1.27 jonathan * the next second is calculated. Also, the maximum error is
595 1.27 jonathan * increased by the tolerance. If the PPS frequency discipline
596 1.27 jonathan * code is present, the phase is increased to compensate for the
597 1.27 jonathan * CPU clock oscillator frequency error.
598 1.27 jonathan *
599 1.27 jonathan * On a 32-bit machine and given parameters in the timex.h
600 1.27 jonathan * header file, the maximum phase adjustment is +-512 ms and
601 1.27 jonathan * maximum frequency offset is a tad less than) +-512 ppm. On a
602 1.27 jonathan * 64-bit machine, you shouldn't need to ask.
603 1.27 jonathan */
604 1.27 jonathan if (time.tv_usec >= 1000000) {
605 1.27 jonathan time.tv_usec -= 1000000;
606 1.27 jonathan time.tv_sec++;
607 1.27 jonathan time_maxerror += time_tolerance >> SHIFT_USEC;
608 1.27 jonathan
609 1.27 jonathan /*
610 1.27 jonathan * Leap second processing. If in leap-insert state at
611 1.27 jonathan * the end of the day, the system clock is set back one
612 1.27 jonathan * second; if in leap-delete state, the system clock is
613 1.27 jonathan * set ahead one second. The microtime() routine or
614 1.27 jonathan * external clock driver will insure that reported time
615 1.27 jonathan * is always monotonic. The ugly divides should be
616 1.27 jonathan * replaced.
617 1.27 jonathan */
618 1.27 jonathan switch (time_state) {
619 1.31 mycroft case TIME_OK:
620 1.27 jonathan if (time_status & STA_INS)
621 1.27 jonathan time_state = TIME_INS;
622 1.27 jonathan else if (time_status & STA_DEL)
623 1.27 jonathan time_state = TIME_DEL;
624 1.27 jonathan break;
625 1.27 jonathan
626 1.31 mycroft case TIME_INS:
627 1.27 jonathan if (time.tv_sec % 86400 == 0) {
628 1.27 jonathan time.tv_sec--;
629 1.27 jonathan time_state = TIME_OOP;
630 1.27 jonathan }
631 1.27 jonathan break;
632 1.27 jonathan
633 1.31 mycroft case TIME_DEL:
634 1.27 jonathan if ((time.tv_sec + 1) % 86400 == 0) {
635 1.27 jonathan time.tv_sec++;
636 1.27 jonathan time_state = TIME_WAIT;
637 1.27 jonathan }
638 1.27 jonathan break;
639 1.27 jonathan
640 1.31 mycroft case TIME_OOP:
641 1.27 jonathan time_state = TIME_WAIT;
642 1.27 jonathan break;
643 1.27 jonathan
644 1.31 mycroft case TIME_WAIT:
645 1.27 jonathan if (!(time_status & (STA_INS | STA_DEL)))
646 1.27 jonathan time_state = TIME_OK;
647 1.31 mycroft break;
648 1.27 jonathan }
649 1.27 jonathan
650 1.27 jonathan /*
651 1.27 jonathan * Compute the phase adjustment for the next second. In
652 1.27 jonathan * PLL mode, the offset is reduced by a fixed factor
653 1.27 jonathan * times the time constant. In FLL mode the offset is
654 1.27 jonathan * used directly. In either mode, the maximum phase
655 1.27 jonathan * adjustment for each second is clamped so as to spread
656 1.27 jonathan * the adjustment over not more than the number of
657 1.27 jonathan * seconds between updates.
658 1.27 jonathan */
659 1.27 jonathan if (time_offset < 0) {
660 1.27 jonathan ltemp = -time_offset;
661 1.27 jonathan if (!(time_status & STA_FLL))
662 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
663 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
664 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
665 1.27 jonathan SHIFT_UPDATE;
666 1.27 jonathan time_offset += ltemp;
667 1.31 mycroft time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
668 1.31 mycroft } else if (time_offset > 0) {
669 1.27 jonathan ltemp = time_offset;
670 1.27 jonathan if (!(time_status & STA_FLL))
671 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
672 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
673 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
674 1.27 jonathan SHIFT_UPDATE;
675 1.27 jonathan time_offset -= ltemp;
676 1.31 mycroft time_adj = ltemp << (shifthz - SHIFT_UPDATE);
677 1.31 mycroft } else
678 1.31 mycroft time_adj = 0;
679 1.27 jonathan
680 1.27 jonathan /*
681 1.27 jonathan * Compute the frequency estimate and additional phase
682 1.27 jonathan * adjustment due to frequency error for the next
683 1.27 jonathan * second. When the PPS signal is engaged, gnaw on the
684 1.27 jonathan * watchdog counter and update the frequency computed by
685 1.27 jonathan * the pll and the PPS signal.
686 1.27 jonathan */
687 1.27 jonathan #ifdef PPS_SYNC
688 1.27 jonathan pps_valid++;
689 1.27 jonathan if (pps_valid == PPS_VALID) {
690 1.27 jonathan pps_jitter = MAXTIME;
691 1.27 jonathan pps_stabil = MAXFREQ;
692 1.27 jonathan time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
693 1.27 jonathan STA_PPSWANDER | STA_PPSERROR);
694 1.27 jonathan }
695 1.27 jonathan ltemp = time_freq + pps_freq;
696 1.27 jonathan #else
697 1.27 jonathan ltemp = time_freq;
698 1.27 jonathan #endif /* PPS_SYNC */
699 1.27 jonathan
700 1.27 jonathan if (ltemp < 0)
701 1.31 mycroft time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
702 1.27 jonathan else
703 1.31 mycroft time_adj += ltemp >> (SHIFT_USEC - shifthz);
704 1.31 mycroft time_adj += (long)fixtick << shifthz;
705 1.27 jonathan
706 1.27 jonathan /*
707 1.27 jonathan * When the CPU clock oscillator frequency is not a
708 1.31 mycroft * power of 2 in Hz, shifthz is only an approximate
709 1.31 mycroft * scale factor.
710 1.46 mycroft *
711 1.46 mycroft * To determine the adjustment, you can do the following:
712 1.46 mycroft * bc -q
713 1.46 mycroft * scale=24
714 1.46 mycroft * obase=2
715 1.46 mycroft * idealhz/realhz
716 1.46 mycroft * where `idealhz' is the next higher power of 2, and `realhz'
717 1.57 mycroft * is the actual value. You may need to factor this result
718 1.57 mycroft * into a sequence of 2 multipliers to get better precision.
719 1.46 mycroft *
720 1.46 mycroft * Likewise, the error can be calculated with (e.g. for 100Hz):
721 1.46 mycroft * bc -q
722 1.46 mycroft * scale=24
723 1.57 mycroft * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
724 1.57 mycroft * (and then multiply by 1000000 to get ppm).
