Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.60.2.1
      1  1.60.2.1   thorpej /*	$NetBSD: kern_clock.c,v 1.60.2.1 2000/07/13 20:12:18 thorpej Exp $	*/
      2      1.52   thorpej 
      3      1.52   thorpej /*-
      4      1.52   thorpej  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5      1.52   thorpej  * All rights reserved.
      6      1.52   thorpej  *
      7      1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.52   thorpej  * NASA Ames Research Center.
     10      1.52   thorpej  *
     11      1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     12      1.52   thorpej  * modification, are permitted provided that the following conditions
     13      1.52   thorpej  * are met:
     14      1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     15      1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     16      1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17      1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18      1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     19      1.52   thorpej  * 3. All advertising materials mentioning features or use of this software
     20      1.52   thorpej  *    must display the following acknowledgement:
     21      1.52   thorpej  *	This product includes software developed by the NetBSD
     22      1.52   thorpej  *	Foundation, Inc. and its contributors.
     23      1.52   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24      1.52   thorpej  *    contributors may be used to endorse or promote products derived
     25      1.52   thorpej  *    from this software without specific prior written permission.
     26      1.52   thorpej  *
     27      1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28      1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29      1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30      1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31      1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32      1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33      1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34      1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35      1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36      1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37      1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38      1.52   thorpej  */
     39      1.19       cgd 
     40      1.19       cgd /*-
     41      1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     42      1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     43      1.19       cgd  * (c) UNIX System Laboratories, Inc.
     44      1.19       cgd  * All or some portions of this file are derived from material licensed
     45      1.19       cgd  * to the University of California by American Telephone and Telegraph
     46      1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47      1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     48      1.19       cgd  *
     49      1.19       cgd  * Redistribution and use in source and binary forms, with or without
     50      1.19       cgd  * modification, are permitted provided that the following conditions
     51      1.19       cgd  * are met:
     52      1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     53      1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     54      1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55      1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     56      1.19       cgd  *    documentation and/or other materials provided with the distribution.
     57      1.19       cgd  * 3. All advertising materials mentioning features or use of this software
     58      1.19       cgd  *    must display the following acknowledgement:
     59      1.19       cgd  *	This product includes software developed by the University of
     60      1.19       cgd  *	California, Berkeley and its contributors.
     61      1.19       cgd  * 4. Neither the name of the University nor the names of its contributors
     62      1.19       cgd  *    may be used to endorse or promote products derived from this software
     63      1.19       cgd  *    without specific prior written permission.
     64      1.19       cgd  *
     65      1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66      1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67      1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68      1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69      1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70      1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71      1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72      1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73      1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74      1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75      1.19       cgd  * SUCH DAMAGE.
     76      1.19       cgd  *
     77      1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     78      1.19       cgd  */
     79      1.44  jonathan 
     80      1.44  jonathan #include "opt_ntp.h"
     81      1.19       cgd 
     82      1.19       cgd #include <sys/param.h>
     83      1.19       cgd #include <sys/systm.h>
     84      1.19       cgd #include <sys/dkstat.h>
     85      1.19       cgd #include <sys/callout.h>
     86      1.19       cgd #include <sys/kernel.h>
     87      1.19       cgd #include <sys/proc.h>
     88      1.19       cgd #include <sys/resourcevar.h>
     89      1.25  christos #include <sys/signalvar.h>
     90      1.26  christos #include <vm/vm.h>
     91      1.26  christos #include <sys/sysctl.h>
     92      1.27  jonathan #include <sys/timex.h>
     93      1.45      ross #include <sys/sched.h>
     94      1.19       cgd 
     95      1.19       cgd #include <machine/cpu.h>
     96      1.25  christos 
     97      1.19       cgd #ifdef GPROF
     98      1.19       cgd #include <sys/gmon.h>
     99      1.19       cgd #endif
    100      1.19       cgd 
    101      1.19       cgd /*
    102      1.19       cgd  * Clock handling routines.
    103      1.19       cgd  *
    104      1.19       cgd  * This code is written to operate with two timers that run independently of
    105      1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    106      1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    107      1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    108      1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    109      1.19       cgd  * the randomization prevents an adversary from always giving up the cpu
    110      1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    111      1.19       cgd  * cpu ticks.  The mean frequency of the second timer is stathz.
    112      1.19       cgd  *
    113      1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    114      1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    115      1.19       cgd  * do not do it unless absolutely necessary.
    116      1.19       cgd  *
    117      1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    118      1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    119      1.19       cgd  * be an integral multiple of stathz.
    120      1.19       cgd  *
    121      1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    122      1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    123      1.19       cgd  */
    124      1.19       cgd 
    125      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    126      1.27  jonathan /*
    127      1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    128      1.27  jonathan  *
    129      1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    130      1.27  jonathan  * call.
    131      1.27  jonathan  *
    132      1.27  jonathan  * time_state shows the state of the system clock, with values defined
    133      1.27  jonathan  * in the timex.h header file.
    134      1.27  jonathan  *
    135      1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    136      1.27  jonathan  * in the timex.h header file.
    137      1.27  jonathan  *
    138      1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    139      1.27  jonathan  * increments.
    140      1.27  jonathan  *
    141      1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    142      1.27  jonathan  *
    143      1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    144      1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    145      1.27  jonathan  * in principle it could change as result of the presence of external
    146      1.27  jonathan  * discipline signals, for instance.
    147      1.27  jonathan  *
    148      1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    149      1.27  jonathan  * in cases where a precision clock counter or external clock is
    150      1.27  jonathan  * available, the resolution can be much less than this and depend on
    151      1.27  jonathan  * whether the external clock is working or not.
    152      1.27  jonathan  *
    153      1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    154      1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    155      1.27  jonathan  * growth.
    156      1.27  jonathan  *
    157      1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    158      1.27  jonathan  * otherwise not used by the kernel.
    159      1.27  jonathan  */
    160      1.27  jonathan int time_state = TIME_OK;	/* clock state */
    161      1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    162      1.27  jonathan long time_offset = 0;		/* time offset (us) */
    163      1.27  jonathan long time_constant = 0;		/* pll time constant */
    164      1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    165      1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    166      1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    167      1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    168      1.27  jonathan 
    169      1.27  jonathan /*
    170      1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    171      1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    172      1.27  jonathan  * factors are defined in the timex.h header file.
    173      1.27  jonathan  *
    174      1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    175      1.27  jonathan  * increment, respectively, of the kernel time variable.
    176      1.27  jonathan  *
    177      1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    178      1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    179      1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    180      1.27  jonathan  * daemon.
    181      1.27  jonathan  *
    182      1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    183      1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    184      1.27  jonathan  * seconds rollover.
    185      1.27  jonathan  *
    186      1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    187      1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    188      1.27  jonathan  * and to increase the time_maxerror as the time since last update
    189      1.27  jonathan  * increases.
    190      1.27  jonathan  */
    191      1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    192      1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    193      1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    194      1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    195      1.27  jonathan 
    196      1.27  jonathan #ifdef PPS_SYNC
    197      1.27  jonathan /*
    198      1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    199      1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    200      1.27  jonathan  * timex.h header file.
    201      1.27  jonathan  *
    202      1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    203      1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    204      1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    205      1.27  jonathan  * two.
    206      1.27  jonathan  *
    207      1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    208      1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    209      1.27  jonathan  * this filter.
    210      1.27  jonathan  *
    211      1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    212      1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    213      1.27  jonathan  * by this filter.
    214      1.27  jonathan  *
    215      1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    216      1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    217      1.27  jonathan  * contents plus the time_tv.usec as usual.
    218      1.27  jonathan  *
    219      1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    220      1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    221      1.27  jonathan  * PPS signal be lost.
    222      1.27  jonathan  *
    223      1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    224      1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    225      1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    226      1.27  jonathan  * PPS interrupt and timer interrupt.
    227      1.27  jonathan  *
    228      1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    229      1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    230      1.27  jonathan  */
    231      1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    232      1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    233      1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    234      1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    235      1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    236      1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    237      1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    238      1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    239      1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    240      1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    241      1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    242      1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    243      1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    244      1.27  jonathan 
    245      1.27  jonathan /*
    246      1.27  jonathan  * PPS signal quality monitors
    247      1.27  jonathan  *
    248      1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    249      1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    250      1.27  jonathan  * (100 us).
    251      1.27  jonathan  *
    252      1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    253      1.27  jonathan  * variable from 4 s to 256 s.
    254      1.27  jonathan  *
    255      1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    256      1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    257      1.27  jonathan  * calibration interval jitter exceeds two ticks.
    258      1.27  jonathan  *
    259      1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    260      1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    261      1.27  jonathan  */
    262      1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    263      1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    264      1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    265      1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    266      1.27  jonathan #endif /* PPS_SYNC */
    267      1.27  jonathan 
    268      1.27  jonathan #ifdef EXT_CLOCK
    269      1.27  jonathan /*
    270      1.27  jonathan  * External clock definitions
    271      1.27  jonathan  *
    272      1.27  jonathan  * The following definitions and declarations are used only if an
    273      1.27  jonathan  * external clock is configured on the system.
