kern_clock.c revision 1.87 1 1.87 agc /* $NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $ */
2 1.52 thorpej
3 1.52 thorpej /*-
4 1.52 thorpej * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 1.52 thorpej * All rights reserved.
6 1.52 thorpej *
7 1.52 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.52 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.52 thorpej * NASA Ames Research Center.
10 1.52 thorpej *
11 1.52 thorpej * Redistribution and use in source and binary forms, with or without
12 1.52 thorpej * modification, are permitted provided that the following conditions
13 1.52 thorpej * are met:
14 1.52 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.52 thorpej * notice, this list of conditions and the following disclaimer.
16 1.52 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.52 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.52 thorpej * documentation and/or other materials provided with the distribution.
19 1.52 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.52 thorpej * must display the following acknowledgement:
21 1.52 thorpej * This product includes software developed by the NetBSD
22 1.52 thorpej * Foundation, Inc. and its contributors.
23 1.52 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.52 thorpej * contributors may be used to endorse or promote products derived
25 1.52 thorpej * from this software without specific prior written permission.
26 1.52 thorpej *
27 1.52 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.52 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.52 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.52 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.52 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.52 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.52 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.52 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.52 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.52 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.52 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.52 thorpej */
39 1.19 cgd
40 1.19 cgd /*-
41 1.19 cgd * Copyright (c) 1982, 1986, 1991, 1993
42 1.19 cgd * The Regents of the University of California. All rights reserved.
43 1.19 cgd * (c) UNIX System Laboratories, Inc.
44 1.19 cgd * All or some portions of this file are derived from material licensed
45 1.19 cgd * to the University of California by American Telephone and Telegraph
46 1.19 cgd * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 1.19 cgd * the permission of UNIX System Laboratories, Inc.
48 1.19 cgd *
49 1.19 cgd * Redistribution and use in source and binary forms, with or without
50 1.19 cgd * modification, are permitted provided that the following conditions
51 1.19 cgd * are met:
52 1.19 cgd * 1. Redistributions of source code must retain the above copyright
53 1.19 cgd * notice, this list of conditions and the following disclaimer.
54 1.19 cgd * 2. Redistributions in binary form must reproduce the above copyright
55 1.19 cgd * notice, this list of conditions and the following disclaimer in the
56 1.19 cgd * documentation and/or other materials provided with the distribution.
57 1.87 agc * 3. Neither the name of the University nor the names of its contributors
58 1.19 cgd * may be used to endorse or promote products derived from this software
59 1.19 cgd * without specific prior written permission.
60 1.19 cgd *
61 1.19 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 1.19 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 1.19 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 1.19 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 1.19 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 1.19 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 1.19 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 1.19 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 1.19 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 1.19 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 1.19 cgd * SUCH DAMAGE.
72 1.19 cgd *
73 1.19 cgd * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
74 1.19 cgd */
75 1.78 lukem
76 1.78 lukem #include <sys/cdefs.h>
77 1.87 agc __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $");
78 1.44 jonathan
79 1.44 jonathan #include "opt_ntp.h"
80 1.86 martin #include "opt_multiprocessor.h"
81 1.80 briggs #include "opt_perfctrs.h"
82 1.19 cgd
83 1.19 cgd #include <sys/param.h>
84 1.19 cgd #include <sys/systm.h>
85 1.19 cgd #include <sys/callout.h>
86 1.19 cgd #include <sys/kernel.h>
87 1.19 cgd #include <sys/proc.h>
88 1.19 cgd #include <sys/resourcevar.h>
89 1.25 christos #include <sys/signalvar.h>
90 1.26 christos #include <sys/sysctl.h>
91 1.27 jonathan #include <sys/timex.h>
92 1.45 ross #include <sys/sched.h>
93 1.82 thorpej #include <sys/time.h>
94 1.19 cgd
95 1.19 cgd #include <machine/cpu.h>
96 1.74 thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
97 1.74 thorpej #include <machine/intr.h>
98 1.74 thorpej #endif
99 1.25 christos
100 1.19 cgd #ifdef GPROF
101 1.19 cgd #include <sys/gmon.h>
102 1.19 cgd #endif
103 1.19 cgd
104 1.19 cgd /*
105 1.19 cgd * Clock handling routines.
106 1.19 cgd *
107 1.19 cgd * This code is written to operate with two timers that run independently of
108 1.19 cgd * each other. The main clock, running hz times per second, is used to keep
109 1.19 cgd * track of real time. The second timer handles kernel and user profiling,
110 1.19 cgd * and does resource use estimation. If the second timer is programmable,
111 1.19 cgd * it is randomized to avoid aliasing between the two clocks. For example,
112 1.19 cgd * the randomization prevents an adversary from always giving up the cpu
113 1.19 cgd * just before its quantum expires. Otherwise, it would never accumulate
114 1.19 cgd * cpu ticks. The mean frequency of the second timer is stathz.
115 1.19 cgd *
116 1.19 cgd * If no second timer exists, stathz will be zero; in this case we drive
117 1.19 cgd * profiling and statistics off the main clock. This WILL NOT be accurate;
118 1.19 cgd * do not do it unless absolutely necessary.
119 1.19 cgd *
120 1.19 cgd * The statistics clock may (or may not) be run at a higher rate while
121 1.19 cgd * profiling. This profile clock runs at profhz. We require that profhz
122 1.19 cgd * be an integral multiple of stathz.
123 1.19 cgd *
124 1.19 cgd * If the statistics clock is running fast, it must be divided by the ratio
125 1.19 cgd * profhz/stathz for statistics. (For profiling, every tick counts.)
126 1.19 cgd */
127 1.19 cgd
128 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
129 1.27 jonathan /*
130 1.27 jonathan * Phase/frequency-lock loop (PLL/FLL) definitions
131 1.27 jonathan *
132 1.27 jonathan * The following variables are read and set by the ntp_adjtime() system
133 1.27 jonathan * call.
134 1.27 jonathan *
135 1.27 jonathan * time_state shows the state of the system clock, with values defined
136 1.27 jonathan * in the timex.h header file.
137 1.27 jonathan *
138 1.27 jonathan * time_status shows the status of the system clock, with bits defined
139 1.27 jonathan * in the timex.h header file.
140 1.27 jonathan *
141 1.27 jonathan * time_offset is used by the PLL/FLL to adjust the system time in small
142 1.27 jonathan * increments.
143 1.27 jonathan *
144 1.27 jonathan * time_constant determines the bandwidth or "stiffness" of the PLL.
145 1.27 jonathan *
146 1.27 jonathan * time_tolerance determines maximum frequency error or tolerance of the
147 1.27 jonathan * CPU clock oscillator and is a property of the architecture; however,
148 1.27 jonathan * in principle it could change as result of the presence of external
149 1.27 jonathan * discipline signals, for instance.
150 1.27 jonathan *
151 1.27 jonathan * time_precision is usually equal to the kernel tick variable; however,
152 1.27 jonathan * in cases where a precision clock counter or external clock is
153 1.27 jonathan * available, the resolution can be much less than this and depend on
154 1.27 jonathan * whether the external clock is working or not.
155 1.27 jonathan *
156 1.27 jonathan * time_maxerror is initialized by a ntp_adjtime() call and increased by
157 1.27 jonathan * the kernel once each second to reflect the maximum error bound
158 1.27 jonathan * growth.
159 1.27 jonathan *
160 1.27 jonathan * time_esterror is set and read by the ntp_adjtime() call, but
161 1.27 jonathan * otherwise not used by the kernel.
162 1.27 jonathan */
163 1.27 jonathan int time_state = TIME_OK; /* clock state */
164 1.27 jonathan int time_status = STA_UNSYNC; /* clock status bits */
165 1.27 jonathan long time_offset = 0; /* time offset (us) */
166 1.27 jonathan long time_constant = 0; /* pll time constant */
167 1.27 jonathan long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
168 1.27 jonathan long time_precision = 1; /* clock precision (us) */
169 1.27 jonathan long time_maxerror = MAXPHASE; /* maximum error (us) */
170 1.27 jonathan long time_esterror = MAXPHASE; /* estimated error (us) */
171 1.27 jonathan
172 1.27 jonathan /*
173 1.27 jonathan * The following variables establish the state of the PLL/FLL and the
174 1.27 jonathan * residual time and frequency offset of the local clock. The scale
175 1.27 jonathan * factors are defined in the timex.h header file.
176 1.27 jonathan *
177 1.27 jonathan * time_phase and time_freq are the phase increment and the frequency
178 1.27 jonathan * increment, respectively, of the kernel time variable.
179 1.27 jonathan *
180 1.27 jonathan * time_freq is set via ntp_adjtime() from a value stored in a file when
181 1.27 jonathan * the synchronization daemon is first started. Its value is retrieved
182 1.27 jonathan * via ntp_adjtime() and written to the file about once per hour by the
183 1.27 jonathan * daemon.