725 1.27 jonathan */
726 1.31 mycroft switch (hz) {
727 1.31 mycroft case 96:
728 1.56 mycroft /* A factor of 1.0101010101 gives about 244ppm error. */
729 1.46 mycroft if (time_adj < 0) {
730 1.46 mycroft time_adj -= (-time_adj >> 2);
731 1.46 mycroft time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
732 1.46 mycroft } else {
733 1.46 mycroft time_adj += (time_adj >> 2);
734 1.46 mycroft time_adj += (time_adj >> 4) + (time_adj >> 8);
735 1.46 mycroft }
736 1.46 mycroft break;
737 1.46 mycroft
738 1.31 mycroft case 100:
739 1.56 mycroft /* A factor of 1.010001111010111 gives about 1ppm
740 1.56 mycroft error. */
741 1.56 mycroft if (time_adj < 0) {
742 1.46 mycroft time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
743 1.56 mycroft time_adj += (-time_adj >> 10);
744 1.56 mycroft } else {
745 1.46 mycroft time_adj += (time_adj >> 2) + (time_adj >> 5);
746 1.56 mycroft time_adj -= (time_adj >> 10);
747 1.56 mycroft }
748 1.31 mycroft break;
749 1.46 mycroft
750 1.31 mycroft case 60:
751 1.56 mycroft /* A factor of 1.00010001 gives about 244ppm error. */
752 1.27 jonathan if (time_adj < 0)
753 1.46 mycroft time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
754 1.27 jonathan else
755 1.46 mycroft time_adj += (time_adj >> 4) + (time_adj >> 8);
756 1.43 ross break;
757 1.46 mycroft
758 1.43 ross case 1000:
759 1.56 mycroft /* A factor of 1.000001100010100001 gives about 50ppm
760 1.56 mycroft error. */
761 1.56 mycroft if (time_adj < 0) {
762 1.56 mycroft time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
763 1.56 mycroft time_adj -= (-time_adj >> 7);
764 1.56 mycroft } else {
765 1.56 mycroft time_adj += (time_adj >> 6) + (time_adj >> 11);
766 1.56 mycroft time_adj += (time_adj >> 7);
767 1.56 mycroft }
768 1.56 mycroft break;
769 1.56 mycroft
770 1.56 mycroft case 1200:
771 1.56 mycroft /* A factor of 1.1011010011100001 gives about 64ppm
772 1.56 mycroft error. */
773 1.56 mycroft if (time_adj < 0) {
774 1.56 mycroft time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
775 1.56 mycroft time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
776 1.56 mycroft } else {
777 1.56 mycroft time_adj += (time_adj >> 1) + (time_adj >> 6);
778 1.56 mycroft time_adj += (time_adj >> 3) + (time_adj >> 10);
779 1.56 mycroft }
780 1.31 mycroft break;
781 1.27 jonathan }
782 1.27 jonathan
783 1.27 jonathan #ifdef EXT_CLOCK
784 1.27 jonathan /*
785 1.27 jonathan * If an external clock is present, it is necessary to
786 1.27 jonathan * discipline the kernel time variable anyway, since not
787 1.27 jonathan * all system components use the microtime() interface.
788 1.27 jonathan * Here, the time offset between the external clock and
789 1.27 jonathan * kernel time variable is computed every so often.
790 1.27 jonathan */
791 1.27 jonathan clock_count++;
792 1.27 jonathan if (clock_count > CLOCK_INTERVAL) {
793 1.27 jonathan clock_count = 0;
794 1.27 jonathan microtime(&clock_ext);
795 1.27 jonathan delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
796 1.27 jonathan delta.tv_usec = clock_ext.tv_usec -
797 1.27 jonathan time.tv_usec;
798 1.27 jonathan if (delta.tv_usec < 0)
799 1.27 jonathan delta.tv_sec--;
800 1.27 jonathan if (delta.tv_usec >= 500000) {
801 1.27 jonathan delta.tv_usec -= 1000000;
802 1.27 jonathan delta.tv_sec++;
803 1.27 jonathan }
804 1.27 jonathan if (delta.tv_usec < -500000) {
805 1.27 jonathan delta.tv_usec += 1000000;
806 1.27 jonathan delta.tv_sec--;
807 1.27 jonathan }
808 1.27 jonathan if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
809 1.27 jonathan delta.tv_usec > MAXPHASE) ||
810 1.27 jonathan delta.tv_sec < -1 || (delta.tv_sec == -1 &&
811 1.27 jonathan delta.tv_usec < -MAXPHASE)) {
812 1.27 jonathan time = clock_ext;
813 1.27 jonathan delta.tv_sec = 0;
814 1.27 jonathan delta.tv_usec = 0;
815 1.27 jonathan }
816 1.27 jonathan #ifdef HIGHBALL
817 1.27 jonathan clock_cpu = delta.tv_usec;
818 1.27 jonathan #else /* HIGHBALL */
819 1.27 jonathan hardupdate(delta.tv_usec);
820 1.27 jonathan #endif /* HIGHBALL */
821 1.27 jonathan }
822 1.27 jonathan #endif /* EXT_CLOCK */
823 1.27 jonathan }
824 1.27 jonathan
825 1.31 mycroft #endif /* NTP */
826 1.19 cgd
827 1.19 cgd /*
828 1.19 cgd * Process callouts at a very low cpu priority, so we don't keep the
829 1.19 cgd * relatively high clock interrupt priority any longer than necessary.
830 1.19 cgd */
831 1.52 thorpej if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
832 1.19 cgd if (CLKF_BASEPRI(frame)) {
833 1.19 cgd /*
834 1.19 cgd * Save the overhead of a software interrupt;
835 1.52 thorpej * it will happen as soon as we return, so do
836 1.52 thorpej * it now.
837 1.52 thorpej *
838 1.52 thorpej * NOTE: If we're at ``base priority'', softclock()
839 1.52 thorpej * was not already running.
840 1.19 cgd */
841 1.49 thorpej (void)spllowersoftclock();
842 1.19 cgd softclock();
843 1.19 cgd } else
844 1.19 cgd setsoftclock();
845 1.52 thorpej } else if (softclock_running == 0 &&
846 1.52 thorpej (softclock_ticks + 1) == hardclock_ticks)
847 1.52 thorpej softclock_ticks++;
848 1.19 cgd }
849 1.19 cgd
850 1.19 cgd /*
851 1.19 cgd * Software (low priority) clock interrupt.
852 1.19 cgd * Run periodic events from timeout queue.