    274      1.27  jonathan  */
    275      1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    276      1.27  jonathan 
    277      1.27  jonathan /*
    278      1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    279      1.27  jonathan  * interrupt and decremented once each second.
    280      1.27  jonathan  */
    281      1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    282      1.27  jonathan 
    283      1.27  jonathan #ifdef HIGHBALL
    284      1.27  jonathan /*
    285      1.27  jonathan  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    286      1.27  jonathan  * interface. The clock_offset variable defines the offset between
    287      1.27  jonathan  * system time and the HIGBALL counters. The clock_cpu variable contains
    288      1.27  jonathan  * the offset between the system clock and the HIGHBALL clock for use in
    289      1.27  jonathan  * disciplining the kernel time variable.
    290      1.27  jonathan  */
    291      1.27  jonathan extern struct timeval clock_offset; /* Highball clock offset */
    292      1.27  jonathan long clock_cpu = 0;		/* CPU clock adjust */
    293      1.27  jonathan #endif /* HIGHBALL */
    294      1.27  jonathan #endif /* EXT_CLOCK */
    295      1.27  jonathan #endif /* NTP */
    296      1.27  jonathan 
    297      1.27  jonathan 
    298      1.19       cgd /*
    299      1.19       cgd  * Bump a timeval by a small number of usec's.
    300      1.19       cgd  */
    301      1.19       cgd #define BUMPTIME(t, usec) { \
    302      1.55  augustss 	volatile struct timeval *tp = (t); \
    303      1.55  augustss 	long us; \
    304      1.19       cgd  \
    305      1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    306      1.19       cgd 	if (us >= 1000000) { \
    307      1.19       cgd 		tp->tv_usec = us - 1000000; \
    308      1.19       cgd 		tp->tv_sec++; \
    309      1.19       cgd 	} \
    310      1.19       cgd }
    311      1.19       cgd 
    312      1.19       cgd int	stathz;
    313      1.19       cgd int	profhz;
    314      1.19       cgd int	profprocs;
    315      1.52   thorpej u_int64_t hardclock_ticks, softclock_ticks;
    316      1.52   thorpej int	softclock_running;		/* 1 => softclock() is running */
    317      1.22       cgd static int psdiv, pscnt;		/* prof => stat divider */
    318      1.22       cgd int	psratio;			/* ratio: prof / stat */
    319      1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    320      1.34    briggs #ifndef NTP
    321      1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    322      1.34    briggs #else
    323      1.27  jonathan int	fixtick;			/* used by NTP for same */
    324      1.31   mycroft int	shifthz;
    325      1.31   mycroft #endif
    326      1.19       cgd 
    327      1.48  christos /*
    328      1.48  christos  * We might want ldd to load the both words from time at once.
    329      1.48  christos  * To succeed we need to be quadword aligned.
    330      1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    331      1.48  christos  */
    332      1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    333      1.19       cgd volatile struct	timeval mono_time;
    334      1.19       cgd 
    335      1.19       cgd /*
    336      1.52   thorpej  * The callout mechanism is based on the work of Adam M. Costello and
    337      1.52   thorpej  * George Varghese, published in a technical report entitled "Redesigning
    338      1.52   thorpej  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
    339      1.52   thorpej  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
    340      1.52   thorpej  *
    341      1.52   thorpej  * The original work on the data structures used in this implementation
    342      1.52   thorpej  * was published by G. Varghese and A. Lauck in the paper "Hashed and
    343      1.52   thorpej  * Hierarchical Timing Wheels: Data Structures for the Efficient
    344      1.52   thorpej  * Implementation of a Timer Facility" in the Proceedings of the 11th
    345      1.52   thorpej  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
    346      1.52   thorpej  * November 1987.
    347      1.52   thorpej  */
    348      1.52   thorpej struct callout_queue *callwheel;
    349      1.52   thorpej int	callwheelsize, callwheelbits, callwheelmask;
    350      1.52   thorpej 
    351      1.52   thorpej static struct callout *nextsoftcheck;	/* next callout to be checked */
    352      1.52   thorpej 
    353      1.52   thorpej #ifdef CALLWHEEL_STATS
    354      1.52   thorpej int	callwheel_collisions;		/* number of hash collisions */
    355      1.52   thorpej int	callwheel_maxlength;		/* length of the longest hash chain */
    356      1.52   thorpej int	*callwheel_sizes;		/* per-bucket length count */
    357      1.52   thorpej u_int64_t callwheel_count;		/* # callouts currently */
    358      1.52   thorpej u_int64_t callwheel_established;	/* # callouts established */
    359      1.52   thorpej u_int64_t callwheel_fired;		/* # callouts that fired */
    360      1.52   thorpej u_int64_t callwheel_disestablished;	/* # callouts disestablished */
    361      1.52   thorpej u_int64_t callwheel_changed;		/* # callouts changed */
    362      1.52   thorpej u_int64_t callwheel_softclocks;		/* # times softclock() called */
    363      1.52   thorpej u_int64_t callwheel_softchecks;		/* # checks per softclock() */
    364      1.52   thorpej u_int64_t callwheel_softempty;		/* # empty buckets seen */
    365      1.52   thorpej #endif /* CALLWHEEL_STATS */
    366      1.52   thorpej 
    367      1.52   thorpej /*
    368      1.52   thorpej  * This value indicates the number of consecutive callouts that
    369      1.52   thorpej  * will be checked before we allow interrupts to have a chance
    370      1.52   thorpej  * again.
    371      1.52   thorpej  */
    372      1.52   thorpej #ifndef MAX_SOFTCLOCK_STEPS
    373      1.52   thorpej #define	MAX_SOFTCLOCK_STEPS	100
    374      1.52   thorpej #endif
    375      1.52   thorpej 
    376      1.52   thorpej /*
    377      1.19       cgd  * Initialize clock frequencies and start both clocks running.
    378      1.19       cgd  */
    379      1.19       cgd void
    380      1.19       cgd initclocks()
    381      1.19       cgd {
    382      1.55  augustss 	int i;
    383      1.19       cgd 
    384      1.19       cgd 	/*
    385      1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    386      1.19       cgd 	 * code do its bit.
    387      1.19       cgd 	 */
    388      1.19       cgd 	psdiv = pscnt = 1;
    389      1.19       cgd 	cpu_initclocks();
    390      1.19       cgd 
    391      1.19       cgd 	/*
    392      1.19       cgd 	 * Compute profhz/stathz, and fix profhz if needed.
    393      1.19       cgd 	 */
    394      1.19       cgd 	i = stathz ? stathz : hz;
    395      1.19       cgd 	if (profhz == 0)
    396      1.19       cgd 		profhz = i;
    397      1.19       cgd 	psratio = profhz / i;
    398      1.31   mycroft 
    399      1.31   mycroft #ifdef NTP
    400      1.31   mycroft 	switch (hz) {
    401      1.57   mycroft 	case 1:
    402      1.57   mycroft 		shifthz = SHIFT_SCALE - 0;
    403      1.57   mycroft 		break;
    404      1.57   mycroft 	case 2:
    405      1.57   mycroft 		shifthz = SHIFT_SCALE - 1;
    406      1.57   mycroft 		break;
    407      1.57   mycroft 	case 4:
    408      1.57   mycroft 		shifthz = SHIFT_SCALE - 2;
    409      1.57   mycroft 		break;
    410      1.57   mycroft 	case 8:
    411      1.57   mycroft 		shifthz = SHIFT_SCALE - 3;
    412      1.57   mycroft 		break;
    413      1.57   mycroft 	case 16:
    414      1.57   mycroft 		shifthz = SHIFT_SCALE - 4;
    415      1.57   mycroft 		break;
    416      1.57   mycroft 	case 32:
    417      1.57   mycroft 		shifthz = SHIFT_SCALE - 5;
    418      1.57   mycroft 		break;
    419      1.31   mycroft 	case 60:
    420      1.31   mycroft 	case 64:
    421      1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    422      1.31   mycroft 		break;
    423      1.31   mycroft 	case 96:
    424      1.31   mycroft 	case 100:
    425      1.31   mycroft 	case 128:
    426      1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    427      1.31   mycroft 		break;
    428      1.31   mycroft 	case 256:
    429      1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    430      1.41       tls 		break;
    431      1.41       tls 	case 512:
    432      1.41       tls 		shifthz = SHIFT_SCALE - 9;
    433      1.31   mycroft 		break;
    434      1.43      ross 	case 1000:
    435      1.31   mycroft 	case 1024:
    436      1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    437      1.31   mycroft 		break;
    438      1.57   mycroft 	case 1200:
    439      1.57   mycroft 	case 2048:
    440      1.57   mycroft 		shifthz = SHIFT_SCALE - 11;
    441      1.57   mycroft 		break;
    442      1.57   mycroft 	case 4096:
    443      1.57   mycroft 		shifthz = SHIFT_SCALE - 12;
    444      1.57   mycroft 		break;
    445      1.57   mycroft 	case 8192:
    446      1.57   mycroft 		shifthz = SHIFT_SCALE - 13;
    447      1.57   mycroft 		break;
    448      1.57   mycroft 	case 16384:
    449      1.57   mycroft 		shifthz = SHIFT_SCALE - 14;
    450      1.57   mycroft 		break;
    451      1.57   mycroft 	case 32768:
    452      1.57   mycroft 		shifthz = SHIFT_SCALE - 15;
    453      1.57   mycroft 		break;
    454      1.57   mycroft 	case 65536:
    455      1.57   mycroft 		shifthz = SHIFT_SCALE - 16;
    456      1.57   mycroft 		break;
    457      1.31   mycroft 	default:
    458      1.31   mycroft 		panic("weird hz");
    459      1.50  sommerfe 	}
    460      1.50  sommerfe 	if (fixtick == 0) {
    461      1.52   thorpej 		/*
    462      1.52   thorpej 		 * Give MD code a chance to set this to a better
    463      1.52   thorpej 		 * value; but, if it doesn't, we should.
