kern_clock.c revision 1.62 1 1.62 thorpej /* $NetBSD: kern_clock.c,v 1.62 2000/07/13 17:06:15 thorpej Exp $ */
2 1.52 thorpej
3 1.52 thorpej /*-
4 1.52 thorpej * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.52 thorpej * All rights reserved.
6 1.52 thorpej *
7 1.52 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.52 thorpej * NASA Ames Research Center.
10 1.52 thorpej *
11 1.52 thorpej * Redistribution and use in source and binary forms, with or without
12 1.52 thorpej * modification, are permitted provided that the following conditions
13 1.52 thorpej * are met:
14 1.52 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.52 thorpej * notice, this list of conditions and the following disclaimer.
16 1.52 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.52 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.52 thorpej * documentation and/or other materials provided with the distribution.
19 1.52 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.52 thorpej * must display the following acknowledgement:
21 1.52 thorpej * This product includes software developed by the NetBSD
22 1.52 thorpej * Foundation, Inc. and its contributors.
23 1.52 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.52 thorpej * contributors may be used to endorse or promote products derived
25 1.52 thorpej * from this software without specific prior written permission.
26 1.52 thorpej *
27 1.52 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.52 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.52 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.52 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.52 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.52 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.52 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.52 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.52 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.52 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.52 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.52 thorpej */
39 1.19 cgd
40 1.19 cgd /*-
41 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
42 1.19 cgd * The Regents of the University of California. All rights reserved.
43 1.19 cgd * (c) UNIX System Laboratories, Inc.
44 1.19 cgd * All or some portions of this file are derived from material licensed
45 1.19 cgd * to the University of California by American Telephone and Telegraph
46 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.19 cgd * the permission of UNIX System Laboratories, Inc.
48 1.19 cgd *
49 1.19 cgd * Redistribution and use in source and binary forms, with or without
50 1.19 cgd * modification, are permitted provided that the following conditions
51 1.19 cgd * are met:
52 1.19 cgd * 1. Redistributions of source code must retain the above copyright
53 1.19 cgd * notice, this list of conditions and the following disclaimer.
54 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.19 cgd * notice, this list of conditions and the following disclaimer in the
56 1.19 cgd * documentation and/or other materials provided with the distribution.
57 1.19 cgd * 3. All advertising materials mentioning features or use of this software
58 1.19 cgd * must display the following acknowledgement:
59 1.19 cgd * This product includes software developed by the University of
60 1.19 cgd * California, Berkeley and its contributors.
61 1.19 cgd * 4. Neither the name of the University nor the names of its contributors
62 1.19 cgd * may be used to endorse or promote products derived from this software
63 1.19 cgd * without specific prior written permission.
64 1.19 cgd *
65 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 1.19 cgd * SUCH DAMAGE.
76 1.19 cgd *
77 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 1.19 cgd */
79 1.44 jonathan
80 1.44 jonathan #include "opt_ntp.h"
81 1.19 cgd
82 1.19 cgd #include <sys/param.h>
83 1.19 cgd #include <sys/systm.h>
84 1.19 cgd #include <sys/dkstat.h>
85 1.19 cgd #include <sys/callout.h>
86 1.19 cgd #include <sys/kernel.h>
87 1.19 cgd #include <sys/proc.h>
88 1.19 cgd #include <sys/resourcevar.h>
89 1.25 christos #include <sys/signalvar.h>
90 1.61 mrg #include <uvm/uvm_extern.h>
91 1.26 christos #include <sys/sysctl.h>
92 1.27 jonathan #include <sys/timex.h>
93 1.45 ross #include <sys/sched.h>
94 1.19 cgd
95 1.19 cgd #include <machine/cpu.h>
96 1.25 christos
97 1.19 cgd #ifdef GPROF
98 1.19 cgd #include <sys/gmon.h>
99 1.19 cgd #endif
100 1.19 cgd
101 1.19 cgd /*
102 1.19 cgd * Clock handling routines.
103 1.19 cgd *
104 1.19 cgd * This code is written to operate with two timers that run independently of
105 1.19 cgd * each other. The main clock, running hz times per second, is used to keep
106 1.19 cgd * track of real time. The second timer handles kernel and user profiling,
107 1.19 cgd * and does resource use estimation. If the second timer is programmable,
108 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example,
109 1.19 cgd * the randomization prevents an adversary from always giving up the cpu
110 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate
111 1.19 cgd * cpu ticks. The mean frequency of the second timer is stathz.
112 1.19 cgd *
113 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive
114 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate;
115 1.19 cgd * do not do it unless absolutely necessary.
116 1.19 cgd *
117 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while
118 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz
119 1.19 cgd * be an integral multiple of stathz.
120 1.19 cgd *
121 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio
122 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.)
123 1.19 cgd */
124 1.19 cgd
125 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
126 1.27 jonathan /*
127 1.27 jonathan * Phase/frequency-lock loop (PLL/FLL) definitions
128 1.27 jonathan *
129 1.27 jonathan * The following variables are read and set by the ntp_adjtime() system
130 1.27 jonathan * call.
131 1.27 jonathan *
132 1.27 jonathan * time_state shows the state of the system clock, with values defined
133 1.27 jonathan * in the timex.h header file.
134 1.27 jonathan *
135 1.27 jonathan * time_status shows the status of the system clock, with bits defined
136 1.27 jonathan * in the timex.h header file.
137 1.27 jonathan *
138 1.27 jonathan * time_offset is used by the PLL/FLL to adjust the system time in small
139 1.27 jonathan * increments.
140 1.27 jonathan *
141 1.27 jonathan * time_constant determines the bandwidth or "stiffness" of the PLL.
142 1.27 jonathan *
143 1.27 jonathan * time_tolerance determines maximum frequency error or tolerance of the
144 1.27 jonathan * CPU clock oscillator and is a property of the architecture; however,
145 1.27 jonathan * in principle it could change as result of the presence of external
146 1.27 jonathan * discipline signals, for instance.
147 1.27 jonathan *
148 1.27 jonathan * time_precision is usually equal to the kernel tick variable; however,
149 1.27 jonathan * in cases where a precision clock counter or external clock is
150 1.27 jonathan * available, the resolution can be much less than this and depend on
151 1.27 jonathan * whether the external clock is working or not.
152 1.27 jonathan *
153 1.27 jonathan * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 1.27 jonathan * the kernel once each second to reflect the maximum error bound
155 1.27 jonathan * growth.
156 1.27 jonathan *
157 1.27 jonathan * time_esterror is set and read by the ntp_adjtime() call, but
158 1.27 jonathan * otherwise not used by the kernel.
159 1.27 jonathan */
160 1.27 jonathan int time_state = TIME_OK; /* clock state */
161 1.27 jonathan int time_status = STA_UNSYNC; /* clock status bits */
162 1.27 jonathan long time_offset = 0; /* time offset (us) */
163 1.27 jonathan long time_constant = 0; /* pll time constant */
164 1.27 jonathan long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 1.27 jonathan long time_precision = 1; /* clock precision (us) */
166 1.27 jonathan long time_maxerror = MAXPHASE; /* maximum error (us) */
167 1.27 jonathan long time_esterror = MAXPHASE; /* estimated error (us) */
168 1.27 jonathan
169 1.27 jonathan /*
170 1.27 jonathan * The following variables establish the state of the PLL/FLL and the
171 1.27 jonathan * residual time and frequency offset of the local clock. The scale
172 1.27 jonathan * factors are defined in the timex.h header file.
173 1.27 jonathan *
174 1.27 jonathan * time_phase and time_freq are the phase increment and the frequency
175 1.27 jonathan * increment, respectively, of the kernel time variable.
176 1.27 jonathan *
177 1.27 jonathan * time_freq is set via ntp_adjtime() from a value stored in a file when
178 1.27 jonathan * the synchronization daemon is first started. Its value is retrieved
179 1.27 jonathan * via ntp_adjtime() and written to the file about once per hour by the
180 1.27 jonathan * daemon.
181 1.27 jonathan *
182 1.27 jonathan * time_adj is the adjustment added to the value of tick at each timer
183 1.27 jonathan * interrupt and is recomputed from time_phase and time_freq at each
184 1.27 jonathan * seconds rollover.
185 1.27 jonathan *
186 1.27 jonathan * time_reftime is the second's portion of the system time at the last
187 1.27 jonathan * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 1.27 jonathan * and to increase the time_maxerror as the time since last update
189 1.27 jonathan * increases.
190 1.27 jonathan */
191 1.27 jonathan long time_phase = 0; /* phase offset (scaled us) */
192 1.27 jonathan long time_freq = 0; /* frequency offset (scaled ppm) */
193 1.27 jonathan long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 1.27 jonathan long time_reftime = 0; /* time at last adjustment (s) */
195 1.27 jonathan
196 1.27 jonathan #ifdef PPS_SYNC
197 1.27 jonathan /*
198 1.27 jonathan * The following variables are used only if the kernel PPS discipline
199 1.27 jonathan * code is configured (PPS_SYNC). The scale factors are defined in the
200 1.27 jonathan * timex.h header file.
201 1.27 jonathan *
202 1.27 jonathan * pps_time contains the time at each calibration interval, as read by
203 1.27 jonathan * microtime(). pps_count counts the seconds of the calibration
204 1.27 jonathan * interval, the duration of which is nominally pps_shift in powers of
205 1.27 jonathan * two.
206 1.27 jonathan *
207 1.27 jonathan * pps_offset is the time offset produced by the time median filter
208 1.27 jonathan * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 1.27 jonathan * this filter.
210 1.27 jonathan *
211 1.27 jonathan * pps_freq is the frequency offset produced by the frequency median
212 1.27 jonathan * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 1.27 jonathan * by this filter.
214 1.27 jonathan *
215 1.27 jonathan * pps_usec is latched from a high resolution counter or external clock
216 1.27 jonathan * at pps_time. Here we want the hardware counter contents only, not the
217 1.27 jonathan * contents plus the time_tv.usec as usual.
218 1.27 jonathan *
219 1.27 jonathan * pps_valid counts the number of seconds since the last PPS update. It
220 1.27 jonathan * is used as a watchdog timer to disable the PPS discipline should the
221 1.27 jonathan * PPS signal be lost.
222 1.27 jonathan *
223 1.27 jonathan * pps_glitch counts the number of seconds since the beginning of an
224 1.27 jonathan * offset burst more than tick/2 from current nominal offset. It is used
225 1.27 jonathan * mainly to suppress error bursts due to priority conflicts between the
226 1.27 jonathan * PPS interrupt and timer interrupt.
