Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.74.2.11
      1  1.74.2.11   nathanw /*	$NetBSD: kern_clock.c,v 1.74.2.11 2002/11/11 22:13:35 nathanw Exp $	*/
      2       1.52   thorpej 
      3       1.52   thorpej /*-
      4       1.52   thorpej  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5       1.52   thorpej  * All rights reserved.
      6       1.52   thorpej  *
      7       1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.52   thorpej  * NASA Ames Research Center.
     10       1.52   thorpej  *
     11       1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     12       1.52   thorpej  * modification, are permitted provided that the following conditions
     13       1.52   thorpej  * are met:
     14       1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     15       1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     16       1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18       1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     19       1.52   thorpej  * 3. All advertising materials mentioning features or use of this software
     20       1.52   thorpej  *    must display the following acknowledgement:
     21       1.52   thorpej  *	This product includes software developed by the NetBSD
     22       1.52   thorpej  *	Foundation, Inc. and its contributors.
     23       1.52   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24       1.52   thorpej  *    contributors may be used to endorse or promote products derived
     25       1.52   thorpej  *    from this software without specific prior written permission.
     26       1.52   thorpej  *
     27       1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28       1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29       1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30       1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31       1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32       1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33       1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34       1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35       1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36       1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37       1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38       1.52   thorpej  */
     39       1.19       cgd 
     40       1.19       cgd /*-
     41       1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     42       1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     43       1.19       cgd  * (c) UNIX System Laboratories, Inc.
     44       1.19       cgd  * All or some portions of this file are derived from material licensed
     45       1.19       cgd  * to the University of California by American Telephone and Telegraph
     46       1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47       1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     48       1.19       cgd  *
     49       1.19       cgd  * Redistribution and use in source and binary forms, with or without
     50       1.19       cgd  * modification, are permitted provided that the following conditions
     51       1.19       cgd  * are met:
     52       1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     53       1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     54       1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     55       1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     56       1.19       cgd  *    documentation and/or other materials provided with the distribution.
     57       1.19       cgd  * 3. All advertising materials mentioning features or use of this software
     58       1.19       cgd  *    must display the following acknowledgement:
     59       1.19       cgd  *	This product includes software developed by the University of
     60       1.19       cgd  *	California, Berkeley and its contributors.
     61       1.19       cgd  * 4. Neither the name of the University nor the names of its contributors
     62       1.19       cgd  *    may be used to endorse or promote products derived from this software
     63       1.19       cgd  *    without specific prior written permission.
     64       1.19       cgd  *
     65       1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     66       1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     67       1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     68       1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     69       1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     70       1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     71       1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     72       1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     73       1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     74       1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     75       1.19       cgd  * SUCH DAMAGE.
     76       1.19       cgd  *
     77       1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     78       1.19       cgd  */
     79   1.74.2.4   nathanw 
     80   1.74.2.4   nathanw #include <sys/cdefs.h>
     81  1.74.2.11   nathanw __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.74.2.11 2002/11/11 22:13:35 nathanw Exp $");
     82       1.44  jonathan 
     83   1.74.2.3   nathanw #include "opt_callout.h"
     84       1.44  jonathan #include "opt_ntp.h"
     85   1.74.2.9   nathanw #include "opt_perfctrs.h"
     86       1.19       cgd 
     87       1.19       cgd #include <sys/param.h>
     88       1.19       cgd #include <sys/systm.h>
     89       1.19       cgd #include <sys/dkstat.h>
     90       1.19       cgd #include <sys/callout.h>
     91       1.19       cgd #include <sys/kernel.h>
     92       1.19       cgd #include <sys/proc.h>
     93       1.19       cgd #include <sys/resourcevar.h>
     94       1.25  christos #include <sys/signalvar.h>
     95       1.26  christos #include <sys/sysctl.h>
     96       1.27  jonathan #include <sys/timex.h>
     97       1.45      ross #include <sys/sched.h>
     98   1.74.2.5   nathanw #include <sys/time.h>
     99   1.74.2.3   nathanw #ifdef CALLWHEEL_STATS
    100   1.74.2.3   nathanw #include <sys/device.h>
    101   1.74.2.3   nathanw #endif
    102       1.19       cgd 
    103       1.19       cgd #include <machine/cpu.h>
    104       1.74   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    105       1.74   thorpej #include <machine/intr.h>
    106       1.74   thorpej #endif
    107       1.25  christos 
    108       1.19       cgd #ifdef GPROF
    109       1.19       cgd #include <sys/gmon.h>
    110       1.19       cgd #endif
    111       1.19       cgd 
    112       1.19       cgd /*
    113       1.19       cgd  * Clock handling routines.
    114       1.19       cgd  *
    115       1.19       cgd  * This code is written to operate with two timers that run independently of
    116       1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    117       1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    118       1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    119       1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    120       1.19       cgd  * the randomization prevents an adversary from always giving up the cpu
    121       1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    122       1.19       cgd  * cpu ticks.  The mean frequency of the second timer is stathz.
    123       1.19       cgd  *
    124       1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    125       1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    126       1.19       cgd  * do not do it unless absolutely necessary.
    127       1.19       cgd  *
    128       1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    129       1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    130       1.19       cgd  * be an integral multiple of stathz.
    131       1.19       cgd  *
    132       1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    133       1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    134       1.19       cgd  */
    135       1.19       cgd 
    136       1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    137       1.27  jonathan /*
    138       1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    139       1.27  jonathan  *
    140       1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    141       1.27  jonathan  * call.
    142       1.27  jonathan  *
    143       1.27  jonathan  * time_state shows the state of the system clock, with values defined
    144       1.27  jonathan  * in the timex.h header file.
    145       1.27  jonathan  *
    146       1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    147       1.27  jonathan  * in the timex.h header file.
    148       1.27  jonathan  *
    149       1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    150       1.27  jonathan  * increments.
    151       1.27  jonathan  *
    152       1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    153       1.27  jonathan  *
    154       1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    155       1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    156       1.27  jonathan  * in principle it could change as result of the presence of external
    157       1.27  jonathan  * discipline signals, for instance.
    158       1.27  jonathan  *
    159       1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    160       1.27  jonathan  * in cases where a precision clock counter or external clock is
    161       1.27  jonathan  * available, the resolution can be much less than this and depend on
    162       1.27  jonathan  * whether the external clock is working or not.
    163       1.27  jonathan  *
    164       1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    165       1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    166       1.27  jonathan  * growth.
    167       1.27  jonathan  *
    168       1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    169       1.27  jonathan  * otherwise not used by the kernel.
    170       1.27  jonathan  */
    171       1.27  jonathan int time_state = TIME_OK;	/* clock state */
    172       1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    173       1.27  jonathan long time_offset = 0;		/* time offset (us) */
    174       1.27  jonathan long time_constant = 0;		/* pll time constant */
    175       1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    176       1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    177       1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    178       1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    179       1.27  jonathan 
    180       1.27  jonathan /*
    181       1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    182       1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    183       1.27  jonathan  * factors are defined in the timex.h header file.
    184       1.27  jonathan  *
    185       1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    186       1.27  jonathan  * increment, respectively, of the kernel time variable.
    187       1.27  jonathan  *
    188       1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    189       1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    190       1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    191       1.27  jonathan  * daemon.
    192       1.27  jonathan  *
    193       1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    194       1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    195       1.27  jonathan  * seconds rollover.
    196       1.27  jonathan  *
    197       1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    198       1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    199       1.27  jonathan  * and to increase the time_maxerror as the time since last update
    200       1.27  jonathan  * increases.
    201       1.27  jonathan  */
    202       1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    203       1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    204       1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    205       1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    206       1.27  jonathan 
    207       1.27  jonathan #ifdef PPS_SYNC
    208       1.27  jonathan /*
    209       1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    210       1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    211       1.27  jonathan  * timex.h header file.
    212       1.27  jonathan  *
    213       1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    214       1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    215       1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    216       1.27  jonathan  * two.
    217       1.27  jonathan  *
    218       1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    219       1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    220       1.27  jonathan  * this filter.
    221       1.27  jonathan  *
    222       1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    223       1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    224       1.27  jonathan  * by this filter.
    225       1.27  jonathan  *
    226       1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    227       1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    228       1.27  jonathan  * contents plus the time_tv.usec as usual.
    229       1.27  jonathan  *
    230       1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    231       1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    232       1.27  jonathan  * PPS signal be lost.
    233       1.27  jonathan  *
    234       1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    235       1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    236       1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    237       1.27  jonathan  * PPS interrupt and timer interrupt.
    238       1.27  jonathan  *
    239       1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    240       1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    241       1.27  jonathan  */
    242       1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    243       1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    244       1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    245       1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    246       1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    247       1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    248       1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    249       1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    250       1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    251       1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    252       1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    253       1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    254       1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    255       1.27  jonathan 
    256       1.27  jonathan /*
    257       1.27  jonathan  * PPS signal quality monitors
    258       1.27  jonathan  *
    259       1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    260       1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    261       1.27  jonathan  * (100 us).
    262       1.27  jonathan  *
    263       1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    264       1.27  jonathan  * variable from 4 s to 256 s.
    265       1.27  jonathan  *
    266       1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    267       1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    268       1.27  jonathan  * calibration interval jitter exceeds two ticks.
    269       1.27  jonathan  *
    270       1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    271       1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    272       1.27  jonathan  */
    273       1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    274       1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    275       1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    276       1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    277       1.27  jonathan #endif /* PPS_SYNC */
    278       1.27  jonathan 
    279       1.27  jonathan #ifdef EXT_CLOCK
    280       1.27  jonathan /*
    281       1.27  jonathan  * External clock definitions
    282       1.27  jonathan  *
    283       1.27  jonathan  * The following definitions and declarations are used only if an
    284       1.27  jonathan  * external clock is configured on the system.
    285       1.27  jonathan  */
    286       1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    287       1.27  jonathan 
    288       1.27  jonathan /*
    289       1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    290       1.27  jonathan  * interrupt and decremented once each second.
    291       1.27  jonathan  */
    292       1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    293       1.27  jonathan 
    294       1.27  jonathan #ifdef HIGHBALL
    295       1.27  jonathan /*
    296       1.27  jonathan  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    297       1.27  jonathan  * interface. The clock_offset variable defines the offset between
    298       1.27  jonathan  * system time and the HIGBALL counters. The clock_cpu variable contains
    299       1.27  jonathan  * the offset between the system clock and the HIGHBALL clock for use in
    300       1.27  jonathan  * disciplining the kernel time variable.