184 1.27 jonathan *
185 1.27 jonathan * time_adj is the adjustment added to the value of tick at each timer
186 1.27 jonathan * interrupt and is recomputed from time_phase and time_freq at each
187 1.27 jonathan * seconds rollover.
188 1.27 jonathan *
189 1.27 jonathan * time_reftime is the second's portion of the system time at the last
190 1.27 jonathan * call to ntp_adjtime(). It is used to adjust the time_freq variable
191 1.27 jonathan * and to increase the time_maxerror as the time since last update
192 1.27 jonathan * increases.
193 1.27 jonathan */
194 1.27 jonathan long time_phase = 0; /* phase offset (scaled us) */
195 1.27 jonathan long time_freq = 0; /* frequency offset (scaled ppm) */
196 1.27 jonathan long time_adj = 0; /* tick adjust (scaled 1 / hz) */
197 1.27 jonathan long time_reftime = 0; /* time at last adjustment (s) */
198 1.27 jonathan
199 1.27 jonathan #ifdef PPS_SYNC
200 1.27 jonathan /*
201 1.27 jonathan * The following variables are used only if the kernel PPS discipline
202 1.27 jonathan * code is configured (PPS_SYNC). The scale factors are defined in the
203 1.27 jonathan * timex.h header file.
204 1.27 jonathan *
205 1.27 jonathan * pps_time contains the time at each calibration interval, as read by
206 1.27 jonathan * microtime(). pps_count counts the seconds of the calibration
207 1.27 jonathan * interval, the duration of which is nominally pps_shift in powers of
208 1.27 jonathan * two.
209 1.27 jonathan *
210 1.27 jonathan * pps_offset is the time offset produced by the time median filter
211 1.27 jonathan * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212 1.27 jonathan * this filter.
213 1.27 jonathan *
214 1.27 jonathan * pps_freq is the frequency offset produced by the frequency median
215 1.27 jonathan * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216 1.27 jonathan * by this filter.
217 1.27 jonathan *
218 1.27 jonathan * pps_usec is latched from a high resolution counter or external clock
219 1.27 jonathan * at pps_time. Here we want the hardware counter contents only, not the
220 1.27 jonathan * contents plus the time_tv.usec as usual.
221 1.27 jonathan *
222 1.27 jonathan * pps_valid counts the number of seconds since the last PPS update. It
223 1.27 jonathan * is used as a watchdog timer to disable the PPS discipline should the
224 1.27 jonathan * PPS signal be lost.
225 1.27 jonathan *
226 1.27 jonathan * pps_glitch counts the number of seconds since the beginning of an
227 1.27 jonathan * offset burst more than tick/2 from current nominal offset. It is used
228 1.27 jonathan * mainly to suppress error bursts due to priority conflicts between the
229 1.27 jonathan * PPS interrupt and timer interrupt.
230 1.27 jonathan *
231 1.27 jonathan * pps_intcnt counts the calibration intervals for use in the interval-
232 1.27 jonathan * adaptation algorithm. It's just too complicated for words.
233 1.27 jonathan */
234 1.27 jonathan struct timeval pps_time; /* kernel time at last interval */
235 1.27 jonathan long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
236 1.27 jonathan long pps_offset = 0; /* pps time offset (us) */
237 1.27 jonathan long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
238 1.27 jonathan long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
239 1.27 jonathan long pps_freq = 0; /* frequency offset (scaled ppm) */
240 1.27 jonathan long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
241 1.27 jonathan long pps_usec = 0; /* microsec counter at last interval */
242 1.27 jonathan long pps_valid = PPS_VALID; /* pps signal watchdog counter */
243 1.27 jonathan int pps_glitch = 0; /* pps signal glitch counter */
244 1.27 jonathan int pps_count = 0; /* calibration interval counter (s) */
245 1.27 jonathan int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
246 1.27 jonathan int pps_intcnt = 0; /* intervals at current duration */
247 1.27 jonathan
248 1.27 jonathan /*
249 1.27 jonathan * PPS signal quality monitors
250 1.27 jonathan *
251 1.27 jonathan * pps_jitcnt counts the seconds that have been discarded because the
252 1.27 jonathan * jitter measured by the time median filter exceeds the limit MAXTIME
253 1.27 jonathan * (100 us).
254 1.27 jonathan *
255 1.27 jonathan * pps_calcnt counts the frequency calibration intervals, which are
256 1.27 jonathan * variable from 4 s to 256 s.
257 1.27 jonathan *
258 1.27 jonathan * pps_errcnt counts the calibration intervals which have been discarded
259 1.27 jonathan * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
260 1.27 jonathan * calibration interval jitter exceeds two ticks.
261 1.27 jonathan *
262 1.27 jonathan * pps_stbcnt counts the calibration intervals that have been discarded
263 1.27 jonathan * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
264 1.27 jonathan */
265 1.27 jonathan long pps_jitcnt = 0; /* jitter limit exceeded */
266 1.27 jonathan long pps_calcnt = 0; /* calibration intervals */
267 1.27 jonathan long pps_errcnt = 0; /* calibration errors */
268 1.27 jonathan long pps_stbcnt = 0; /* stability limit exceeded */
269 1.27 jonathan #endif /* PPS_SYNC */
270 1.27 jonathan
271 1.27 jonathan #ifdef EXT_CLOCK
272 1.27 jonathan /*
273 1.27 jonathan * External clock definitions
274 1.27 jonathan *
275 1.27 jonathan * The following definitions and declarations are used only if an
276 1.27 jonathan * external clock is configured on the system.
277 1.27 jonathan */
278 1.27 jonathan #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
279 1.27 jonathan
280 1.27 jonathan /*
281 1.27 jonathan * The clock_count variable is set to CLOCK_INTERVAL at each PPS
282 1.27 jonathan * interrupt and decremented once each second.
283 1.27 jonathan */
284 1.27 jonathan int clock_count = 0; /* CPU clock counter */
285 1.27 jonathan
286 1.27 jonathan #ifdef HIGHBALL
287 1.27 jonathan /*
288 1.27 jonathan * The clock_offset and clock_cpu variables are used by the HIGHBALL
289 1.27 jonathan * interface. The clock_offset variable defines the offset between
290 1.27 jonathan * system time and the HIGBALL counters. The clock_cpu variable contains
291 1.27 jonathan * the offset between the system clock and the HIGHBALL clock for use in
292 1.27 jonathan * disciplining the kernel time variable.
293 1.27 jonathan */
294 1.27 jonathan extern struct timeval clock_offset; /* Highball clock offset */
295 1.27 jonathan long clock_cpu = 0; /* CPU clock adjust */
296 1.27 jonathan #endif /* HIGHBALL */
297 1.27 jonathan #endif /* EXT_CLOCK */
298 1.27 jonathan #endif /* NTP */
299 1.27 jonathan
300 1.27 jonathan
301 1.19 cgd /*
302 1.19 cgd * Bump a timeval by a small number of usec's.
303 1.19 cgd */
304 1.19 cgd #define BUMPTIME(t, usec) { \
305 1.55 augustss volatile struct timeval *tp = (t); \
306 1.55 augustss long us; \
307 1.19 cgd \
308 1.19 cgd tp->tv_usec = us = tp->tv_usec + (usec); \
309 1.19 cgd if (us >= 1000000) { \
310 1.19 cgd tp->tv_usec = us - 1000000; \
311 1.19 cgd tp->tv_sec++; \
312 1.19 cgd } \
313 1.19 cgd }
314 1.19 cgd
315 1.19 cgd int stathz;
316 1.19 cgd int profhz;
317 1.80 briggs int profsrc;
318 1.75 simonb int schedhz;
319 1.19 cgd int profprocs;
320 1.84 thorpej int hardclock_ticks;
321 1.70 sommerfe static int psdiv; /* prof => stat divider */
322 1.22 cgd int psratio; /* ratio: prof / stat */
323 1.22 cgd int tickfix, tickfixinterval; /* used if tick not really integral */
324 1.34 briggs #ifndef NTP
325 1.39 cgd static int tickfixcnt; /* accumulated fractional error */
326 1.34 briggs #else
327 1.27 jonathan int fixtick; /* used by NTP for same */
328 1.31 mycroft int shifthz;
329 1.31 mycroft #endif
330 1.19 cgd
331 1.48 christos /*
332 1.48 christos * We might want ldd to load the both words from time at once.
333 1.48 christos * To succeed we need to be quadword aligned.
334 1.48 christos * The sparc already does that, and that it has worked so far is a fluke.
335 1.48 christos */
336 1.48 christos volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
337 1.19 cgd volatile struct timeval mono_time;
338 1.19 cgd
339 1.73 thorpej void *softclock_si;
340 1.73 thorpej
341 1.66 thorpej /*
342 1.19 cgd * Initialize clock frequencies and start both clocks running.