227 1.27 jonathan *
228 1.27 jonathan * pps_intcnt counts the calibration intervals for use in the interval-
229 1.27 jonathan * adaptation algorithm. It's just too complicated for words.
230 1.27 jonathan */
231 1.27 jonathan struct timeval pps_time; /* kernel time at last interval */
232 1.27 jonathan long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 1.27 jonathan long pps_offset = 0; /* pps time offset (us) */
234 1.27 jonathan long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 1.27 jonathan long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 1.27 jonathan long pps_freq = 0; /* frequency offset (scaled ppm) */
237 1.27 jonathan long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 1.27 jonathan long pps_usec = 0; /* microsec counter at last interval */
239 1.27 jonathan long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 1.27 jonathan int pps_glitch = 0; /* pps signal glitch counter */
241 1.27 jonathan int pps_count = 0; /* calibration interval counter (s) */
242 1.27 jonathan int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 1.27 jonathan int pps_intcnt = 0; /* intervals at current duration */
244 1.27 jonathan
245 1.27 jonathan /*
246 1.27 jonathan * PPS signal quality monitors
247 1.27 jonathan *
248 1.27 jonathan * pps_jitcnt counts the seconds that have been discarded because the
249 1.27 jonathan * jitter measured by the time median filter exceeds the limit MAXTIME
250 1.27 jonathan * (100 us).
251 1.27 jonathan *
252 1.27 jonathan * pps_calcnt counts the frequency calibration intervals, which are
253 1.27 jonathan * variable from 4 s to 256 s.
254 1.27 jonathan *
255 1.27 jonathan * pps_errcnt counts the calibration intervals which have been discarded
256 1.27 jonathan * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 1.27 jonathan * calibration interval jitter exceeds two ticks.
258 1.27 jonathan *
259 1.27 jonathan * pps_stbcnt counts the calibration intervals that have been discarded
260 1.27 jonathan * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 1.27 jonathan */
262 1.27 jonathan long pps_jitcnt = 0; /* jitter limit exceeded */
263 1.27 jonathan long pps_calcnt = 0; /* calibration intervals */
264 1.27 jonathan long pps_errcnt = 0; /* calibration errors */
265 1.27 jonathan long pps_stbcnt = 0; /* stability limit exceeded */
266 1.27 jonathan #endif /* PPS_SYNC */
267 1.27 jonathan
268 1.27 jonathan #ifdef EXT_CLOCK
269 1.27 jonathan /*
270 1.27 jonathan * External clock definitions
271 1.27 jonathan *
272 1.27 jonathan * The following definitions and declarations are used only if an
273 1.27 jonathan * external clock is configured on the system.
274 1.27 jonathan */
275 1.27 jonathan #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276 1.27 jonathan
277 1.27 jonathan /*
278 1.27 jonathan * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 1.27 jonathan * interrupt and decremented once each second.
280 1.27 jonathan */
281 1.27 jonathan int clock_count = 0; /* CPU clock counter */
282 1.27 jonathan
283 1.27 jonathan #ifdef HIGHBALL
284 1.27 jonathan /*
285 1.27 jonathan * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 1.27 jonathan * interface. The clock_offset variable defines the offset between
287 1.27 jonathan * system time and the HIGBALL counters. The clock_cpu variable contains
288 1.27 jonathan * the offset between the system clock and the HIGHBALL clock for use in
289 1.27 jonathan * disciplining the kernel time variable.
290 1.27 jonathan */
291 1.27 jonathan extern struct timeval clock_offset; /* Highball clock offset */
292 1.27 jonathan long clock_cpu = 0; /* CPU clock adjust */
293 1.27 jonathan #endif /* HIGHBALL */
294 1.27 jonathan #endif /* EXT_CLOCK */
295 1.27 jonathan #endif /* NTP */
296 1.27 jonathan
297 1.27 jonathan
298 1.19 cgd /*
299 1.19 cgd * Bump a timeval by a small number of usec's.
300 1.19 cgd */
301 1.19 cgd #define BUMPTIME(t, usec) { \
302 1.55 augustss volatile struct timeval *tp = (t); \
303 1.55 augustss long us; \
304 1.19 cgd \
305 1.19 cgd tp->tv_usec = us = tp->tv_usec + (usec); \
306 1.19 cgd if (us >= 1000000) { \
307 1.19 cgd tp->tv_usec = us - 1000000; \
308 1.19 cgd tp->tv_sec++; \
309 1.19 cgd } \
310 1.19 cgd }
311 1.19 cgd
312 1.19 cgd int stathz;
313 1.19 cgd int profhz;
314 1.19 cgd int profprocs;
315 1.52 thorpej u_int64_t hardclock_ticks, softclock_ticks;
316 1.52 thorpej int softclock_running; /* 1 => softclock() is running */
317 1.22 cgd static int psdiv, pscnt; /* prof => stat divider */
318 1.22 cgd int psratio; /* ratio: prof / stat */
319 1.22 cgd int tickfix, tickfixinterval; /* used if tick not really integral */
320 1.34 briggs #ifndef NTP
321 1.39 cgd static int tickfixcnt; /* accumulated fractional error */
322 1.34 briggs #else
323 1.27 jonathan int fixtick; /* used by NTP for same */
324 1.31 mycroft int shifthz;
325 1.31 mycroft #endif
326 1.19 cgd
327 1.48 christos /*
328 1.48 christos * We might want ldd to load the both words from time at once.
329 1.48 christos * To succeed we need to be quadword aligned.
330 1.48 christos * The sparc already does that, and that it has worked so far is a fluke.
331 1.48 christos */
332 1.48 christos volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
333 1.19 cgd volatile struct timeval mono_time;
334 1.19 cgd
335 1.19 cgd /*
336 1.52 thorpej * The callout mechanism is based on the work of Adam M. Costello and
337 1.52 thorpej * George Varghese, published in a technical report entitled "Redesigning
338 1.52 thorpej * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
339 1.52 thorpej * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
340 1.52 thorpej *
341 1.52 thorpej * The original work on the data structures used in this implementation
342 1.52 thorpej * was published by G. Varghese and A. Lauck in the paper "Hashed and
343 1.52 thorpej * Hierarchical Timing Wheels: Data Structures for the Efficient
344 1.52 thorpej * Implementation of a Timer Facility" in the Proceedings of the 11th
345 1.52 thorpej * ACM Annual Symposium on Operating System Principles, Austin, Texas,
346 1.52 thorpej * November 1987.
347 1.52 thorpej */
348 1.52 thorpej struct callout_queue *callwheel;
349 1.52 thorpej int callwheelsize, callwheelbits, callwheelmask;
350 1.52 thorpej
351 1.52 thorpej static struct callout *nextsoftcheck; /* next callout to be checked */
352 1.52 thorpej
353 1.52 thorpej #ifdef CALLWHEEL_STATS
354 1.52 thorpej int callwheel_collisions; /* number of hash collisions */
355 1.52 thorpej int callwheel_maxlength; /* length of the longest hash chain */
356 1.52 thorpej int *callwheel_sizes; /* per-bucket length count */
357 1.52 thorpej u_int64_t callwheel_count; /* # callouts currently */
358 1.52 thorpej u_int64_t callwheel_established; /* # callouts established */
359 1.52 thorpej u_int64_t callwheel_fired; /* # callouts that fired */
360 1.52 thorpej u_int64_t callwheel_disestablished; /* # callouts disestablished */
361 1.52 thorpej u_int64_t callwheel_changed; /* # callouts changed */
362 1.52 thorpej u_int64_t callwheel_softclocks; /* # times softclock() called */
363 1.52 thorpej u_int64_t callwheel_softchecks; /* # checks per softclock() */
364 1.52 thorpej u_int64_t callwheel_softempty; /* # empty buckets seen */
365 1.52 thorpej #endif /* CALLWHEEL_STATS */
366 1.52 thorpej
367 1.52 thorpej /*
368 1.52 thorpej * This value indicates the number of consecutive callouts that
369 1.52 thorpej * will be checked before we allow interrupts to have a chance
370 1.52 thorpej * again.
371 1.52 thorpej */
372 1.52 thorpej #ifndef MAX_SOFTCLOCK_STEPS
373 1.52 thorpej #define MAX_SOFTCLOCK_STEPS 100
374 1.52 thorpej #endif
375 1.52 thorpej
376 1.52 thorpej /*
377 1.19 cgd * Initialize clock frequencies and start both clocks running.
378 1.19 cgd */
379 1.19 cgd void
380 1.19 cgd initclocks()
381 1.19 cgd {
382 1.55 augustss int i;
383 1.19 cgd
384 1.19 cgd /*
385 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific
386 1.19 cgd * code do its bit.
387 1.19 cgd */
388 1.19 cgd psdiv = pscnt = 1;
389 1.19 cgd cpu_initclocks();
390 1.19 cgd
391 1.19 cgd /*
392 1.19 cgd * Compute profhz/stathz, and fix profhz if needed.
393 1.19 cgd */
394 1.19 cgd i = stathz ? stathz : hz;
395 1.19 cgd if (profhz == 0)
396 1.19 cgd profhz = i;
397 1.19 cgd psratio = profhz / i;
398 1.31 mycroft
399 1.31 mycroft #ifdef NTP
400 1.31 mycroft switch (hz) {
401 1.57 mycroft case 1:
402 1.57 mycroft shifthz = SHIFT_SCALE - 0;
403 1.57 mycroft break;
404 1.57 mycroft case 2:
405 1.57 mycroft shifthz = SHIFT_SCALE - 1;
406 1.57 mycroft break;
407 1.57 mycroft case 4:
408 1.57 mycroft shifthz = SHIFT_SCALE - 2;
409 1.57 mycroft break;
410 1.57 mycroft case 8:
411 1.57 mycroft shifthz = SHIFT_SCALE - 3;
412 1.57 mycroft break;
413 1.57 mycroft case 16:
414 1.57 mycroft shifthz = SHIFT_SCALE - 4;
415 1.57 mycroft break;
416 1.57 mycroft case 32:
417 1.57 mycroft shifthz = SHIFT_SCALE - 5;
418 1.57 mycroft break;
419 1.31 mycroft case 60:
420 1.31 mycroft case 64:
421 1.31 mycroft shifthz = SHIFT_SCALE - 6;
422 1.31 mycroft break;
423 1.31 mycroft case 96:
424 1.31 mycroft case 100:
425 1.31 mycroft case 128:
426 1.31 mycroft shifthz = SHIFT_SCALE - 7;
427 1.31 mycroft break;
428 1.31 mycroft case 256:
429 1.31 mycroft shifthz = SHIFT_SCALE - 8;
430 1.41 tls break;
431 1.41 tls case 512:
432 1.41 tls shifthz = SHIFT_SCALE - 9;
433 1.31 mycroft break;
434 1.43 ross case 1000:
435 1.31 mycroft case 1024:
436 1.31 mycroft shifthz = SHIFT_SCALE - 10;
437 1.31 mycroft break;
438 1.57 mycroft case 1200:
439 1.57 mycroft case 2048:
440 1.57 mycroft shifthz = SHIFT_SCALE - 11;
441 1.57 mycroft break;
442 1.57 mycroft case 4096:
443 1.57 mycroft shifthz = SHIFT_SCALE - 12;
444 1.57 mycroft break;
445 1.57 mycroft case 8192:
446 1.57 mycroft shifthz = SHIFT_SCALE - 13;
447 1.57 mycroft break;
448 1.57 mycroft case 16384:
449 1.57 mycroft shifthz = SHIFT_SCALE - 14;
450 1.57 mycroft break;
451 1.57 mycroft case 32768:
452 1.57 mycroft shifthz = SHIFT_SCALE - 15;
453 1.57 mycroft break;
454 1.57 mycroft case 65536:
455 1.57 mycroft shifthz = SHIFT_SCALE - 16;
456 1.57 mycroft break;
457 1.31 mycroft default:
458 1.31 mycroft panic("weird hz");
459 1.50 sommerfe }
460 1.50 sommerfe if (fixtick == 0) {
461 1.52 thorpej /*
462 1.52 thorpej * Give MD code a chance to set this to a better
463 1.52 thorpej * value; but, if it doesn't, we should.