    301       1.27  jonathan  */
    302       1.27  jonathan extern struct timeval clock_offset; /* Highball clock offset */
    303       1.27  jonathan long clock_cpu = 0;		/* CPU clock adjust */
    304       1.27  jonathan #endif /* HIGHBALL */
    305       1.27  jonathan #endif /* EXT_CLOCK */
    306       1.27  jonathan #endif /* NTP */
    307       1.27  jonathan 
    308       1.27  jonathan 
    309       1.19       cgd /*
    310       1.19       cgd  * Bump a timeval by a small number of usec's.
    311       1.19       cgd  */
    312       1.19       cgd #define BUMPTIME(t, usec) { \
    313       1.55  augustss 	volatile struct timeval *tp = (t); \
    314       1.55  augustss 	long us; \
    315       1.19       cgd  \
    316       1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    317       1.19       cgd 	if (us >= 1000000) { \
    318       1.19       cgd 		tp->tv_usec = us - 1000000; \
    319       1.19       cgd 		tp->tv_sec++; \
    320       1.19       cgd 	} \
    321       1.19       cgd }
    322       1.19       cgd 
    323       1.19       cgd int	stathz;
    324       1.19       cgd int	profhz;
    325   1.74.2.9   nathanw int	profsrc;
    326   1.74.2.2   nathanw int	schedhz;
    327       1.19       cgd int	profprocs;
    328       1.52   thorpej int	softclock_running;		/* 1 => softclock() is running */
    329       1.70  sommerfe static int psdiv;			/* prof => stat divider */
    330       1.22       cgd int	psratio;			/* ratio: prof / stat */
    331       1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    332       1.34    briggs #ifndef NTP
    333       1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    334       1.34    briggs #else
    335       1.27  jonathan int	fixtick;			/* used by NTP for same */
    336       1.31   mycroft int	shifthz;
    337       1.31   mycroft #endif
    338       1.19       cgd 
    339       1.48  christos /*
    340       1.48  christos  * We might want ldd to load the both words from time at once.
    341       1.48  christos  * To succeed we need to be quadword aligned.
    342       1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    343       1.48  christos  */
    344       1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    345       1.19       cgd volatile struct	timeval mono_time;
    346       1.19       cgd 
    347       1.19       cgd /*
    348       1.52   thorpej  * The callout mechanism is based on the work of Adam M. Costello and
    349       1.52   thorpej  * George Varghese, published in a technical report entitled "Redesigning
    350       1.52   thorpej  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
    351       1.52   thorpej  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
    352       1.52   thorpej  *
    353       1.52   thorpej  * The original work on the data structures used in this implementation
    354       1.52   thorpej  * was published by G. Varghese and A. Lauck in the paper "Hashed and
    355       1.52   thorpej  * Hierarchical Timing Wheels: Data Structures for the Efficient
    356       1.52   thorpej  * Implementation of a Timer Facility" in the Proceedings of the 11th
    357       1.52   thorpej  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
    358       1.52   thorpej  * November 1987.
    359       1.52   thorpej  */
    360       1.52   thorpej struct callout_queue *callwheel;
    361       1.52   thorpej int	callwheelsize, callwheelbits, callwheelmask;
    362       1.52   thorpej 
    363       1.52   thorpej static struct callout *nextsoftcheck;	/* next callout to be checked */
    364       1.52   thorpej 
    365       1.52   thorpej #ifdef CALLWHEEL_STATS
    366   1.74.2.3   nathanw int	     *callwheel_sizes;		/* per-bucket length count */
    367   1.74.2.3   nathanw struct evcnt callwheel_collisions;	/* number of hash collisions */
    368   1.74.2.3   nathanw struct evcnt callwheel_maxlength;	/* length of the longest hash chain */
    369   1.74.2.3   nathanw struct evcnt callwheel_count;		/* # callouts currently */
    370   1.74.2.3   nathanw struct evcnt callwheel_established;	/* # callouts established */
    371   1.74.2.3   nathanw struct evcnt callwheel_fired;		/* # callouts that fired */
    372   1.74.2.3   nathanw struct evcnt callwheel_disestablished;	/* # callouts disestablished */
    373   1.74.2.3   nathanw struct evcnt callwheel_changed;		/* # callouts changed */
    374   1.74.2.3   nathanw struct evcnt callwheel_softclocks;	/* # times softclock() called */
    375   1.74.2.3   nathanw struct evcnt callwheel_softchecks;	/* # checks per softclock() */
    376   1.74.2.3   nathanw struct evcnt callwheel_softempty;	/* # empty buckets seen */
    377   1.74.2.3   nathanw struct evcnt callwheel_hintworked;	/* # times hint saved scan */
    378       1.52   thorpej #endif /* CALLWHEEL_STATS */
    379       1.52   thorpej 
    380       1.52   thorpej /*
    381       1.52   thorpej  * This value indicates the number of consecutive callouts that
    382       1.52   thorpej  * will be checked before we allow interrupts to have a chance
    383       1.52   thorpej  * again.
    384       1.52   thorpej  */
    385       1.52   thorpej #ifndef MAX_SOFTCLOCK_STEPS
    386       1.52   thorpej #define	MAX_SOFTCLOCK_STEPS	100
    387       1.52   thorpej #endif
    388       1.52   thorpej 
    389       1.64   thorpej struct simplelock callwheel_slock;
    390       1.64   thorpej 
    391       1.64   thorpej #define	CALLWHEEL_LOCK(s)						\
    392       1.64   thorpej do {									\
    393       1.64   thorpej 	s = splclock();							\
    394       1.64   thorpej 	simple_lock(&callwheel_slock);					\
    395  1.74.2.11   nathanw } while (/*CONSTCOND*/ 0)
    396       1.64   thorpej 
    397       1.64   thorpej #define	CALLWHEEL_UNLOCK(s)						\
    398       1.64   thorpej do {									\
    399       1.64   thorpej 	simple_unlock(&callwheel_slock);				\
    400       1.64   thorpej 	splx(s);							\
    401  1.74.2.11   nathanw } while (/*CONSTCOND*/ 0)
    402       1.64   thorpej 
    403       1.64   thorpej static void callout_stop_locked(struct callout *);
    404       1.64   thorpej 
    405       1.52   thorpej /*
    406       1.66   thorpej  * These are both protected by callwheel_lock.
    407       1.66   thorpej  * XXX SHOULD BE STATIC!!
    408       1.66   thorpej  */
    409       1.66   thorpej u_int64_t hardclock_ticks, softclock_ticks;
    410       1.66   thorpej 
    411       1.73   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    412       1.73   thorpej void	softclock(void *);
    413       1.73   thorpej void	*softclock_si;
    414       1.73   thorpej #endif
    415       1.73   thorpej 
    416       1.66   thorpej /*
    417       1.19       cgd  * Initialize clock frequencies and start both clocks running.
    418       1.19       cgd  */
    419       1.19       cgd void
    420       1.63   thorpej initclocks(void)
    421       1.19       cgd {
    422       1.55  augustss 	int i;
    423       1.19       cgd 
    424       1.73   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    425       1.73   thorpej 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    426       1.73   thorpej 	if (softclock_si == NULL)
    427       1.73   thorpej 		panic("initclocks: unable to register softclock intr");
    428       1.73   thorpej #endif
    429       1.73   thorpej 
    430       1.19       cgd 	/*
    431       1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    432       1.19       cgd 	 * code do its bit.
    433       1.19       cgd 	 */
    434       1.70  sommerfe 	psdiv = 1;
    435       1.19       cgd 	cpu_initclocks();
    436       1.19       cgd 
    437       1.19       cgd 	/*
    438       1.70  sommerfe 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    439       1.19       cgd 	 */
    440       1.19       cgd 	i = stathz ? stathz : hz;
    441       1.19       cgd 	if (profhz == 0)
    442       1.19       cgd 		profhz = i;
    443       1.19       cgd 	psratio = profhz / i;
    444       1.70  sommerfe 	rrticks = hz / 10;
    445       1.31   mycroft 
    446       1.31   mycroft #ifdef NTP
    447       1.31   mycroft 	switch (hz) {
    448       1.57   mycroft 	case 1:
    449       1.57   mycroft 		shifthz = SHIFT_SCALE - 0;
    450       1.57   mycroft 		break;
    451       1.57   mycroft 	case 2:
    452       1.57   mycroft 		shifthz = SHIFT_SCALE - 1;
    453       1.57   mycroft 		break;
    454       1.57   mycroft 	case 4:
    455       1.57   mycroft 		shifthz = SHIFT_SCALE - 2;
    456       1.57   mycroft 		break;
    457       1.57   mycroft 	case 8:
    458       1.57   mycroft 		shifthz = SHIFT_SCALE - 3;
    459       1.57   mycroft 		break;
    460       1.57   mycroft 	case 16:
    461       1.57   mycroft 		shifthz = SHIFT_SCALE - 4;
    462       1.57   mycroft 		break;
    463       1.57   mycroft 	case 32:
    464       1.57   mycroft 		shifthz = SHIFT_SCALE - 5;
    465       1.57   mycroft 		break;
    466       1.31   mycroft 	case 60:
    467       1.31   mycroft 	case 64:
    468       1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    469       1.31   mycroft 		break;
    470       1.31   mycroft 	case 96:
    471       1.31   mycroft 	case 100:
    472       1.31   mycroft 	case 128:
    473       1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    474       1.31   mycroft 		break;
    475       1.31   mycroft 	case 256:
    476       1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    477       1.41       tls 		break;
    478       1.41       tls 	case 512:
    479       1.41       tls 		shifthz = SHIFT_SCALE - 9;
    480       1.31   mycroft 		break;
    481       1.43      ross 	case 1000:
    482       1.31   mycroft 	case 1024:
    483       1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    484       1.31   mycroft 		break;
    485       1.57   mycroft 	case 1200:
    486       1.57   mycroft 	case 2048:
    487       1.57   mycroft 		shifthz = SHIFT_SCALE - 11;
    488       1.57   mycroft 		break;
    489       1.57   mycroft 	case 4096:
    490       1.57   mycroft 		shifthz = SHIFT_SCALE - 12;
    491       1.57   mycroft 		break;
    492       1.57   mycroft 	case 8192:
    493       1.57   mycroft 		shifthz = SHIFT_SCALE - 13;
    494       1.57   mycroft 		break;
    495       1.57   mycroft 	case 16384:
    496       1.57   mycroft 		shifthz = SHIFT_SCALE - 14;
    497       1.57   mycroft 		break;
    498       1.57   mycroft 	case 32768:
    499       1.57   mycroft 		shifthz = SHIFT_SCALE - 15;
    500       1.57   mycroft 		break;
    501       1.57   mycroft 	case 65536:
    502       1.57   mycroft 		shifthz = SHIFT_SCALE - 16;
    503       1.57   mycroft 		break;
    504       1.31   mycroft 	default:
    505       1.31   mycroft 		panic("weird hz");
    506       1.50  sommerfe 	}
    507       1.50  sommerfe 	if (fixtick == 0) {
    508       1.52   thorpej 		/*
    509       1.52   thorpej 		 * Give MD code a chance to set this to a better
    510       1.52   thorpej 		 * value; but, if it doesn't, we should.