    464      1.52   thorpej 		 */
    465      1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    466      1.31   mycroft 	}
    467      1.31   mycroft #endif
    468      1.19       cgd }
    469      1.19       cgd 
    470      1.19       cgd /*
    471      1.19       cgd  * The real-time timer, interrupting hz times per second.
    472      1.19       cgd  */
    473      1.19       cgd void
    474      1.19       cgd hardclock(frame)
    475      1.55  augustss 	struct clockframe *frame;
    476      1.19       cgd {
    477      1.55  augustss 	struct proc *p;
    478      1.55  augustss 	int delta;
    479      1.19       cgd 	extern int tickdelta;
    480      1.19       cgd 	extern long timedelta;
    481      1.30   mycroft #ifdef NTP
    482      1.55  augustss 	int time_update;
    483      1.55  augustss 	int ltemp;
    484      1.29  christos #endif
    485      1.19       cgd 
    486      1.19       cgd 	p = curproc;
    487      1.19       cgd 	if (p) {
    488      1.55  augustss 		struct pstats *pstats;
    489      1.19       cgd 
    490      1.19       cgd 		/*
    491      1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    492      1.19       cgd 		 */
    493      1.19       cgd 		pstats = p->p_stats;
    494      1.19       cgd 		if (CLKF_USERMODE(frame) &&
    495      1.19       cgd 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    496      1.19       cgd 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    497      1.19       cgd 			psignal(p, SIGVTALRM);
    498      1.19       cgd 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    499      1.19       cgd 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    500      1.19       cgd 			psignal(p, SIGPROF);
    501      1.19       cgd 	}
    502      1.19       cgd 
    503      1.19       cgd 	/*
    504      1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    505      1.19       cgd 	 */
    506      1.19       cgd 	if (stathz == 0)
    507      1.19       cgd 		statclock(frame);
    508      1.19       cgd 
    509      1.60   thorpej #if defined(MULTIPROCESSOR)
    510      1.60   thorpej 	/*
    511      1.60   thorpej 	 * If we are not the primary CPU, we're not allowed to do
    512      1.60   thorpej 	 * any more work.
    513      1.60   thorpej 	 */
    514      1.60   thorpej 	if (CPU_IS_PRIMARY(curcpu()) == 0)
    515      1.60   thorpej 		return;
    516      1.60   thorpej #endif
    517      1.60   thorpej 
    518      1.19       cgd 	/*
    519      1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    520      1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    521      1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    522      1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    523      1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    524      1.22       cgd 	 * ``tickdelta'' may also be added in.
    525      1.19       cgd 	 */
    526      1.52   thorpej 	hardclock_ticks++;
    527      1.22       cgd 	delta = tick;
    528      1.27  jonathan 
    529      1.27  jonathan #ifndef NTP
    530      1.22       cgd 	if (tickfix) {
    531      1.39       cgd 		tickfixcnt += tickfix;
    532      1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    533      1.39       cgd 			delta++;
    534      1.39       cgd 			tickfixcnt -= tickfixinterval;
    535      1.22       cgd 		}
    536      1.22       cgd 	}
    537      1.27  jonathan #endif /* !NTP */
    538      1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    539      1.22       cgd 	if (timedelta != 0) {
    540      1.38       cgd 		delta += tickdelta;
    541      1.19       cgd 		timedelta -= tickdelta;
    542      1.19       cgd 	}
    543      1.27  jonathan 
    544      1.27  jonathan #ifdef notyet
    545      1.27  jonathan 	microset();
    546      1.27  jonathan #endif
    547      1.27  jonathan 
    548      1.27  jonathan #ifndef NTP
    549      1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    550      1.27  jonathan #endif
    551      1.19       cgd 	BUMPTIME(&mono_time, delta);
    552      1.27  jonathan 
    553      1.31   mycroft #ifdef NTP
    554      1.30   mycroft 	time_update = delta;
    555      1.27  jonathan 
    556      1.27  jonathan 	/*
    557      1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    558      1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    559      1.27  jonathan 	 * (time_update).
    560      1.27  jonathan 	 */
    561      1.27  jonathan 	time_phase += time_adj;
    562      1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    563      1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    564      1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    565      1.27  jonathan 		time_update -= ltemp;
    566      1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    567      1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    568      1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    569      1.27  jonathan 		time_update += ltemp;
    570      1.27  jonathan 	}
    571      1.27  jonathan 
    572      1.27  jonathan #ifdef HIGHBALL
    573      1.27  jonathan 	/*
    574      1.27  jonathan 	 * If the HIGHBALL board is installed, we need to adjust the
    575      1.27  jonathan 	 * external clock offset in order to close the hardware feedback
    576      1.27  jonathan 	 * loop. This will adjust the external clock phase and frequency
    577      1.27  jonathan 	 * in small amounts. The additional phase noise and frequency
    578      1.27  jonathan 	 * wander this causes should be minimal. We also need to
    579      1.27  jonathan 	 * discipline the kernel time variable, since the PLL is used to
    580      1.27  jonathan 	 * discipline the external clock. If the Highball board is not
    581      1.27  jonathan 	 * present, we discipline kernel time with the PLL as usual. We
    582      1.27  jonathan 	 * assume that the external clock phase adjustment (time_update)
    583      1.27  jonathan 	 * and kernel phase adjustment (clock_cpu) are less than the
    584      1.27  jonathan 	 * value of tick.
    585      1.27  jonathan 	 */
    586      1.27  jonathan 	clock_offset.tv_usec += time_update;
    587      1.27  jonathan 	if (clock_offset.tv_usec >= 1000000) {
    588      1.27  jonathan 		clock_offset.tv_sec++;
    589      1.27  jonathan 		clock_offset.tv_usec -= 1000000;
    590      1.27  jonathan 	}
    591      1.27  jonathan 	if (clock_offset.tv_usec < 0) {
    592      1.27  jonathan 		clock_offset.tv_sec--;
    593      1.27  jonathan 		clock_offset.tv_usec += 1000000;
    594      1.27  jonathan 	}
    595      1.27  jonathan 	time.tv_usec += clock_cpu;
    596      1.27  jonathan 	clock_cpu = 0;
    597      1.27  jonathan #else
    598      1.27  jonathan 	time.tv_usec += time_update;
    599      1.27  jonathan #endif /* HIGHBALL */
    600      1.27  jonathan 
    601      1.27  jonathan 	/*
    602      1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    603      1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    604      1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    605      1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    606      1.27  jonathan 	 * CPU clock oscillator frequency error.
    607      1.27  jonathan 	 *
    608      1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    609      1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    610      1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    611      1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    612      1.27  jonathan 	 */
    613      1.27  jonathan 	if (time.tv_usec >= 1000000) {
    614      1.27  jonathan 		time.tv_usec -= 1000000;
    615      1.27  jonathan 		time.tv_sec++;
    616      1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    617      1.27  jonathan 
    618      1.27  jonathan 		/*
    619      1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    620      1.27  jonathan 		 * the end of the day, the system clock is set back one
    621      1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    622      1.27  jonathan 		 * set ahead one second. The microtime() routine or
    623      1.27  jonathan 		 * external clock driver will insure that reported time
    624      1.27  jonathan 		 * is always monotonic. The ugly divides should be
    625      1.27  jonathan 		 * replaced.
    626      1.27  jonathan 		 */
    627      1.27  jonathan 		switch (time_state) {
    628      1.31   mycroft 		case TIME_OK:
    629      1.27  jonathan 			if (time_status & STA_INS)
    630      1.27  jonathan 				time_state = TIME_INS;
    631      1.27  jonathan 			else if (time_status & STA_DEL)
    632      1.27  jonathan 				time_state = TIME_DEL;
    633      1.27  jonathan 			break;
    634      1.27  jonathan 
    635      1.31   mycroft 		case TIME_INS:
    636      1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    637      1.27  jonathan 				time.tv_sec--;
    638      1.27  jonathan 				time_state = TIME_OOP;
    639      1.27  jonathan 			}
    640      1.27  jonathan 			break;
    641      1.27  jonathan 
    642      1.31   mycroft 		case TIME_DEL:
    643      1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    644      1.27  jonathan 				time.tv_sec++;
    645      1.27  jonathan 				time_state = TIME_WAIT;
    646      1.27  jonathan 			}
    647      1.27  jonathan 			break;
    648      1.27  jonathan 
    649      1.31   mycroft 		case TIME_OOP:
    650      1.27  jonathan 			time_state = TIME_WAIT;
    651      1.27  jonathan 			break;
    652      1.27  jonathan 
    653      1.31   mycroft 		case TIME_WAIT:
    654      1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    655      1.27  jonathan 				time_state = TIME_OK;
    656      1.31   mycroft 			break;
    657      1.27  jonathan 		}
    658      1.27  jonathan 
    659      1.27  jonathan 		/*
    660      1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    661      1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    662      1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    663      1.27  jonathan 		 * used directly. In either mode, the maximum phase
    664      1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    665      1.27  jonathan 		 * the adjustment over not more than the number of
    666      1.27  jonathan 		 * seconds between updates.