464 1.52 thorpej */
465 1.50 sommerfe fixtick = (1000000 - (hz*tick));
466 1.31 mycroft }
467 1.31 mycroft #endif
468 1.19 cgd }
469 1.19 cgd
470 1.19 cgd /*
471 1.19 cgd * The real-time timer, interrupting hz times per second.
472 1.19 cgd */
473 1.19 cgd void
474 1.19 cgd hardclock(frame)
475 1.55 augustss struct clockframe *frame;
476 1.19 cgd {
477 1.55 augustss struct proc *p;
478 1.55 augustss int delta;
479 1.19 cgd extern int tickdelta;
480 1.19 cgd extern long timedelta;
481 1.30 mycroft #ifdef NTP
482 1.55 augustss int time_update;
483 1.55 augustss int ltemp;
484 1.29 christos #endif
485 1.19 cgd
486 1.19 cgd p = curproc;
487 1.19 cgd if (p) {
488 1.55 augustss struct pstats *pstats;
489 1.19 cgd
490 1.19 cgd /*
491 1.19 cgd * Run current process's virtual and profile time, as needed.
492 1.19 cgd */
493 1.19 cgd pstats = p->p_stats;
494 1.19 cgd if (CLKF_USERMODE(frame) &&
495 1.19 cgd timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
496 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
497 1.19 cgd psignal(p, SIGVTALRM);
498 1.19 cgd if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
499 1.19 cgd itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
500 1.19 cgd psignal(p, SIGPROF);
501 1.19 cgd }
502 1.19 cgd
503 1.19 cgd /*
504 1.19 cgd * If no separate statistics clock is available, run it from here.
505 1.19 cgd */
506 1.19 cgd if (stathz == 0)
507 1.19 cgd statclock(frame);
508 1.19 cgd
509 1.60 thorpej #if defined(MULTIPROCESSOR)
510 1.60 thorpej /*
511 1.60 thorpej * If we are not the primary CPU, we're not allowed to do
512 1.60 thorpej * any more work.
513 1.60 thorpej */
514 1.60 thorpej if (CPU_IS_PRIMARY(curcpu()) == 0)
515 1.60 thorpej return;
516 1.60 thorpej #endif
517 1.60 thorpej
518 1.19 cgd /*
519 1.22 cgd * Increment the time-of-day. The increment is normally just
520 1.22 cgd * ``tick''. If the machine is one which has a clock frequency
521 1.22 cgd * such that ``hz'' would not divide the second evenly into
522 1.22 cgd * milliseconds, a periodic adjustment must be applied. Finally,
523 1.22 cgd * if we are still adjusting the time (see adjtime()),
524 1.22 cgd * ``tickdelta'' may also be added in.
525 1.19 cgd */
526 1.52 thorpej hardclock_ticks++;
527 1.22 cgd delta = tick;
528 1.27 jonathan
529 1.27 jonathan #ifndef NTP
530 1.22 cgd if (tickfix) {
531 1.39 cgd tickfixcnt += tickfix;
532 1.24 cgd if (tickfixcnt >= tickfixinterval) {
533 1.39 cgd delta++;
534 1.39 cgd tickfixcnt -= tickfixinterval;
535 1.22 cgd }
536 1.22 cgd }
537 1.27 jonathan #endif /* !NTP */
538 1.27 jonathan /* Imprecise 4bsd adjtime() handling */
539 1.22 cgd if (timedelta != 0) {
540 1.38 cgd delta += tickdelta;
541 1.19 cgd timedelta -= tickdelta;
542 1.19 cgd }
543 1.27 jonathan
544 1.27 jonathan #ifdef notyet
545 1.27 jonathan microset();
546 1.27 jonathan #endif
547 1.27 jonathan
548 1.27 jonathan #ifndef NTP
549 1.27 jonathan BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
550 1.27 jonathan #endif
551 1.19 cgd BUMPTIME(&mono_time, delta);
552 1.27 jonathan
553 1.31 mycroft #ifdef NTP
554 1.30 mycroft time_update = delta;
555 1.27 jonathan
556 1.27 jonathan /*
557 1.27 jonathan * Compute the phase adjustment. If the low-order bits
558 1.27 jonathan * (time_phase) of the update overflow, bump the high-order bits
559 1.27 jonathan * (time_update).
560 1.27 jonathan */
561 1.27 jonathan time_phase += time_adj;
562 1.27 jonathan if (time_phase <= -FINEUSEC) {
563 1.27 jonathan ltemp = -time_phase >> SHIFT_SCALE;
564 1.27 jonathan time_phase += ltemp << SHIFT_SCALE;
565 1.27 jonathan time_update -= ltemp;
566 1.31 mycroft } else if (time_phase >= FINEUSEC) {
567 1.27 jonathan ltemp = time_phase >> SHIFT_SCALE;
568 1.27 jonathan time_phase -= ltemp << SHIFT_SCALE;
569 1.27 jonathan time_update += ltemp;
570 1.27 jonathan }
571 1.27 jonathan
572 1.27 jonathan #ifdef HIGHBALL
573 1.27 jonathan /*
574 1.27 jonathan * If the HIGHBALL board is installed, we need to adjust the
575 1.27 jonathan * external clock offset in order to close the hardware feedback
576 1.27 jonathan * loop. This will adjust the external clock phase and frequency
577 1.27 jonathan * in small amounts. The additional phase noise and frequency
578 1.27 jonathan * wander this causes should be minimal. We also need to
579 1.27 jonathan * discipline the kernel time variable, since the PLL is used to
580 1.27 jonathan * discipline the external clock. If the Highball board is not
581 1.27 jonathan * present, we discipline kernel time with the PLL as usual. We
582 1.27 jonathan * assume that the external clock phase adjustment (time_update)
583 1.27 jonathan * and kernel phase adjustment (clock_cpu) are less than the
584 1.27 jonathan * value of tick.
585 1.27 jonathan */
586 1.27 jonathan clock_offset.tv_usec += time_update;
587 1.27 jonathan if (clock_offset.tv_usec >= 1000000) {
588 1.27 jonathan clock_offset.tv_sec++;
589 1.27 jonathan clock_offset.tv_usec -= 1000000;
590 1.27 jonathan }
591 1.27 jonathan if (clock_offset.tv_usec < 0) {
592 1.27 jonathan clock_offset.tv_sec--;
593 1.27 jonathan clock_offset.tv_usec += 1000000;
594 1.27 jonathan }
595 1.27 jonathan time.tv_usec += clock_cpu;
596 1.27 jonathan clock_cpu = 0;
597 1.27 jonathan #else
598 1.27 jonathan time.tv_usec += time_update;
599 1.27 jonathan #endif /* HIGHBALL */
600 1.27 jonathan
601 1.27 jonathan /*
602 1.27 jonathan * On rollover of the second the phase adjustment to be used for
603 1.27 jonathan * the next second is calculated. Also, the maximum error is
604 1.27 jonathan * increased by the tolerance. If the PPS frequency discipline
605 1.27 jonathan * code is present, the phase is increased to compensate for the
606 1.27 jonathan * CPU clock oscillator frequency error.
607 1.27 jonathan *
608 1.27 jonathan * On a 32-bit machine and given parameters in the timex.h
609 1.27 jonathan * header file, the maximum phase adjustment is +-512 ms and
610 1.27 jonathan * maximum frequency offset is a tad less than) +-512 ppm. On a
611 1.27 jonathan * 64-bit machine, you shouldn't need to ask.
612 1.27 jonathan */
613 1.27 jonathan if (time.tv_usec >= 1000000) {
614 1.27 jonathan time.tv_usec -= 1000000;
615 1.27 jonathan time.tv_sec++;
616 1.27 jonathan time_maxerror += time_tolerance >> SHIFT_USEC;
617 1.27 jonathan
618 1.27 jonathan /*
619 1.27 jonathan * Leap second processing. If in leap-insert state at
620 1.27 jonathan * the end of the day, the system clock is set back one
621 1.27 jonathan * second; if in leap-delete state, the system clock is
622 1.27 jonathan * set ahead one second. The microtime() routine or
623 1.27 jonathan * external clock driver will insure that reported time
624 1.27 jonathan * is always monotonic. The ugly divides should be
625 1.27 jonathan * replaced.