343 1.19 cgd */
344 1.19 cgd void
345 1.63 thorpej initclocks(void)
346 1.19 cgd {
347 1.55 augustss int i;
348 1.19 cgd
349 1.73 thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
350 1.73 thorpej softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
351 1.73 thorpej if (softclock_si == NULL)
352 1.73 thorpej panic("initclocks: unable to register softclock intr");
353 1.73 thorpej #endif
354 1.73 thorpej
355 1.19 cgd /*
356 1.19 cgd * Set divisors to 1 (normal case) and let the machine-specific
357 1.19 cgd * code do its bit.
358 1.19 cgd */
359 1.70 sommerfe psdiv = 1;
360 1.19 cgd cpu_initclocks();
361 1.19 cgd
362 1.19 cgd /*
363 1.70 sommerfe * Compute profhz/stathz/rrticks, and fix profhz if needed.
364 1.19 cgd */
365 1.19 cgd i = stathz ? stathz : hz;
366 1.19 cgd if (profhz == 0)
367 1.19 cgd profhz = i;
368 1.19 cgd psratio = profhz / i;
369 1.70 sommerfe rrticks = hz / 10;
370 1.31 mycroft
371 1.31 mycroft #ifdef NTP
372 1.31 mycroft switch (hz) {
373 1.57 mycroft case 1:
374 1.57 mycroft shifthz = SHIFT_SCALE - 0;
375 1.57 mycroft break;
376 1.57 mycroft case 2:
377 1.57 mycroft shifthz = SHIFT_SCALE - 1;
378 1.57 mycroft break;
379 1.57 mycroft case 4:
380 1.57 mycroft shifthz = SHIFT_SCALE - 2;
381 1.57 mycroft break;
382 1.57 mycroft case 8:
383 1.57 mycroft shifthz = SHIFT_SCALE - 3;
384 1.57 mycroft break;
385 1.57 mycroft case 16:
386 1.57 mycroft shifthz = SHIFT_SCALE - 4;
387 1.57 mycroft break;
388 1.57 mycroft case 32:
389 1.57 mycroft shifthz = SHIFT_SCALE - 5;
390 1.57 mycroft break;
391 1.31 mycroft case 60:
392 1.31 mycroft case 64:
393 1.31 mycroft shifthz = SHIFT_SCALE - 6;
394 1.31 mycroft break;
395 1.31 mycroft case 96:
396 1.31 mycroft case 100:
397 1.31 mycroft case 128:
398 1.31 mycroft shifthz = SHIFT_SCALE - 7;
399 1.31 mycroft break;
400 1.31 mycroft case 256:
401 1.31 mycroft shifthz = SHIFT_SCALE - 8;
402 1.41 tls break;
403 1.41 tls case 512:
404 1.41 tls shifthz = SHIFT_SCALE - 9;
405 1.31 mycroft break;
406 1.43 ross case 1000:
407 1.31 mycroft case 1024:
408 1.31 mycroft shifthz = SHIFT_SCALE - 10;
409 1.31 mycroft break;
410 1.57 mycroft case 1200:
411 1.57 mycroft case 2048:
412 1.57 mycroft shifthz = SHIFT_SCALE - 11;
413 1.57 mycroft break;
414 1.57 mycroft case 4096:
415 1.57 mycroft shifthz = SHIFT_SCALE - 12;
416 1.57 mycroft break;
417 1.57 mycroft case 8192:
418 1.57 mycroft shifthz = SHIFT_SCALE - 13;
419 1.57 mycroft break;
420 1.57 mycroft case 16384:
421 1.57 mycroft shifthz = SHIFT_SCALE - 14;
422 1.57 mycroft break;
423 1.57 mycroft case 32768:
424 1.57 mycroft shifthz = SHIFT_SCALE - 15;
425 1.57 mycroft break;
426 1.57 mycroft case 65536:
427 1.57 mycroft shifthz = SHIFT_SCALE - 16;
428 1.57 mycroft break;
429 1.31 mycroft default:
430 1.31 mycroft panic("weird hz");
431 1.50 sommerfe }
432 1.50 sommerfe if (fixtick == 0) {
433 1.52 thorpej /*
434 1.52 thorpej * Give MD code a chance to set this to a better
435 1.52 thorpej * value; but, if it doesn't, we should.
436 1.52 thorpej */
437 1.50 sommerfe fixtick = (1000000 - (hz*tick));
438 1.31 mycroft }
439 1.31 mycroft #endif
440 1.19 cgd }
441 1.19 cgd
442 1.19 cgd /*
443 1.19 cgd * The real-time timer, interrupting hz times per second.
444 1.19 cgd */
445 1.19 cgd void
446 1.63 thorpej hardclock(struct clockframe *frame)
447 1.19 cgd {
448 1.82 thorpej struct lwp *l;
449 1.55 augustss struct proc *p;
450 1.55 augustss int delta;
451 1.19 cgd extern int tickdelta;
452 1.19 cgd extern long timedelta;
453 1.70 sommerfe struct cpu_info *ci = curcpu();
454 1.82 thorpej struct ptimer *pt;
455 1.30 mycroft #ifdef NTP
456 1.55 augustss int time_update;
457 1.55 augustss int ltemp;
458 1.29 christos #endif
459 1.19 cgd
460 1.82 thorpej l = curlwp;
461 1.82 thorpej if (l) {
462 1.82 thorpej p = l->l_proc;
463 1.19 cgd /*
464 1.19 cgd * Run current process's virtual and profile time, as needed.
465 1.19 cgd */
466 1.82 thorpej if (CLKF_USERMODE(frame) && p->p_timers &&
467 1.82 thorpej (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
468 1.82 thorpej if (itimerdecr(pt, tick) == 0)
469 1.82 thorpej itimerfire(pt);
470 1.82 thorpej if (p->p_timers &&
471 1.82 thorpej (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
472 1.82 thorpej if (itimerdecr(pt, tick) == 0)
473 1.82 thorpej itimerfire(pt);
474 1.19 cgd }
475 1.19 cgd
476 1.19 cgd /*
477 1.19 cgd * If no separate statistics clock is available, run it from here.
478 1.19 cgd */
479 1.19 cgd if (stathz == 0)
480 1.19 cgd statclock(frame);
481 1.70 sommerfe if ((--ci->ci_schedstate.spc_rrticks) <= 0)
482 1.71 sommerfe roundrobin(ci);
483 1.70 sommerfe
484 1.60 thorpej #if defined(MULTIPROCESSOR)
485 1.60 thorpej /*
486 1.60 thorpej * If we are not the primary CPU, we're not allowed to do
487 1.60 thorpej * any more work.
488 1.60 thorpej */
489 1.70 sommerfe if (CPU_IS_PRIMARY(ci) == 0)
490 1.60 thorpej return;
491 1.60 thorpej #endif
492 1.60 thorpej
493 1.19 cgd /*
494 1.22 cgd * Increment the time-of-day. The increment is normally just
495 1.22 cgd * ``tick''. If the machine is one which has a clock frequency
496 1.22 cgd * such that ``hz'' would not divide the second evenly into
497 1.22 cgd * milliseconds, a periodic adjustment must be applied. Finally,
498 1.22 cgd * if we are still adjusting the time (see adjtime()),
499 1.22 cgd * ``tickdelta'' may also be added in.
500 1.19 cgd */
501 1.84 thorpej hardclock_ticks++;
502 1.22 cgd delta = tick;
503 1.27 jonathan
504 1.27 jonathan #ifndef NTP
505 1.22 cgd if (tickfix) {
506 1.39 cgd tickfixcnt += tickfix;
507 1.24 cgd if (tickfixcnt >= tickfixinterval) {
508 1.39 cgd delta++;
509 1.39 cgd tickfixcnt -= tickfixinterval;
510 1.22 cgd }
511 1.22 cgd }
512 1.27 jonathan #endif /* !NTP */
513 1.27 jonathan /* Imprecise 4bsd adjtime() handling */
514 1.22 cgd if (timedelta != 0) {
515 1.38 cgd delta += tickdelta;
516 1.19 cgd timedelta -= tickdelta;
517 1.19 cgd }
518 1.27 jonathan
519 1.27 jonathan #ifdef notyet
520 1.27 jonathan microset();
521 1.27 jonathan #endif
522 1.27 jonathan
523 1.27 jonathan #ifndef NTP
524 1.27 jonathan BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
525 1.27 jonathan #endif
526 1.19 cgd BUMPTIME(&mono_time, delta);
527 1.27 jonathan
528 1.31 mycroft #ifdef NTP
529 1.30 mycroft time_update = delta;
530 1.27 jonathan
531 1.27 jonathan /*
532 1.27 jonathan * Compute the phase adjustment. If the low-order bits
533 1.27 jonathan * (time_phase) of the update overflow, bump the high-order bits
534 1.27 jonathan * (time_update).