    667      1.27  jonathan 		 */
    668      1.27  jonathan 		if (time_offset < 0) {
    669      1.27  jonathan 			ltemp = -time_offset;
    670      1.27  jonathan 			if (!(time_status & STA_FLL))
    671      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    672      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    673      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    674      1.27  jonathan 				    SHIFT_UPDATE;
    675      1.27  jonathan 			time_offset += ltemp;
    676      1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    677      1.31   mycroft 		} else if (time_offset > 0) {
    678      1.27  jonathan 			ltemp = time_offset;
    679      1.27  jonathan 			if (!(time_status & STA_FLL))
    680      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    681      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    682      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    683      1.27  jonathan 				    SHIFT_UPDATE;
    684      1.27  jonathan 			time_offset -= ltemp;
    685      1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    686      1.31   mycroft 		} else
    687      1.31   mycroft 			time_adj = 0;
    688      1.27  jonathan 
    689      1.27  jonathan 		/*
    690      1.27  jonathan 		 * Compute the frequency estimate and additional phase
    691      1.27  jonathan 		 * adjustment due to frequency error for the next
    692      1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    693      1.27  jonathan 		 * watchdog counter and update the frequency computed by
    694      1.27  jonathan 		 * the pll and the PPS signal.
    695      1.27  jonathan 		 */
    696      1.27  jonathan #ifdef PPS_SYNC
    697      1.27  jonathan 		pps_valid++;
    698      1.27  jonathan 		if (pps_valid == PPS_VALID) {
    699      1.27  jonathan 			pps_jitter = MAXTIME;
    700      1.27  jonathan 			pps_stabil = MAXFREQ;
    701      1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    702      1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    703      1.27  jonathan 		}
    704      1.27  jonathan 		ltemp = time_freq + pps_freq;
    705      1.27  jonathan #else
    706      1.27  jonathan 		ltemp = time_freq;
    707      1.27  jonathan #endif /* PPS_SYNC */
    708      1.27  jonathan 
    709      1.27  jonathan 		if (ltemp < 0)
    710      1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    711      1.27  jonathan 		else
    712      1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    713      1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    714      1.27  jonathan 
    715      1.27  jonathan 		/*
    716      1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    717      1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    718      1.31   mycroft 		 * scale factor.
    719      1.46   mycroft 		 *
    720      1.46   mycroft 		 * To determine the adjustment, you can do the following:
    721      1.46   mycroft 		 *   bc -q
    722      1.46   mycroft 		 *   scale=24
    723      1.46   mycroft 		 *   obase=2
    724      1.46   mycroft 		 *   idealhz/realhz
    725      1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    726      1.57   mycroft 		 * is the actual value.  You may need to factor this result
    727      1.57   mycroft 		 * into a sequence of 2 multipliers to get better precision.
    728      1.46   mycroft 		 *
    729      1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    730      1.46   mycroft 		 *   bc -q
    731      1.46   mycroft 		 *   scale=24
    732      1.57   mycroft 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    733      1.57   mycroft 		 * (and then multiply by 1000000 to get ppm).
    734      1.27  jonathan 		 */
    735      1.31   mycroft 		switch (hz) {
    736      1.58   mycroft 		case 60:
    737      1.58   mycroft 			/* A factor of 1.000100010001 gives about 15ppm
    738      1.58   mycroft 			   error. */
    739      1.58   mycroft 			if (time_adj < 0) {
    740      1.58   mycroft 				time_adj -= (-time_adj >> 4);
    741      1.58   mycroft 				time_adj -= (-time_adj >> 8);
    742      1.58   mycroft 			} else {
    743      1.58   mycroft 				time_adj += (time_adj >> 4);
    744      1.58   mycroft 				time_adj += (time_adj >> 8);
    745      1.58   mycroft 			}
    746      1.58   mycroft 			break;
    747      1.58   mycroft 
    748      1.31   mycroft 		case 96:
    749      1.56   mycroft 			/* A factor of 1.0101010101 gives about 244ppm error. */
    750      1.46   mycroft 			if (time_adj < 0) {
    751      1.46   mycroft 				time_adj -= (-time_adj >> 2);
    752      1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    753      1.46   mycroft 			} else {
    754      1.46   mycroft 				time_adj += (time_adj >> 2);
    755      1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    756      1.46   mycroft 			}
    757      1.46   mycroft 			break;
    758      1.46   mycroft 
    759      1.31   mycroft 		case 100:
    760      1.56   mycroft 			/* A factor of 1.010001111010111 gives about 1ppm
    761      1.56   mycroft 			   error. */
    762      1.56   mycroft 			if (time_adj < 0) {
    763      1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    764      1.56   mycroft 				time_adj += (-time_adj >> 10);
    765      1.56   mycroft 			} else {
    766      1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    767      1.56   mycroft 				time_adj -= (time_adj >> 10);
    768      1.56   mycroft 			}
    769      1.43      ross 			break;
    770      1.46   mycroft 
    771      1.43      ross 		case 1000:
    772      1.56   mycroft 			/* A factor of 1.000001100010100001 gives about 50ppm
    773      1.56   mycroft 			   error. */
    774      1.56   mycroft 			if (time_adj < 0) {
    775      1.56   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    776      1.56   mycroft 				time_adj -= (-time_adj >> 7);
    777      1.56   mycroft 			} else {
    778      1.56   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    779      1.56   mycroft 				time_adj += (time_adj >> 7);
    780      1.56   mycroft 			}
    781      1.56   mycroft 			break;
    782      1.56   mycroft 
    783      1.56   mycroft 		case 1200:
    784      1.56   mycroft 			/* A factor of 1.1011010011100001 gives about 64ppm
    785      1.56   mycroft 			   error. */
    786      1.56   mycroft 			if (time_adj < 0) {
    787      1.56   mycroft 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    788      1.56   mycroft 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    789      1.56   mycroft 			} else {
    790      1.56   mycroft 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    791      1.56   mycroft 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    792      1.56   mycroft 			}
    793      1.31   mycroft 			break;
    794      1.27  jonathan 		}
    795      1.27  jonathan 
    796      1.27  jonathan #ifdef EXT_CLOCK
    797      1.27  jonathan 		/*
    798      1.27  jonathan 		 * If an external clock is present, it is necessary to
    799      1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    800      1.27  jonathan 		 * all system components use the microtime() interface.
    801      1.27  jonathan 		 * Here, the time offset between the external clock and
    802      1.27  jonathan 		 * kernel time variable is computed every so often.
    803      1.27  jonathan 		 */
    804      1.27  jonathan 		clock_count++;
    805      1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    806      1.27  jonathan 			clock_count = 0;
    807      1.27  jonathan 			microtime(&clock_ext);
    808      1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    809      1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    810      1.27  jonathan 			    time.tv_usec;
    811      1.27  jonathan 			if (delta.tv_usec < 0)
    812      1.27  jonathan 				delta.tv_sec--;
    813      1.27  jonathan 			if (delta.tv_usec >= 500000) {
    814      1.27  jonathan 				delta.tv_usec -= 1000000;
    815      1.27  jonathan 				delta.tv_sec++;
    816      1.27  jonathan 			}
    817      1.27  jonathan 			if (delta.tv_usec < -500000) {
    818      1.27  jonathan 				delta.tv_usec += 1000000;
    819      1.27  jonathan 				delta.tv_sec--;
    820      1.27  jonathan 			}
    821      1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    822      1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    823      1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    824      1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    825      1.27  jonathan 				time = clock_ext;
    826      1.27  jonathan 				delta.tv_sec = 0;
    827      1.27  jonathan 				delta.tv_usec = 0;
    828      1.27  jonathan 			}
    829      1.27  jonathan #ifdef HIGHBALL
    830      1.27  jonathan 			clock_cpu = delta.tv_usec;
    831      1.27  jonathan #else /* HIGHBALL */
    832      1.27  jonathan 			hardupdate(delta.tv_usec);
    833      1.27  jonathan #endif /* HIGHBALL */
    834      1.27  jonathan 		}
    835      1.27  jonathan #endif /* EXT_CLOCK */
    836      1.27  jonathan 	}
    837      1.27  jonathan 
    838      1.31   mycroft #endif /* NTP */
    839      1.19       cgd 
    840      1.19       cgd 	/*
    841      1.19       cgd 	 * Process callouts at a very low cpu priority, so we don't keep the
    842      1.19       cgd 	 * relatively high clock interrupt priority any longer than necessary.
    843      1.19       cgd 	 */
    844      1.52   thorpej 	if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
    845      1.19       cgd 		if (CLKF_BASEPRI(frame)) {
    846      1.19       cgd 			/*
    847      1.19       cgd 			 * Save the overhead of a software interrupt;
    848      1.52   thorpej 			 * it will happen as soon as we return, so do
    849      1.52   thorpej 			 * it now.