626 1.27 jonathan */
627 1.27 jonathan switch (time_state) {
628 1.31 mycroft case TIME_OK:
629 1.27 jonathan if (time_status & STA_INS)
630 1.27 jonathan time_state = TIME_INS;
631 1.27 jonathan else if (time_status & STA_DEL)
632 1.27 jonathan time_state = TIME_DEL;
633 1.27 jonathan break;
634 1.27 jonathan
635 1.31 mycroft case TIME_INS:
636 1.27 jonathan if (time.tv_sec % 86400 == 0) {
637 1.27 jonathan time.tv_sec--;
638 1.27 jonathan time_state = TIME_OOP;
639 1.27 jonathan }
640 1.27 jonathan break;
641 1.27 jonathan
642 1.31 mycroft case TIME_DEL:
643 1.27 jonathan if ((time.tv_sec + 1) % 86400 == 0) {
644 1.27 jonathan time.tv_sec++;
645 1.27 jonathan time_state = TIME_WAIT;
646 1.27 jonathan }
647 1.27 jonathan break;
648 1.27 jonathan
649 1.31 mycroft case TIME_OOP:
650 1.27 jonathan time_state = TIME_WAIT;
651 1.27 jonathan break;
652 1.27 jonathan
653 1.31 mycroft case TIME_WAIT:
654 1.27 jonathan if (!(time_status & (STA_INS | STA_DEL)))
655 1.27 jonathan time_state = TIME_OK;
656 1.31 mycroft break;
657 1.27 jonathan }
658 1.27 jonathan
659 1.27 jonathan /*
660 1.27 jonathan * Compute the phase adjustment for the next second. In
661 1.27 jonathan * PLL mode, the offset is reduced by a fixed factor
662 1.27 jonathan * times the time constant. In FLL mode the offset is
663 1.27 jonathan * used directly. In either mode, the maximum phase
664 1.27 jonathan * adjustment for each second is clamped so as to spread
665 1.27 jonathan * the adjustment over not more than the number of
666 1.27 jonathan * seconds between updates.
667 1.27 jonathan */
668 1.27 jonathan if (time_offset < 0) {
669 1.27 jonathan ltemp = -time_offset;
670 1.27 jonathan if (!(time_status & STA_FLL))
671 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
672 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
673 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
674 1.27 jonathan SHIFT_UPDATE;
675 1.27 jonathan time_offset += ltemp;
676 1.31 mycroft time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
677 1.31 mycroft } else if (time_offset > 0) {
678 1.27 jonathan ltemp = time_offset;
679 1.27 jonathan if (!(time_status & STA_FLL))
680 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
681 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
682 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
683 1.27 jonathan SHIFT_UPDATE;
684 1.27 jonathan time_offset -= ltemp;
685 1.31 mycroft time_adj = ltemp << (shifthz - SHIFT_UPDATE);
686 1.31 mycroft } else
687 1.31 mycroft time_adj = 0;
688 1.27 jonathan
689 1.27 jonathan /*
690 1.27 jonathan * Compute the frequency estimate and additional phase
691 1.27 jonathan * adjustment due to frequency error for the next
692 1.27 jonathan * second. When the PPS signal is engaged, gnaw on the
693 1.27 jonathan * watchdog counter and update the frequency computed by
694 1.27 jonathan * the pll and the PPS signal.
695 1.27 jonathan */
696 1.27 jonathan #ifdef PPS_SYNC
697 1.27 jonathan pps_valid++;
698 1.27 jonathan if (pps_valid == PPS_VALID) {
699 1.27 jonathan pps_jitter = MAXTIME;
700 1.27 jonathan pps_stabil = MAXFREQ;
701 1.27 jonathan time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
702 1.27 jonathan STA_PPSWANDER | STA_PPSERROR);
703 1.27 jonathan }
704 1.27 jonathan ltemp = time_freq + pps_freq;
705 1.27 jonathan #else
706 1.27 jonathan ltemp = time_freq;
707 1.27 jonathan #endif /* PPS_SYNC */
708 1.27 jonathan
709 1.27 jonathan if (ltemp < 0)
710 1.31 mycroft time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
711 1.27 jonathan else
712 1.31 mycroft time_adj += ltemp >> (SHIFT_USEC - shifthz);
713 1.31 mycroft time_adj += (long)fixtick << shifthz;
714 1.27 jonathan
715 1.27 jonathan /*
716 1.27 jonathan * When the CPU clock oscillator frequency is not a
717 1.31 mycroft * power of 2 in Hz, shifthz is only an approximate
718 1.31 mycroft * scale factor.
719 1.46 mycroft *
720 1.46 mycroft * To determine the adjustment, you can do the following:
721 1.46 mycroft * bc -q
722 1.46 mycroft * scale=24
723 1.46 mycroft * obase=2
724 1.46 mycroft * idealhz/realhz
725 1.46 mycroft * where `idealhz' is the next higher power of 2, and `realhz'
726 1.57 mycroft * is the actual value. You may need to factor this result
727 1.57 mycroft * into a sequence of 2 multipliers to get better precision.
728 1.46 mycroft *
729 1.46 mycroft * Likewise, the error can be calculated with (e.g. for 100Hz):
730 1.46 mycroft * bc -q
731 1.46 mycroft * scale=24
732 1.57 mycroft * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
733 1.57 mycroft * (and then multiply by 1000000 to get ppm).
734 1.27 jonathan */
735 1.31 mycroft switch (hz) {
736 1.58 mycroft case 60:
737 1.58 mycroft /* A factor of 1.000100010001 gives about 15ppm
738 1.58 mycroft error. */
739 1.58 mycroft if (time_adj < 0) {
740 1.58 mycroft time_adj -= (-time_adj >> 4);
741 1.58 mycroft time_adj -= (-time_adj >> 8);
742 1.58 mycroft } else {
743 1.58 mycroft time_adj += (time_adj >> 4);
744 1.58 mycroft time_adj += (time_adj >> 8);
745 1.58 mycroft }
746 1.58 mycroft break;
747 1.58 mycroft
748 1.31 mycroft case 96:
749 1.56 mycroft /* A factor of 1.0101010101 gives about 244ppm error. */
750 1.46 mycroft if (time_adj < 0) {
751 1.46 mycroft time_adj -= (-time_adj >> 2);
752 1.46 mycroft time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
753 1.46 mycroft } else {
754 1.46 mycroft time_adj += (time_adj >> 2);
755 1.46 mycroft time_adj += (time_adj >> 4) + (time_adj >> 8);
756 1.46 mycroft }
757 1.46 mycroft break;
758 1.46 mycroft
759 1.31 mycroft case 100:
760 1.56 mycroft /* A factor of 1.010001111010111 gives about 1ppm
761 1.56 mycroft error. */
762 1.56 mycroft if (time_adj < 0) {
763 1.46 mycroft time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
764 1.56 mycroft time_adj += (-time_adj >> 10);
765 1.56 mycroft } else {
766 1.46 mycroft time_adj += (time_adj >> 2) + (time_adj >> 5);
767 1.56 mycroft time_adj -= (time_adj >> 10);
768 1.56 mycroft }
769 1.43 ross break;
770 1.46 mycroft
771 1.43 ross case 1000:
772 1.56 mycroft /* A factor of 1.000001100010100001 gives about 50ppm
773 1.56 mycroft error. */
774 1.56 mycroft if (time_adj < 0) {
775 1.56 mycroft time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
776 1.56 mycroft time_adj -= (-time_adj >> 7);
777 1.56 mycroft } else {
778 1.56 mycroft time_adj += (time_adj >> 6) + (time_adj >> 11);
779 1.56 mycroft time_adj += (time_adj >> 7);
780 1.56 mycroft }
781 1.56 mycroft break;
782 1.56 mycroft
783 1.56 mycroft case 1200:
784 1.56 mycroft /* A factor of 1.1011010011100001 gives about 64ppm
785 1.56 mycroft error. */
786 1.56 mycroft if (time_adj < 0) {
787 1.56 mycroft time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
788 1.56 mycroft time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
789 1.56 mycroft } else {
790 1.56 mycroft time_adj += (time_adj >> 1) + (time_adj >> 6);
791 1.56 mycroft time_adj += (time_adj >> 3) + (time_adj >> 10);
792 1.56 mycroft }
793 1.31 mycroft break;
794 1.27 jonathan }
795 1.27 jonathan
796 1.27 jonathan #ifdef EXT_CLOCK
797 1.27 jonathan /*
798 1.27 jonathan * If an external clock is present, it is necessary to
799 1.27 jonathan * discipline the kernel time variable anyway, since not
800 1.27 jonathan * all system components use the microtime() interface.
801 1.27 jonathan * Here, the time offset between the external clock and
802 1.27 jonathan * kernel time variable is computed every so often.
803 1.27 jonathan */
804 1.27 jonathan clock_count++;
805 1.27 jonathan if (clock_count > CLOCK_INTERVAL) {
806 1.27 jonathan clock_count = 0;
807 1.27 jonathan microtime(&clock_ext);
808 1.27 jonathan delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
809 1.27 jonathan delta.tv_usec = clock_ext.tv_usec -
810 1.27 jonathan time.tv_usec;
811 1.27 jonathan if (delta.tv_usec < 0)
812 1.27 jonathan delta.tv_sec--;
813 1.27 jonathan if (delta.tv_usec >= 500000) {
814 1.27 jonathan delta.tv_usec -= 1000000;
815 1.27 jonathan delta.tv_sec++;
816 1.27 jonathan }
817 1.27 jonathan if (delta.tv_usec < -500000) {
818 1.27 jonathan delta.tv_usec += 1000000;
819 1.27 jonathan delta.tv_sec--;
820 1.27 jonathan }
821 1.27 jonathan if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
822 1.27 jonathan delta.tv_usec > MAXPHASE) ||
823 1.27 jonathan delta.tv_sec < -1 || (delta.tv_sec == -1 &&
824 1.27 jonathan delta.tv_usec < -MAXPHASE)) {
825 1.27 jonathan time = clock_ext;
826 1.27 jonathan delta.tv_sec = 0;
827 1.27 jonathan delta.tv_usec = 0;
828 1.27 jonathan }
829 1.27 jonathan #ifdef HIGHBALL
830 1.27 jonathan clock_cpu = delta.tv_usec;
831 1.27 jonathan #else /* HIGHBALL */
832 1.27 jonathan hardupdate(delta.tv_usec);
833 1.27 jonathan #endif /* HIGHBALL */
834 1.27 jonathan }
835 1.27 jonathan #endif /* EXT_CLOCK */
836 1.27 jonathan }
837 1.27 jonathan
838 1.31 mycroft #endif /* NTP */
839 1.19 cgd
840 1.19 cgd /*
841 1.19 cgd * Process callouts at a very low cpu priority, so we don't keep the
842 1.19 cgd * relatively high clock interrupt priority any longer than necessary.
843 1.19 cgd */
844 1.52 thorpej if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
845 1.19 cgd if (CLKF_BASEPRI(frame)) {
846 1.19 cgd /*
847 1.19 cgd * Save the overhead of a software interrupt;
848 1.52 thorpej * it will happen as soon as we return, so do
849 1.52 thorpej * it now.
850 1.52 thorpej *
851 1.52 thorpej * NOTE: If we're at ``base priority'', softclock()
852 1.52 thorpej * was not already running.