535 1.27 jonathan */
536 1.27 jonathan time_phase += time_adj;
537 1.27 jonathan if (time_phase <= -FINEUSEC) {
538 1.27 jonathan ltemp = -time_phase >> SHIFT_SCALE;
539 1.27 jonathan time_phase += ltemp << SHIFT_SCALE;
540 1.27 jonathan time_update -= ltemp;
541 1.31 mycroft } else if (time_phase >= FINEUSEC) {
542 1.27 jonathan ltemp = time_phase >> SHIFT_SCALE;
543 1.27 jonathan time_phase -= ltemp << SHIFT_SCALE;
544 1.27 jonathan time_update += ltemp;
545 1.27 jonathan }
546 1.27 jonathan
547 1.27 jonathan #ifdef HIGHBALL
548 1.27 jonathan /*
549 1.27 jonathan * If the HIGHBALL board is installed, we need to adjust the
550 1.27 jonathan * external clock offset in order to close the hardware feedback
551 1.27 jonathan * loop. This will adjust the external clock phase and frequency
552 1.27 jonathan * in small amounts. The additional phase noise and frequency
553 1.27 jonathan * wander this causes should be minimal. We also need to
554 1.27 jonathan * discipline the kernel time variable, since the PLL is used to
555 1.27 jonathan * discipline the external clock. If the Highball board is not
556 1.27 jonathan * present, we discipline kernel time with the PLL as usual. We
557 1.27 jonathan * assume that the external clock phase adjustment (time_update)
558 1.27 jonathan * and kernel phase adjustment (clock_cpu) are less than the
559 1.27 jonathan * value of tick.
560 1.27 jonathan */
561 1.27 jonathan clock_offset.tv_usec += time_update;
562 1.27 jonathan if (clock_offset.tv_usec >= 1000000) {
563 1.27 jonathan clock_offset.tv_sec++;
564 1.27 jonathan clock_offset.tv_usec -= 1000000;
565 1.27 jonathan }
566 1.27 jonathan if (clock_offset.tv_usec < 0) {
567 1.27 jonathan clock_offset.tv_sec--;
568 1.27 jonathan clock_offset.tv_usec += 1000000;
569 1.27 jonathan }
570 1.27 jonathan time.tv_usec += clock_cpu;
571 1.27 jonathan clock_cpu = 0;
572 1.27 jonathan #else
573 1.27 jonathan time.tv_usec += time_update;
574 1.27 jonathan #endif /* HIGHBALL */
575 1.27 jonathan
576 1.27 jonathan /*
577 1.27 jonathan * On rollover of the second the phase adjustment to be used for
578 1.27 jonathan * the next second is calculated. Also, the maximum error is
579 1.27 jonathan * increased by the tolerance. If the PPS frequency discipline
580 1.27 jonathan * code is present, the phase is increased to compensate for the
581 1.27 jonathan * CPU clock oscillator frequency error.
582 1.27 jonathan *
583 1.27 jonathan * On a 32-bit machine and given parameters in the timex.h
584 1.27 jonathan * header file, the maximum phase adjustment is +-512 ms and
585 1.27 jonathan * maximum frequency offset is a tad less than) +-512 ppm. On a
586 1.27 jonathan * 64-bit machine, you shouldn't need to ask.
587 1.27 jonathan */
588 1.27 jonathan if (time.tv_usec >= 1000000) {
589 1.27 jonathan time.tv_usec -= 1000000;
590 1.27 jonathan time.tv_sec++;
591 1.27 jonathan time_maxerror += time_tolerance >> SHIFT_USEC;
592 1.27 jonathan
593 1.27 jonathan /*
594 1.27 jonathan * Leap second processing. If in leap-insert state at
595 1.27 jonathan * the end of the day, the system clock is set back one
596 1.27 jonathan * second; if in leap-delete state, the system clock is
597 1.27 jonathan * set ahead one second. The microtime() routine or
598 1.27 jonathan * external clock driver will insure that reported time
599 1.27 jonathan * is always monotonic. The ugly divides should be
600 1.27 jonathan * replaced.
601 1.27 jonathan */
602 1.27 jonathan switch (time_state) {
603 1.31 mycroft case TIME_OK:
604 1.27 jonathan if (time_status & STA_INS)
605 1.27 jonathan time_state = TIME_INS;
606 1.27 jonathan else if (time_status & STA_DEL)
607 1.27 jonathan time_state = TIME_DEL;
608 1.27 jonathan break;
609 1.27 jonathan
610 1.31 mycroft case TIME_INS:
611 1.27 jonathan if (time.tv_sec % 86400 == 0) {
612 1.27 jonathan time.tv_sec--;
613 1.27 jonathan time_state = TIME_OOP;
614 1.27 jonathan }
615 1.27 jonathan break;
616 1.27 jonathan
617 1.31 mycroft case TIME_DEL:
618 1.27 jonathan if ((time.tv_sec + 1) % 86400 == 0) {
619 1.27 jonathan time.tv_sec++;
620 1.27 jonathan time_state = TIME_WAIT;
621 1.27 jonathan }
622 1.27 jonathan break;
623 1.27 jonathan
624 1.31 mycroft case TIME_OOP:
625 1.27 jonathan time_state = TIME_WAIT;
626 1.27 jonathan break;
627 1.27 jonathan
628 1.31 mycroft case TIME_WAIT:
629 1.27 jonathan if (!(time_status & (STA_INS | STA_DEL)))
630 1.27 jonathan time_state = TIME_OK;
631 1.31 mycroft break;
632 1.27 jonathan }
633 1.27 jonathan
634 1.27 jonathan /*
635 1.27 jonathan * Compute the phase adjustment for the next second. In
636 1.27 jonathan * PLL mode, the offset is reduced by a fixed factor
637 1.27 jonathan * times the time constant. In FLL mode the offset is
638 1.27 jonathan * used directly. In either mode, the maximum phase
639 1.27 jonathan * adjustment for each second is clamped so as to spread
640 1.27 jonathan * the adjustment over not more than the number of
641 1.27 jonathan * seconds between updates.
642 1.27 jonathan */
643 1.27 jonathan if (time_offset < 0) {
644 1.27 jonathan ltemp = -time_offset;
645 1.27 jonathan if (!(time_status & STA_FLL))
646 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
647 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
648 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
649 1.27 jonathan SHIFT_UPDATE;
650 1.27 jonathan time_offset += ltemp;
651 1.31 mycroft time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
652 1.31 mycroft } else if (time_offset > 0) {
653 1.27 jonathan ltemp = time_offset;
654 1.27 jonathan if (!(time_status & STA_FLL))
655 1.27 jonathan ltemp >>= SHIFT_KG + time_constant;
656 1.27 jonathan if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
657 1.27 jonathan ltemp = (MAXPHASE / MINSEC) <<
658 1.27 jonathan SHIFT_UPDATE;
659 1.27 jonathan time_offset -= ltemp;
660 1.31 mycroft time_adj = ltemp << (shifthz - SHIFT_UPDATE);
661 1.31 mycroft } else
662 1.31 mycroft time_adj = 0;
663 1.27 jonathan
664 1.27 jonathan /*
665 1.27 jonathan * Compute the frequency estimate and additional phase
666 1.27 jonathan * adjustment due to frequency error for the next
667 1.27 jonathan * second. When the PPS signal is engaged, gnaw on the
668 1.27 jonathan * watchdog counter and update the frequency computed by
669 1.27 jonathan * the pll and the PPS signal.
670 1.27 jonathan */
671 1.27 jonathan #ifdef PPS_SYNC
672 1.27 jonathan pps_valid++;
673 1.27 jonathan if (pps_valid == PPS_VALID) {
674 1.27 jonathan pps_jitter = MAXTIME;
675 1.27 jonathan pps_stabil = MAXFREQ;
676 1.27 jonathan time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
677 1.27 jonathan STA_PPSWANDER | STA_PPSERROR);
678 1.27 jonathan }
679 1.27 jonathan ltemp = time_freq + pps_freq;
680 1.27 jonathan #else
681 1.27 jonathan ltemp = time_freq;
682 1.27 jonathan #endif /* PPS_SYNC */
683 1.27 jonathan
684 1.27 jonathan if (ltemp < 0)
685 1.31 mycroft time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
686 1.27 jonathan else
687 1.31 mycroft time_adj += ltemp >> (SHIFT_USEC - shifthz);
688 1.31 mycroft time_adj += (long)fixtick << shifthz;
689 1.27 jonathan
690 1.27 jonathan /*
691 1.27 jonathan * When the CPU clock oscillator frequency is not a
692 1.31 mycroft * power of 2 in Hz, shifthz is only an approximate
693 1.31 mycroft * scale factor.
694 1.46 mycroft *
695 1.46 mycroft * To determine the adjustment, you can do the following:
696 1.46 mycroft * bc -q
697 1.46 mycroft * scale=24
698 1.46 mycroft * obase=2
699 1.46 mycroft * idealhz/realhz
700 1.46 mycroft * where `idealhz' is the next higher power of 2, and `realhz'
701 1.57 mycroft * is the actual value. You may need to factor this result
702 1.57 mycroft * into a sequence of 2 multipliers to get better precision.
703 1.46 mycroft *
704 1.46 mycroft * Likewise, the error can be calculated with (e.g. for 100Hz):
705 1.46 mycroft * bc -q
706 1.46 mycroft * scale=24
707 1.57 mycroft * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
708 1.57 mycroft * (and then multiply by 1000000 to get ppm).