    850      1.52   thorpej 			 *
    851      1.52   thorpej 			 * NOTE: If we're at ``base priority'', softclock()
    852      1.52   thorpej 			 * was not already running.
    853      1.19       cgd 			 */
    854      1.49   thorpej 			(void)spllowersoftclock();
    855      1.19       cgd 			softclock();
    856      1.19       cgd 		} else
    857      1.19       cgd 			setsoftclock();
    858      1.52   thorpej 	} else if (softclock_running == 0 &&
    859      1.52   thorpej 		   (softclock_ticks + 1) == hardclock_ticks)
    860      1.52   thorpej 		softclock_ticks++;
    861      1.19       cgd }
    862      1.19       cgd 
    863      1.19       cgd /*
    864      1.19       cgd  * Software (low priority) clock interrupt.
    865      1.19       cgd  * Run periodic events from timeout queue.
    866      1.19       cgd  */
    867      1.19       cgd /*ARGSUSED*/
    868      1.19       cgd void
    869      1.19       cgd softclock()
    870      1.19       cgd {
    871      1.52   thorpej 	struct callout_queue *bucket;
    872      1.52   thorpej 	struct callout *c;
    873      1.52   thorpej 	void (*func) __P((void *));
    874      1.52   thorpej 	void *arg;
    875      1.52   thorpej 	int s, idx;
    876      1.52   thorpej 	int steps = 0;
    877      1.19       cgd 
    878      1.19       cgd 	s = splhigh();
    879      1.52   thorpej 	softclock_running = 1;
    880      1.52   thorpej 
    881      1.52   thorpej #ifdef CALLWHEEL_STATS
    882      1.52   thorpej 	callwheel_softclocks++;
    883      1.52   thorpej #endif
    884      1.52   thorpej 
    885      1.52   thorpej 	while (softclock_ticks != hardclock_ticks) {
    886      1.52   thorpej 		softclock_ticks++;
    887      1.52   thorpej 		idx = (int)(softclock_ticks & callwheelmask);
    888      1.52   thorpej 		bucket = &callwheel[idx];
    889      1.52   thorpej 		c = TAILQ_FIRST(bucket);
    890      1.52   thorpej #ifdef CALLWHEEL_STATS
    891      1.52   thorpej 		if (c == NULL)
    892      1.52   thorpej 			callwheel_softempty++;
    893      1.52   thorpej #endif
    894      1.52   thorpej 		while (c != NULL) {
    895      1.52   thorpej #ifdef CALLWHEEL_STATS
    896      1.52   thorpej 			callwheel_softchecks++;
    897      1.52   thorpej #endif
    898      1.52   thorpej 			if (c->c_time != softclock_ticks) {
    899      1.52   thorpej 				c = TAILQ_NEXT(c, c_link);
    900      1.52   thorpej 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
    901      1.52   thorpej 					nextsoftcheck = c;
    902      1.52   thorpej 					/* Give interrupts a chance. */
    903      1.52   thorpej 					splx(s);
    904      1.52   thorpej 					(void) splhigh();
    905      1.52   thorpej 					c = nextsoftcheck;
    906      1.52   thorpej 					steps = 0;
    907      1.52   thorpej 				}
    908      1.52   thorpej 			} else {
    909      1.52   thorpej 				nextsoftcheck = TAILQ_NEXT(c, c_link);
    910      1.52   thorpej 				TAILQ_REMOVE(bucket, c, c_link);
    911      1.52   thorpej #ifdef CALLWHEEL_STATS
    912      1.52   thorpej 				callwheel_sizes[idx]--;
    913      1.52   thorpej 				callwheel_fired++;
    914      1.52   thorpej 				callwheel_count--;
    915      1.52   thorpej #endif
    916      1.52   thorpej 				func = c->c_func;
    917      1.52   thorpej 				arg = c->c_arg;
    918      1.52   thorpej 				c->c_func = NULL;
    919      1.52   thorpej 				c->c_flags &= ~CALLOUT_PENDING;
    920      1.52   thorpej 				splx(s);
    921      1.52   thorpej 				(*func)(arg);
    922      1.52   thorpej 				(void) splhigh();
    923      1.52   thorpej 				steps = 0;
    924      1.52   thorpej 				c = nextsoftcheck;
    925      1.52   thorpej 			}
    926      1.52   thorpej 		}
    927      1.19       cgd 	}
    928      1.52   thorpej 	nextsoftcheck = NULL;
    929      1.52   thorpej 	softclock_running = 0;
    930      1.19       cgd 	splx(s);
    931      1.51   thorpej }
    932      1.51   thorpej 
    933      1.51   thorpej /*
    934      1.54     enami  * callout_setsize:
    935      1.52   thorpej  *
    936      1.54     enami  *	Determine how many callwheels are necessary and
    937      1.54     enami  *	set hash mask.  Called from allocsys().
    938      1.51   thorpej  */
    939      1.51   thorpej void
    940      1.54     enami callout_setsize()
    941      1.51   thorpej {
    942      1.52   thorpej 
    943      1.52   thorpej 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
    944      1.52   thorpej 		/* loop */ ;
    945      1.52   thorpej 	callwheelmask = callwheelsize - 1;
    946      1.52   thorpej }
    947      1.52   thorpej 
    948      1.52   thorpej /*
    949      1.54     enami  * callout_startup:
    950      1.52   thorpej  *
    951      1.52   thorpej  *	Initialize the callwheel buckets.
    952      1.52   thorpej  */
    953      1.52   thorpej void
    954      1.54     enami callout_startup()
    955      1.52   thorpej {
    956      1.51   thorpej 	int i;
    957      1.51   thorpej 
    958      1.52   thorpej 	for (i = 0; i < callwheelsize; i++)
    959      1.52   thorpej 		TAILQ_INIT(&callwheel[i]);
    960      1.19       cgd }
    961      1.19       cgd 
    962      1.19       cgd /*
    963      1.52   thorpej  * callout_init:
    964      1.19       cgd  *
    965      1.52   thorpej  *	Initialize a callout structure so that it can be used
    966      1.52   thorpej  *	by callout_reset() and callout_stop().
    967      1.52   thorpej  */
    968      1.52   thorpej void
    969      1.52   thorpej callout_init(c)
    970      1.52   thorpej 	struct callout *c;
    971      1.52   thorpej {
    972      1.52   thorpej 
    973      1.52   thorpej 	memset(c, 0, sizeof(*c));
    974      1.52   thorpej }
    975      1.52   thorpej 
    976      1.52   thorpej /*
    977      1.52   thorpej  * callout_reset:
    978      1.19       cgd  *
    979      1.52   thorpej  *	Establish or change a timeout.
    980      1.19       cgd  */
    981      1.19       cgd void
    982      1.52   thorpej callout_reset(c, ticks, func, arg)
    983      1.52   thorpej 	struct callout *c;
    984      1.52   thorpej 	int ticks;
    985      1.52   thorpej 	void (*func) __P((void *));
    986      1.19       cgd 	void *arg;
    987      1.19       cgd {
    988      1.52   thorpej 	struct callout_queue *bucket;
    989      1.52   thorpej 	int s;
    990      1.19       cgd 
    991      1.19       cgd 	if (ticks <= 0)
    992      1.19       cgd 		ticks = 1;
    993      1.19       cgd 
    994      1.19       cgd 	/* Lock out the clock. */
    995      1.19       cgd 	s = splhigh();
    996      1.19       cgd 
    997      1.52   thorpej 	/*
    998      1.52   thorpej 	 * If this callout's timer is already running, cancel it
    999      1.52   thorpej 	 * before we modify it.
   1000      1.52   thorpej 	 */
   1001      1.52   thorpej 	if (c->c_flags & CALLOUT_PENDING) {
   1002      1.52   thorpej 		callout_stop(c);
   1003      1.52   thorpej #ifdef CALLWHEEL_STATS
   1004      1.52   thorpej 		callwheel_changed++;
   1005      1.52   thorpej #endif
   1006      1.52   thorpej 	}
   1007      1.52   thorpej 
   1008      1.52   thorpej 	c->c_arg = arg;
   1009      1.52   thorpej 	c->c_func = func;
   1010      1.52   thorpej 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
   1011      1.52   thorpej 	c->c_time = hardclock_ticks + ticks;
   1012      1.52   thorpej 
   1013      1.52   thorpej 	bucket = &callwheel[c->c_time & callwheelmask];
   1014      1.52   thorpej 
   1015      1.52   thorpej #ifdef CALLWHEEL_STATS
   1016      1.52   thorpej 	if (TAILQ_FIRST(bucket) != NULL)
   1017      1.52   thorpej 		callwheel_collisions++;
   1018      1.52   thorpej #endif
   1019      1.52   thorpej 
   1020      1.52   thorpej 	TAILQ_INSERT_TAIL(bucket, c, c_link);
   1021      1.52   thorpej 
   1022      1.52   thorpej #ifdef CALLWHEEL_STATS
   1023      1.52   thorpej 	callwheel_count++;
   1024      1.52   thorpej 	callwheel_established++;
   1025      1.52   thorpej 	if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
   1026      1.52   thorpej 		callwheel_maxlength =
   1027      1.52   thorpej 		    callwheel_sizes[c->c_time & callwheelmask];
   1028      1.52   thorpej #endif
   1029      1.52   thorpej 
   1030      1.19       cgd 	splx(s);
   1031      1.19       cgd }
   1032      1.19       cgd 
   1033      1.52   thorpej /*
   1034      1.52   thorpej  * callout_stop:
   1035      1.52   thorpej  *
   1036      1.52   thorpej  *	Disestablish a timeout.