853 1.19 cgd */
854 1.19 cgd /*ARGSUSED*/
855 1.19 cgd void
856 1.19 cgd softclock()
857 1.19 cgd {
858 1.52 thorpej struct callout_queue *bucket;
859 1.52 thorpej struct callout *c;
860 1.52 thorpej void (*func) __P((void *));
861 1.52 thorpej void *arg;
862 1.52 thorpej int s, idx;
863 1.52 thorpej int steps = 0;
864 1.19 cgd
865 1.19 cgd s = splhigh();
866 1.52 thorpej softclock_running = 1;
867 1.52 thorpej
868 1.52 thorpej #ifdef CALLWHEEL_STATS
869 1.52 thorpej callwheel_softclocks++;
870 1.52 thorpej #endif
871 1.52 thorpej
872 1.52 thorpej while (softclock_ticks != hardclock_ticks) {
873 1.52 thorpej softclock_ticks++;
874 1.52 thorpej idx = (int)(softclock_ticks & callwheelmask);
875 1.52 thorpej bucket = &callwheel[idx];
876 1.52 thorpej c = TAILQ_FIRST(bucket);
877 1.52 thorpej #ifdef CALLWHEEL_STATS
878 1.52 thorpej if (c == NULL)
879 1.52 thorpej callwheel_softempty++;
880 1.52 thorpej #endif
881 1.52 thorpej while (c != NULL) {
882 1.52 thorpej #ifdef CALLWHEEL_STATS
883 1.52 thorpej callwheel_softchecks++;
884 1.52 thorpej #endif
885 1.52 thorpej if (c->c_time != softclock_ticks) {
886 1.52 thorpej c = TAILQ_NEXT(c, c_link);
887 1.52 thorpej if (++steps >= MAX_SOFTCLOCK_STEPS) {
888 1.52 thorpej nextsoftcheck = c;
889 1.52 thorpej /* Give interrupts a chance. */
890 1.52 thorpej splx(s);
891 1.52 thorpej (void) splhigh();
892 1.52 thorpej c = nextsoftcheck;
893 1.52 thorpej steps = 0;
894 1.52 thorpej }
895 1.52 thorpej } else {
896 1.52 thorpej nextsoftcheck = TAILQ_NEXT(c, c_link);
897 1.52 thorpej TAILQ_REMOVE(bucket, c, c_link);
898 1.52 thorpej #ifdef CALLWHEEL_STATS
899 1.52 thorpej callwheel_sizes[idx]--;
900 1.52 thorpej callwheel_fired++;
901 1.52 thorpej callwheel_count--;
902 1.52 thorpej #endif
903 1.52 thorpej func = c->c_func;
904 1.52 thorpej arg = c->c_arg;
905 1.52 thorpej c->c_func = NULL;
906 1.52 thorpej c->c_flags &= ~CALLOUT_PENDING;
907 1.52 thorpej splx(s);
908 1.52 thorpej (*func)(arg);
909 1.52 thorpej (void) splhigh();
910 1.52 thorpej steps = 0;
911 1.52 thorpej c = nextsoftcheck;
912 1.52 thorpej }
913 1.52 thorpej }
914 1.19 cgd }
915 1.52 thorpej nextsoftcheck = NULL;
916 1.52 thorpej softclock_running = 0;
917 1.19 cgd splx(s);
918 1.51 thorpej }
919 1.51 thorpej
920 1.51 thorpej /*
921 1.54 enami * callout_setsize:
922 1.52 thorpej *
923 1.54 enami * Determine how many callwheels are necessary and
924 1.54 enami * set hash mask. Called from allocsys().
925 1.51 thorpej */
926 1.51 thorpej void
927 1.54 enami callout_setsize()
928 1.51 thorpej {
929 1.52 thorpej
930 1.52 thorpej for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
931 1.52 thorpej /* loop */ ;
932 1.52 thorpej callwheelmask = callwheelsize - 1;
933 1.52 thorpej }
934 1.52 thorpej
935 1.52 thorpej /*
936 1.54 enami * callout_startup:
937 1.52 thorpej *
938 1.52 thorpej * Initialize the callwheel buckets.
939 1.52 thorpej */
940 1.52 thorpej void
941 1.54 enami callout_startup()
942 1.52 thorpej {
943 1.51 thorpej int i;
944 1.51 thorpej
945 1.52 thorpej for (i = 0; i < callwheelsize; i++)
946 1.52 thorpej TAILQ_INIT(&callwheel[i]);
947 1.19 cgd }
948 1.19 cgd
949 1.19 cgd /*
950 1.52 thorpej * callout_init:
951 1.19 cgd *
952 1.52 thorpej * Initialize a callout structure so that it can be used
953 1.52 thorpej * by callout_reset() and callout_stop().
954 1.52 thorpej */
955 1.52 thorpej void
956 1.52 thorpej callout_init(c)
957 1.52 thorpej struct callout *c;
958 1.52 thorpej {
959 1.52 thorpej
960 1.52 thorpej memset(c, 0, sizeof(*c));
961 1.52 thorpej }
962 1.52 thorpej
963 1.52 thorpej /*
964 1.52 thorpej * callout_reset:
965 1.19 cgd *
966 1.52 thorpej * Establish or change a timeout.
967 1.19 cgd */
968 1.19 cgd void
969 1.52 thorpej callout_reset(c, ticks, func, arg)
970 1.52 thorpej struct callout *c;
971 1.52 thorpej int ticks;
972 1.52 thorpej void (*func) __P((void *));
973 1.19 cgd void *arg;
974 1.19 cgd {
975 1.52 thorpej struct callout_queue *bucket;
976 1.52 thorpej int s;
977 1.19 cgd
978 1.19 cgd if (ticks <= 0)
979 1.19 cgd ticks = 1;
980 1.19 cgd
981 1.19 cgd /* Lock out the clock. */
982 1.19 cgd s = splhigh();
983 1.19 cgd
984 1.52 thorpej /*
985 1.52 thorpej * If this callout's timer is already running, cancel it
986 1.52 thorpej * before we modify it.