853 1.19 cgd */
854 1.49 thorpej (void)spllowersoftclock();
855 1.19 cgd softclock();
856 1.19 cgd } else
857 1.19 cgd setsoftclock();
858 1.52 thorpej } else if (softclock_running == 0 &&
859 1.52 thorpej (softclock_ticks + 1) == hardclock_ticks)
860 1.52 thorpej softclock_ticks++;
861 1.19 cgd }
862 1.19 cgd
863 1.19 cgd /*
864 1.19 cgd * Software (low priority) clock interrupt.
865 1.19 cgd * Run periodic events from timeout queue.
866 1.19 cgd */
867 1.19 cgd /*ARGSUSED*/
868 1.19 cgd void
869 1.19 cgd softclock()
870 1.19 cgd {
871 1.52 thorpej struct callout_queue *bucket;
872 1.52 thorpej struct callout *c;
873 1.52 thorpej void (*func) __P((void *));
874 1.52 thorpej void *arg;
875 1.52 thorpej int s, idx;
876 1.52 thorpej int steps = 0;
877 1.19 cgd
878 1.19 cgd s = splhigh();
879 1.52 thorpej softclock_running = 1;
880 1.52 thorpej
881 1.52 thorpej #ifdef CALLWHEEL_STATS
882 1.52 thorpej callwheel_softclocks++;
883 1.52 thorpej #endif
884 1.52 thorpej
885 1.52 thorpej while (softclock_ticks != hardclock_ticks) {
886 1.52 thorpej softclock_ticks++;
887 1.52 thorpej idx = (int)(softclock_ticks & callwheelmask);
888 1.52 thorpej bucket = &callwheel[idx];
889 1.52 thorpej c = TAILQ_FIRST(bucket);
890 1.52 thorpej #ifdef CALLWHEEL_STATS
891 1.52 thorpej if (c == NULL)
892 1.52 thorpej callwheel_softempty++;
893 1.52 thorpej #endif
894 1.52 thorpej while (c != NULL) {
895 1.52 thorpej #ifdef CALLWHEEL_STATS
896 1.52 thorpej callwheel_softchecks++;
897 1.52 thorpej #endif
898 1.52 thorpej if (c->c_time != softclock_ticks) {
899 1.52 thorpej c = TAILQ_NEXT(c, c_link);
900 1.52 thorpej if (++steps >= MAX_SOFTCLOCK_STEPS) {
901 1.52 thorpej nextsoftcheck = c;
902 1.52 thorpej /* Give interrupts a chance. */
903 1.52 thorpej splx(s);
904 1.52 thorpej (void) splhigh();
905 1.52 thorpej c = nextsoftcheck;
906 1.52 thorpej steps = 0;
907 1.52 thorpej }
908 1.52 thorpej } else {
909 1.52 thorpej nextsoftcheck = TAILQ_NEXT(c, c_link);
910 1.52 thorpej TAILQ_REMOVE(bucket, c, c_link);
911 1.52 thorpej #ifdef CALLWHEEL_STATS
912 1.52 thorpej callwheel_sizes[idx]--;
913 1.52 thorpej callwheel_fired++;
914 1.52 thorpej callwheel_count--;
915 1.52 thorpej #endif
916 1.52 thorpej func = c->c_func;
917 1.52 thorpej arg = c->c_arg;
918 1.52 thorpej c->c_func = NULL;
919 1.52 thorpej c->c_flags &= ~CALLOUT_PENDING;
920 1.52 thorpej splx(s);
921 1.52 thorpej (*func)(arg);
922 1.52 thorpej (void) splhigh();
923 1.52 thorpej steps = 0;
924 1.52 thorpej c = nextsoftcheck;
925 1.52 thorpej }
926 1.52 thorpej }
927 1.19 cgd }
928 1.52 thorpej nextsoftcheck = NULL;
929 1.52 thorpej softclock_running = 0;
930 1.19 cgd splx(s);
931 1.51 thorpej }
932 1.51 thorpej
933 1.51 thorpej /*
934 1.54 enami * callout_setsize:
935 1.52 thorpej *
936 1.54 enami * Determine how many callwheels are necessary and
937 1.54 enami * set hash mask. Called from allocsys().
938 1.51 thorpej */
939 1.51 thorpej void
940 1.54 enami callout_setsize()
941 1.51 thorpej {
942 1.52 thorpej
943 1.52 thorpej for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
944 1.52 thorpej /* loop */ ;
945 1.52 thorpej callwheelmask = callwheelsize - 1;
946 1.52 thorpej }
947 1.52 thorpej
948 1.52 thorpej /*
949 1.54 enami * callout_startup:
950 1.52 thorpej *
951 1.52 thorpej * Initialize the callwheel buckets.
952 1.52 thorpej */
953 1.52 thorpej void
954 1.54 enami callout_startup()
955 1.52 thorpej {
956 1.51 thorpej int i;
957 1.51 thorpej
958 1.52 thorpej for (i = 0; i < callwheelsize; i++)
959 1.52 thorpej TAILQ_INIT(&callwheel[i]);
960 1.19 cgd }
961 1.19 cgd
962 1.19 cgd /*
963 1.52 thorpej * callout_init:
964 1.19 cgd *
965 1.52 thorpej * Initialize a callout structure so that it can be used
966 1.52 thorpej * by callout_reset() and callout_stop().
967 1.52 thorpej */
968 1.52 thorpej void
969 1.52 thorpej callout_init(c)
970 1.52 thorpej struct callout *c;
971 1.52 thorpej {
972 1.52 thorpej
973 1.52 thorpej memset(c, 0, sizeof(*c));
974 1.52 thorpej }
975 1.52 thorpej
976 1.52 thorpej /*
977 1.52 thorpej * callout_reset:
978 1.19 cgd *
979 1.52 thorpej * Establish or change a timeout.
980 1.19 cgd */
981 1.19 cgd void
982 1.52 thorpej callout_reset(c, ticks, func, arg)
983 1.52 thorpej struct callout *c;
984 1.52 thorpej int ticks;
985 1.52 thorpej void (*func) __P((void *));
986 1.19 cgd void *arg;
987 1.19 cgd {
988 1.52 thorpej struct callout_queue *bucket;
989 1.52 thorpej int s;
990 1.19 cgd
991 1.19 cgd if (ticks <= 0)
992 1.19 cgd ticks = 1;
993 1.19 cgd
994 1.19 cgd /* Lock out the clock. */
995 1.19 cgd s = splhigh();
996 1.19 cgd
997 1.52 thorpej /*
998 1.52 thorpej * If this callout's timer is already running, cancel it
999 1.52 thorpej * before we modify it.
1000 1.52 thorpej */
1001 1.52 thorpej if (c->c_flags & CALLOUT_PENDING) {
1002 1.52 thorpej callout_stop(c);
1003 1.52 thorpej #ifdef CALLWHEEL_STATS
1004 1.52 thorpej callwheel_changed++;
1005 1.52 thorpej #endif
1006 1.52 thorpej }
1007 1.52 thorpej
1008 1.52 thorpej c->c_arg = arg;
1009 1.52 thorpej c->c_func = func;
1010 1.52 thorpej c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1011 1.52 thorpej c->c_time = hardclock_ticks + ticks;
1012 1.52 thorpej
1013 1.52 thorpej bucket = &callwheel[c->c_time & callwheelmask];
1014 1.52 thorpej
1015 1.52 thorpej #ifdef CALLWHEEL_STATS
1016 1.52 thorpej if (TAILQ_FIRST(bucket) != NULL)
1017 1.52 thorpej callwheel_collisions++;
1018 1.52 thorpej #endif
1019 1.52 thorpej
1020 1.52 thorpej TAILQ_INSERT_TAIL(bucket, c, c_link);
1021 1.52 thorpej
1022 1.52 thorpej #ifdef CALLWHEEL_STATS
1023 1.52 thorpej callwheel_count++;
1024 1.52 thorpej callwheel_established++;
1025 1.52 thorpej if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1026 1.52 thorpej callwheel_maxlength =
1027 1.52 thorpej callwheel_sizes[c->c_time & callwheelmask];
1028 1.52 thorpej #endif
1029 1.52 thorpej
1030 1.19 cgd splx(s);
1031 1.19 cgd }
1032 1.19 cgd
1033 1.52 thorpej /*
1034 1.52 thorpej * callout_stop:
1035 1.52 thorpej *
1036 1.52 thorpej * Disestablish a timeout.
1037 1.52 thorpej */
1038 1.19 cgd void
1039 1.52 thorpej callout_stop(c)
1040 1.52 thorpej struct callout *c;
1041 1.19 cgd {
1042 1.52 thorpej int s;
1043 1.19 cgd
1044 1.52 thorpej /* Lock out the clock. */
1045 1.19 cgd s = splhigh();
1046 1.52 thorpej
1047 1.52 thorpej /*
1048 1.52 thorpej * Don't attempt to delete a callout that's not on the queue.
1049 1.52 thorpej */
1050 1.52 thorpej if ((c->c_flags & CALLOUT_PENDING) == 0) {
1051 1.52 thorpej c->c_flags &= ~CALLOUT_ACTIVE;
1052 1.52 thorpej splx(s);
1053 1.52 thorpej return;
1054 1.52 thorpej }
1055 1.52 thorpej
1056 1.52 thorpej c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1057 1.52 thorpej
1058 1.52 thorpej if (nextsoftcheck == c)
1059 1.52 thorpej nextsoftcheck = TAILQ_NEXT(c, c_link);
1060 1.52 thorpej
1061 1.52 thorpej TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1062 1.52 thorpej #ifdef CALLWHEEL_STATS
1063 1.52 thorpej callwheel_count--;
1064 1.52 thorpej callwheel_disestablished++;
1065 1.52 thorpej callwheel_sizes[c->c_time & callwheelmask]--;
1066 1.52 thorpej #endif
1067 1.52 thorpej
1068 1.52 thorpej c->c_func = NULL;
1069 1.52 thorpej
1070 1.52 thorpej splx(s);
1071 1.52 thorpej }
1072 1.52 thorpej
1073 1.52 thorpej #ifdef CALLWHEEL_STATS
1074 1.52 thorpej /*
1075 1.52 thorpej * callout_showstats:
1076 1.52 thorpej *
1077 1.52 thorpej * Display callout statistics. Call it from DDB.