   1037      1.52   thorpej  */
   1038      1.19       cgd void
   1039      1.52   thorpej callout_stop(c)
   1040      1.52   thorpej 	struct callout *c;
   1041      1.19       cgd {
   1042      1.52   thorpej 	int s;
   1043      1.19       cgd 
   1044      1.52   thorpej 	/* Lock out the clock. */
   1045      1.19       cgd 	s = splhigh();
   1046      1.52   thorpej 
   1047      1.52   thorpej 	/*
   1048      1.52   thorpej 	 * Don't attempt to delete a callout that's not on the queue.
   1049      1.52   thorpej 	 */
   1050      1.52   thorpej 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
   1051      1.52   thorpej 		c->c_flags &= ~CALLOUT_ACTIVE;
   1052      1.52   thorpej 		splx(s);
   1053      1.52   thorpej 		return;
   1054      1.52   thorpej 	}
   1055      1.52   thorpej 
   1056      1.52   thorpej 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
   1057      1.52   thorpej 
   1058      1.52   thorpej 	if (nextsoftcheck == c)
   1059      1.52   thorpej 		nextsoftcheck = TAILQ_NEXT(c, c_link);
   1060      1.52   thorpej 
   1061      1.52   thorpej 	TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
   1062      1.52   thorpej #ifdef CALLWHEEL_STATS
   1063      1.52   thorpej 	callwheel_count--;
   1064      1.52   thorpej 	callwheel_disestablished++;
   1065      1.52   thorpej 	callwheel_sizes[c->c_time & callwheelmask]--;
   1066      1.52   thorpej #endif
   1067      1.52   thorpej 
   1068      1.52   thorpej 	c->c_func = NULL;
   1069      1.52   thorpej 
   1070      1.52   thorpej 	splx(s);
   1071      1.52   thorpej }
   1072      1.52   thorpej 
   1073      1.52   thorpej #ifdef CALLWHEEL_STATS
   1074      1.52   thorpej /*
   1075      1.52   thorpej  * callout_showstats:
   1076      1.52   thorpej  *
   1077      1.52   thorpej  *	Display callout statistics.  Call it from DDB.
   1078      1.52   thorpej  */
   1079      1.52   thorpej void
   1080      1.52   thorpej callout_showstats()
   1081      1.52   thorpej {
   1082      1.52   thorpej 	u_int64_t curticks;
   1083      1.52   thorpej 	int s;
   1084      1.52   thorpej 
   1085      1.52   thorpej 	s = splclock();
   1086      1.52   thorpej 	curticks = softclock_ticks;
   1087      1.19       cgd 	splx(s);
   1088      1.52   thorpej 
   1089      1.52   thorpej 	printf("Callwheel statistics:\n");
   1090      1.52   thorpej 	printf("\tCallouts currently queued: %llu\n", callwheel_count);
   1091      1.52   thorpej 	printf("\tCallouts established: %llu\n", callwheel_established);
   1092      1.52   thorpej 	printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
   1093      1.52   thorpej 	if (callwheel_changed != 0)
   1094      1.52   thorpej 		printf("\t\tOf those, %llu were changes\n", callwheel_changed);
   1095      1.52   thorpej 	printf("\tCallouts that fired: %llu\n", callwheel_fired);
   1096      1.52   thorpej 	printf("\tNumber of buckets: %d\n", callwheelsize);
   1097      1.52   thorpej 	printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
   1098      1.52   thorpej 	printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
   1099      1.52   thorpej 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
   1100      1.52   thorpej 	    callwheel_softclocks, callwheel_softchecks);
   1101      1.52   thorpej 	printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
   1102      1.19       cgd }
   1103      1.52   thorpej #endif
   1104      1.19       cgd 
   1105      1.19       cgd /*
   1106      1.52   thorpej  * Compute number of hz until specified time.  Used to compute second
   1107      1.52   thorpej  * argument to callout_reset() from an absolute time.
   1108      1.19       cgd  */
   1109      1.19       cgd int
   1110      1.19       cgd hzto(tv)
   1111      1.19       cgd 	struct timeval *tv;
   1112      1.19       cgd {
   1113  1.60.2.1   thorpej 	unsigned long ticks;
   1114  1.60.2.1   thorpej 	long sec, usec;
   1115      1.19       cgd 	int s;
   1116      1.19       cgd 
   1117      1.19       cgd 	/*
   1118  1.60.2.1   thorpej 	 * If the number of usecs in the whole seconds part of the time
   1119  1.60.2.1   thorpej 	 * difference fits in a long, then the total number of usecs will
   1120  1.60.2.1   thorpej 	 * fit in an unsigned long.  Compute the total and convert it to
   1121  1.60.2.1   thorpej 	 * ticks, rounding up and adding 1 to allow for the current tick
   1122  1.60.2.1   thorpej 	 * to expire.  Rounding also depends on unsigned long arithmetic
   1123  1.60.2.1   thorpej 	 * to avoid overflow.
   1124      1.19       cgd 	 *
   1125  1.60.2.1   thorpej 	 * Otherwise, if the number of ticks in the whole seconds part of
   1126  1.60.2.1   thorpej 	 * the time difference fits in a long, then convert the parts to
   1127  1.60.2.1   thorpej 	 * ticks separately and add, using similar rounding methods and
   1128  1.60.2.1   thorpej 	 * overflow avoidance.  This method would work in the previous
   1129  1.60.2.1   thorpej 	 * case, but it is slightly slower and assume that hz is integral.
   1130  1.60.2.1   thorpej 	 *
   1131  1.60.2.1   thorpej 	 * Otherwise, round the time difference down to the maximum
   1132  1.60.2.1   thorpej 	 * representable value.
   1133  1.60.2.1   thorpej 	 *
   1134  1.60.2.1   thorpej 	 * If ints are 32-bit, then the maximum value for any timeout in
   1135  1.60.2.1   thorpej 	 * 10ms ticks is 248 days.
   1136      1.19       cgd 	 */
   1137      1.40   mycroft 	s = splclock();
   1138      1.19       cgd 	sec = tv->tv_sec - time.tv_sec;
   1139  1.60.2.1   thorpej 	usec = tv->tv_usec - time.tv_usec;
   1140      1.19       cgd 	splx(s);
   1141  1.60.2.1   thorpej 
   1142  1.60.2.1   thorpej 	if (usec < 0) {
   1143  1.60.2.1   thorpej 		sec--;
   1144  1.60.2.1   thorpej 		usec += 1000000;
   1145  1.60.2.1   thorpej 	}
   1146  1.60.2.1   thorpej 
   1147  1.60.2.1   thorpej 	if (sec < 0 || (sec == 0 && usec <= 0)) {
   1148  1.60.2.1   thorpej 		/*
   1149  1.60.2.1   thorpej 		 * Would expire now or in the past.  Return 0 ticks.
   1150  1.60.2.1   thorpej 		 * This is different from the legacy hzto() interface,
   1151  1.60.2.1   thorpej 		 * and callers need to check for it.
   1152  1.60.2.1   thorpej 		 */
   1153  1.60.2.1   thorpej 		ticks = 0;
   1154  1.60.2.1   thorpej 	} else if (sec <= (LONG_MAX / 1000000))
   1155  1.60.2.1   thorpej 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
   1156  1.60.2.1   thorpej 		    / tick) + 1;
   1157  1.60.2.1   thorpej 	else if (sec <= (LONG_MAX / hz))
   1158  1.60.2.1   thorpej 		ticks = (sec * hz) +
   1159  1.60.2.1   thorpej 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
   1160  1.60.2.1   thorpej 	else
   1161  1.60.2.1   thorpej 		ticks = LONG_MAX;
   1162  1.60.2.1   thorpej 
   1163  1.60.2.1   thorpej 	if (ticks > INT_MAX)
   1164  1.60.2.1   thorpej 		ticks = INT_MAX;
   1165  1.60.2.1   thorpej 
   1166  1.60.2.1   thorpej 	return ((int)ticks);
   1167      1.19       cgd }
   1168      1.19       cgd 
   1169      1.19       cgd /*
   1170      1.19       cgd  * Start profiling on a process.
   1171      1.19       cgd  *
   1172      1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
   1173      1.19       cgd  * keeps the profile clock running constantly.