987 1.52 thorpej */
988 1.52 thorpej if (c->c_flags & CALLOUT_PENDING) {
989 1.52 thorpej callout_stop(c);
990 1.52 thorpej #ifdef CALLWHEEL_STATS
991 1.52 thorpej callwheel_changed++;
992 1.52 thorpej #endif
993 1.52 thorpej }
994 1.52 thorpej
995 1.52 thorpej c->c_arg = arg;
996 1.52 thorpej c->c_func = func;
997 1.52 thorpej c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
998 1.52 thorpej c->c_time = hardclock_ticks + ticks;
999 1.52 thorpej
1000 1.52 thorpej bucket = &callwheel[c->c_time & callwheelmask];
1001 1.52 thorpej
1002 1.52 thorpej #ifdef CALLWHEEL_STATS
1003 1.52 thorpej if (TAILQ_FIRST(bucket) != NULL)
1004 1.52 thorpej callwheel_collisions++;
1005 1.52 thorpej #endif
1006 1.52 thorpej
1007 1.52 thorpej TAILQ_INSERT_TAIL(bucket, c, c_link);
1008 1.52 thorpej
1009 1.52 thorpej #ifdef CALLWHEEL_STATS
1010 1.52 thorpej callwheel_count++;
1011 1.52 thorpej callwheel_established++;
1012 1.52 thorpej if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1013 1.52 thorpej callwheel_maxlength =
1014 1.52 thorpej callwheel_sizes[c->c_time & callwheelmask];
1015 1.52 thorpej #endif
1016 1.52 thorpej
1017 1.19 cgd splx(s);
1018 1.19 cgd }
1019 1.19 cgd
1020 1.52 thorpej /*
1021 1.52 thorpej * callout_stop:
1022 1.52 thorpej *
1023 1.52 thorpej * Disestablish a timeout.
1024 1.52 thorpej */
1025 1.19 cgd void
1026 1.52 thorpej callout_stop(c)
1027 1.52 thorpej struct callout *c;
1028 1.19 cgd {
1029 1.52 thorpej int s;
1030 1.19 cgd
1031 1.52 thorpej /* Lock out the clock. */
1032 1.19 cgd s = splhigh();
1033 1.52 thorpej
1034 1.52 thorpej /*
1035 1.52 thorpej * Don't attempt to delete a callout that's not on the queue.
1036 1.52 thorpej */
1037 1.52 thorpej if ((c->c_flags & CALLOUT_PENDING) == 0) {
1038 1.52 thorpej c->c_flags &= ~CALLOUT_ACTIVE;
1039 1.52 thorpej splx(s);
1040 1.52 thorpej return;
1041 1.52 thorpej }
1042 1.52 thorpej
1043 1.52 thorpej c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1044 1.52 thorpej
1045 1.52 thorpej if (nextsoftcheck == c)
1046 1.52 thorpej nextsoftcheck = TAILQ_NEXT(c, c_link);
1047 1.52 thorpej
1048 1.52 thorpej TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1049 1.52 thorpej #ifdef CALLWHEEL_STATS
1050 1.52 thorpej callwheel_count--;
1051 1.52 thorpej callwheel_disestablished++;
1052 1.52 thorpej callwheel_sizes[c->c_time & callwheelmask]--;
1053 1.52 thorpej #endif
1054 1.52 thorpej
1055 1.52 thorpej c->c_func = NULL;
1056 1.52 thorpej
1057 1.52 thorpej splx(s);
1058 1.52 thorpej }
1059 1.52 thorpej
1060 1.52 thorpej #ifdef CALLWHEEL_STATS
1061 1.52 thorpej /*
1062 1.52 thorpej * callout_showstats:
1063 1.52 thorpej *
1064 1.52 thorpej * Display callout statistics. Call it from DDB.
1065 1.52 thorpej */
1066 1.52 thorpej void
1067 1.52 thorpej callout_showstats()
1068 1.52 thorpej {
1069 1.52 thorpej u_int64_t curticks;
1070 1.52 thorpej int s;
1071 1.52 thorpej
1072 1.52 thorpej s = splclock();
1073 1.52 thorpej curticks = softclock_ticks;
1074 1.19 cgd splx(s);
1075 1.52 thorpej
1076 1.52 thorpej printf("Callwheel statistics:\n");
1077 1.52 thorpej printf("\tCallouts currently queued: %llu\n", callwheel_count);
1078 1.52 thorpej printf("\tCallouts established: %llu\n", callwheel_established);
1079 1.52 thorpej printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1080 1.52 thorpej if (callwheel_changed != 0)
1081 1.52 thorpej printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1082 1.52 thorpej printf("\tCallouts that fired: %llu\n", callwheel_fired);
1083 1.52 thorpej printf("\tNumber of buckets: %d\n", callwheelsize);
1084 1.52 thorpej printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1085 1.52 thorpej printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1086 1.52 thorpej printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1087 1.52 thorpej callwheel_softclocks, callwheel_softchecks);
1088 1.52 thorpej printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1089 1.19 cgd }
1090 1.52 thorpej #endif
1091 1.19 cgd
1092 1.19 cgd /*
1093 1.52 thorpej * Compute number of hz until specified time. Used to compute second
1094 1.52 thorpej * argument to callout_reset() from an absolute time.
1095 1.19 cgd */
1096 1.19 cgd int
1097 1.19 cgd hzto(tv)
1098 1.19 cgd struct timeval *tv;
1099 1.19 cgd {
1100 1.55 augustss long ticks, sec;
1101 1.19 cgd int s;
1102 1.19 cgd
1103 1.19 cgd /*
1104 1.22 cgd * If number of microseconds will fit in 32 bit arithmetic,
1105 1.22 cgd * then compute number of microseconds to time and scale to
1106 1.19 cgd * ticks. Otherwise just compute number of hz in time, rounding
1107 1.22 cgd * times greater than representible to maximum value. (We must
1108 1.22 cgd * compute in microseconds, because hz can be greater than 1000,
1109 1.22 cgd * and thus tick can be less than one millisecond).
1110 1.19 cgd *
1111 1.22 cgd * Delta times less than 14 hours can be computed ``exactly''.
1112 1.22 cgd * (Note that if hz would yeild a non-integral number of us per
1113 1.22 cgd * tick, i.e. tickfix is nonzero, timouts can be a tick longer
1114 1.22 cgd * than they should be.) Maximum value for any timeout in 10ms
1115 1.22 cgd * ticks is 250 days.
1116 1.19 cgd */
1117 1.40 mycroft s = splclock();
1118 1.19 cgd sec = tv->tv_sec - time.tv_sec;
1119 1.22 cgd if (sec <= 0x7fffffff / 1000000 - 1)
1120 1.22 cgd ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
1121 1.22 cgd (tv->tv_usec - time.tv_usec)) / tick;
1122 1.19 cgd else if (sec <= 0x7fffffff / hz)
1123 1.19 cgd ticks = sec * hz;
1124 1.19 cgd else
1125 1.19 cgd ticks = 0x7fffffff;
1126 1.19 cgd splx(s);
1127 1.19 cgd return (ticks);
1128 1.19 cgd }
1129 1.19 cgd
1130 1.19 cgd /*
1131 1.19 cgd * Start profiling on a process.
1132 1.19 cgd *
1133 1.19 cgd * Kernel profiling passes proc0 which never exits and hence
1134 1.19 cgd * keeps the profile clock running constantly.