    511       1.52   thorpej 		 */
    512       1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    513       1.31   mycroft 	}
    514       1.31   mycroft #endif
    515       1.19       cgd }
    516       1.19       cgd 
    517       1.19       cgd /*
    518       1.19       cgd  * The real-time timer, interrupting hz times per second.
    519       1.19       cgd  */
    520       1.19       cgd void
    521       1.63   thorpej hardclock(struct clockframe *frame)
    522       1.19       cgd {
    523   1.74.2.1   nathanw 	struct lwp *l;
    524       1.55  augustss 	struct proc *p;
    525       1.55  augustss 	int delta;
    526       1.19       cgd 	extern int tickdelta;
    527       1.19       cgd 	extern long timedelta;
    528       1.70  sommerfe 	struct cpu_info *ci = curcpu();
    529  1.74.2.10   nathanw 	struct ptimer *pt;
    530       1.30   mycroft #ifdef NTP
    531       1.55  augustss 	int time_update;
    532       1.55  augustss 	int ltemp;
    533       1.29  christos #endif
    534       1.19       cgd 
    535   1.74.2.7   nathanw 	l = curlwp;
    536   1.74.2.1   nathanw 	if (l) {
    537   1.74.2.1   nathanw 		p = l->l_proc;
    538       1.19       cgd 		/*
    539       1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    540       1.19       cgd 		 */
    541  1.74.2.10   nathanw 		if (CLKF_USERMODE(frame) && p->p_timers &&
    542  1.74.2.10   nathanw 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    543  1.74.2.10   nathanw 			if (itimerdecr(pt, tick) == 0)
    544  1.74.2.10   nathanw 				itimerfire(pt);
    545  1.74.2.10   nathanw 		if (p->p_timers &&
    546  1.74.2.10   nathanw 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    547  1.74.2.10   nathanw 			if (itimerdecr(pt, tick) == 0)
    548  1.74.2.10   nathanw 				itimerfire(pt);
    549       1.19       cgd 	}
    550       1.19       cgd 
    551       1.19       cgd 	/*
    552       1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    553       1.19       cgd 	 */
    554       1.19       cgd 	if (stathz == 0)
    555       1.19       cgd 		statclock(frame);
    556       1.70  sommerfe 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    557       1.71  sommerfe 		roundrobin(ci);
    558       1.70  sommerfe 
    559       1.60   thorpej #if defined(MULTIPROCESSOR)
    560       1.60   thorpej 	/*
    561       1.60   thorpej 	 * If we are not the primary CPU, we're not allowed to do
    562       1.60   thorpej 	 * any more work.
    563       1.60   thorpej 	 */
    564       1.70  sommerfe 	if (CPU_IS_PRIMARY(ci) == 0)
    565       1.60   thorpej 		return;
    566       1.60   thorpej #endif
    567       1.60   thorpej 
    568       1.19       cgd 	/*
    569       1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    570       1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    571       1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    572       1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    573       1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    574       1.22       cgd 	 * ``tickdelta'' may also be added in.
    575       1.19       cgd 	 */
    576       1.22       cgd 	delta = tick;
    577       1.27  jonathan 
    578       1.27  jonathan #ifndef NTP
    579       1.22       cgd 	if (tickfix) {
    580       1.39       cgd 		tickfixcnt += tickfix;
    581       1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    582       1.39       cgd 			delta++;
    583       1.39       cgd 			tickfixcnt -= tickfixinterval;
    584       1.22       cgd 		}
    585       1.22       cgd 	}
    586       1.27  jonathan #endif /* !NTP */
    587       1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    588       1.22       cgd 	if (timedelta != 0) {
    589       1.38       cgd 		delta += tickdelta;
    590       1.19       cgd 		timedelta -= tickdelta;
    591       1.19       cgd 	}
    592       1.27  jonathan 
    593       1.27  jonathan #ifdef notyet
    594       1.27  jonathan 	microset();
    595       1.27  jonathan #endif
    596       1.27  jonathan 
    597       1.27  jonathan #ifndef NTP
    598       1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    599       1.27  jonathan #endif
    600       1.19       cgd 	BUMPTIME(&mono_time, delta);
    601       1.27  jonathan 
    602       1.31   mycroft #ifdef NTP
    603       1.30   mycroft 	time_update = delta;
    604       1.27  jonathan 
    605       1.27  jonathan 	/*
    606       1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    607       1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    608       1.27  jonathan 	 * (time_update).
    609       1.27  jonathan 	 */
    610       1.27  jonathan 	time_phase += time_adj;
    611       1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    612       1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    613       1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    614       1.27  jonathan 		time_update -= ltemp;
    615       1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    616       1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    617       1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    618       1.27  jonathan 		time_update += ltemp;
    619       1.27  jonathan 	}
    620       1.27  jonathan 
    621       1.27  jonathan #ifdef HIGHBALL
    622       1.27  jonathan 	/*
    623       1.27  jonathan 	 * If the HIGHBALL board is installed, we need to adjust the
    624       1.27  jonathan 	 * external clock offset in order to close the hardware feedback
    625       1.27  jonathan 	 * loop. This will adjust the external clock phase and frequency
    626       1.27  jonathan 	 * in small amounts. The additional phase noise and frequency
    627       1.27  jonathan 	 * wander this causes should be minimal. We also need to
    628       1.27  jonathan 	 * discipline the kernel time variable, since the PLL is used to
    629       1.27  jonathan 	 * discipline the external clock. If the Highball board is not
    630       1.27  jonathan 	 * present, we discipline kernel time with the PLL as usual. We
    631       1.27  jonathan 	 * assume that the external clock phase adjustment (time_update)
    632       1.27  jonathan 	 * and kernel phase adjustment (clock_cpu) are less than the
    633       1.27  jonathan 	 * value of tick.
    634       1.27  jonathan 	 */
    635       1.27  jonathan 	clock_offset.tv_usec += time_update;
    636       1.27  jonathan 	if (clock_offset.tv_usec >= 1000000) {
    637       1.27  jonathan 		clock_offset.tv_sec++;
    638       1.27  jonathan 		clock_offset.tv_usec -= 1000000;
    639       1.27  jonathan 	}
    640       1.27  jonathan 	if (clock_offset.tv_usec < 0) {
    641       1.27  jonathan 		clock_offset.tv_sec--;
    642       1.27  jonathan 		clock_offset.tv_usec += 1000000;
    643       1.27  jonathan 	}
    644       1.27  jonathan 	time.tv_usec += clock_cpu;
    645       1.27  jonathan 	clock_cpu = 0;
    646       1.27  jonathan #else
    647       1.27  jonathan 	time.tv_usec += time_update;
    648       1.27  jonathan #endif /* HIGHBALL */
    649       1.27  jonathan 
    650       1.27  jonathan 	/*
    651       1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    652       1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    653       1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    654       1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    655       1.27  jonathan 	 * CPU clock oscillator frequency error.
    656       1.27  jonathan 	 *
    657       1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    658       1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    659       1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    660       1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    661       1.27  jonathan 	 */
    662       1.27  jonathan 	if (time.tv_usec >= 1000000) {
    663       1.27  jonathan 		time.tv_usec -= 1000000;
    664       1.27  jonathan 		time.tv_sec++;
    665       1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    666       1.27  jonathan 
    667       1.27  jonathan 		/*
    668       1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    669       1.27  jonathan 		 * the end of the day, the system clock is set back one
    670       1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    671       1.27  jonathan 		 * set ahead one second. The microtime() routine or
    672       1.27  jonathan 		 * external clock driver will insure that reported time
    673       1.27  jonathan 		 * is always monotonic. The ugly divides should be
    674       1.27  jonathan 		 * replaced.
    675       1.27  jonathan 		 */
    676       1.27  jonathan 		switch (time_state) {
    677       1.31   mycroft 		case TIME_OK:
    678       1.27  jonathan 			if (time_status & STA_INS)
    679       1.27  jonathan 				time_state = TIME_INS;
    680       1.27  jonathan 			else if (time_status & STA_DEL)
    681       1.27  jonathan 				time_state = TIME_DEL;
    682       1.27  jonathan 			break;
    683       1.27  jonathan 
    684       1.31   mycroft 		case TIME_INS:
    685       1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    686       1.27  jonathan 				time.tv_sec--;
    687       1.27  jonathan 				time_state = TIME_OOP;
    688       1.27  jonathan 			}
    689       1.27  jonathan 			break;
    690       1.27  jonathan 
    691       1.31   mycroft 		case TIME_DEL:
    692       1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    693       1.27  jonathan 				time.tv_sec++;
    694       1.27  jonathan 				time_state = TIME_WAIT;
    695       1.27  jonathan 			}
    696       1.27  jonathan 			break;
    697       1.27  jonathan 
    698       1.31   mycroft 		case TIME_OOP:
    699       1.27  jonathan 			time_state = TIME_WAIT;
    700       1.27  jonathan 			break;
    701       1.27  jonathan 
    702       1.31   mycroft 		case TIME_WAIT:
    703       1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    704       1.27  jonathan 				time_state = TIME_OK;
    705       1.31   mycroft 			break;
    706       1.27  jonathan 		}
    707       1.27  jonathan 
    708       1.27  jonathan 		/*
    709       1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    710       1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    711       1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    712       1.27  jonathan 		 * used directly. In either mode, the maximum phase
    713       1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    714       1.27  jonathan 		 * the adjustment over not more than the number of
    715       1.27  jonathan 		 * seconds between updates.
    716       1.27  jonathan 		 */
    717       1.27  jonathan 		if (time_offset < 0) {
    718       1.27  jonathan 			ltemp = -time_offset;
    719       1.27  jonathan 			if (!(time_status & STA_FLL))
    720       1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    721       1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    722       1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    723       1.27  jonathan 				    SHIFT_UPDATE;
    724       1.27  jonathan 			time_offset += ltemp;
    725       1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    726       1.31   mycroft 		} else if (time_offset > 0) {
    727       1.27  jonathan 			ltemp = time_offset;
    728       1.27  jonathan 			if (!(time_status & STA_FLL))
    729       1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    730       1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    731       1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    732       1.27  jonathan 				    SHIFT_UPDATE;
    733       1.27  jonathan 			time_offset -= ltemp;
    734       1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    735       1.31   mycroft 		} else
    736       1.31   mycroft 			time_adj = 0;
    737       1.27  jonathan 
    738       1.27  jonathan 		/*
    739       1.27  jonathan 		 * Compute the frequency estimate and additional phase
    740       1.27  jonathan 		 * adjustment due to frequency error for the next
    741       1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    742       1.27  jonathan 		 * watchdog counter and update the frequency computed by
    743       1.27  jonathan 		 * the pll and the PPS signal.