   1174      1.19       cgd  */
   1175      1.19       cgd void
   1176      1.19       cgd startprofclock(p)
   1177      1.55  augustss 	struct proc *p;
   1178      1.19       cgd {
   1179      1.19       cgd 	int s;
   1180      1.19       cgd 
   1181      1.19       cgd 	if ((p->p_flag & P_PROFIL) == 0) {
   1182      1.19       cgd 		p->p_flag |= P_PROFIL;
   1183      1.19       cgd 		if (++profprocs == 1 && stathz != 0) {
   1184      1.19       cgd 			s = splstatclock();
   1185      1.19       cgd 			psdiv = pscnt = psratio;
   1186      1.19       cgd 			setstatclockrate(profhz);
   1187      1.19       cgd 			splx(s);
   1188      1.19       cgd 		}
   1189      1.19       cgd 	}
   1190      1.19       cgd }
   1191      1.19       cgd 
   1192      1.19       cgd /*
   1193      1.19       cgd  * Stop profiling on a process.
   1194      1.19       cgd  */
   1195      1.19       cgd void
   1196      1.19       cgd stopprofclock(p)
   1197      1.55  augustss 	struct proc *p;
   1198      1.19       cgd {
   1199      1.19       cgd 	int s;
   1200      1.19       cgd 
   1201      1.19       cgd 	if (p->p_flag & P_PROFIL) {
   1202      1.19       cgd 		p->p_flag &= ~P_PROFIL;
   1203      1.19       cgd 		if (--profprocs == 0 && stathz != 0) {
   1204      1.19       cgd 			s = splstatclock();
   1205      1.19       cgd 			psdiv = pscnt = 1;
   1206      1.19       cgd 			setstatclockrate(stathz);
   1207      1.19       cgd 			splx(s);
   1208      1.19       cgd 		}
   1209      1.19       cgd 	}
   1210      1.19       cgd }
   1211      1.19       cgd 
   1212      1.19       cgd /*
   1213      1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1214      1.19       cgd  * do process and kernel statistics.
   1215      1.19       cgd  */
   1216      1.19       cgd void
   1217      1.19       cgd statclock(frame)
   1218      1.55  augustss 	struct clockframe *frame;
   1219      1.19       cgd {
   1220      1.19       cgd #ifdef GPROF
   1221      1.55  augustss 	struct gmonparam *g;
   1222      1.55  augustss 	int i;
   1223      1.19       cgd #endif
   1224      1.60   thorpej 	struct cpu_info *ci = curcpu();
   1225      1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1226      1.55  augustss 	struct proc *p;
   1227      1.19       cgd 
   1228      1.19       cgd 	if (CLKF_USERMODE(frame)) {
   1229      1.19       cgd 		p = curproc;
   1230      1.19       cgd 		if (p->p_flag & P_PROFIL)
   1231      1.19       cgd 			addupc_intr(p, CLKF_PC(frame), 1);
   1232      1.19       cgd 		if (--pscnt > 0)
   1233      1.19       cgd 			return;
   1234      1.19       cgd 		/*
   1235      1.19       cgd 		 * Came from user mode; CPU was in user state.
   1236      1.19       cgd 		 * If this process is being profiled record the tick.
   1237      1.19       cgd 		 */
   1238      1.19       cgd 		p->p_uticks++;
   1239      1.19       cgd 		if (p->p_nice > NZERO)
   1240      1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
   1241      1.19       cgd 		else
   1242      1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
   1243      1.19       cgd 	} else {
   1244      1.19       cgd #ifdef GPROF
   1245      1.19       cgd 		/*
   1246      1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
   1247      1.19       cgd 		 */
   1248      1.19       cgd 		g = &_gmonparam;
   1249      1.19       cgd 		if (g->state == GMON_PROF_ON) {
   1250      1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1251      1.19       cgd 			if (i < g->textsize) {
   1252      1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1253      1.19       cgd 				g->kcount[i]++;
   1254      1.19       cgd 			}
   1255      1.19       cgd 		}
   1256      1.19       cgd #endif
   1257      1.19       cgd 		if (--pscnt > 0)
   1258      1.19       cgd 			return;
   1259      1.19       cgd 		/*
   1260      1.19       cgd 		 * Came from kernel mode, so we were:
   1261      1.19       cgd 		 * - handling an interrupt,
   1262      1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1263      1.19       cgd 		 *   user process, or
   1264      1.19       cgd 		 * - spinning in the idle loop.
   1265      1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1266      1.19       cgd 		 * Note that we charge interrupts to the current process,
   1267      1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1268      1.19       cgd 		 * so that we know how much of its real time was spent
   1269      1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1270      1.19       cgd 		 */
   1271      1.19       cgd 		p = curproc;
   1272      1.19       cgd 		if (CLKF_INTR(frame)) {
   1273      1.19       cgd 			if (p != NULL)
   1274      1.19       cgd 				p->p_iticks++;
   1275      1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
   1276      1.19       cgd 		} else if (p != NULL) {
   1277      1.19       cgd 			p->p_sticks++;
   1278      1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
   1279      1.19       cgd 		} else
   1280      1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
   1281      1.19       cgd 	}
   1282      1.19       cgd 	pscnt = psdiv;
   1283      1.19       cgd 
   1284      1.19       cgd 	if (p != NULL) {
   1285      1.45      ross 		++p->p_cpticks;
   1286      1.45      ross 		/*
   1287      1.60   thorpej 		 * If no separate schedclock is provided, call it here
   1288      1.60   thorpej 		 * at ~~12-25 Hz, ~~16 Hz is best
   1289      1.45      ross 		 */
   1290      1.60   thorpej 		if (schedhz == 0)
   1291      1.60   thorpej 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1292      1.47      ross 				schedclock(p);
   1293      1.19       cgd 	}
   1294      1.19       cgd }
   1295      1.27  jonathan 
   1296      1.27  jonathan 
   1297      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1298      1.27  jonathan 
   1299      1.27  jonathan /*
   1300      1.27  jonathan  * hardupdate() - local clock update
   1301      1.27  jonathan  *
   1302      1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1303      1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1304      1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1305      1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1306      1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1307      1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1308      1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1309      1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1310      1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1311      1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1312      1.27  jonathan  *
   1313      1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1314      1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1315      1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1316      1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1317      1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1318      1.27  jonathan  *
   1319      1.27  jonathan  * Note: splclock() is in effect.
   1320      1.27  jonathan  */
   1321      1.27  jonathan void
   1322      1.27  jonathan hardupdate(offset)
   1323      1.27  jonathan 	long offset;
   1324      1.27  jonathan {
   1325      1.27  jonathan 	long ltemp, mtemp;
   1326      1.27  jonathan 
   1327      1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1328      1.27  jonathan 		return;
   1329      1.27  jonathan 	ltemp = offset;
   1330      1.27  jonathan #ifdef PPS_SYNC
   1331      1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1332      1.27  jonathan 		ltemp = pps_offset;
   1333      1.27  jonathan #endif /* PPS_SYNC */
   1334      1.27  jonathan 
   1335      1.27  jonathan 	/*
   1336      1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1337      1.27  jonathan 	 */
   1338      1.27  jonathan 	if (ltemp > MAXPHASE)
   1339      1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1340      1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1341      1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1342      1.27  jonathan 	else
   1343      1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1344      1.27  jonathan 
   1345      1.27  jonathan 	/*
   1346      1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1347      1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1348      1.27  jonathan 	 * multiply/divide should be replaced someday.
   1349      1.27  jonathan 	 */
   1350      1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1351      1.27  jonathan 		time_reftime = time.tv_sec;
   1352      1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1353      1.27  jonathan 	time_reftime = time.tv_sec;
   1354      1.27  jonathan 	if (time_status & STA_FLL) {
   1355      1.27  jonathan 		if (mtemp >= MINSEC) {
   1356      1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1357      1.27  jonathan 			    SHIFT_UPDATE));
   1358      1.27  jonathan 			if (ltemp < 0)
   1359      1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1360      1.27  jonathan 			else
   1361      1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1362      1.27  jonathan 		}
   1363      1.27  jonathan 	} else {
   1364      1.27  jonathan 		if (mtemp < MAXSEC) {
   1365      1.27  jonathan 			ltemp *= mtemp;
   1366      1.27  jonathan 			if (ltemp < 0)
   1367      1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1368      1.27  jonathan 				    time_constant + SHIFT_KF -
   1369      1.27  jonathan 				    SHIFT_USEC);
   1370      1.27  jonathan 			else
   1371      1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1372      1.27  jonathan 				    time_constant + SHIFT_KF -
   1373      1.27  jonathan 				    SHIFT_USEC);
   1374      1.27  jonathan 		}
   1375      1.27  jonathan 	}
   1376      1.27  jonathan 	if (time_freq > time_tolerance)
   1377      1.27  jonathan 		time_freq = time_tolerance;
   1378      1.27  jonathan 	else if (time_freq < -time_tolerance)
   1379      1.27  jonathan 		time_freq = -time_tolerance;
   1380      1.27  jonathan }
   1381      1.27  jonathan 
   1382      1.27  jonathan #ifdef PPS_SYNC
   1383      1.27  jonathan /*
   1384      1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1385      1.27  jonathan  *
   1386      1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1387      1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1388      1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1389      1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1390      1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1391      1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1392      1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1393      1.27  jonathan  * value at the on-time PPS signal transition.
   1394      1.27  jonathan  *
   1395      1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1396      1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1397      1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1398      1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1399      1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1400      1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1401      1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1402      1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1403      1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1404      1.27  jonathan  * routine.