1135 1.19 cgd */
1136 1.19 cgd void
1137 1.19 cgd startprofclock(p)
1138 1.55 augustss struct proc *p;
1139 1.19 cgd {
1140 1.19 cgd int s;
1141 1.19 cgd
1142 1.19 cgd if ((p->p_flag & P_PROFIL) == 0) {
1143 1.19 cgd p->p_flag |= P_PROFIL;
1144 1.19 cgd if (++profprocs == 1 && stathz != 0) {
1145 1.19 cgd s = splstatclock();
1146 1.19 cgd psdiv = pscnt = psratio;
1147 1.19 cgd setstatclockrate(profhz);
1148 1.19 cgd splx(s);
1149 1.19 cgd }
1150 1.19 cgd }
1151 1.19 cgd }
1152 1.19 cgd
1153 1.19 cgd /*
1154 1.19 cgd * Stop profiling on a process.
1155 1.19 cgd */
1156 1.19 cgd void
1157 1.19 cgd stopprofclock(p)
1158 1.55 augustss struct proc *p;
1159 1.19 cgd {
1160 1.19 cgd int s;
1161 1.19 cgd
1162 1.19 cgd if (p->p_flag & P_PROFIL) {
1163 1.19 cgd p->p_flag &= ~P_PROFIL;
1164 1.19 cgd if (--profprocs == 0 && stathz != 0) {
1165 1.19 cgd s = splstatclock();
1166 1.19 cgd psdiv = pscnt = 1;
1167 1.19 cgd setstatclockrate(stathz);
1168 1.19 cgd splx(s);
1169 1.19 cgd }
1170 1.19 cgd }
1171 1.19 cgd }
1172 1.19 cgd
1173 1.19 cgd /*
1174 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0,
1175 1.19 cgd * do process and kernel statistics.
1176 1.19 cgd */
1177 1.19 cgd void
1178 1.19 cgd statclock(frame)
1179 1.55 augustss struct clockframe *frame;
1180 1.19 cgd {
1181 1.19 cgd #ifdef GPROF
1182 1.55 augustss struct gmonparam *g;
1183 1.55 augustss int i;
1184 1.19 cgd #endif
1185 1.47 ross static int schedclk;
1186 1.55 augustss struct proc *p;
1187 1.19 cgd
1188 1.19 cgd if (CLKF_USERMODE(frame)) {
1189 1.19 cgd p = curproc;
1190 1.19 cgd if (p->p_flag & P_PROFIL)
1191 1.19 cgd addupc_intr(p, CLKF_PC(frame), 1);
1192 1.19 cgd if (--pscnt > 0)
1193 1.19 cgd return;
1194 1.19 cgd /*
1195 1.19 cgd * Came from user mode; CPU was in user state.
1196 1.19 cgd * If this process is being profiled record the tick.
1197 1.19 cgd */
1198 1.19 cgd p->p_uticks++;
1199 1.19 cgd if (p->p_nice > NZERO)
1200 1.19 cgd cp_time[CP_NICE]++;
1201 1.19 cgd else
1202 1.19 cgd cp_time[CP_USER]++;
1203 1.19 cgd } else {
1204 1.19 cgd #ifdef GPROF
1205 1.19 cgd /*
1206 1.19 cgd * Kernel statistics are just like addupc_intr, only easier.
1207 1.19 cgd */
1208 1.19 cgd g = &_gmonparam;
1209 1.19 cgd if (g->state == GMON_PROF_ON) {
1210 1.19 cgd i = CLKF_PC(frame) - g->lowpc;
1211 1.19 cgd if (i < g->textsize) {
1212 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount);
1213 1.19 cgd g->kcount[i]++;
1214 1.19 cgd }
1215 1.19 cgd }
1216 1.19 cgd #endif
1217 1.19 cgd if (--pscnt > 0)
1218 1.19 cgd return;
1219 1.19 cgd /*
1220 1.19 cgd * Came from kernel mode, so we were:
1221 1.19 cgd * - handling an interrupt,
1222 1.19 cgd * - doing syscall or trap work on behalf of the current
1223 1.19 cgd * user process, or
1224 1.19 cgd * - spinning in the idle loop.
1225 1.19 cgd * Whichever it is, charge the time as appropriate.
1226 1.19 cgd * Note that we charge interrupts to the current process,
1227 1.19 cgd * regardless of whether they are ``for'' that process,
1228 1.19 cgd * so that we know how much of its real time was spent
1229 1.19 cgd * in ``non-process'' (i.e., interrupt) work.
1230 1.19 cgd */
1231 1.19 cgd p = curproc;
1232 1.19 cgd if (CLKF_INTR(frame)) {
1233 1.19 cgd if (p != NULL)
1234 1.19 cgd p->p_iticks++;
1235 1.19 cgd cp_time[CP_INTR]++;
1236 1.19 cgd } else if (p != NULL) {
1237 1.19 cgd p->p_sticks++;
1238 1.19 cgd cp_time[CP_SYS]++;
1239 1.19 cgd } else
1240 1.19 cgd cp_time[CP_IDLE]++;
1241 1.19 cgd }
1242 1.19 cgd pscnt = psdiv;
1243 1.19 cgd
1244 1.19 cgd if (p != NULL) {
1245 1.45 ross ++p->p_cpticks;
1246 1.45 ross /*
1247 1.47 ross * If no schedclock is provided, call it here at ~~12-25 Hz,
1248 1.45 ross * ~~16 Hz is best
1249 1.45 ross */
1250 1.45 ross if(schedhz == 0)
1251 1.47 ross if ((++schedclk & 3) == 0)
1252 1.47 ross schedclock(p);
1253 1.19 cgd }
1254 1.19 cgd }
1255 1.27 jonathan
1256 1.27 jonathan
1257 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
1258 1.27 jonathan
1259 1.27 jonathan /*
1260 1.27 jonathan * hardupdate() - local clock update
1261 1.27 jonathan *
1262 1.27 jonathan * This routine is called by ntp_adjtime() to update the local clock
1263 1.27 jonathan * phase and frequency. The implementation is of an adaptive-parameter,
1264 1.27 jonathan * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1265 1.27 jonathan * time and frequency offset estimates for each call. If the kernel PPS
1266 1.27 jonathan * discipline code is configured (PPS_SYNC), the PPS signal itself
1267 1.27 jonathan * determines the new time offset, instead of the calling argument.
1268 1.27 jonathan * Presumably, calls to ntp_adjtime() occur only when the caller
1269 1.27 jonathan * believes the local clock is valid within some bound (+-128 ms with
1270 1.27 jonathan * NTP). If the caller's time is far different than the PPS time, an
1271 1.27 jonathan * argument will ensue, and it's not clear who will lose.