    744       1.27  jonathan 		 */
    745       1.27  jonathan #ifdef PPS_SYNC
    746       1.27  jonathan 		pps_valid++;
    747       1.27  jonathan 		if (pps_valid == PPS_VALID) {
    748       1.27  jonathan 			pps_jitter = MAXTIME;
    749       1.27  jonathan 			pps_stabil = MAXFREQ;
    750       1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    751       1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    752       1.27  jonathan 		}
    753       1.27  jonathan 		ltemp = time_freq + pps_freq;
    754       1.27  jonathan #else
    755       1.27  jonathan 		ltemp = time_freq;
    756       1.27  jonathan #endif /* PPS_SYNC */
    757       1.27  jonathan 
    758       1.27  jonathan 		if (ltemp < 0)
    759       1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    760       1.27  jonathan 		else
    761       1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    762       1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    763       1.27  jonathan 
    764       1.27  jonathan 		/*
    765       1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    766       1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    767       1.31   mycroft 		 * scale factor.
    768       1.46   mycroft 		 *
    769       1.46   mycroft 		 * To determine the adjustment, you can do the following:
    770       1.46   mycroft 		 *   bc -q
    771       1.46   mycroft 		 *   scale=24
    772       1.46   mycroft 		 *   obase=2
    773       1.46   mycroft 		 *   idealhz/realhz
    774       1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    775       1.57   mycroft 		 * is the actual value.  You may need to factor this result
    776       1.57   mycroft 		 * into a sequence of 2 multipliers to get better precision.
    777       1.46   mycroft 		 *
    778       1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    779       1.46   mycroft 		 *   bc -q
    780       1.46   mycroft 		 *   scale=24
    781       1.57   mycroft 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    782       1.57   mycroft 		 * (and then multiply by 1000000 to get ppm).
    783       1.27  jonathan 		 */
    784       1.31   mycroft 		switch (hz) {
    785       1.58   mycroft 		case 60:
    786       1.58   mycroft 			/* A factor of 1.000100010001 gives about 15ppm
    787       1.58   mycroft 			   error. */
    788       1.58   mycroft 			if (time_adj < 0) {
    789       1.58   mycroft 				time_adj -= (-time_adj >> 4);
    790       1.58   mycroft 				time_adj -= (-time_adj >> 8);
    791       1.58   mycroft 			} else {
    792       1.58   mycroft 				time_adj += (time_adj >> 4);
    793       1.58   mycroft 				time_adj += (time_adj >> 8);
    794       1.58   mycroft 			}
    795       1.58   mycroft 			break;
    796       1.58   mycroft 
    797       1.31   mycroft 		case 96:
    798       1.56   mycroft 			/* A factor of 1.0101010101 gives about 244ppm error. */
    799       1.46   mycroft 			if (time_adj < 0) {
    800       1.46   mycroft 				time_adj -= (-time_adj >> 2);
    801       1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    802       1.46   mycroft 			} else {
    803       1.46   mycroft 				time_adj += (time_adj >> 2);
    804       1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    805       1.46   mycroft 			}
    806       1.46   mycroft 			break;
    807       1.46   mycroft 
    808       1.31   mycroft 		case 100:
    809       1.56   mycroft 			/* A factor of 1.010001111010111 gives about 1ppm
    810       1.56   mycroft 			   error. */
    811       1.56   mycroft 			if (time_adj < 0) {
    812       1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    813       1.56   mycroft 				time_adj += (-time_adj >> 10);
    814       1.56   mycroft 			} else {
    815       1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    816       1.56   mycroft 				time_adj -= (time_adj >> 10);
    817       1.56   mycroft 			}
    818       1.43      ross 			break;
    819       1.46   mycroft 
    820       1.43      ross 		case 1000:
    821       1.56   mycroft 			/* A factor of 1.000001100010100001 gives about 50ppm
    822       1.56   mycroft 			   error. */
    823       1.56   mycroft 			if (time_adj < 0) {
    824       1.56   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    825       1.56   mycroft 				time_adj -= (-time_adj >> 7);
    826       1.56   mycroft 			} else {
    827       1.56   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    828       1.56   mycroft 				time_adj += (time_adj >> 7);
    829       1.56   mycroft 			}
    830       1.56   mycroft 			break;
    831       1.56   mycroft 
    832       1.56   mycroft 		case 1200:
    833       1.56   mycroft 			/* A factor of 1.1011010011100001 gives about 64ppm
    834       1.56   mycroft 			   error. */
    835       1.56   mycroft 			if (time_adj < 0) {
    836       1.56   mycroft 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    837       1.56   mycroft 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    838       1.56   mycroft 			} else {
    839       1.56   mycroft 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    840       1.56   mycroft 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    841       1.56   mycroft 			}
    842       1.31   mycroft 			break;
    843       1.27  jonathan 		}
    844       1.27  jonathan 
    845       1.27  jonathan #ifdef EXT_CLOCK
    846       1.27  jonathan 		/*
    847       1.27  jonathan 		 * If an external clock is present, it is necessary to
    848       1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    849       1.27  jonathan 		 * all system components use the microtime() interface.
    850       1.27  jonathan 		 * Here, the time offset between the external clock and
    851       1.27  jonathan 		 * kernel time variable is computed every so often.
    852       1.27  jonathan 		 */
    853       1.27  jonathan 		clock_count++;
    854       1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    855       1.27  jonathan 			clock_count = 0;
    856       1.27  jonathan 			microtime(&clock_ext);
    857       1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    858       1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    859       1.27  jonathan 			    time.tv_usec;
    860       1.27  jonathan 			if (delta.tv_usec < 0)
    861       1.27  jonathan 				delta.tv_sec--;
    862       1.27  jonathan 			if (delta.tv_usec >= 500000) {
    863       1.27  jonathan 				delta.tv_usec -= 1000000;
    864       1.27  jonathan 				delta.tv_sec++;
    865       1.27  jonathan 			}
    866       1.27  jonathan 			if (delta.tv_usec < -500000) {
    867       1.27  jonathan 				delta.tv_usec += 1000000;
    868       1.27  jonathan 				delta.tv_sec--;
    869       1.27  jonathan 			}
    870       1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    871       1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    872       1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    873       1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    874       1.27  jonathan 				time = clock_ext;
    875       1.27  jonathan 				delta.tv_sec = 0;
    876       1.27  jonathan 				delta.tv_usec = 0;
    877       1.27  jonathan 			}
    878       1.27  jonathan #ifdef HIGHBALL
    879       1.27  jonathan 			clock_cpu = delta.tv_usec;
    880       1.27  jonathan #else /* HIGHBALL */
    881       1.27  jonathan 			hardupdate(delta.tv_usec);
    882       1.27  jonathan #endif /* HIGHBALL */
    883       1.27  jonathan 		}
    884       1.27  jonathan #endif /* EXT_CLOCK */
    885       1.27  jonathan 	}
    886       1.27  jonathan 
    887       1.31   mycroft #endif /* NTP */
    888       1.19       cgd 
    889       1.19       cgd 	/*
    890       1.19       cgd 	 * Process callouts at a very low cpu priority, so we don't keep the
    891       1.19       cgd 	 * relatively high clock interrupt priority any longer than necessary.
    892       1.19       cgd 	 */
    893       1.66   thorpej 	simple_lock(&callwheel_slock);	/* already at splclock() */
    894       1.66   thorpej 	hardclock_ticks++;
    895   1.74.2.3   nathanw 	if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) {
    896       1.66   thorpej 		simple_unlock(&callwheel_slock);
    897       1.19       cgd 		if (CLKF_BASEPRI(frame)) {
    898       1.19       cgd 			/*
    899       1.19       cgd 			 * Save the overhead of a software interrupt;
    900       1.52   thorpej 			 * it will happen as soon as we return, so do
    901       1.52   thorpej 			 * it now.
    902       1.52   thorpej 			 *
    903       1.52   thorpej 			 * NOTE: If we're at ``base priority'', softclock()
    904       1.52   thorpej 			 * was not already running.
    905       1.19       cgd 			 */
    906       1.65   thorpej 			spllowersoftclock();
    907       1.69   thorpej 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    908       1.73   thorpej 			softclock(NULL);
    909       1.69   thorpej 			KERNEL_UNLOCK();
    910       1.73   thorpej 		} else {
    911       1.73   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    912       1.73   thorpej 			softintr_schedule(softclock_si);
    913       1.73   thorpej #else
    914       1.19       cgd 			setsoftclock();
    915       1.73   thorpej #endif
    916       1.73   thorpej 		}
    917       1.67   thorpej 		return;
    918       1.52   thorpej 	} else if (softclock_running == 0 &&
    919       1.66   thorpej 		   (softclock_ticks + 1) == hardclock_ticks) {
    920       1.52   thorpej 		softclock_ticks++;
    921       1.66   thorpej 	}
    922       1.67   thorpej 	simple_unlock(&callwheel_slock);
    923       1.19       cgd }
    924       1.19       cgd 
    925       1.19       cgd /*
    926       1.19       cgd  * Software (low priority) clock interrupt.
    927       1.19       cgd  * Run periodic events from timeout queue.