   1405      1.27  jonathan  */
   1406      1.27  jonathan void
   1407      1.27  jonathan hardpps(tvp, usec)
   1408      1.27  jonathan 	struct timeval *tvp;		/* time at PPS */
   1409      1.27  jonathan 	long usec;			/* hardware counter at PPS */
   1410      1.27  jonathan {
   1411      1.27  jonathan 	long u_usec, v_usec, bigtick;
   1412      1.27  jonathan 	long cal_sec, cal_usec;
   1413      1.27  jonathan 
   1414      1.27  jonathan 	/*
   1415      1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1416      1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1417      1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1418      1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1419      1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1420      1.27  jonathan 	 */
   1421      1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1422      1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1423      1.27  jonathan 	pps_valid = 0;
   1424      1.27  jonathan 	u_usec = -tvp->tv_usec;
   1425      1.27  jonathan 	if (u_usec < -500000)
   1426      1.27  jonathan 		u_usec += 1000000;
   1427      1.27  jonathan 	v_usec = pps_offset - u_usec;
   1428      1.27  jonathan 	if (v_usec < 0)
   1429      1.27  jonathan 		v_usec = -v_usec;
   1430      1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1431      1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1432      1.27  jonathan 			pps_glitch = 0;
   1433      1.27  jonathan 			pps_tf[2] = u_usec;
   1434      1.27  jonathan 			pps_tf[1] = u_usec;
   1435      1.27  jonathan 		} else {
   1436      1.27  jonathan 			pps_glitch++;
   1437      1.27  jonathan 			u_usec = pps_offset;
   1438      1.27  jonathan 		}
   1439      1.27  jonathan 	} else
   1440      1.27  jonathan 		pps_glitch = 0;
   1441      1.27  jonathan 
   1442      1.27  jonathan 	/*
   1443      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1444      1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1445      1.27  jonathan 	 * difference between the other two samples becomes the time
   1446      1.27  jonathan 	 * dispersion (jitter) estimate.
   1447      1.27  jonathan 	 */
   1448      1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1449      1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1450      1.27  jonathan 	pps_tf[0] = u_usec;
   1451      1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1452      1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1453      1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1454      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1455      1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1456      1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1457      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1458      1.27  jonathan 		} else {
   1459      1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1460      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1461      1.27  jonathan 		}
   1462      1.27  jonathan 	} else {
   1463      1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1464      1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1465      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1466      1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1467      1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1468      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1469      1.27  jonathan 		} else {
   1470      1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1471      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1472      1.27  jonathan 		}
   1473      1.27  jonathan 	}
   1474      1.27  jonathan 	if (v_usec > MAXTIME)
   1475      1.27  jonathan 		pps_jitcnt++;
   1476      1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1477      1.27  jonathan 	if (v_usec < 0)
   1478      1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1479      1.27  jonathan 	else
   1480      1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1481      1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1482      1.27  jonathan 		time_status |= STA_PPSJITTER;
   1483      1.27  jonathan 
   1484      1.27  jonathan 	/*
   1485      1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1486      1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1487      1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1488      1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1489      1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1490      1.27  jonathan 	 * exceed the value of tick when using long calibration
   1491      1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1492      1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1493      1.27  jonathan 	 * the values returned and used here are correct.
   1494      1.27  jonathan 	 */
   1495      1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1496      1.27  jonathan 	pps_usec -= pps_freq;
   1497      1.27  jonathan 	if (pps_usec >= bigtick)
   1498      1.27  jonathan 		pps_usec -= bigtick;
   1499      1.27  jonathan 	if (pps_usec < 0)
   1500      1.27  jonathan 		pps_usec += bigtick;
   1501      1.27  jonathan 	pps_time.tv_sec++;
   1502      1.27  jonathan 	pps_count++;
   1503      1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1504      1.27  jonathan 		return;
   1505      1.27  jonathan 	pps_count = 0;
   1506      1.27  jonathan 	pps_calcnt++;
   1507      1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1508      1.27  jonathan 	v_usec = pps_usec - u_usec;
   1509      1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1510      1.27  jonathan 		v_usec -= bigtick;
   1511      1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1512      1.27  jonathan 		v_usec += bigtick;
   1513      1.27  jonathan 	if (v_usec < 0)
   1514      1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1515      1.27  jonathan 	else
   1516      1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1517      1.27  jonathan 	pps_usec = u_usec;
   1518      1.27  jonathan 	cal_sec = tvp->tv_sec;
   1519      1.27  jonathan 	cal_usec = tvp->tv_usec;
   1520      1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1521      1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1522      1.27  jonathan 	if (cal_usec < 0) {
   1523      1.27  jonathan 		cal_usec += 1000000;
   1524      1.27  jonathan 		cal_sec--;
   1525      1.27  jonathan 	}
   1526      1.27  jonathan 	pps_time = *tvp;
   1527      1.27  jonathan 
   1528      1.27  jonathan 	/*
   1529      1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1530      1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1531      1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1532      1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1533      1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1534      1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1535      1.27  jonathan 	 */
   1536      1.27  jonathan 	u_usec = (long)tick << 1;
   1537      1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1538      1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1539      1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1540      1.27  jonathan 		pps_errcnt++;
   1541      1.27  jonathan 		pps_shift = PPS_SHIFT;
   1542      1.27  jonathan 		pps_intcnt = 0;
   1543      1.27  jonathan 		time_status |= STA_PPSERROR;
   1544      1.27  jonathan 		return;
   1545      1.27  jonathan 	}
   1546      1.27  jonathan 
   1547      1.27  jonathan 	/*
   1548      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1549      1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1550      1.27  jonathan 	 * estimate; the difference between the other two samples
   1551      1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1552      1.27  jonathan 	 */
   1553      1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1554      1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1555      1.27  jonathan 	pps_ff[0] = v_usec;
   1556      1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1557      1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1558      1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1559      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1560      1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1561      1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1562      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1563      1.27  jonathan 		} else {
   1564      1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1565      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1566      1.27  jonathan 		}
   1567      1.27  jonathan 	} else {
   1568      1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1569      1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1570      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1571      1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1572      1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1573      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1574      1.27  jonathan 		} else {
   1575      1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1576      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1577      1.27  jonathan 		}
   1578      1.27  jonathan 	}
   1579      1.27  jonathan 
   1580      1.27  jonathan 	/*
   1581      1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1582      1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1583      1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1584      1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1585      1.27  jonathan 	 */
   1586      1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1587      1.27  jonathan 	if (v_usec < 0)
   1588      1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1589      1.27  jonathan 	else
   1590      1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1591      1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1592      1.27  jonathan 		pps_stbcnt++;
   1593      1.27  jonathan 		time_status |= STA_PPSWANDER;
   1594      1.27  jonathan 		return;
   1595      1.27  jonathan 	}
   1596      1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1597      1.27  jonathan 		if (u_usec < 0) {
   1598      1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1599      1.27  jonathan 			if (pps_freq < -time_tolerance)
   1600      1.27  jonathan 				pps_freq = -time_tolerance;
   1601      1.27  jonathan 			u_usec = -u_usec;
   1602      1.27  jonathan 		} else {
   1603      1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1604      1.27  jonathan 			if (pps_freq > time_tolerance)
   1605      1.27  jonathan 				pps_freq = time_tolerance;
   1606      1.27  jonathan 		}
   1607      1.27  jonathan 	}
   1608      1.27  jonathan 
   1609      1.27  jonathan 	/*
   1610      1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1611      1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1612      1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1613      1.27  jonathan 	 * intervals, double the interval.
   1614      1.27  jonathan 	 */
   1615      1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1616      1.27  jonathan 		pps_intcnt = 0;
   1617      1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1618      1.27  jonathan 			pps_shift--;
   1619      1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1620      1.27  jonathan 		pps_intcnt = 0;
   1621      1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1622      1.27  jonathan 			pps_shift++;
   1623      1.27  jonathan 	} else
   1624      1.27  jonathan 		pps_intcnt++;
   1625      1.27  jonathan }
   1626      1.27  jonathan #endif /* PPS_SYNC */
   1627      1.27  jonathan #endif /* NTP  */
   1628      1.27  jonathan 
   1629      1.19       cgd 
   1630      1.19       cgd /*
   1631      1.19       cgd  * Return information about system clocks.
   1632      1.19       cgd  */
   1633      1.25  christos int
   1634      1.19       cgd sysctl_clockrate(where, sizep)
   1635      1.59    simonb 	void *where;
   1636      1.19       cgd 	size_t *sizep;
   1637      1.19       cgd {
   1638      1.19       cgd 	struct clockinfo clkinfo;
   1639      1.19       cgd 
   1640      1.19       cgd 	/*
   1641      1.19       cgd 	 * Construct clockinfo structure.
   1642      1.19       cgd 	 */
   1643      1.20   mycroft 	clkinfo.tick = tick;
   1644      1.20   mycroft 	clkinfo.tickadj = tickadj;
   1645      1.19       cgd 	clkinfo.hz = hz;
   1646      1.19       cgd 	clkinfo.profhz = profhz;
   1647      1.19       cgd 	clkinfo.stathz = stathz ? stathz : hz;
   1648      1.19       cgd 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1649      1.19       cgd }
   1650