709 1.27 jonathan */
710 1.31 mycroft switch (hz) {
711 1.58 mycroft case 60:
712 1.58 mycroft /* A factor of 1.000100010001 gives about 15ppm
713 1.58 mycroft error. */
714 1.58 mycroft if (time_adj < 0) {
715 1.58 mycroft time_adj -= (-time_adj >> 4);
716 1.58 mycroft time_adj -= (-time_adj >> 8);
717 1.58 mycroft } else {
718 1.58 mycroft time_adj += (time_adj >> 4);
719 1.58 mycroft time_adj += (time_adj >> 8);
720 1.58 mycroft }
721 1.58 mycroft break;
722 1.58 mycroft
723 1.31 mycroft case 96:
724 1.56 mycroft /* A factor of 1.0101010101 gives about 244ppm error. */
725 1.46 mycroft if (time_adj < 0) {
726 1.46 mycroft time_adj -= (-time_adj >> 2);
727 1.46 mycroft time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
728 1.46 mycroft } else {
729 1.46 mycroft time_adj += (time_adj >> 2);
730 1.46 mycroft time_adj += (time_adj >> 4) + (time_adj >> 8);
731 1.46 mycroft }
732 1.46 mycroft break;
733 1.46 mycroft
734 1.31 mycroft case 100:
735 1.56 mycroft /* A factor of 1.010001111010111 gives about 1ppm
736 1.56 mycroft error. */
737 1.56 mycroft if (time_adj < 0) {
738 1.46 mycroft time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
739 1.56 mycroft time_adj += (-time_adj >> 10);
740 1.56 mycroft } else {
741 1.46 mycroft time_adj += (time_adj >> 2) + (time_adj >> 5);
742 1.56 mycroft time_adj -= (time_adj >> 10);
743 1.56 mycroft }
744 1.43 ross break;
745 1.46 mycroft
746 1.43 ross case 1000:
747 1.56 mycroft /* A factor of 1.000001100010100001 gives about 50ppm
748 1.56 mycroft error. */
749 1.56 mycroft if (time_adj < 0) {
750 1.56 mycroft time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
751 1.56 mycroft time_adj -= (-time_adj >> 7);
752 1.56 mycroft } else {
753 1.56 mycroft time_adj += (time_adj >> 6) + (time_adj >> 11);
754 1.56 mycroft time_adj += (time_adj >> 7);
755 1.56 mycroft }
756 1.56 mycroft break;
757 1.56 mycroft
758 1.56 mycroft case 1200:
759 1.56 mycroft /* A factor of 1.1011010011100001 gives about 64ppm
760 1.56 mycroft error. */
761 1.56 mycroft if (time_adj < 0) {
762 1.56 mycroft time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
763 1.56 mycroft time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
764 1.56 mycroft } else {
765 1.56 mycroft time_adj += (time_adj >> 1) + (time_adj >> 6);
766 1.56 mycroft time_adj += (time_adj >> 3) + (time_adj >> 10);
767 1.56 mycroft }
768 1.31 mycroft break;
769 1.27 jonathan }
770 1.27 jonathan
771 1.27 jonathan #ifdef EXT_CLOCK
772 1.27 jonathan /*
773 1.27 jonathan * If an external clock is present, it is necessary to
774 1.27 jonathan * discipline the kernel time variable anyway, since not
775 1.27 jonathan * all system components use the microtime() interface.
776 1.27 jonathan * Here, the time offset between the external clock and
777 1.27 jonathan * kernel time variable is computed every so often.
778 1.27 jonathan */
779 1.27 jonathan clock_count++;
780 1.27 jonathan if (clock_count > CLOCK_INTERVAL) {
781 1.27 jonathan clock_count = 0;
782 1.27 jonathan microtime(&clock_ext);
783 1.27 jonathan delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
784 1.27 jonathan delta.tv_usec = clock_ext.tv_usec -
785 1.27 jonathan time.tv_usec;
786 1.27 jonathan if (delta.tv_usec < 0)
787 1.27 jonathan delta.tv_sec--;
788 1.27 jonathan if (delta.tv_usec >= 500000) {
789 1.27 jonathan delta.tv_usec -= 1000000;
790 1.27 jonathan delta.tv_sec++;
791 1.27 jonathan }
792 1.27 jonathan if (delta.tv_usec < -500000) {
793 1.27 jonathan delta.tv_usec += 1000000;
794 1.27 jonathan delta.tv_sec--;
795 1.27 jonathan }
796 1.27 jonathan if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
797 1.27 jonathan delta.tv_usec > MAXPHASE) ||
798 1.27 jonathan delta.tv_sec < -1 || (delta.tv_sec == -1 &&
799 1.27 jonathan delta.tv_usec < -MAXPHASE)) {
800 1.27 jonathan time = clock_ext;
801 1.27 jonathan delta.tv_sec = 0;
802 1.27 jonathan delta.tv_usec = 0;
803 1.27 jonathan }
804 1.27 jonathan #ifdef HIGHBALL
805 1.27 jonathan clock_cpu = delta.tv_usec;
806 1.27 jonathan #else /* HIGHBALL */
807 1.27 jonathan hardupdate(delta.tv_usec);
808 1.27 jonathan #endif /* HIGHBALL */
809 1.27 jonathan }
810 1.27 jonathan #endif /* EXT_CLOCK */
811 1.27 jonathan }
812 1.27 jonathan
813 1.31 mycroft #endif /* NTP */
814 1.19 cgd
815 1.19 cgd /*
816 1.84 thorpej * Update real-time timeout queue.
817 1.19 cgd * Process callouts at a very low cpu priority, so we don't keep the
818 1.19 cgd * relatively high clock interrupt priority any longer than necessary.
819 1.19 cgd */
820 1.84 thorpej if (callout_hardclock()) {
821 1.19 cgd if (CLKF_BASEPRI(frame)) {
822 1.19 cgd /*
823 1.19 cgd * Save the overhead of a software interrupt;
824 1.52 thorpej * it will happen as soon as we return, so do
825 1.52 thorpej * it now.
826 1.19 cgd */
827 1.65 thorpej spllowersoftclock();
828 1.69 thorpej KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
829 1.73 thorpej softclock(NULL);
830 1.69 thorpej KERNEL_UNLOCK();
831 1.73 thorpej } else {
832 1.73 thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
833 1.73 thorpej softintr_schedule(softclock_si);
834 1.73 thorpej #else
835 1.19 cgd setsoftclock();
836 1.73 thorpej #endif
837 1.73 thorpej }
838 1.52 thorpej }
839 1.19 cgd }
840 1.19 cgd
841 1.19 cgd /*
842 1.52 thorpej * Compute number of hz until specified time. Used to compute second
843 1.52 thorpej * argument to callout_reset() from an absolute time.
844 1.19 cgd */
845 1.19 cgd int
846 1.63 thorpej hzto(struct timeval *tv)
847 1.19 cgd {
848 1.62 thorpej unsigned long ticks;
849 1.62 thorpej long sec, usec;
850 1.19 cgd int s;
851 1.19 cgd
852 1.19 cgd /*
853 1.62 thorpej * If the number of usecs in the whole seconds part of the time
854 1.62 thorpej * difference fits in a long, then the total number of usecs will
855 1.62 thorpej * fit in an unsigned long. Compute the total and convert it to
856 1.62 thorpej * ticks, rounding up and adding 1 to allow for the current tick
857 1.62 thorpej * to expire. Rounding also depends on unsigned long arithmetic
858 1.62 thorpej * to avoid overflow.
859 1.19 cgd *
860 1.62 thorpej * Otherwise, if the number of ticks in the whole seconds part of
861 1.62 thorpej * the time difference fits in a long, then convert the parts to
862 1.62 thorpej * ticks separately and add, using similar rounding methods and
863 1.62 thorpej * overflow avoidance. This method would work in the previous
864 1.62 thorpej * case, but it is slightly slower and assume that hz is integral.
865 1.62 thorpej *
866 1.62 thorpej * Otherwise, round the time difference down to the maximum
867 1.62 thorpej * representable value.
868 1.62 thorpej *
869 1.62 thorpej * If ints are 32-bit, then the maximum value for any timeout in
870 1.62 thorpej * 10ms ticks is 248 days.
871 1.19 cgd */
872 1.40 mycroft s = splclock();
873 1.19 cgd sec = tv->tv_sec - time.tv_sec;
874 1.62 thorpej usec = tv->tv_usec - time.tv_usec;
875 1.62 thorpej splx(s);
876 1.62 thorpej
877 1.62 thorpej if (usec < 0) {
878 1.62 thorpej sec--;
879 1.62 thorpej usec += 1000000;
880 1.62 thorpej }
881 1.62 thorpej
882 1.62 thorpej if (sec < 0 || (sec == 0 && usec <= 0)) {
883 1.62 thorpej /*
884 1.62 thorpej * Would expire now or in the past. Return 0 ticks.