    928       1.19       cgd  */
    929       1.19       cgd /*ARGSUSED*/
    930       1.19       cgd void
    931       1.73   thorpej softclock(void *v)
    932       1.19       cgd {
    933       1.52   thorpej 	struct callout_queue *bucket;
    934       1.52   thorpej 	struct callout *c;
    935       1.63   thorpej 	void (*func)(void *);
    936       1.52   thorpej 	void *arg;
    937       1.52   thorpej 	int s, idx;
    938       1.52   thorpej 	int steps = 0;
    939       1.19       cgd 
    940       1.64   thorpej 	CALLWHEEL_LOCK(s);
    941       1.64   thorpej 
    942       1.52   thorpej 	softclock_running = 1;
    943       1.52   thorpej 
    944       1.52   thorpej #ifdef CALLWHEEL_STATS
    945   1.74.2.3   nathanw 	callwheel_softclocks.ev_count++;
    946       1.52   thorpej #endif
    947       1.52   thorpej 
    948       1.52   thorpej 	while (softclock_ticks != hardclock_ticks) {
    949       1.52   thorpej 		softclock_ticks++;
    950       1.52   thorpej 		idx = (int)(softclock_ticks & callwheelmask);
    951       1.52   thorpej 		bucket = &callwheel[idx];
    952   1.74.2.3   nathanw 		c = TAILQ_FIRST(&bucket->cq_q);
    953   1.74.2.3   nathanw 		if (c == NULL) {
    954   1.74.2.3   nathanw #ifdef CALLWHEEL_STATS
    955   1.74.2.3   nathanw 			callwheel_softempty.ev_count++;
    956   1.74.2.3   nathanw #endif
    957   1.74.2.3   nathanw 			continue;
    958   1.74.2.3   nathanw 		}
    959   1.74.2.3   nathanw 		if (softclock_ticks < bucket->cq_hint) {
    960       1.52   thorpej #ifdef CALLWHEEL_STATS
    961   1.74.2.3   nathanw 			callwheel_hintworked.ev_count++;
    962       1.52   thorpej #endif
    963   1.74.2.3   nathanw 			continue;
    964   1.74.2.3   nathanw 		}
    965   1.74.2.3   nathanw 		bucket->cq_hint = UQUAD_MAX;
    966       1.52   thorpej 		while (c != NULL) {
    967       1.52   thorpej #ifdef CALLWHEEL_STATS
    968   1.74.2.3   nathanw 			callwheel_softchecks.ev_count++;
    969       1.52   thorpej #endif
    970       1.52   thorpej 			if (c->c_time != softclock_ticks) {
    971   1.74.2.3   nathanw 				if (c->c_time < bucket->cq_hint)
    972   1.74.2.3   nathanw 					bucket->cq_hint = c->c_time;
    973       1.52   thorpej 				c = TAILQ_NEXT(c, c_link);
    974       1.52   thorpej 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
    975       1.52   thorpej 					nextsoftcheck = c;
    976       1.52   thorpej 					/* Give interrupts a chance. */
    977       1.64   thorpej 					CALLWHEEL_UNLOCK(s);
    978       1.64   thorpej 					CALLWHEEL_LOCK(s);
    979       1.52   thorpej 					c = nextsoftcheck;
    980       1.52   thorpej 					steps = 0;
    981       1.52   thorpej 				}
    982       1.52   thorpej 			} else {
    983       1.52   thorpej 				nextsoftcheck = TAILQ_NEXT(c, c_link);
    984   1.74.2.3   nathanw 				TAILQ_REMOVE(&bucket->cq_q, c, c_link);
    985       1.52   thorpej #ifdef CALLWHEEL_STATS
    986       1.52   thorpej 				callwheel_sizes[idx]--;
    987   1.74.2.3   nathanw 				callwheel_fired.ev_count++;
    988   1.74.2.3   nathanw 				callwheel_count.ev_count--;
    989       1.52   thorpej #endif
    990       1.52   thorpej 				func = c->c_func;
    991       1.52   thorpej 				arg = c->c_arg;
    992       1.52   thorpej 				c->c_func = NULL;
    993       1.52   thorpej 				c->c_flags &= ~CALLOUT_PENDING;
    994       1.64   thorpej 				CALLWHEEL_UNLOCK(s);
    995       1.52   thorpej 				(*func)(arg);
    996       1.64   thorpej 				CALLWHEEL_LOCK(s);
    997       1.52   thorpej 				steps = 0;
    998       1.52   thorpej 				c = nextsoftcheck;
    999       1.52   thorpej 			}
   1000       1.52   thorpej 		}
   1001   1.74.2.3   nathanw 		if (TAILQ_EMPTY(&bucket->cq_q))
   1002   1.74.2.3   nathanw 			bucket->cq_hint = UQUAD_MAX;
   1003       1.19       cgd 	}
   1004       1.52   thorpej 	nextsoftcheck = NULL;
   1005       1.52   thorpej 	softclock_running = 0;
   1006       1.64   thorpej 	CALLWHEEL_UNLOCK(s);
   1007       1.51   thorpej }
   1008       1.51   thorpej 
   1009       1.51   thorpej /*
   1010       1.54     enami  * callout_setsize:
   1011       1.52   thorpej  *
   1012       1.54     enami  *	Determine how many callwheels are necessary and
   1013       1.54     enami  *	set hash mask.  Called from allocsys().
   1014       1.51   thorpej  */
   1015       1.51   thorpej void
   1016       1.63   thorpej callout_setsize(void)
   1017       1.51   thorpej {
   1018       1.52   thorpej 
   1019       1.52   thorpej 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
   1020       1.52   thorpej 		/* loop */ ;
   1021       1.52   thorpej 	callwheelmask = callwheelsize - 1;
   1022       1.52   thorpej }
   1023       1.52   thorpej 
   1024       1.52   thorpej /*
   1025       1.54     enami  * callout_startup:
   1026       1.52   thorpej  *
   1027       1.52   thorpej  *	Initialize the callwheel buckets.
   1028       1.52   thorpej  */
   1029       1.52   thorpej void
   1030       1.63   thorpej callout_startup(void)
   1031       1.52   thorpej {
   1032       1.51   thorpej 	int i;
   1033       1.51   thorpej 
   1034   1.74.2.3   nathanw 	for (i = 0; i < callwheelsize; i++) {
   1035   1.74.2.3   nathanw 		callwheel[i].cq_hint = UQUAD_MAX;
   1036   1.74.2.3   nathanw 		TAILQ_INIT(&callwheel[i].cq_q);
   1037   1.74.2.3   nathanw 	}
   1038       1.64   thorpej 
   1039       1.64   thorpej 	simple_lock_init(&callwheel_slock);
   1040   1.74.2.3   nathanw 
   1041   1.74.2.3   nathanw #ifdef CALLWHEEL_STATS
   1042   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC,
   1043   1.74.2.3   nathanw 	    NULL, "callwheel", "collisions");
   1044   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC,
   1045   1.74.2.3   nathanw 	    NULL, "callwheel", "maxlength");
   1046   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC,
   1047   1.74.2.3   nathanw 	    NULL, "callwheel", "count");
   1048   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC,
   1049   1.74.2.3   nathanw 	    NULL, "callwheel", "established");
   1050   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC,
   1051   1.74.2.3   nathanw 	    NULL, "callwheel", "fired");
   1052   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC,
   1053   1.74.2.3   nathanw 	    NULL, "callwheel", "disestablished");
   1054   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC,
   1055   1.74.2.3   nathanw 	    NULL, "callwheel", "changed");
   1056   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC,
   1057   1.74.2.3   nathanw 	    NULL, "callwheel", "softclocks");
   1058   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC,
   1059   1.74.2.3   nathanw 	    NULL, "callwheel", "softempty");
   1060   1.74.2.3   nathanw 	evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC,
   1061   1.74.2.3   nathanw 	    NULL, "callwheel", "hintworked");
   1062   1.74.2.3   nathanw #endif /* CALLWHEEL_STATS */
   1063       1.19       cgd }
   1064       1.19       cgd 
   1065       1.19       cgd /*
   1066       1.52   thorpej  * callout_init:
   1067       1.19       cgd  *
   1068       1.52   thorpej  *	Initialize a callout structure so that it can be used
   1069       1.52   thorpej  *	by callout_reset() and callout_stop().
   1070       1.52   thorpej  */
   1071       1.52   thorpej void
   1072       1.63   thorpej callout_init(struct callout *c)
   1073       1.52   thorpej {
   1074       1.52   thorpej 
   1075       1.52   thorpej 	memset(c, 0, sizeof(*c));
   1076       1.52   thorpej }
   1077       1.52   thorpej 
   1078       1.52   thorpej /*
   1079       1.52   thorpej  * callout_reset:
   1080       1.19       cgd  *
   1081       1.52   thorpej  *	Establish or change a timeout.
   1082       1.19       cgd  */
   1083       1.19       cgd void
   1084       1.63   thorpej callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
   1085       1.19       cgd {
   1086       1.52   thorpej 	struct callout_queue *bucket;
   1087       1.52   thorpej 	int s;
   1088       1.19       cgd 
   1089       1.19       cgd 	if (ticks <= 0)
   1090       1.19       cgd 		ticks = 1;
   1091       1.19       cgd 
   1092       1.64   thorpej 	CALLWHEEL_LOCK(s);
   1093       1.19       cgd 
   1094       1.52   thorpej 	/*
   1095       1.52   thorpej 	 * If this callout's timer is already running, cancel it
   1096       1.52   thorpej 	 * before we modify it.
   1097       1.52   thorpej 	 */
   1098       1.52   thorpej 	if (c->c_flags & CALLOUT_PENDING) {
   1099       1.64   thorpej 		callout_stop_locked(c);	/* Already locked */
   1100       1.52   thorpej #ifdef CALLWHEEL_STATS
   1101   1.74.2.3   nathanw 		callwheel_changed.ev_count++;
   1102       1.52   thorpej #endif
   1103       1.52   thorpej 	}
   1104       1.52   thorpej 
   1105       1.52   thorpej 	c->c_arg = arg;
   1106       1.52   thorpej 	c->c_func = func;
   1107       1.52   thorpej 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
   1108       1.52   thorpej 	c->c_time = hardclock_ticks + ticks;
   1109       1.52   thorpej 
   1110       1.52   thorpej 	bucket = &callwheel[c->c_time & callwheelmask];
   1111       1.52   thorpej 
   1112       1.52   thorpej #ifdef CALLWHEEL_STATS
   1113   1.74.2.3   nathanw 	if (! TAILQ_EMPTY(&bucket->cq_q))
   1114   1.74.2.3   nathanw 		callwheel_collisions.ev_count++;
   1115       1.52   thorpej #endif
   1116       1.52   thorpej 
   1117   1.74.2.3   nathanw 	TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link);
   1118   1.74.2.3   nathanw 	if (c->c_time < bucket->cq_hint)
   1119   1.74.2.3   nathanw 		bucket->cq_hint = c->c_time;
   1120       1.52   thorpej 
   1121       1.52   thorpej #ifdef CALLWHEEL_STATS
   1122   1.74.2.3   nathanw 	callwheel_count.ev_count++;
   1123   1.74.2.3   nathanw 	callwheel_established.ev_count++;
   1124   1.74.2.3   nathanw 	if (++callwheel_sizes[c->c_time & callwheelmask] >
   1125   1.74.2.3   nathanw 	    callwheel_maxlength.ev_count)
   1126   1.74.2.3   nathanw 		callwheel_maxlength.ev_count =
   1127       1.52   thorpej 		    callwheel_sizes[c->c_time & callwheelmask];
   1128       1.52   thorpej #endif
   1129       1.52   thorpej 
   1130       1.64   thorpej 	CALLWHEEL_UNLOCK(s);
   1131       1.19       cgd }
   1132       1.19       cgd 
   1133       1.52   thorpej /*
   1134       1.64   thorpej  * callout_stop_locked:
   1135       1.52   thorpej  *
   1136       1.64   thorpej  *	Disestablish a timeout.  Callwheel is locked.