1272 1.27 jonathan *
1273 1.27 jonathan * For uncompensated quartz crystal oscillatores and nominal update
1274 1.27 jonathan * intervals less than 1024 s, operation should be in phase-lock mode
1275 1.27 jonathan * (STA_FLL = 0), where the loop is disciplined to phase. For update
1276 1.27 jonathan * intervals greater than thiss, operation should be in frequency-lock
1277 1.27 jonathan * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1278 1.27 jonathan *
1279 1.27 jonathan * Note: splclock() is in effect.
1280 1.27 jonathan */
1281 1.27 jonathan void
1282 1.27 jonathan hardupdate(offset)
1283 1.27 jonathan long offset;
1284 1.27 jonathan {
1285 1.27 jonathan long ltemp, mtemp;
1286 1.27 jonathan
1287 1.27 jonathan if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1288 1.27 jonathan return;
1289 1.27 jonathan ltemp = offset;
1290 1.27 jonathan #ifdef PPS_SYNC
1291 1.27 jonathan if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1292 1.27 jonathan ltemp = pps_offset;
1293 1.27 jonathan #endif /* PPS_SYNC */
1294 1.27 jonathan
1295 1.27 jonathan /*
1296 1.27 jonathan * Scale the phase adjustment and clamp to the operating range.
1297 1.27 jonathan */
1298 1.27 jonathan if (ltemp > MAXPHASE)
1299 1.27 jonathan time_offset = MAXPHASE << SHIFT_UPDATE;
1300 1.27 jonathan else if (ltemp < -MAXPHASE)
1301 1.27 jonathan time_offset = -(MAXPHASE << SHIFT_UPDATE);
1302 1.27 jonathan else
1303 1.27 jonathan time_offset = ltemp << SHIFT_UPDATE;
1304 1.27 jonathan
1305 1.27 jonathan /*
1306 1.27 jonathan * Select whether the frequency is to be controlled and in which
1307 1.27 jonathan * mode (PLL or FLL). Clamp to the operating range. Ugly
1308 1.27 jonathan * multiply/divide should be replaced someday.
1309 1.27 jonathan */
1310 1.27 jonathan if (time_status & STA_FREQHOLD || time_reftime == 0)
1311 1.27 jonathan time_reftime = time.tv_sec;
1312 1.27 jonathan mtemp = time.tv_sec - time_reftime;
1313 1.27 jonathan time_reftime = time.tv_sec;
1314 1.27 jonathan if (time_status & STA_FLL) {
1315 1.27 jonathan if (mtemp >= MINSEC) {
1316 1.27 jonathan ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1317 1.27 jonathan SHIFT_UPDATE));
1318 1.27 jonathan if (ltemp < 0)
1319 1.27 jonathan time_freq -= -ltemp >> SHIFT_KH;
1320 1.27 jonathan else
1321 1.27 jonathan time_freq += ltemp >> SHIFT_KH;
1322 1.27 jonathan }
1323 1.27 jonathan } else {
1324 1.27 jonathan if (mtemp < MAXSEC) {
1325 1.27 jonathan ltemp *= mtemp;
1326 1.27 jonathan if (ltemp < 0)
1327 1.27 jonathan time_freq -= -ltemp >> (time_constant +
1328 1.27 jonathan time_constant + SHIFT_KF -
1329 1.27 jonathan SHIFT_USEC);
1330 1.27 jonathan else
1331 1.27 jonathan time_freq += ltemp >> (time_constant +
1332 1.27 jonathan time_constant + SHIFT_KF -
1333 1.27 jonathan SHIFT_USEC);
1334 1.27 jonathan }
1335 1.27 jonathan }
1336 1.27 jonathan if (time_freq > time_tolerance)
1337 1.27 jonathan time_freq = time_tolerance;
1338 1.27 jonathan else if (time_freq < -time_tolerance)
1339 1.27 jonathan time_freq = -time_tolerance;
1340 1.27 jonathan }
1341 1.27 jonathan
1342 1.27 jonathan #ifdef PPS_SYNC
1343 1.27 jonathan /*
1344 1.27 jonathan * hardpps() - discipline CPU clock oscillator to external PPS signal
1345 1.27 jonathan *
1346 1.27 jonathan * This routine is called at each PPS interrupt in order to discipline
1347 1.27 jonathan * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1348 1.27 jonathan * and leaves it in a handy spot for the hardclock() routine. It
1349 1.27 jonathan * integrates successive PPS phase differences and calculates the
1350 1.27 jonathan * frequency offset. This is used in hardclock() to discipline the CPU
1351 1.27 jonathan * clock oscillator so that intrinsic frequency error is cancelled out.
1352 1.27 jonathan * The code requires the caller to capture the time and hardware counter
1353 1.27 jonathan * value at the on-time PPS signal transition.
1354 1.27 jonathan *
1355 1.27 jonathan * Note that, on some Unix systems, this routine runs at an interrupt
1356 1.27 jonathan * priority level higher than the timer interrupt routine hardclock().
1357 1.27 jonathan * Therefore, the variables used are distinct from the hardclock()
1358 1.27 jonathan * variables, except for certain exceptions: The PPS frequency pps_freq
1359 1.27 jonathan * and phase pps_offset variables are determined by this routine and
1360 1.27 jonathan * updated atomically. The time_tolerance variable can be considered a
1361 1.27 jonathan * constant, since it is infrequently changed, and then only when the
1362 1.27 jonathan * PPS signal is disabled. The watchdog counter pps_valid is updated
1363 1.27 jonathan * once per second by hardclock() and is atomically cleared in this
1364 1.27 jonathan * routine.
1365 1.27 jonathan */
1366 1.27 jonathan void
1367 1.27 jonathan hardpps(tvp, usec)
1368 1.27 jonathan struct timeval *tvp; /* time at PPS */
1369 1.27 jonathan long usec; /* hardware counter at PPS */
1370 1.27 jonathan {
1371 1.27 jonathan long u_usec, v_usec, bigtick;
1372 1.27 jonathan long cal_sec, cal_usec;
1373 1.27 jonathan
1374 1.27 jonathan /*
1375 1.27 jonathan * An occasional glitch can be produced when the PPS interrupt
1376 1.27 jonathan * occurs in the hardclock() routine before the time variable is
1377 1.27 jonathan * updated. Here the offset is discarded when the difference
1378 1.27 jonathan * between it and the last one is greater than tick/2, but not
1379 1.27 jonathan * if the interval since the first discard exceeds 30 s.