885 1.62 thorpej * This is different from the legacy hzto() interface,
886 1.62 thorpej * and callers need to check for it.
887 1.62 thorpej */
888 1.62 thorpej ticks = 0;
889 1.62 thorpej } else if (sec <= (LONG_MAX / 1000000))
890 1.62 thorpej ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
891 1.62 thorpej / tick) + 1;
892 1.62 thorpej else if (sec <= (LONG_MAX / hz))
893 1.62 thorpej ticks = (sec * hz) +
894 1.62 thorpej (((unsigned long)usec + (tick - 1)) / tick) + 1;
895 1.19 cgd else
896 1.62 thorpej ticks = LONG_MAX;
897 1.62 thorpej
898 1.62 thorpej if (ticks > INT_MAX)
899 1.62 thorpej ticks = INT_MAX;
900 1.62 thorpej
901 1.62 thorpej return ((int)ticks);
902 1.19 cgd }
903 1.19 cgd
904 1.19 cgd /*
905 1.19 cgd * Start profiling on a process.
906 1.19 cgd *
907 1.19 cgd * Kernel profiling passes proc0 which never exits and hence
908 1.19 cgd * keeps the profile clock running constantly.
909 1.19 cgd */
910 1.19 cgd void
911 1.63 thorpej startprofclock(struct proc *p)
912 1.19 cgd {
913 1.19 cgd
914 1.19 cgd if ((p->p_flag & P_PROFIL) == 0) {
915 1.19 cgd p->p_flag |= P_PROFIL;
916 1.80 briggs /*
917 1.80 briggs * This is only necessary if using the clock as the
918 1.80 briggs * profiling source.
919 1.80 briggs */
920 1.70 sommerfe if (++profprocs == 1 && stathz != 0)
921 1.70 sommerfe psdiv = psratio;
922 1.19 cgd }
923 1.19 cgd }
924 1.19 cgd
925 1.19 cgd /*
926 1.19 cgd * Stop profiling on a process.
927 1.19 cgd */
928 1.19 cgd void
929 1.63 thorpej stopprofclock(struct proc *p)
930 1.19 cgd {
931 1.19 cgd
932 1.19 cgd if (p->p_flag & P_PROFIL) {
933 1.19 cgd p->p_flag &= ~P_PROFIL;
934 1.80 briggs /*
935 1.80 briggs * This is only necessary if using the clock as the
936 1.80 briggs * profiling source.
937 1.80 briggs */
938 1.70 sommerfe if (--profprocs == 0 && stathz != 0)
939 1.70 sommerfe psdiv = 1;
940 1.19 cgd }
941 1.19 cgd }
942 1.19 cgd
943 1.80 briggs #if defined(PERFCTRS)
944 1.80 briggs /*
945 1.80 briggs * Independent profiling "tick" in case we're using a separate
946 1.80 briggs * clock or profiling event source. Currently, that's just
947 1.80 briggs * performance counters--hence the wrapper.
948 1.80 briggs */
949 1.80 briggs void
950 1.80 briggs proftick(struct clockframe *frame)
951 1.80 briggs {
952 1.80 briggs #ifdef GPROF
953 1.80 briggs struct gmonparam *g;
954 1.80 briggs intptr_t i;
955 1.80 briggs #endif
956 1.80 briggs struct proc *p;
957 1.80 briggs
958 1.80 briggs p = curproc;
959 1.80 briggs if (CLKF_USERMODE(frame)) {
960 1.80 briggs if (p->p_flag & P_PROFIL)
961 1.80 briggs addupc_intr(p, CLKF_PC(frame));
962 1.80 briggs } else {
963 1.80 briggs #ifdef GPROF
964 1.80 briggs g = &_gmonparam;
965 1.80 briggs if (g->state == GMON_PROF_ON) {
966 1.80 briggs i = CLKF_PC(frame) - g->lowpc;
967 1.80 briggs if (i < g->textsize) {
968 1.80 briggs i /= HISTFRACTION * sizeof(*g->kcount);
969 1.80 briggs g->kcount[i]++;
970 1.80 briggs }
971 1.80 briggs }
972 1.80 briggs #endif
973 1.80 briggs #ifdef PROC_PC
974 1.80 briggs if (p && p->p_flag & P_PROFIL)
975 1.80 briggs addupc_intr(p, PROC_PC(p));
976 1.80 briggs #endif
977 1.80 briggs }
978 1.80 briggs }
979 1.80 briggs #endif
980 1.80 briggs
981 1.19 cgd /*
982 1.19 cgd * Statistics clock. Grab profile sample, and if divider reaches 0,
983 1.19 cgd * do process and kernel statistics.
984 1.19 cgd */
985 1.19 cgd void
986 1.63 thorpej statclock(struct clockframe *frame)
987 1.19 cgd {
988 1.19 cgd #ifdef GPROF
989 1.55 augustss struct gmonparam *g;
990 1.68 eeh intptr_t i;
991 1.19 cgd #endif
992 1.60 thorpej struct cpu_info *ci = curcpu();
993 1.60 thorpej struct schedstate_percpu *spc = &ci->ci_schedstate;
994 1.82 thorpej struct lwp *l;
995 1.55 augustss struct proc *p;
996 1.19 cgd
997 1.70 sommerfe /*
998 1.70 sommerfe * Notice changes in divisor frequency, and adjust clock
999 1.70 sommerfe * frequency accordingly.
1000 1.70 sommerfe */
1001 1.70 sommerfe if (spc->spc_psdiv != psdiv) {
1002 1.70 sommerfe spc->spc_psdiv = psdiv;
1003 1.70 sommerfe spc->spc_pscnt = psdiv;
1004 1.70 sommerfe if (psdiv == 1) {
1005 1.70 sommerfe setstatclockrate(stathz);
1006 1.70 sommerfe } else {
1007 1.70 sommerfe setstatclockrate(profhz);
1008 1.70 sommerfe }
1009 1.70 sommerfe }
1010 1.82 thorpej l = curlwp;
1011 1.82 thorpej p = (l ? l->l_proc : 0);
1012 1.19 cgd if (CLKF_USERMODE(frame)) {
1013 1.80 briggs if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
1014 1.72 mycroft addupc_intr(p, CLKF_PC(frame));
1015 1.70 sommerfe if (--spc->spc_pscnt > 0)
1016 1.19 cgd return;
1017 1.19 cgd /*
1018 1.19 cgd * Came from user mode; CPU was in user state.
1019 1.19 cgd * If this process is being profiled record the tick.
1020 1.19 cgd */
1021 1.19 cgd p->p_uticks++;
1022 1.19 cgd if (p->p_nice > NZERO)
1023 1.60 thorpej spc->spc_cp_time[CP_NICE]++;
1024 1.19 cgd else
1025 1.60 thorpej spc->spc_cp_time[CP_USER]++;
1026 1.19 cgd } else {
1027 1.19 cgd #ifdef GPROF
1028 1.19 cgd /*
1029 1.19 cgd * Kernel statistics are just like addupc_intr, only easier.
1030 1.19 cgd */
1031 1.19 cgd g = &_gmonparam;
1032 1.80 briggs if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1033 1.19 cgd i = CLKF_PC(frame) - g->lowpc;
1034 1.19 cgd if (i < g->textsize) {
1035 1.19 cgd i /= HISTFRACTION * sizeof(*g->kcount);
1036 1.19 cgd g->kcount[i]++;
1037 1.19 cgd }
1038 1.19 cgd }
1039 1.19 cgd #endif
1040 1.82 thorpej #ifdef LWP_PC
1041 1.80 briggs if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
1042 1.82 thorpej addupc_intr(p, LWP_PC(l));
1043 1.72 mycroft #endif
1044 1.70 sommerfe if (--spc->spc_pscnt > 0)
1045 1.19 cgd return;
1046 1.19 cgd /*
1047 1.19 cgd * Came from kernel mode, so we were:
1048 1.19 cgd * - handling an interrupt,
1049 1.19 cgd * - doing syscall or trap work on behalf of the current
1050 1.19 cgd * user process, or
1051 1.19 cgd * - spinning in the idle loop.
1052 1.19 cgd * Whichever it is, charge the time as appropriate.
1053 1.19 cgd * Note that we charge interrupts to the current process,
1054 1.19 cgd * regardless of whether they are ``for'' that process,
1055 1.19 cgd * so that we know how much of its real time was spent
1056 1.19 cgd * in ``non-process'' (i.e., interrupt) work.