   1137       1.52   thorpej  */
   1138       1.64   thorpej static void
   1139       1.64   thorpej callout_stop_locked(struct callout *c)
   1140       1.19       cgd {
   1141   1.74.2.3   nathanw 	struct callout_queue *bucket;
   1142       1.52   thorpej 
   1143       1.52   thorpej 	/*
   1144       1.52   thorpej 	 * Don't attempt to delete a callout that's not on the queue.
   1145       1.52   thorpej 	 */
   1146       1.52   thorpej 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
   1147       1.52   thorpej 		c->c_flags &= ~CALLOUT_ACTIVE;
   1148       1.52   thorpej 		return;
   1149       1.52   thorpej 	}
   1150       1.52   thorpej 
   1151       1.52   thorpej 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
   1152       1.52   thorpej 
   1153       1.52   thorpej 	if (nextsoftcheck == c)
   1154       1.52   thorpej 		nextsoftcheck = TAILQ_NEXT(c, c_link);
   1155       1.52   thorpej 
   1156   1.74.2.3   nathanw 	bucket = &callwheel[c->c_time & callwheelmask];
   1157   1.74.2.3   nathanw 	TAILQ_REMOVE(&bucket->cq_q, c, c_link);
   1158   1.74.2.3   nathanw 	if (TAILQ_EMPTY(&bucket->cq_q))
   1159   1.74.2.3   nathanw 		bucket->cq_hint = UQUAD_MAX;
   1160       1.52   thorpej #ifdef CALLWHEEL_STATS
   1161   1.74.2.3   nathanw 	callwheel_count.ev_count--;
   1162   1.74.2.3   nathanw 	callwheel_disestablished.ev_count++;
   1163       1.52   thorpej 	callwheel_sizes[c->c_time & callwheelmask]--;
   1164       1.52   thorpej #endif
   1165       1.52   thorpej 
   1166       1.52   thorpej 	c->c_func = NULL;
   1167       1.64   thorpej }
   1168       1.64   thorpej 
   1169       1.64   thorpej /*
   1170       1.64   thorpej  * callout_stop:
   1171       1.64   thorpej  *
   1172       1.64   thorpej  *	Disestablish a timeout.  Callwheel is unlocked.  This is
   1173       1.64   thorpej  *	the standard entry point.
   1174       1.64   thorpej  */
   1175       1.64   thorpej void
   1176       1.64   thorpej callout_stop(struct callout *c)
   1177       1.64   thorpej {
   1178       1.64   thorpej 	int s;
   1179       1.52   thorpej 
   1180       1.64   thorpej 	CALLWHEEL_LOCK(s);
   1181       1.64   thorpej 	callout_stop_locked(c);
   1182       1.64   thorpej 	CALLWHEEL_UNLOCK(s);
   1183       1.52   thorpej }
   1184       1.52   thorpej 
   1185       1.52   thorpej #ifdef CALLWHEEL_STATS
   1186       1.52   thorpej /*
   1187       1.52   thorpej  * callout_showstats:
   1188       1.52   thorpej  *
   1189       1.52   thorpej  *	Display callout statistics.  Call it from DDB.
   1190       1.52   thorpej  */
   1191       1.52   thorpej void
   1192       1.63   thorpej callout_showstats(void)
   1193       1.52   thorpej {
   1194       1.52   thorpej 	u_int64_t curticks;
   1195       1.52   thorpej 	int s;
   1196       1.52   thorpej 
   1197       1.52   thorpej 	s = splclock();
   1198       1.52   thorpej 	curticks = softclock_ticks;
   1199       1.19       cgd 	splx(s);
   1200       1.52   thorpej 
   1201       1.52   thorpej 	printf("Callwheel statistics:\n");
   1202   1.74.2.3   nathanw 	printf("\tCallouts currently queued: %llu\n",
   1203   1.74.2.3   nathanw 	    (long long) callwheel_count.ev_count);
   1204   1.74.2.3   nathanw 	printf("\tCallouts established: %llu\n",
   1205   1.74.2.3   nathanw 	    (long long) callwheel_established.ev_count);
   1206   1.74.2.3   nathanw 	printf("\tCallouts disestablished: %llu\n",
   1207   1.74.2.3   nathanw 	    (long long) callwheel_disestablished.ev_count);
   1208   1.74.2.3   nathanw 	if (callwheel_changed.ev_count != 0)
   1209   1.74.2.3   nathanw 		printf("\t\tOf those, %llu were changes\n",
   1210   1.74.2.3   nathanw 		    (long long) callwheel_changed.ev_count);
   1211   1.74.2.3   nathanw 	printf("\tCallouts that fired: %llu\n",
   1212   1.74.2.3   nathanw 	    (long long) callwheel_fired.ev_count);
   1213       1.52   thorpej 	printf("\tNumber of buckets: %d\n", callwheelsize);
   1214   1.74.2.3   nathanw 	printf("\tNumber of hash collisions: %llu\n",
   1215   1.74.2.3   nathanw 	    (long long) callwheel_collisions.ev_count);
   1216   1.74.2.3   nathanw 	printf("\tMaximum hash chain length: %llu\n",
   1217   1.74.2.3   nathanw 	    (long long) callwheel_maxlength.ev_count);
   1218       1.52   thorpej 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
   1219   1.74.2.3   nathanw 	    (long long) callwheel_softclocks.ev_count,
   1220   1.74.2.3   nathanw 	    (long long) callwheel_softchecks.ev_count);
   1221   1.74.2.3   nathanw 	printf("\t\tEmpty buckets seen: %llu\n",
   1222   1.74.2.3   nathanw 	    (long long) callwheel_softempty.ev_count);
   1223   1.74.2.3   nathanw 	printf("\t\tTimes hint saved scan: %llu\n",
   1224   1.74.2.3   nathanw 	    (long long) callwheel_hintworked.ev_count);
   1225       1.19       cgd }
   1226       1.52   thorpej #endif
   1227       1.19       cgd 
   1228       1.19       cgd /*
   1229       1.52   thorpej  * Compute number of hz until specified time.  Used to compute second
   1230       1.52   thorpej  * argument to callout_reset() from an absolute time.
   1231       1.19       cgd  */
   1232       1.19       cgd int
   1233       1.63   thorpej hzto(struct timeval *tv)
   1234       1.19       cgd {
   1235       1.62   thorpej 	unsigned long ticks;
   1236       1.62   thorpej 	long sec, usec;
   1237       1.19       cgd 	int s;
   1238       1.19       cgd 
   1239       1.19       cgd 	/*
   1240       1.62   thorpej 	 * If the number of usecs in the whole seconds part of the time
   1241       1.62   thorpej 	 * difference fits in a long, then the total number of usecs will
   1242       1.62   thorpej 	 * fit in an unsigned long.  Compute the total and convert it to
   1243       1.62   thorpej 	 * ticks, rounding up and adding 1 to allow for the current tick
   1244       1.62   thorpej 	 * to expire.  Rounding also depends on unsigned long arithmetic
   1245       1.62   thorpej 	 * to avoid overflow.
   1246       1.19       cgd 	 *
   1247       1.62   thorpej 	 * Otherwise, if the number of ticks in the whole seconds part of
   1248       1.62   thorpej 	 * the time difference fits in a long, then convert the parts to
   1249       1.62   thorpej 	 * ticks separately and add, using similar rounding methods and
   1250       1.62   thorpej 	 * overflow avoidance.  This method would work in the previous
   1251       1.62   thorpej 	 * case, but it is slightly slower and assume that hz is integral.
   1252       1.62   thorpej 	 *
   1253       1.62   thorpej 	 * Otherwise, round the time difference down to the maximum
   1254       1.62   thorpej 	 * representable value.
   1255       1.62   thorpej 	 *
   1256       1.62   thorpej 	 * If ints are 32-bit, then the maximum value for any timeout in
   1257       1.62   thorpej 	 * 10ms ticks is 248 days.
   1258       1.19       cgd 	 */
   1259       1.40   mycroft 	s = splclock();
   1260       1.19       cgd 	sec = tv->tv_sec - time.tv_sec;
   1261       1.62   thorpej 	usec = tv->tv_usec - time.tv_usec;
   1262       1.62   thorpej 	splx(s);
   1263       1.62   thorpej 
   1264       1.62   thorpej 	if (usec < 0) {
   1265       1.62   thorpej 		sec--;
   1266       1.62   thorpej 		usec += 1000000;
   1267       1.62   thorpej 	}
   1268       1.62   thorpej 
   1269       1.62   thorpej 	if (sec < 0 || (sec == 0 && usec <= 0)) {
   1270       1.62   thorpej 		/*
   1271       1.62   thorpej 		 * Would expire now or in the past.  Return 0 ticks.
   1272       1.62   thorpej 		 * This is different from the legacy hzto() interface,
   1273       1.62   thorpej 		 * and callers need to check for it.
   1274       1.62   thorpej 		 */
   1275       1.62   thorpej 		ticks = 0;
   1276       1.62   thorpej 	} else if (sec <= (LONG_MAX / 1000000))
   1277       1.62   thorpej 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
   1278       1.62   thorpej 		    / tick) + 1;
   1279       1.62   thorpej 	else if (sec <= (LONG_MAX / hz))
   1280       1.62   thorpej 		ticks = (sec * hz) +
   1281       1.62   thorpej 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
   1282       1.19       cgd 	else
   1283       1.62   thorpej 		ticks = LONG_MAX;
   1284       1.62   thorpej 
   1285       1.62   thorpej 	if (ticks > INT_MAX)
   1286       1.62   thorpej 		ticks = INT_MAX;
   1287       1.62   thorpej 
   1288       1.62   thorpej 	return ((int)ticks);
   1289       1.19       cgd }
   1290       1.19       cgd 
   1291       1.19       cgd /*
   1292       1.19       cgd  * Start profiling on a process.
   1293       1.19       cgd  *
   1294       1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
   1295       1.19       cgd  * keeps the profile clock running constantly.
   1296       1.19       cgd  */
   1297       1.19       cgd void
   1298       1.63   thorpej startprofclock(struct proc *p)
   1299       1.19       cgd {
   1300       1.19       cgd 
   1301       1.19       cgd 	if ((p->p_flag & P_PROFIL) == 0) {
   1302       1.19       cgd 		p->p_flag |= P_PROFIL;
   1303   1.74.2.9   nathanw 		/*
   1304   1.74.2.9   nathanw 		 * This is only necessary if using the clock as the
   1305   1.74.2.9   nathanw 		 * profiling source.
   1306   1.74.2.9   nathanw 		 */
   1307       1.70  sommerfe 		if (++profprocs == 1 && stathz != 0)
   1308       1.70  sommerfe 			psdiv = psratio;
   1309       1.19       cgd 	}
   1310       1.19       cgd }
   1311       1.19       cgd 
   1312       1.19       cgd /*
   1313       1.19       cgd  * Stop profiling on a process.