1380 1.27 jonathan */
1381 1.27 jonathan time_status |= STA_PPSSIGNAL;
1382 1.27 jonathan time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1383 1.27 jonathan pps_valid = 0;
1384 1.27 jonathan u_usec = -tvp->tv_usec;
1385 1.27 jonathan if (u_usec < -500000)
1386 1.27 jonathan u_usec += 1000000;
1387 1.27 jonathan v_usec = pps_offset - u_usec;
1388 1.27 jonathan if (v_usec < 0)
1389 1.27 jonathan v_usec = -v_usec;
1390 1.27 jonathan if (v_usec > (tick >> 1)) {
1391 1.27 jonathan if (pps_glitch > MAXGLITCH) {
1392 1.27 jonathan pps_glitch = 0;
1393 1.27 jonathan pps_tf[2] = u_usec;
1394 1.27 jonathan pps_tf[1] = u_usec;
1395 1.27 jonathan } else {
1396 1.27 jonathan pps_glitch++;
1397 1.27 jonathan u_usec = pps_offset;
1398 1.27 jonathan }
1399 1.27 jonathan } else
1400 1.27 jonathan pps_glitch = 0;
1401 1.27 jonathan
1402 1.27 jonathan /*
1403 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1404 1.27 jonathan * time. The median sample becomes the time offset estimate; the
1405 1.27 jonathan * difference between the other two samples becomes the time
1406 1.27 jonathan * dispersion (jitter) estimate.
1407 1.27 jonathan */
1408 1.27 jonathan pps_tf[2] = pps_tf[1];
1409 1.27 jonathan pps_tf[1] = pps_tf[0];
1410 1.27 jonathan pps_tf[0] = u_usec;
1411 1.27 jonathan if (pps_tf[0] > pps_tf[1]) {
1412 1.27 jonathan if (pps_tf[1] > pps_tf[2]) {
1413 1.27 jonathan pps_offset = pps_tf[1]; /* 0 1 2 */
1414 1.27 jonathan v_usec = pps_tf[0] - pps_tf[2];
1415 1.27 jonathan } else if (pps_tf[2] > pps_tf[0]) {
1416 1.27 jonathan pps_offset = pps_tf[0]; /* 2 0 1 */
1417 1.27 jonathan v_usec = pps_tf[2] - pps_tf[1];
1418 1.27 jonathan } else {
1419 1.27 jonathan pps_offset = pps_tf[2]; /* 0 2 1 */
1420 1.27 jonathan v_usec = pps_tf[0] - pps_tf[1];
1421 1.27 jonathan }
1422 1.27 jonathan } else {
1423 1.27 jonathan if (pps_tf[1] < pps_tf[2]) {
1424 1.27 jonathan pps_offset = pps_tf[1]; /* 2 1 0 */
1425 1.27 jonathan v_usec = pps_tf[2] - pps_tf[0];
1426 1.27 jonathan } else if (pps_tf[2] < pps_tf[0]) {
1427 1.27 jonathan pps_offset = pps_tf[0]; /* 1 0 2 */
1428 1.27 jonathan v_usec = pps_tf[1] - pps_tf[2];
1429 1.27 jonathan } else {
1430 1.27 jonathan pps_offset = pps_tf[2]; /* 1 2 0 */
1431 1.27 jonathan v_usec = pps_tf[1] - pps_tf[0];
1432 1.27 jonathan }
1433 1.27 jonathan }
1434 1.27 jonathan if (v_usec > MAXTIME)
1435 1.27 jonathan pps_jitcnt++;
1436 1.27 jonathan v_usec = (v_usec << PPS_AVG) - pps_jitter;
1437 1.27 jonathan if (v_usec < 0)
1438 1.27 jonathan pps_jitter -= -v_usec >> PPS_AVG;
1439 1.27 jonathan else
1440 1.27 jonathan pps_jitter += v_usec >> PPS_AVG;
1441 1.27 jonathan if (pps_jitter > (MAXTIME >> 1))
1442 1.27 jonathan time_status |= STA_PPSJITTER;
1443 1.27 jonathan
1444 1.27 jonathan /*
1445 1.27 jonathan * During the calibration interval adjust the starting time when
1446 1.27 jonathan * the tick overflows. At the end of the interval compute the
1447 1.27 jonathan * duration of the interval and the difference of the hardware
1448 1.27 jonathan * counters at the beginning and end of the interval. This code
1449 1.27 jonathan * is deliciously complicated by the fact valid differences may
1450 1.27 jonathan * exceed the value of tick when using long calibration
1451 1.27 jonathan * intervals and small ticks. Note that the counter can be
1452 1.27 jonathan * greater than tick if caught at just the wrong instant, but
1453 1.27 jonathan * the values returned and used here are correct.
1454 1.27 jonathan */
1455 1.27 jonathan bigtick = (long)tick << SHIFT_USEC;
1456 1.27 jonathan pps_usec -= pps_freq;
1457 1.27 jonathan if (pps_usec >= bigtick)
1458 1.27 jonathan pps_usec -= bigtick;
1459 1.27 jonathan if (pps_usec < 0)
1460 1.27 jonathan pps_usec += bigtick;
1461 1.27 jonathan pps_time.tv_sec++;
1462 1.27 jonathan pps_count++;
1463 1.27 jonathan if (pps_count < (1 << pps_shift))
1464 1.27 jonathan return;
1465 1.27 jonathan pps_count = 0;
1466 1.27 jonathan pps_calcnt++;
1467 1.27 jonathan u_usec = usec << SHIFT_USEC;
1468 1.27 jonathan v_usec = pps_usec - u_usec;
1469 1.27 jonathan if (v_usec >= bigtick >> 1)
1470 1.27 jonathan v_usec -= bigtick;
1471 1.27 jonathan if (v_usec < -(bigtick >> 1))
1472 1.27 jonathan v_usec += bigtick;
1473 1.27 jonathan if (v_usec < 0)
1474 1.27 jonathan v_usec = -(-v_usec >> pps_shift);
1475 1.27 jonathan else
1476 1.27 jonathan v_usec = v_usec >> pps_shift;
1477 1.27 jonathan pps_usec = u_usec;
1478 1.27 jonathan cal_sec = tvp->tv_sec;
1479 1.27 jonathan cal_usec = tvp->tv_usec;
1480 1.27 jonathan cal_sec -= pps_time.tv_sec;
1481 1.27 jonathan cal_usec -= pps_time.tv_usec;
1482 1.27 jonathan if (cal_usec < 0) {
1483 1.27 jonathan cal_usec += 1000000;
1484 1.27 jonathan cal_sec--;
1485 1.27 jonathan }
1486 1.27 jonathan pps_time = *tvp;
1487 1.27 jonathan
1488 1.27 jonathan /*
1489 1.27 jonathan * Check for lost interrupts, noise, excessive jitter and
1490 1.27 jonathan * excessive frequency error. The number of timer ticks during
1491 1.27 jonathan * the interval may vary +-1 tick. Add to this a margin of one
1492 1.27 jonathan * tick for the PPS signal jitter and maximum frequency
1493 1.27 jonathan * deviation. If the limits are exceeded, the calibration
1494 1.27 jonathan * interval is reset to the minimum and we start over.