1057 1.19 cgd */
1058 1.19 cgd if (CLKF_INTR(frame)) {
1059 1.19 cgd if (p != NULL)
1060 1.19 cgd p->p_iticks++;
1061 1.60 thorpej spc->spc_cp_time[CP_INTR]++;
1062 1.19 cgd } else if (p != NULL) {
1063 1.19 cgd p->p_sticks++;
1064 1.60 thorpej spc->spc_cp_time[CP_SYS]++;
1065 1.19 cgd } else
1066 1.60 thorpej spc->spc_cp_time[CP_IDLE]++;
1067 1.19 cgd }
1068 1.70 sommerfe spc->spc_pscnt = psdiv;
1069 1.19 cgd
1070 1.82 thorpej if (l != NULL) {
1071 1.45 ross ++p->p_cpticks;
1072 1.45 ross /*
1073 1.60 thorpej * If no separate schedclock is provided, call it here
1074 1.60 thorpej * at ~~12-25 Hz, ~~16 Hz is best
1075 1.45 ross */
1076 1.60 thorpej if (schedhz == 0)
1077 1.60 thorpej if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1078 1.82 thorpej schedclock(l);
1079 1.19 cgd }
1080 1.19 cgd }
1081 1.27 jonathan
1082 1.27 jonathan
1083 1.27 jonathan #ifdef NTP /* NTP phase-locked loop in kernel */
1084 1.27 jonathan
1085 1.27 jonathan /*
1086 1.27 jonathan * hardupdate() - local clock update
1087 1.27 jonathan *
1088 1.27 jonathan * This routine is called by ntp_adjtime() to update the local clock
1089 1.27 jonathan * phase and frequency. The implementation is of an adaptive-parameter,
1090 1.27 jonathan * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1091 1.27 jonathan * time and frequency offset estimates for each call. If the kernel PPS
1092 1.27 jonathan * discipline code is configured (PPS_SYNC), the PPS signal itself
1093 1.27 jonathan * determines the new time offset, instead of the calling argument.
1094 1.27 jonathan * Presumably, calls to ntp_adjtime() occur only when the caller
1095 1.27 jonathan * believes the local clock is valid within some bound (+-128 ms with
1096 1.27 jonathan * NTP). If the caller's time is far different than the PPS time, an
1097 1.27 jonathan * argument will ensue, and it's not clear who will lose.
1098 1.27 jonathan *
1099 1.27 jonathan * For uncompensated quartz crystal oscillatores and nominal update
1100 1.27 jonathan * intervals less than 1024 s, operation should be in phase-lock mode
1101 1.27 jonathan * (STA_FLL = 0), where the loop is disciplined to phase. For update
1102 1.27 jonathan * intervals greater than thiss, operation should be in frequency-lock
1103 1.27 jonathan * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1104 1.27 jonathan *
1105 1.27 jonathan * Note: splclock() is in effect.
1106 1.27 jonathan */
1107 1.27 jonathan void
1108 1.63 thorpej hardupdate(long offset)
1109 1.27 jonathan {
1110 1.27 jonathan long ltemp, mtemp;
1111 1.27 jonathan
1112 1.27 jonathan if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1113 1.27 jonathan return;
1114 1.27 jonathan ltemp = offset;
1115 1.27 jonathan #ifdef PPS_SYNC
1116 1.27 jonathan if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1117 1.27 jonathan ltemp = pps_offset;
1118 1.27 jonathan #endif /* PPS_SYNC */
1119 1.27 jonathan
1120 1.27 jonathan /*
1121 1.27 jonathan * Scale the phase adjustment and clamp to the operating range.
1122 1.27 jonathan */
1123 1.27 jonathan if (ltemp > MAXPHASE)
1124 1.27 jonathan time_offset = MAXPHASE << SHIFT_UPDATE;
1125 1.27 jonathan else if (ltemp < -MAXPHASE)
1126 1.27 jonathan time_offset = -(MAXPHASE << SHIFT_UPDATE);
1127 1.27 jonathan else
1128 1.27 jonathan time_offset = ltemp << SHIFT_UPDATE;
1129 1.27 jonathan
1130 1.27 jonathan /*
1131 1.27 jonathan * Select whether the frequency is to be controlled and in which
1132 1.27 jonathan * mode (PLL or FLL). Clamp to the operating range. Ugly
1133 1.27 jonathan * multiply/divide should be replaced someday.
1134 1.27 jonathan */
1135 1.27 jonathan if (time_status & STA_FREQHOLD || time_reftime == 0)
1136 1.27 jonathan time_reftime = time.tv_sec;
1137 1.27 jonathan mtemp = time.tv_sec - time_reftime;
1138 1.27 jonathan time_reftime = time.tv_sec;
1139 1.27 jonathan if (time_status & STA_FLL) {
1140 1.27 jonathan if (mtemp >= MINSEC) {
1141 1.27 jonathan ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1142 1.27 jonathan SHIFT_UPDATE));
1143 1.27 jonathan if (ltemp < 0)
1144 1.27 jonathan time_freq -= -ltemp >> SHIFT_KH;
1145 1.27 jonathan else
1146 1.27 jonathan time_freq += ltemp >> SHIFT_KH;
1147 1.27 jonathan }
1148 1.27 jonathan } else {
1149 1.27 jonathan if (mtemp < MAXSEC) {
1150 1.27 jonathan ltemp *= mtemp;
1151 1.27 jonathan if (ltemp < 0)
1152 1.27 jonathan time_freq -= -ltemp >> (time_constant +
1153 1.27 jonathan time_constant + SHIFT_KF -
1154 1.27 jonathan SHIFT_USEC);
1155 1.27 jonathan else
1156 1.27 jonathan time_freq += ltemp >> (time_constant +
1157 1.27 jonathan time_constant + SHIFT_KF -
1158 1.27 jonathan SHIFT_USEC);
1159 1.27 jonathan }
1160 1.27 jonathan }
1161 1.27 jonathan if (time_freq > time_tolerance)
1162 1.27 jonathan time_freq = time_tolerance;
1163 1.27 jonathan else if (time_freq < -time_tolerance)
1164 1.27 jonathan time_freq = -time_tolerance;
1165 1.27 jonathan }
1166 1.27 jonathan
1167 1.27 jonathan #ifdef PPS_SYNC
1168 1.27 jonathan /*
1169 1.27 jonathan * hardpps() - discipline CPU clock oscillator to external PPS signal
1170 1.27 jonathan *
1171 1.27 jonathan * This routine is called at each PPS interrupt in order to discipline
1172 1.27 jonathan * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1173 1.27 jonathan * and leaves it in a handy spot for the hardclock() routine. It
1174 1.27 jonathan * integrates successive PPS phase differences and calculates the
1175 1.27 jonathan * frequency offset. This is used in hardclock() to discipline the CPU
1176 1.27 jonathan * clock oscillator so that intrinsic frequency error is cancelled out.
1177 1.27 jonathan * The code requires the caller to capture the time and hardware counter
1178 1.27 jonathan * value at the on-time PPS signal transition.
1179 1.27 jonathan *
1180 1.27 jonathan * Note that, on some Unix systems, this routine runs at an interrupt
1181 1.27 jonathan * priority level higher than the timer interrupt routine hardclock().
1182 1.27 jonathan * Therefore, the variables used are distinct from the hardclock()
1183 1.27 jonathan * variables, except for certain exceptions: The PPS frequency pps_freq
1184 1.27 jonathan * and phase pps_offset variables are determined by this routine and
1185 1.27 jonathan * updated atomically. The time_tolerance variable can be considered a
1186 1.27 jonathan * constant, since it is infrequently changed, and then only when the
1187 1.27 jonathan * PPS signal is disabled. The watchdog counter pps_valid is updated
1188 1.27 jonathan * once per second by hardclock() and is atomically cleared in this
1189 1.27 jonathan * routine.
1190 1.27 jonathan */
1191 1.27 jonathan void
1192 1.63 thorpej hardpps(struct timeval *tvp, /* time at PPS */
1193 1.63 thorpej long usec /* hardware counter at PPS */)
1194 1.27 jonathan {
1195 1.27 jonathan long u_usec, v_usec, bigtick;
1196 1.27 jonathan long cal_sec, cal_usec;
1197 1.27 jonathan
1198 1.27 jonathan /*
1199 1.27 jonathan * An occasional glitch can be produced when the PPS interrupt
1200 1.27 jonathan * occurs in the hardclock() routine before the time variable is
1201 1.27 jonathan * updated. Here the offset is discarded when the difference
1202 1.27 jonathan * between it and the last one is greater than tick/2, but not
1203 1.27 jonathan * if the interval since the first discard exceeds 30 s.
1204 1.27 jonathan */
1205 1.27 jonathan time_status |= STA_PPSSIGNAL;
1206 1.27 jonathan time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1207 1.27 jonathan pps_valid = 0;
1208 1.27 jonathan u_usec = -tvp->tv_usec;
1209 1.27 jonathan if (u_usec < -500000)
1210 1.27 jonathan u_usec += 1000000;
1211 1.27 jonathan v_usec = pps_offset - u_usec;
1212 1.27 jonathan if (v_usec < 0)
1213 1.27 jonathan v_usec = -v_usec;
1214 1.27 jonathan if (v_usec > (tick >> 1)) {
1215 1.27 jonathan if (pps_glitch > MAXGLITCH) {
1216 1.27 jonathan pps_glitch = 0;
1217 1.27 jonathan pps_tf[2] = u_usec;
1218 1.27 jonathan pps_tf[1] = u_usec;
1219 1.27 jonathan } else {
1220 1.27 jonathan pps_glitch++;
1221 1.27 jonathan u_usec = pps_offset;
1222 1.27 jonathan }
1223 1.27 jonathan } else
1224 1.27 jonathan pps_glitch = 0;
1225 1.27 jonathan
1226 1.27 jonathan /*
1227 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1228 1.27 jonathan * time. The median sample becomes the time offset estimate; the
1229 1.27 jonathan * difference between the other two samples becomes the time
1230 1.27 jonathan * dispersion (jitter) estimate.