1078 1.52 thorpej */
1079 1.52 thorpej void
1080 1.52 thorpej callout_showstats()
1081 1.52 thorpej {
1082 1.52 thorpej u_int64_t curticks;
1083 1.52 thorpej int s;
1084 1.52 thorpej
1085 1.52 thorpej s = splclock();
1086 1.52 thorpej curticks = softclock_ticks;
1087 1.19 cgd splx(s);
1088 1.52 thorpej
1089 1.52 thorpej printf("Callwheel statistics:\n");
1090 1.52 thorpej printf("\tCallouts currently queued: %llu\n", callwheel_count);
1091 1.52 thorpej printf("\tCallouts established: %llu\n", callwheel_established);
1092 1.52 thorpej printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1093 1.52 thorpej if (callwheel_changed != 0)
1094 1.52 thorpej printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1095 1.52 thorpej printf("\tCallouts that fired: %llu\n", callwheel_fired);
1096 1.52 thorpej printf("\tNumber of buckets: %d\n", callwheelsize);
1097 1.52 thorpej printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1098 1.52 thorpej printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1099 1.52 thorpej printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1100 1.52 thorpej callwheel_softclocks, callwheel_softchecks);
1101 1.52 thorpej printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1102 1.19 cgd }
1103 1.52 thorpej #endif
1104 1.19 cgd
1105 1.19 cgd /*
1106 1.52 thorpej * Compute number of hz until specified time. Used to compute second
1107 1.52 thorpej * argument to callout_reset() from an absolute time.
1108 1.19 cgd */
1109 1.19 cgd int
1110 1.19 cgd hzto(tv)
1111 1.19 cgd struct timeval *tv;
1112 1.19 cgd {
1113 1.62 thorpej unsigned long ticks;
1114 1.62 thorpej long sec, usec;
1115 1.19 cgd int s;
1116 1.19 cgd
1117 1.19 cgd /*
1118 1.62 thorpej * If the number of usecs in the whole seconds part of the time
1119 1.62 thorpej * difference fits in a long, then the total number of usecs will
1120 1.62 thorpej * fit in an unsigned long. Compute the total and convert it to
1121 1.62 thorpej * ticks, rounding up and adding 1 to allow for the current tick
1122 1.62 thorpej * to expire. Rounding also depends on unsigned long arithmetic
1123 1.62 thorpej * to avoid overflow.
1124 1.19 cgd *
1125 1.62 thorpej * Otherwise, if the number of ticks in the whole seconds part of
1126 1.62 thorpej * the time difference fits in a long, then convert the parts to
1127 1.62 thorpej * ticks separately and add, using similar rounding methods and
1128 1.62 thorpej * overflow avoidance. This method would work in the previous
1129 1.62 thorpej * case, but it is slightly slower and assume that hz is integral.
1130 1.62 thorpej *
1131 1.62 thorpej * Otherwise, round the time difference down to the maximum
1132 1.62 thorpej * representable value.
1133 1.62 thorpej *
1134 1.62 thorpej * If ints are 32-bit, then the maximum value for any timeout in
1135 1.62 thorpej * 10ms ticks is 248 days.
1136 1.19 cgd */
1137 1.40 mycroft s = splclock();
1138 1.19 cgd sec = tv->tv_sec - time.tv_sec;
1139 1.62 thorpej usec = tv->tv_usec - time.tv_usec;
1140 1.62 thorpej splx(s);
1141 1.62 thorpej
1142 1.62 thorpej if (usec < 0) {
1143 1.62 thorpej sec--;
1144 1.62 thorpej usec += 1000000;
1145 1.62 thorpej }
1146 1.62 thorpej
1147 1.62 thorpej if (sec < 0 || (sec == 0 && usec <= 0)) {
1148 1.62 thorpej /*
1149 1.62 thorpej * Would expire now or in the past. Return 0 ticks.
1150 1.62 thorpej * This is different from the legacy hzto() interface,
1151 1.62 thorpej * and callers need to check for it.
1152 1.62 thorpej */
1153 1.62 thorpej ticks = 0;
1154 1.62 thorpej } else if (sec <= (LONG_MAX / 1000000))
1155 1.62 thorpej ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1156 1.62 thorpej / tick) + 1;
1157 1.62 thorpej else if (sec <= (LONG_MAX / hz))
1158 1.62 thorpej ticks = (sec * hz) +
1159 1.62 thorpej (((unsigned long)usec + (tick - 1)) / tick) + 1;
1160 1.19 cgd else
1161 1.62 thorpej ticks = LONG_MAX;
1162 1.62 thorpej
1163 1.62 thorpej if (ticks > INT_MAX)
1164 1.62 thorpej ticks = INT_MAX;
1165 1.62 thorpej
1166 1.62 thorpej return ((int)ticks);
1167 1.19 cgd }
1168 1.19 cgd
1169 1.19 cgd /*
1170 1.19 cgd * Start profiling on a process.
1171 1.19 cgd *
1172 1.19 cgd * Kernel profiling passes proc0 which never exits and hence
1173 1.19 cgd * keeps the profile clock running constantly.
1174 1.19 cgd */
1175 1.19 cgd void
1176 1.19 cgd startprofclock(p)
1177 1.55 augustss struct proc *p;
1178 1.19 cgd {
1179 1.19 cgd int s;
1180 1.19 cgd
1181 1.19 cgd if ((p->p_flag & P_PROFIL) == 0) {
1182 1.19 cgd p->p_flag |= P_PROFIL;
1183 1.19 cgd if (++profprocs == 1 && stathz != 0) {
1184 1.19 cgd s = splstatclock();
1185 1.19 cgd psdiv = pscnt = psratio;
1186 1.19 cgd setstatclockrate(profhz);
1187 1.19 cgd splx(s);
1188 1.19 cgd }
1189 1.19 cgd }
1190 1.19 cgd }
1191 1.19 cgd
1192 1.19 cgd /*
1193 1.19 cgd * Stop profiling on a process.
1194 1.19 cgd */
1195 1.19 cgd void
1196 1.19 cgd stopprofclock(p)
1197 1.55 augustss struct proc *p;
1198 1.19 cgd {
1199 1.19 cgd int s;
1200 1.19 cgd
1201 1.19 cgd if (p->p_flag & P_PROFIL) {
1202 1.19 cgd p->p_flag &= ~P_PROFIL;
1203 1.19 cgd if (--profprocs == 0 && stathz != 0) {
1204 1.19 cgd s = splstatclock();
1205 1.19 cgd psdiv = pscnt = 1;
1206 1.19 cgd setstatclockrate(stathz);
1207 1.19 cgd splx(s);
1208 1.19 cgd }
1209 1.19 cgd }
1210 1.19 cgd }
1211 1.19 cgd
1212 1.19 cgd /*
1213 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0,
1214 1.19 cgd * do process and kernel statistics.
1215 1.19 cgd */
1216 1.19 cgd void
1217 1.19 cgd statclock(frame)
1218 1.55 augustss struct clockframe *frame;
1219 1.19 cgd {
1220 1.19 cgd #ifdef GPROF
1221 1.55 augustss struct gmonparam *g;
1222 1.55 augustss int i;
1223 1.19 cgd #endif
1224 1.60 thorpej struct cpu_info *ci = curcpu();
1225 1.60 thorpej struct schedstate_percpu *spc = &ci->ci_schedstate;
1226 1.55 augustss struct proc *p;
1227 1.19 cgd
1228 1.19 cgd if (CLKF_USERMODE(frame)) {
1229 1.19 cgd p = curproc;
1230 1.19 cgd if (p->p_flag & P_PROFIL)
1231 1.19 cgd addupc_intr(p, CLKF_PC(frame), 1);
1232 1.19 cgd if (--pscnt > 0)
1233 1.19 cgd return;
1234 1.19 cgd /*
1235 1.19 cgd * Came from user mode; CPU was in user state.
1236 1.19 cgd * If this process is being profiled record the tick.
1237 1.19 cgd */
1238 1.19 cgd p->p_uticks++;
1239 1.19 cgd if (p->p_nice > NZERO)
1240 1.60 thorpej spc->spc_cp_time[CP_NICE]++;
1241 1.19 cgd else
1242 1.60 thorpej spc->spc_cp_time[CP_USER]++;
1243 1.19 cgd } else {
1244 1.19 cgd #ifdef GPROF
1245 1.19 cgd /*
1246 1.19 cgd * Kernel statistics are just like addupc_intr, only easier.
1247 1.19 cgd */
1248 1.19 cgd g = &_gmonparam;
1249 1.19 cgd if (g->state == GMON_PROF_ON) {
1250 1.19 cgd i = CLKF_PC(frame) - g->lowpc;
1251 1.19 cgd if (i < g->textsize) {
1252 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount);
1253 1.19 cgd g->kcount[i]++;
1254 1.19 cgd }
1255 1.19 cgd }
1256 1.19 cgd #endif
1257 1.19 cgd if (--pscnt > 0)
1258 1.19 cgd return;
1259 1.19 cgd /*
1260 1.19 cgd * Came from kernel mode, so we were:
1261 1.19 cgd * - handling an interrupt,
1262 1.19 cgd * - doing syscall or trap work on behalf of the current
1263 1.19 cgd * user process, or
1264 1.19 cgd * - spinning in the idle loop.
1265 1.19 cgd * Whichever it is, charge the time as appropriate.
1266 1.19 cgd * Note that we charge interrupts to the current process,
1267 1.19 cgd * regardless of whether they are ``for'' that process,
1268 1.19 cgd * so that we know how much of its real time was spent
1269 1.19 cgd * in ``non-process'' (i.e., interrupt) work.
1270 1.19 cgd */
1271 1.19 cgd p = curproc;
1272 1.19 cgd if (CLKF_INTR(frame)) {
1273 1.19 cgd if (p != NULL)
1274 1.19 cgd p->p_iticks++;
1275 1.60 thorpej spc->spc_cp_time[CP_INTR]++;
1276 1.19 cgd } else if (p != NULL) {
1277 1.19 cgd p->p_sticks++;
1278 1.60 thorpej spc->spc_cp_time[CP_SYS]++;
1279 1.19 cgd } else
1280 1.60 thorpej spc->spc_cp_time[CP_IDLE]++;
1281 1.19 cgd }
1282 1.19 cgd pscnt = psdiv;
1283 1.19 cgd
1284 1.19 cgd if (p != NULL) {
1285 1.45 ross ++p->p_cpticks;
1286 1.45 ross /*
1287 1.60 thorpej * If no separate schedclock is provided, call it here
1288 1.60 thorpej * at ~~12-25 Hz, ~~16 Hz is best
1289 1.45 ross */
1290 1.60 thorpej if (schedhz == 0)
1291 1.60 thorpej if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1292 1.47 ross schedclock(p);
1293 1.19 cgd }
1294 1.19 cgd }
1295 1.27 jonathan
1296 1.27 jonathan
1297 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
1298 1.27 jonathan
1299 1.27 jonathan /*
1300 1.27 jonathan * hardupdate() - local clock update
1301 1.27 jonathan *
1302 1.27 jonathan * This routine is called by ntp_adjtime() to update the local clock
1303 1.27 jonathan * phase and frequency. The implementation is of an adaptive-parameter,
1304 1.27 jonathan * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1305 1.27 jonathan * time and frequency offset estimates for each call. If the kernel PPS
1306 1.27 jonathan * discipline code is configured (PPS_SYNC), the PPS signal itself
1307 1.27 jonathan * determines the new time offset, instead of the calling argument.