   1314       1.19       cgd  */
   1315       1.19       cgd void
   1316       1.63   thorpej stopprofclock(struct proc *p)
   1317       1.19       cgd {
   1318       1.19       cgd 
   1319       1.19       cgd 	if (p->p_flag & P_PROFIL) {
   1320       1.19       cgd 		p->p_flag &= ~P_PROFIL;
   1321   1.74.2.9   nathanw 		/*
   1322   1.74.2.9   nathanw 		 * This is only necessary if using the clock as the
   1323   1.74.2.9   nathanw 		 * profiling source.
   1324   1.74.2.9   nathanw 		 */
   1325       1.70  sommerfe 		if (--profprocs == 0 && stathz != 0)
   1326       1.70  sommerfe 			psdiv = 1;
   1327       1.19       cgd 	}
   1328       1.19       cgd }
   1329       1.19       cgd 
   1330   1.74.2.9   nathanw #if defined(PERFCTRS)
   1331   1.74.2.9   nathanw /*
   1332   1.74.2.9   nathanw  * Independent profiling "tick" in case we're using a separate
   1333   1.74.2.9   nathanw  * clock or profiling event source.  Currently, that's just
   1334   1.74.2.9   nathanw  * performance counters--hence the wrapper.
   1335   1.74.2.9   nathanw  */
   1336   1.74.2.9   nathanw void
   1337   1.74.2.9   nathanw proftick(struct clockframe *frame)
   1338   1.74.2.9   nathanw {
   1339   1.74.2.9   nathanw #ifdef GPROF
   1340   1.74.2.9   nathanw         struct gmonparam *g;
   1341   1.74.2.9   nathanw         intptr_t i;
   1342   1.74.2.9   nathanw #endif
   1343   1.74.2.9   nathanw 	struct proc *p;
   1344   1.74.2.9   nathanw 
   1345   1.74.2.9   nathanw 	p = curproc;
   1346   1.74.2.9   nathanw 	if (CLKF_USERMODE(frame)) {
   1347   1.74.2.9   nathanw 		if (p->p_flag & P_PROFIL)
   1348   1.74.2.9   nathanw 			addupc_intr(p, CLKF_PC(frame));
   1349   1.74.2.9   nathanw 	} else {
   1350   1.74.2.9   nathanw #ifdef GPROF
   1351   1.74.2.9   nathanw 		g = &_gmonparam;
   1352   1.74.2.9   nathanw 		if (g->state == GMON_PROF_ON) {
   1353   1.74.2.9   nathanw 			i = CLKF_PC(frame) - g->lowpc;
   1354   1.74.2.9   nathanw 			if (i < g->textsize) {
   1355   1.74.2.9   nathanw 				i /= HISTFRACTION * sizeof(*g->kcount);
   1356   1.74.2.9   nathanw 				g->kcount[i]++;
   1357   1.74.2.9   nathanw 			}
   1358   1.74.2.9   nathanw 		}
   1359   1.74.2.9   nathanw #endif
   1360   1.74.2.9   nathanw #ifdef PROC_PC
   1361   1.74.2.9   nathanw                 if (p && p->p_flag & P_PROFIL)
   1362   1.74.2.9   nathanw                         addupc_intr(p, PROC_PC(p));
   1363   1.74.2.9   nathanw #endif
   1364   1.74.2.9   nathanw 	}
   1365   1.74.2.9   nathanw }
   1366   1.74.2.9   nathanw #endif
   1367   1.74.2.9   nathanw 
   1368       1.19       cgd /*
   1369       1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1370       1.19       cgd  * do process and kernel statistics.
   1371       1.19       cgd  */
   1372       1.19       cgd void
   1373       1.63   thorpej statclock(struct clockframe *frame)
   1374       1.19       cgd {
   1375       1.19       cgd #ifdef GPROF
   1376       1.55  augustss 	struct gmonparam *g;
   1377       1.68       eeh 	intptr_t i;
   1378       1.19       cgd #endif
   1379       1.60   thorpej 	struct cpu_info *ci = curcpu();
   1380       1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1381   1.74.2.1   nathanw 	struct lwp *l;
   1382       1.55  augustss 	struct proc *p;
   1383       1.19       cgd 
   1384       1.70  sommerfe 	/*
   1385       1.70  sommerfe 	 * Notice changes in divisor frequency, and adjust clock
   1386       1.70  sommerfe 	 * frequency accordingly.
   1387       1.70  sommerfe 	 */
   1388       1.70  sommerfe 	if (spc->spc_psdiv != psdiv) {
   1389       1.70  sommerfe 		spc->spc_psdiv = psdiv;
   1390       1.70  sommerfe 		spc->spc_pscnt = psdiv;
   1391       1.70  sommerfe 		if (psdiv == 1) {
   1392       1.70  sommerfe 			setstatclockrate(stathz);
   1393       1.70  sommerfe 		} else {
   1394       1.70  sommerfe 			setstatclockrate(profhz);
   1395       1.70  sommerfe 		}
   1396       1.70  sommerfe 	}
   1397   1.74.2.7   nathanw 	l = curlwp;
   1398   1.74.2.1   nathanw 	p = (l ? l->l_proc : 0);
   1399       1.19       cgd 	if (CLKF_USERMODE(frame)) {
   1400   1.74.2.9   nathanw 		if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
   1401       1.72   mycroft 			addupc_intr(p, CLKF_PC(frame));
   1402       1.70  sommerfe 		if (--spc->spc_pscnt > 0)
   1403       1.19       cgd 			return;
   1404       1.19       cgd 		/*
   1405       1.19       cgd 		 * Came from user mode; CPU was in user state.
   1406       1.19       cgd 		 * If this process is being profiled record the tick.
   1407       1.19       cgd 		 */
   1408       1.19       cgd 		p->p_uticks++;
   1409       1.19       cgd 		if (p->p_nice > NZERO)
   1410       1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
   1411       1.19       cgd 		else
   1412       1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
   1413       1.19       cgd 	} else {
   1414       1.19       cgd #ifdef GPROF
   1415       1.19       cgd 		/*
   1416       1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
   1417       1.19       cgd 		 */
   1418       1.19       cgd 		g = &_gmonparam;
   1419   1.74.2.9   nathanw 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
   1420       1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1421       1.19       cgd 			if (i < g->textsize) {
   1422       1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1423       1.19       cgd 				g->kcount[i]++;
   1424       1.19       cgd 			}
   1425       1.19       cgd 		}
   1426       1.19       cgd #endif
   1427   1.74.2.1   nathanw #ifdef LWP_PC
   1428   1.74.2.9   nathanw 		if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
   1429   1.74.2.1   nathanw 			addupc_intr(p, LWP_PC(l));
   1430       1.72   mycroft #endif
   1431       1.70  sommerfe 		if (--spc->spc_pscnt > 0)
   1432       1.19       cgd 			return;
   1433       1.19       cgd 		/*
   1434       1.19       cgd 		 * Came from kernel mode, so we were:
   1435       1.19       cgd 		 * - handling an interrupt,
   1436       1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1437       1.19       cgd 		 *   user process, or
   1438       1.19       cgd 		 * - spinning in the idle loop.
   1439       1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1440       1.19       cgd 		 * Note that we charge interrupts to the current process,
   1441       1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1442       1.19       cgd 		 * so that we know how much of its real time was spent
   1443       1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1444       1.19       cgd 		 */
   1445       1.19       cgd 		if (CLKF_INTR(frame)) {
   1446       1.19       cgd 			if (p != NULL)
   1447       1.19       cgd 				p->p_iticks++;
   1448       1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
   1449       1.19       cgd 		} else if (p != NULL) {
   1450       1.19       cgd 			p->p_sticks++;
   1451       1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
   1452       1.19       cgd 		} else
   1453       1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
   1454       1.19       cgd 	}
   1455       1.70  sommerfe 	spc->spc_pscnt = psdiv;
   1456       1.19       cgd 
   1457   1.74.2.1   nathanw 	if (l != NULL) {
   1458       1.45      ross 		++p->p_cpticks;
   1459       1.45      ross 		/*
   1460       1.60   thorpej 		 * If no separate schedclock is provided, call it here
   1461       1.60   thorpej 		 * at ~~12-25 Hz, ~~16 Hz is best
   1462       1.45      ross 		 */
   1463       1.60   thorpej 		if (schedhz == 0)
   1464       1.60   thorpej 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
   1465   1.74.2.1   nathanw 				schedclock(l);
   1466       1.19       cgd 	}
   1467       1.19       cgd }
   1468       1.27  jonathan 
   1469       1.27  jonathan 
   1470       1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1471       1.27  jonathan 
   1472       1.27  jonathan /*
   1473       1.27  jonathan  * hardupdate() - local clock update
   1474       1.27  jonathan  *
   1475       1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1476       1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1477       1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1478       1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1479       1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1480       1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1481       1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1482       1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1483       1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1484       1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1485       1.27  jonathan  *
   1486       1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1487       1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1488       1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1489       1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1490       1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1491       1.27  jonathan  *
   1492       1.27  jonathan  * Note: splclock() is in effect.
   1493       1.27  jonathan  */
   1494       1.27  jonathan void
   1495       1.63   thorpej hardupdate(long offset)
   1496       1.27  jonathan {
   1497       1.27  jonathan 	long ltemp, mtemp;
   1498       1.27  jonathan 
   1499       1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1500       1.27  jonathan 		return;
   1501       1.27  jonathan 	ltemp = offset;
   1502       1.27  jonathan #ifdef PPS_SYNC
   1503       1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1504       1.27  jonathan 		ltemp = pps_offset;
   1505       1.27  jonathan #endif /* PPS_SYNC */
   1506       1.27  jonathan 
   1507       1.27  jonathan 	/*
   1508       1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1509       1.27  jonathan 	 */
   1510       1.27  jonathan 	if (ltemp > MAXPHASE)
   1511       1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1512       1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1513       1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1514       1.27  jonathan 	else
   1515       1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1516       1.27  jonathan 
   1517       1.27  jonathan 	/*
   1518       1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1519       1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1520       1.27  jonathan 	 * multiply/divide should be replaced someday.