1495 1.27 jonathan */
1496 1.27 jonathan u_usec = (long)tick << 1;
1497 1.27 jonathan if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1498 1.27 jonathan || (cal_sec == 0 && cal_usec < u_usec))
1499 1.27 jonathan || v_usec > time_tolerance || v_usec < -time_tolerance) {
1500 1.27 jonathan pps_errcnt++;
1501 1.27 jonathan pps_shift = PPS_SHIFT;
1502 1.27 jonathan pps_intcnt = 0;
1503 1.27 jonathan time_status |= STA_PPSERROR;
1504 1.27 jonathan return;
1505 1.27 jonathan }
1506 1.27 jonathan
1507 1.27 jonathan /*
1508 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1509 1.27 jonathan * frequency. The median sample becomes the frequency offset
1510 1.27 jonathan * estimate; the difference between the other two samples
1511 1.27 jonathan * becomes the frequency dispersion (stability) estimate.
1512 1.27 jonathan */
1513 1.27 jonathan pps_ff[2] = pps_ff[1];
1514 1.27 jonathan pps_ff[1] = pps_ff[0];
1515 1.27 jonathan pps_ff[0] = v_usec;
1516 1.27 jonathan if (pps_ff[0] > pps_ff[1]) {
1517 1.27 jonathan if (pps_ff[1] > pps_ff[2]) {
1518 1.27 jonathan u_usec = pps_ff[1]; /* 0 1 2 */
1519 1.27 jonathan v_usec = pps_ff[0] - pps_ff[2];
1520 1.27 jonathan } else if (pps_ff[2] > pps_ff[0]) {
1521 1.27 jonathan u_usec = pps_ff[0]; /* 2 0 1 */
1522 1.27 jonathan v_usec = pps_ff[2] - pps_ff[1];
1523 1.27 jonathan } else {
1524 1.27 jonathan u_usec = pps_ff[2]; /* 0 2 1 */
1525 1.27 jonathan v_usec = pps_ff[0] - pps_ff[1];
1526 1.27 jonathan }
1527 1.27 jonathan } else {
1528 1.27 jonathan if (pps_ff[1] < pps_ff[2]) {
1529 1.27 jonathan u_usec = pps_ff[1]; /* 2 1 0 */
1530 1.27 jonathan v_usec = pps_ff[2] - pps_ff[0];
1531 1.27 jonathan } else if (pps_ff[2] < pps_ff[0]) {
1532 1.27 jonathan u_usec = pps_ff[0]; /* 1 0 2 */
1533 1.27 jonathan v_usec = pps_ff[1] - pps_ff[2];
1534 1.27 jonathan } else {
1535 1.27 jonathan u_usec = pps_ff[2]; /* 1 2 0 */
1536 1.27 jonathan v_usec = pps_ff[1] - pps_ff[0];
1537 1.27 jonathan }
1538 1.27 jonathan }
1539 1.27 jonathan
1540 1.27 jonathan /*
1541 1.27 jonathan * Here the frequency dispersion (stability) is updated. If it
1542 1.27 jonathan * is less than one-fourth the maximum (MAXFREQ), the frequency
1543 1.27 jonathan * offset is updated as well, but clamped to the tolerance. It
1544 1.27 jonathan * will be processed later by the hardclock() routine.
1545 1.27 jonathan */
1546 1.27 jonathan v_usec = (v_usec >> 1) - pps_stabil;
1547 1.27 jonathan if (v_usec < 0)
1548 1.27 jonathan pps_stabil -= -v_usec >> PPS_AVG;
1549 1.27 jonathan else
1550 1.27 jonathan pps_stabil += v_usec >> PPS_AVG;
1551 1.27 jonathan if (pps_stabil > MAXFREQ >> 2) {
1552 1.27 jonathan pps_stbcnt++;
1553 1.27 jonathan time_status |= STA_PPSWANDER;
1554 1.27 jonathan return;
1555 1.27 jonathan }
1556 1.27 jonathan if (time_status & STA_PPSFREQ) {
1557 1.27 jonathan if (u_usec < 0) {
1558 1.27 jonathan pps_freq -= -u_usec >> PPS_AVG;
1559 1.27 jonathan if (pps_freq < -time_tolerance)
1560 1.27 jonathan pps_freq = -time_tolerance;
1561 1.27 jonathan u_usec = -u_usec;
1562 1.27 jonathan } else {
1563 1.27 jonathan pps_freq += u_usec >> PPS_AVG;
1564 1.27 jonathan if (pps_freq > time_tolerance)
1565 1.27 jonathan pps_freq = time_tolerance;
1566 1.27 jonathan }
1567 1.27 jonathan }
1568 1.27 jonathan
1569 1.27 jonathan /*
1570 1.27 jonathan * Here the calibration interval is adjusted. If the maximum
1571 1.27 jonathan * time difference is greater than tick / 4, reduce the interval
1572 1.27 jonathan * by half. If this is not the case for four consecutive
1573 1.27 jonathan * intervals, double the interval.
1574 1.27 jonathan */
1575 1.27 jonathan if (u_usec << pps_shift > bigtick >> 2) {
1576 1.27 jonathan pps_intcnt = 0;
1577 1.27 jonathan if (pps_shift > PPS_SHIFT)
1578 1.27 jonathan pps_shift--;
1579 1.27 jonathan } else if (pps_intcnt >= 4) {
1580 1.27 jonathan pps_intcnt = 0;
1581 1.27 jonathan if (pps_shift < PPS_SHIFTMAX)
1582 1.27 jonathan pps_shift++;
1583 1.27 jonathan } else
1584 1.27 jonathan pps_intcnt++;
1585 1.27 jonathan }
1586 1.27 jonathan #endif /* PPS_SYNC */
1587 1.27 jonathan #endif /* NTP */
1588 1.27 jonathan
1589 1.19 cgd
1590 1.19 cgd /*
1591 1.19 cgd * Return information about system clocks.
1592 1.19 cgd */
1593 1.25 christos int
1594 1.19 cgd sysctl_clockrate(where, sizep)
1595 1.55 augustss char *where;
1596 1.19 cgd size_t *sizep;
1597 1.19 cgd {
1598 1.19 cgd struct clockinfo clkinfo;
1599 1.19 cgd
1600 1.19 cgd /*
1601 1.19 cgd * Construct clockinfo structure.
1602 1.19 cgd */
1603 1.20 mycroft clkinfo.tick = tick;
1604 1.20 mycroft clkinfo.tickadj = tickadj;
1605 1.19 cgd clkinfo.hz = hz;
1606 1.19 cgd clkinfo.profhz = profhz;
1607 1.19 cgd clkinfo.stathz = stathz ? stathz : hz;
1608 1.19 cgd return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1609 1.19 cgd }
1610