1308 1.27 jonathan * Presumably, calls to ntp_adjtime() occur only when the caller
1309 1.27 jonathan * believes the local clock is valid within some bound (+-128 ms with
1310 1.27 jonathan * NTP). If the caller's time is far different than the PPS time, an
1311 1.27 jonathan * argument will ensue, and it's not clear who will lose.
1312 1.27 jonathan *
1313 1.27 jonathan * For uncompensated quartz crystal oscillatores and nominal update
1314 1.27 jonathan * intervals less than 1024 s, operation should be in phase-lock mode
1315 1.27 jonathan * (STA_FLL = 0), where the loop is disciplined to phase. For update
1316 1.27 jonathan * intervals greater than thiss, operation should be in frequency-lock
1317 1.27 jonathan * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1318 1.27 jonathan *
1319 1.27 jonathan * Note: splclock() is in effect.
1320 1.27 jonathan */
1321 1.27 jonathan void
1322 1.27 jonathan hardupdate(offset)
1323 1.27 jonathan long offset;
1324 1.27 jonathan {
1325 1.27 jonathan long ltemp, mtemp;
1326 1.27 jonathan
1327 1.27 jonathan if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1328 1.27 jonathan return;
1329 1.27 jonathan ltemp = offset;
1330 1.27 jonathan #ifdef PPS_SYNC
1331 1.27 jonathan if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1332 1.27 jonathan ltemp = pps_offset;
1333 1.27 jonathan #endif /* PPS_SYNC */
1334 1.27 jonathan
1335 1.27 jonathan /*
1336 1.27 jonathan * Scale the phase adjustment and clamp to the operating range.
1337 1.27 jonathan */
1338 1.27 jonathan if (ltemp > MAXPHASE)
1339 1.27 jonathan time_offset = MAXPHASE << SHIFT_UPDATE;
1340 1.27 jonathan else if (ltemp < -MAXPHASE)
1341 1.27 jonathan time_offset = -(MAXPHASE << SHIFT_UPDATE);
1342 1.27 jonathan else
1343 1.27 jonathan time_offset = ltemp << SHIFT_UPDATE;
1344 1.27 jonathan
1345 1.27 jonathan /*
1346 1.27 jonathan * Select whether the frequency is to be controlled and in which
1347 1.27 jonathan * mode (PLL or FLL). Clamp to the operating range. Ugly
1348 1.27 jonathan * multiply/divide should be replaced someday.
1349 1.27 jonathan */
1350 1.27 jonathan if (time_status & STA_FREQHOLD || time_reftime == 0)
1351 1.27 jonathan time_reftime = time.tv_sec;
1352 1.27 jonathan mtemp = time.tv_sec - time_reftime;
1353 1.27 jonathan time_reftime = time.tv_sec;
1354 1.27 jonathan if (time_status & STA_FLL) {
1355 1.27 jonathan if (mtemp >= MINSEC) {
1356 1.27 jonathan ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1357 1.27 jonathan SHIFT_UPDATE));
1358 1.27 jonathan if (ltemp < 0)
1359 1.27 jonathan time_freq -= -ltemp >> SHIFT_KH;
1360 1.27 jonathan else
1361 1.27 jonathan time_freq += ltemp >> SHIFT_KH;
1362 1.27 jonathan }
1363 1.27 jonathan } else {
1364 1.27 jonathan if (mtemp < MAXSEC) {
1365 1.27 jonathan ltemp *= mtemp;
1366 1.27 jonathan if (ltemp < 0)
1367 1.27 jonathan time_freq -= -ltemp >> (time_constant +
1368 1.27 jonathan time_constant + SHIFT_KF -
1369 1.27 jonathan SHIFT_USEC);
1370 1.27 jonathan else
1371 1.27 jonathan time_freq += ltemp >> (time_constant +
1372 1.27 jonathan time_constant + SHIFT_KF -
1373 1.27 jonathan SHIFT_USEC);
1374 1.27 jonathan }
1375 1.27 jonathan }
1376 1.27 jonathan if (time_freq > time_tolerance)
1377 1.27 jonathan time_freq = time_tolerance;
1378 1.27 jonathan else if (time_freq < -time_tolerance)
1379 1.27 jonathan time_freq = -time_tolerance;
1380 1.27 jonathan }
1381 1.27 jonathan
1382 1.27 jonathan #ifdef PPS_SYNC
1383 1.27 jonathan /*
1384 1.27 jonathan * hardpps() - discipline CPU clock oscillator to external PPS signal
1385 1.27 jonathan *
1386 1.27 jonathan * This routine is called at each PPS interrupt in order to discipline
1387 1.27 jonathan * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1388 1.27 jonathan * and leaves it in a handy spot for the hardclock() routine. It
1389 1.27 jonathan * integrates successive PPS phase differences and calculates the
1390 1.27 jonathan * frequency offset. This is used in hardclock() to discipline the CPU
1391 1.27 jonathan * clock oscillator so that intrinsic frequency error is cancelled out.
1392 1.27 jonathan * The code requires the caller to capture the time and hardware counter
1393 1.27 jonathan * value at the on-time PPS signal transition.
1394 1.27 jonathan *
1395 1.27 jonathan * Note that, on some Unix systems, this routine runs at an interrupt
1396 1.27 jonathan * priority level higher than the timer interrupt routine hardclock().
1397 1.27 jonathan * Therefore, the variables used are distinct from the hardclock()
1398 1.27 jonathan * variables, except for certain exceptions: The PPS frequency pps_freq
1399 1.27 jonathan * and phase pps_offset variables are determined by this routine and
1400 1.27 jonathan * updated atomically. The time_tolerance variable can be considered a
1401 1.27 jonathan * constant, since it is infrequently changed, and then only when the
1402 1.27 jonathan * PPS signal is disabled. The watchdog counter pps_valid is updated
1403 1.27 jonathan * once per second by hardclock() and is atomically cleared in this
1404 1.27 jonathan * routine.
1405 1.27 jonathan */
1406 1.27 jonathan void
1407 1.27 jonathan hardpps(tvp, usec)
1408 1.27 jonathan struct timeval *tvp; /* time at PPS */
1409 1.27 jonathan long usec; /* hardware counter at PPS */
1410 1.27 jonathan {
1411 1.27 jonathan long u_usec, v_usec, bigtick;
1412 1.27 jonathan long cal_sec, cal_usec;
1413 1.27 jonathan
1414 1.27 jonathan /*
1415 1.27 jonathan * An occasional glitch can be produced when the PPS interrupt
1416 1.27 jonathan * occurs in the hardclock() routine before the time variable is
1417 1.27 jonathan * updated. Here the offset is discarded when the difference
1418 1.27 jonathan * between it and the last one is greater than tick/2, but not
1419 1.27 jonathan * if the interval since the first discard exceeds 30 s.
1420 1.27 jonathan */
1421 1.27 jonathan time_status |= STA_PPSSIGNAL;
1422 1.27 jonathan time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1423 1.27 jonathan pps_valid = 0;
1424 1.27 jonathan u_usec = -tvp->tv_usec;
1425 1.27 jonathan if (u_usec < -500000)
1426 1.27 jonathan u_usec += 1000000;
1427 1.27 jonathan v_usec = pps_offset - u_usec;
1428 1.27 jonathan if (v_usec < 0)
1429 1.27 jonathan v_usec = -v_usec;
1430 1.27 jonathan if (v_usec > (tick >> 1)) {
1431 1.27 jonathan if (pps_glitch > MAXGLITCH) {
1432 1.27 jonathan pps_glitch = 0;
1433 1.27 jonathan pps_tf[2] = u_usec;
1434 1.27 jonathan pps_tf[1] = u_usec;
1435 1.27 jonathan } else {
1436 1.27 jonathan pps_glitch++;
1437 1.27 jonathan u_usec = pps_offset;
1438 1.27 jonathan }
1439 1.27 jonathan } else
1440 1.27 jonathan pps_glitch = 0;
1441 1.27 jonathan
1442 1.27 jonathan /*
1443 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1444 1.27 jonathan * time. The median sample becomes the time offset estimate; the
1445 1.27 jonathan * difference between the other two samples becomes the time
1446 1.27 jonathan * dispersion (jitter) estimate.
1447 1.27 jonathan */
1448 1.27 jonathan pps_tf[2] = pps_tf[1];
1449 1.27 jonathan pps_tf[1] = pps_tf[0];
1450 1.27 jonathan pps_tf[0] = u_usec;
1451 1.27 jonathan if (pps_tf[0] > pps_tf[1]) {
1452 1.27 jonathan if (pps_tf[1] > pps_tf[2]) {
1453 1.27 jonathan pps_offset = pps_tf[1]; /* 0 1 2 */
1454 1.27 jonathan v_usec = pps_tf[0] - pps_tf[2];
1455 1.27 jonathan } else if (pps_tf[2] > pps_tf[0]) {
1456 1.27 jonathan pps_offset = pps_tf[0]; /* 2 0 1 */
1457 1.27 jonathan v_usec = pps_tf[2] - pps_tf[1];
1458 1.27 jonathan } else {
1459 1.27 jonathan pps_offset = pps_tf[2]; /* 0 2 1 */
1460 1.27 jonathan v_usec = pps_tf[0] - pps_tf[1];
1461 1.27 jonathan }
1462 1.27 jonathan } else {
1463 1.27 jonathan if (pps_tf[1] < pps_tf[2]) {
1464 1.27 jonathan pps_offset = pps_tf[1]; /* 2 1 0 */
1465 1.27 jonathan v_usec = pps_tf[2] - pps_tf[0];
1466 1.27 jonathan } else if (pps_tf[2] < pps_tf[0]) {
1467 1.27 jonathan pps_offset = pps_tf[0]; /* 1 0 2 */
1468 1.27 jonathan v_usec = pps_tf[1] - pps_tf[2];
1469 1.27 jonathan } else {
1470 1.27 jonathan pps_offset = pps_tf[2]; /* 1 2 0 */
1471 1.27 jonathan v_usec = pps_tf[1] - pps_tf[0];
1472 1.27 jonathan }
1473 1.27 jonathan }
1474 1.27 jonathan if (v_usec > MAXTIME)
1475 1.27 jonathan pps_jitcnt++;
1476 1.27 jonathan v_usec = (v_usec << PPS_AVG) - pps_jitter;
1477 1.27 jonathan if (v_usec < 0)
1478 1.27 jonathan pps_jitter -= -v_usec >> PPS_AVG;
1479 1.27 jonathan else
1480 1.27 jonathan pps_jitter += v_usec >> PPS_AVG;
1481 1.27 jonathan if (pps_jitter > (MAXTIME >> 1))
1482 1.27 jonathan time_status |= STA_PPSJITTER;
1483 1.27 jonathan
1484 1.27 jonathan /*
1485 1.27 jonathan * During the calibration interval adjust the starting time when
1486 1.27 jonathan * the tick overflows. At the end of the interval compute the
1487 1.27 jonathan * duration of the interval and the difference of the hardware
1488 1.27 jonathan * counters at the beginning and end of the interval. This code
1489 1.27 jonathan * is deliciously complicated by the fact valid differences may
1490 1.27 jonathan * exceed the value of tick when using long calibration
1491 1.27 jonathan * intervals and small ticks. Note that the counter can be
1492 1.27 jonathan * greater than tick if caught at just the wrong instant, but
1493 1.27 jonathan * the values returned and used here are correct.