   1521       1.27  jonathan 	 */
   1522       1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1523       1.27  jonathan 		time_reftime = time.tv_sec;
   1524       1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1525       1.27  jonathan 	time_reftime = time.tv_sec;
   1526       1.27  jonathan 	if (time_status & STA_FLL) {
   1527       1.27  jonathan 		if (mtemp >= MINSEC) {
   1528       1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1529       1.27  jonathan 			    SHIFT_UPDATE));
   1530       1.27  jonathan 			if (ltemp < 0)
   1531       1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1532       1.27  jonathan 			else
   1533       1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1534       1.27  jonathan 		}
   1535       1.27  jonathan 	} else {
   1536       1.27  jonathan 		if (mtemp < MAXSEC) {
   1537       1.27  jonathan 			ltemp *= mtemp;
   1538       1.27  jonathan 			if (ltemp < 0)
   1539       1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1540       1.27  jonathan 				    time_constant + SHIFT_KF -
   1541       1.27  jonathan 				    SHIFT_USEC);
   1542       1.27  jonathan 			else
   1543       1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1544       1.27  jonathan 				    time_constant + SHIFT_KF -
   1545       1.27  jonathan 				    SHIFT_USEC);
   1546       1.27  jonathan 		}
   1547       1.27  jonathan 	}
   1548       1.27  jonathan 	if (time_freq > time_tolerance)
   1549       1.27  jonathan 		time_freq = time_tolerance;
   1550       1.27  jonathan 	else if (time_freq < -time_tolerance)
   1551       1.27  jonathan 		time_freq = -time_tolerance;
   1552       1.27  jonathan }
   1553       1.27  jonathan 
   1554       1.27  jonathan #ifdef PPS_SYNC
   1555       1.27  jonathan /*
   1556       1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1557       1.27  jonathan  *
   1558       1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1559       1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1560       1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1561       1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1562       1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1563       1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1564       1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1565       1.27  jonathan  * value at the on-time PPS signal transition.
   1566       1.27  jonathan  *
   1567       1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1568       1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1569       1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1570       1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1571       1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1572       1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1573       1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1574       1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1575       1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1576       1.27  jonathan  * routine.
   1577       1.27  jonathan  */
   1578       1.27  jonathan void
   1579       1.63   thorpej hardpps(struct timeval *tvp,		/* time at PPS */
   1580       1.63   thorpej 	long usec			/* hardware counter at PPS */)
   1581       1.27  jonathan {
   1582       1.27  jonathan 	long u_usec, v_usec, bigtick;
   1583       1.27  jonathan 	long cal_sec, cal_usec;
   1584       1.27  jonathan 
   1585       1.27  jonathan 	/*
   1586       1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1587       1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1588       1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1589       1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1590       1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1591       1.27  jonathan 	 */
   1592       1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1593       1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1594       1.27  jonathan 	pps_valid = 0;
   1595       1.27  jonathan 	u_usec = -tvp->tv_usec;
   1596       1.27  jonathan 	if (u_usec < -500000)
   1597       1.27  jonathan 		u_usec += 1000000;
   1598       1.27  jonathan 	v_usec = pps_offset - u_usec;
   1599       1.27  jonathan 	if (v_usec < 0)
   1600       1.27  jonathan 		v_usec = -v_usec;
   1601       1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1602       1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1603       1.27  jonathan 			pps_glitch = 0;
   1604       1.27  jonathan 			pps_tf[2] = u_usec;
   1605       1.27  jonathan 			pps_tf[1] = u_usec;
   1606       1.27  jonathan 		} else {
   1607       1.27  jonathan 			pps_glitch++;
   1608       1.27  jonathan 			u_usec = pps_offset;
   1609       1.27  jonathan 		}
   1610       1.27  jonathan 	} else
   1611       1.27  jonathan 		pps_glitch = 0;
   1612       1.27  jonathan 
   1613       1.27  jonathan 	/*
   1614       1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1615       1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1616       1.27  jonathan 	 * difference between the other two samples becomes the time
   1617       1.27  jonathan 	 * dispersion (jitter) estimate.
   1618       1.27  jonathan 	 */
   1619       1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1620       1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1621       1.27  jonathan 	pps_tf[0] = u_usec;
   1622       1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1623       1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1624       1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1625       1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1626       1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1627       1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1628       1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1629       1.27  jonathan 		} else {
   1630       1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1631       1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1632       1.27  jonathan 		}
   1633       1.27  jonathan 	} else {
   1634       1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1635       1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1636       1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1637       1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1638       1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1639       1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1640       1.27  jonathan 		} else {
   1641       1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1642       1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1643       1.27  jonathan 		}
   1644       1.27  jonathan 	}
   1645       1.27  jonathan 	if (v_usec > MAXTIME)
   1646       1.27  jonathan 		pps_jitcnt++;
   1647       1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1648       1.27  jonathan 	if (v_usec < 0)
   1649       1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1650       1.27  jonathan 	else
   1651       1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1652       1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1653       1.27  jonathan 		time_status |= STA_PPSJITTER;
   1654       1.27  jonathan 
   1655       1.27  jonathan 	/*
   1656       1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1657       1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1658       1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1659       1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1660       1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1661       1.27  jonathan 	 * exceed the value of tick when using long calibration
   1662       1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1663       1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1664       1.27  jonathan 	 * the values returned and used here are correct.
   1665       1.27  jonathan 	 */
   1666       1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1667       1.27  jonathan 	pps_usec -= pps_freq;
   1668       1.27  jonathan 	if (pps_usec >= bigtick)
   1669       1.27  jonathan 		pps_usec -= bigtick;
   1670       1.27  jonathan 	if (pps_usec < 0)
   1671       1.27  jonathan 		pps_usec += bigtick;
   1672       1.27  jonathan 	pps_time.tv_sec++;
   1673       1.27  jonathan 	pps_count++;
   1674       1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1675       1.27  jonathan 		return;
   1676       1.27  jonathan 	pps_count = 0;
   1677       1.27  jonathan 	pps_calcnt++;
   1678       1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1679       1.27  jonathan 	v_usec = pps_usec - u_usec;
   1680       1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1681       1.27  jonathan 		v_usec -= bigtick;
   1682       1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1683       1.27  jonathan 		v_usec += bigtick;
   1684       1.27  jonathan 	if (v_usec < 0)
   1685       1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1686       1.27  jonathan 	else
   1687       1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1688       1.27  jonathan 	pps_usec = u_usec;
   1689       1.27  jonathan 	cal_sec = tvp->tv_sec;
   1690       1.27  jonathan 	cal_usec = tvp->tv_usec;
   1691       1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1692       1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1693       1.27  jonathan 	if (cal_usec < 0) {
   1694       1.27  jonathan 		cal_usec += 1000000;
   1695       1.27  jonathan 		cal_sec--;
   1696       1.27  jonathan 	}
   1697       1.27  jonathan 	pps_time = *tvp;
   1698       1.27  jonathan 
   1699       1.27  jonathan 	/*
   1700       1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1701       1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1702       1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1703       1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1704       1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1705       1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1706       1.27  jonathan 	 */
   1707       1.27  jonathan 	u_usec = (long)tick << 1;
   1708       1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1709       1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1710       1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1711       1.27  jonathan 		pps_errcnt++;
   1712       1.27  jonathan 		pps_shift = PPS_SHIFT;
   1713       1.27  jonathan 		pps_intcnt = 0;
   1714       1.27  jonathan 		time_status |= STA_PPSERROR;
   1715       1.27  jonathan 		return;
   1716       1.27  jonathan 	}
   1717       1.27  jonathan 
   1718       1.27  jonathan 	/*
   1719       1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1720       1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1721       1.27  jonathan 	 * estimate; the difference between the other two samples
   1722       1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1723       1.27  jonathan 	 */
   1724       1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1725       1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1726       1.27  jonathan 	pps_ff[0] = v_usec;
   1727       1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1728       1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1729       1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1730       1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1731       1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1732       1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1733       1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1734       1.27  jonathan 		} else {
   1735       1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1736       1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1737       1.27  jonathan 		}
   1738       1.27  jonathan 	} else {
   1739       1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1740       1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1741       1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1742       1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1743       1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1744       1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1745       1.27  jonathan 		} else {
   1746       1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1747       1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1748       1.27  jonathan 		}
   1749       1.27  jonathan 	}
   1750       1.27  jonathan 
   1751       1.27  jonathan 	/*
   1752       1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1753       1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1754       1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1755       1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1756       1.27  jonathan 	 */
   1757       1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1758       1.27  jonathan 	if (v_usec < 0)
   1759       1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1760       1.27  jonathan 	else
   1761       1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1762       1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1763       1.27  jonathan 		pps_stbcnt++;
   1764       1.27  jonathan 		time_status |= STA_PPSWANDER;
   1765       1.27  jonathan 		return;
   1766       1.27  jonathan 	}
   1767       1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1768       1.27  jonathan 		if (u_usec < 0) {
   1769       1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1770       1.27  jonathan 			if (pps_freq < -time_tolerance)
   1771       1.27  jonathan 				pps_freq = -time_tolerance;
   1772       1.27  jonathan 			u_usec = -u_usec;
   1773       1.27  jonathan 		} else {
   1774       1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1775       1.27  jonathan 			if (pps_freq > time_tolerance)
   1776       1.27  jonathan 				pps_freq = time_tolerance;
   1777       1.27  jonathan 		}
   1778       1.27  jonathan 	}
   1779       1.27  jonathan 
   1780       1.27  jonathan 	/*
   1781       1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1782       1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1783       1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1784       1.27  jonathan 	 * intervals, double the interval.
   1785       1.27  jonathan 	 */
   1786       1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1787       1.27  jonathan 		pps_intcnt = 0;
   1788       1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1789       1.27  jonathan 			pps_shift--;
   1790       1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1791       1.27  jonathan 		pps_intcnt = 0;
   1792       1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1793       1.27  jonathan 			pps_shift++;
   1794       1.27  jonathan 	} else
   1795       1.27  jonathan 		pps_intcnt++;
   1796       1.27  jonathan }
   1797       1.27  jonathan #endif /* PPS_SYNC */
   1798       1.27  jonathan #endif /* NTP  */
   1799       1.27  jonathan 
   1800       1.19       cgd /*
   1801       1.19       cgd  * Return information about system clocks.
   1802       1.19       cgd  */
   1803       1.25  christos int
   1804       1.63   thorpej sysctl_clockrate(void *where, size_t *sizep)
   1805       1.19       cgd {
   1806       1.19       cgd 	struct clockinfo clkinfo;
   1807       1.19       cgd 
   1808       1.19       cgd 	/*
   1809       1.19       cgd 	 * Construct clockinfo structure.
   1810       1.19       cgd 	 */
   1811       1.20   mycroft 	clkinfo.tick = tick;
   1812       1.20   mycroft 	clkinfo.tickadj = tickadj;
   1813       1.19       cgd 	clkinfo.hz = hz;
   1814       1.19       cgd 	clkinfo.profhz = profhz;
   1815       1.19       cgd 	clkinfo.stathz = stathz ? stathz : hz;
   1816       1.19       cgd 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1817       1.19       cgd }
   1818