1494 1.27 jonathan */
1495 1.27 jonathan bigtick = (long)tick << SHIFT_USEC;
1496 1.27 jonathan pps_usec -= pps_freq;
1497 1.27 jonathan if (pps_usec >= bigtick)
1498 1.27 jonathan pps_usec -= bigtick;
1499 1.27 jonathan if (pps_usec < 0)
1500 1.27 jonathan pps_usec += bigtick;
1501 1.27 jonathan pps_time.tv_sec++;
1502 1.27 jonathan pps_count++;
1503 1.27 jonathan if (pps_count < (1 << pps_shift))
1504 1.27 jonathan return;
1505 1.27 jonathan pps_count = 0;
1506 1.27 jonathan pps_calcnt++;
1507 1.27 jonathan u_usec = usec << SHIFT_USEC;
1508 1.27 jonathan v_usec = pps_usec - u_usec;
1509 1.27 jonathan if (v_usec >= bigtick >> 1)
1510 1.27 jonathan v_usec -= bigtick;
1511 1.27 jonathan if (v_usec < -(bigtick >> 1))
1512 1.27 jonathan v_usec += bigtick;
1513 1.27 jonathan if (v_usec < 0)
1514 1.27 jonathan v_usec = -(-v_usec >> pps_shift);
1515 1.27 jonathan else
1516 1.27 jonathan v_usec = v_usec >> pps_shift;
1517 1.27 jonathan pps_usec = u_usec;
1518 1.27 jonathan cal_sec = tvp->tv_sec;
1519 1.27 jonathan cal_usec = tvp->tv_usec;
1520 1.27 jonathan cal_sec -= pps_time.tv_sec;
1521 1.27 jonathan cal_usec -= pps_time.tv_usec;
1522 1.27 jonathan if (cal_usec < 0) {
1523 1.27 jonathan cal_usec += 1000000;
1524 1.27 jonathan cal_sec--;
1525 1.27 jonathan }
1526 1.27 jonathan pps_time = *tvp;
1527 1.27 jonathan
1528 1.27 jonathan /*
1529 1.27 jonathan * Check for lost interrupts, noise, excessive jitter and
1530 1.27 jonathan * excessive frequency error. The number of timer ticks during
1531 1.27 jonathan * the interval may vary +-1 tick. Add to this a margin of one
1532 1.27 jonathan * tick for the PPS signal jitter and maximum frequency
1533 1.27 jonathan * deviation. If the limits are exceeded, the calibration
1534 1.27 jonathan * interval is reset to the minimum and we start over.
1535 1.27 jonathan */
1536 1.27 jonathan u_usec = (long)tick << 1;
1537 1.27 jonathan if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1538 1.27 jonathan || (cal_sec == 0 && cal_usec < u_usec))
1539 1.27 jonathan || v_usec > time_tolerance || v_usec < -time_tolerance) {
1540 1.27 jonathan pps_errcnt++;
1541 1.27 jonathan pps_shift = PPS_SHIFT;
1542 1.27 jonathan pps_intcnt = 0;
1543 1.27 jonathan time_status |= STA_PPSERROR;
1544 1.27 jonathan return;
1545 1.27 jonathan }
1546 1.27 jonathan
1547 1.27 jonathan /*
1548 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1549 1.27 jonathan * frequency. The median sample becomes the frequency offset
1550 1.27 jonathan * estimate; the difference between the other two samples
1551 1.27 jonathan * becomes the frequency dispersion (stability) estimate.
1552 1.27 jonathan */
1553 1.27 jonathan pps_ff[2] = pps_ff[1];
1554 1.27 jonathan pps_ff[1] = pps_ff[0];
1555 1.27 jonathan pps_ff[0] = v_usec;
1556 1.27 jonathan if (pps_ff[0] > pps_ff[1]) {
1557 1.27 jonathan if (pps_ff[1] > pps_ff[2]) {
1558 1.27 jonathan u_usec = pps_ff[1]; /* 0 1 2 */
1559 1.27 jonathan v_usec = pps_ff[0] - pps_ff[2];
1560 1.27 jonathan } else if (pps_ff[2] > pps_ff[0]) {
1561 1.27 jonathan u_usec = pps_ff[0]; /* 2 0 1 */
1562 1.27 jonathan v_usec = pps_ff[2] - pps_ff[1];
1563 1.27 jonathan } else {
1564 1.27 jonathan u_usec = pps_ff[2]; /* 0 2 1 */
1565 1.27 jonathan v_usec = pps_ff[0] - pps_ff[1];
1566 1.27 jonathan }
1567 1.27 jonathan } else {
1568 1.27 jonathan if (pps_ff[1] < pps_ff[2]) {
1569 1.27 jonathan u_usec = pps_ff[1]; /* 2 1 0 */
1570 1.27 jonathan v_usec = pps_ff[2] - pps_ff[0];
1571 1.27 jonathan } else if (pps_ff[2] < pps_ff[0]) {
1572 1.27 jonathan u_usec = pps_ff[0]; /* 1 0 2 */
1573 1.27 jonathan v_usec = pps_ff[1] - pps_ff[2];
1574 1.27 jonathan } else {
1575 1.27 jonathan u_usec = pps_ff[2]; /* 1 2 0 */
1576 1.27 jonathan v_usec = pps_ff[1] - pps_ff[0];
1577 1.27 jonathan }
1578 1.27 jonathan }
1579 1.27 jonathan
1580 1.27 jonathan /*
1581 1.27 jonathan * Here the frequency dispersion (stability) is updated. If it
1582 1.27 jonathan * is less than one-fourth the maximum (MAXFREQ), the frequency
1583 1.27 jonathan * offset is updated as well, but clamped to the tolerance. It
1584 1.27 jonathan * will be processed later by the hardclock() routine.
1585 1.27 jonathan */
1586 1.27 jonathan v_usec = (v_usec >> 1) - pps_stabil;
1587 1.27 jonathan if (v_usec < 0)
1588 1.27 jonathan pps_stabil -= -v_usec >> PPS_AVG;
1589 1.27 jonathan else
1590 1.27 jonathan pps_stabil += v_usec >> PPS_AVG;
1591 1.27 jonathan if (pps_stabil > MAXFREQ >> 2) {
1592 1.27 jonathan pps_stbcnt++;
1593 1.27 jonathan time_status |= STA_PPSWANDER;
1594 1.27 jonathan return;
1595 1.27 jonathan }
1596 1.27 jonathan if (time_status & STA_PPSFREQ) {
1597 1.27 jonathan if (u_usec < 0) {
1598 1.27 jonathan pps_freq -= -u_usec >> PPS_AVG;
1599 1.27 jonathan if (pps_freq < -time_tolerance)
1600 1.27 jonathan pps_freq = -time_tolerance;
1601 1.27 jonathan u_usec = -u_usec;
1602 1.27 jonathan } else {
1603 1.27 jonathan pps_freq += u_usec >> PPS_AVG;
1604 1.27 jonathan if (pps_freq > time_tolerance)
1605 1.27 jonathan pps_freq = time_tolerance;
1606 1.27 jonathan }
1607 1.27 jonathan }
1608 1.27 jonathan
1609 1.27 jonathan /*
1610 1.27 jonathan * Here the calibration interval is adjusted. If the maximum
1611 1.27 jonathan * time difference is greater than tick / 4, reduce the interval
1612 1.27 jonathan * by half. If this is not the case for four consecutive
1613 1.27 jonathan * intervals, double the interval.
1614 1.27 jonathan */
1615 1.27 jonathan if (u_usec << pps_shift > bigtick >> 2) {
1616 1.27 jonathan pps_intcnt = 0;
1617 1.27 jonathan if (pps_shift > PPS_SHIFT)
1618 1.27 jonathan pps_shift--;
1619 1.27 jonathan } else if (pps_intcnt >= 4) {
1620 1.27 jonathan pps_intcnt = 0;
1621 1.27 jonathan if (pps_shift < PPS_SHIFTMAX)
1622 1.27 jonathan pps_shift++;
1623 1.27 jonathan } else
1624 1.27 jonathan pps_intcnt++;
1625 1.27 jonathan }
1626 1.27 jonathan #endif /* PPS_SYNC */
1627 1.27 jonathan #endif /* NTP */
1628 1.27 jonathan
1629 1.19 cgd
1630 1.19 cgd /*
1631 1.19 cgd * Return information about system clocks.
1632 1.19 cgd */
1633 1.25 christos int
1634 1.19 cgd sysctl_clockrate(where, sizep)
1635 1.59 simonb void *where;
1636 1.19 cgd size_t *sizep;
1637 1.19 cgd {
1638 1.19 cgd struct clockinfo clkinfo;
1639 1.19 cgd
1640 1.19 cgd /*
1641 1.19 cgd * Construct clockinfo structure.
1642 1.19 cgd */
1643 1.20 mycroft clkinfo.tick = tick;
1644 1.20 mycroft clkinfo.tickadj = tickadj;
1645 1.19 cgd clkinfo.hz = hz;
1646 1.19 cgd clkinfo.profhz = profhz;
1647 1.19 cgd clkinfo.stathz = stathz ? stathz : hz;
1648 1.19 cgd return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1649 1.19 cgd }
1650