1231 1.27 jonathan */
1232 1.27 jonathan pps_tf[2] = pps_tf[1];
1233 1.27 jonathan pps_tf[1] = pps_tf[0];
1234 1.27 jonathan pps_tf[0] = u_usec;
1235 1.27 jonathan if (pps_tf[0] > pps_tf[1]) {
1236 1.27 jonathan if (pps_tf[1] > pps_tf[2]) {
1237 1.27 jonathan pps_offset = pps_tf[1]; /* 0 1 2 */
1238 1.27 jonathan v_usec = pps_tf[0] - pps_tf[2];
1239 1.27 jonathan } else if (pps_tf[2] > pps_tf[0]) {
1240 1.27 jonathan pps_offset = pps_tf[0]; /* 2 0 1 */
1241 1.27 jonathan v_usec = pps_tf[2] - pps_tf[1];
1242 1.27 jonathan } else {
1243 1.27 jonathan pps_offset = pps_tf[2]; /* 0 2 1 */
1244 1.27 jonathan v_usec = pps_tf[0] - pps_tf[1];
1245 1.27 jonathan }
1246 1.27 jonathan } else {
1247 1.27 jonathan if (pps_tf[1] < pps_tf[2]) {
1248 1.27 jonathan pps_offset = pps_tf[1]; /* 2 1 0 */
1249 1.27 jonathan v_usec = pps_tf[2] - pps_tf[0];
1250 1.27 jonathan } else if (pps_tf[2] < pps_tf[0]) {
1251 1.27 jonathan pps_offset = pps_tf[0]; /* 1 0 2 */
1252 1.27 jonathan v_usec = pps_tf[1] - pps_tf[2];
1253 1.27 jonathan } else {
1254 1.27 jonathan pps_offset = pps_tf[2]; /* 1 2 0 */
1255 1.27 jonathan v_usec = pps_tf[1] - pps_tf[0];
1256 1.27 jonathan }
1257 1.27 jonathan }
1258 1.27 jonathan if (v_usec > MAXTIME)
1259 1.27 jonathan pps_jitcnt++;
1260 1.27 jonathan v_usec = (v_usec << PPS_AVG) - pps_jitter;
1261 1.27 jonathan if (v_usec < 0)
1262 1.27 jonathan pps_jitter -= -v_usec >> PPS_AVG;
1263 1.27 jonathan else
1264 1.27 jonathan pps_jitter += v_usec >> PPS_AVG;
1265 1.27 jonathan if (pps_jitter > (MAXTIME >> 1))
1266 1.27 jonathan time_status |= STA_PPSJITTER;
1267 1.27 jonathan
1268 1.27 jonathan /*
1269 1.27 jonathan * During the calibration interval adjust the starting time when
1270 1.27 jonathan * the tick overflows. At the end of the interval compute the
1271 1.27 jonathan * duration of the interval and the difference of the hardware
1272 1.27 jonathan * counters at the beginning and end of the interval. This code
1273 1.27 jonathan * is deliciously complicated by the fact valid differences may
1274 1.27 jonathan * exceed the value of tick when using long calibration
1275 1.27 jonathan * intervals and small ticks. Note that the counter can be
1276 1.27 jonathan * greater than tick if caught at just the wrong instant, but
1277 1.27 jonathan * the values returned and used here are correct.
1278 1.27 jonathan */
1279 1.27 jonathan bigtick = (long)tick << SHIFT_USEC;
1280 1.27 jonathan pps_usec -= pps_freq;
1281 1.27 jonathan if (pps_usec >= bigtick)
1282 1.27 jonathan pps_usec -= bigtick;
1283 1.27 jonathan if (pps_usec < 0)
1284 1.27 jonathan pps_usec += bigtick;
1285 1.27 jonathan pps_time.tv_sec++;
1286 1.27 jonathan pps_count++;
1287 1.27 jonathan if (pps_count < (1 << pps_shift))
1288 1.27 jonathan return;
1289 1.27 jonathan pps_count = 0;
1290 1.27 jonathan pps_calcnt++;
1291 1.27 jonathan u_usec = usec << SHIFT_USEC;
1292 1.27 jonathan v_usec = pps_usec - u_usec;
1293 1.27 jonathan if (v_usec >= bigtick >> 1)
1294 1.27 jonathan v_usec -= bigtick;
1295 1.27 jonathan if (v_usec < -(bigtick >> 1))
1296 1.27 jonathan v_usec += bigtick;
1297 1.27 jonathan if (v_usec < 0)
1298 1.27 jonathan v_usec = -(-v_usec >> pps_shift);
1299 1.27 jonathan else
1300 1.27 jonathan v_usec = v_usec >> pps_shift;
1301 1.27 jonathan pps_usec = u_usec;
1302 1.27 jonathan cal_sec = tvp->tv_sec;
1303 1.27 jonathan cal_usec = tvp->tv_usec;
1304 1.27 jonathan cal_sec -= pps_time.tv_sec;
1305 1.27 jonathan cal_usec -= pps_time.tv_usec;
1306 1.27 jonathan if (cal_usec < 0) {
1307 1.27 jonathan cal_usec += 1000000;
1308 1.27 jonathan cal_sec--;
1309 1.27 jonathan }
1310 1.27 jonathan pps_time = *tvp;
1311 1.27 jonathan
1312 1.27 jonathan /*
1313 1.27 jonathan * Check for lost interrupts, noise, excessive jitter and
1314 1.27 jonathan * excessive frequency error. The number of timer ticks during
1315 1.27 jonathan * the interval may vary +-1 tick. Add to this a margin of one
1316 1.27 jonathan * tick for the PPS signal jitter and maximum frequency
1317 1.27 jonathan * deviation. If the limits are exceeded, the calibration
1318 1.27 jonathan * interval is reset to the minimum and we start over.
1319 1.27 jonathan */
1320 1.27 jonathan u_usec = (long)tick << 1;
1321 1.27 jonathan if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1322 1.27 jonathan || (cal_sec == 0 && cal_usec < u_usec))
1323 1.27 jonathan || v_usec > time_tolerance || v_usec < -time_tolerance) {
1324 1.27 jonathan pps_errcnt++;
1325 1.27 jonathan pps_shift = PPS_SHIFT;
1326 1.27 jonathan pps_intcnt = 0;
1327 1.27 jonathan time_status |= STA_PPSERROR;
1328 1.27 jonathan return;
1329 1.27 jonathan }
1330 1.27 jonathan
1331 1.27 jonathan /*
1332 1.27 jonathan * A three-stage median filter is used to help deglitch the pps
1333 1.27 jonathan * frequency. The median sample becomes the frequency offset
1334 1.27 jonathan * estimate; the difference between the other two samples
1335 1.27 jonathan * becomes the frequency dispersion (stability) estimate.
1336 1.27 jonathan */
1337 1.27 jonathan pps_ff[2] = pps_ff[1];
1338 1.27 jonathan pps_ff[1] = pps_ff[0];
1339 1.27 jonathan pps_ff[0] = v_usec;
1340 1.27 jonathan if (pps_ff[0] > pps_ff[1]) {
1341 1.27 jonathan if (pps_ff[1] > pps_ff[2]) {
1342 1.27 jonathan u_usec = pps_ff[1]; /* 0 1 2 */
1343 1.27 jonathan v_usec = pps_ff[0] - pps_ff[2];
1344 1.27 jonathan } else if (pps_ff[2] > pps_ff[0]) {
1345 1.27 jonathan u_usec = pps_ff[0]; /* 2 0 1 */
1346 1.27 jonathan v_usec = pps_ff[2] - pps_ff[1];
1347 1.27 jonathan } else {
1348 1.27 jonathan u_usec = pps_ff[2]; /* 0 2 1 */
1349 1.27 jonathan v_usec = pps_ff[0] - pps_ff[1];
1350 1.27 jonathan }
1351 1.27 jonathan } else {
1352 1.27 jonathan if (pps_ff[1] < pps_ff[2]) {
1353 1.27 jonathan u_usec = pps_ff[1]; /* 2 1 0 */
1354 1.27 jonathan v_usec = pps_ff[2] - pps_ff[0];
1355 1.27 jonathan } else if (pps_ff[2] < pps_ff[0]) {
1356 1.27 jonathan u_usec = pps_ff[0]; /* 1 0 2 */
1357 1.27 jonathan v_usec = pps_ff[1] - pps_ff[2];
1358 1.27 jonathan } else {
1359 1.27 jonathan u_usec = pps_ff[2]; /* 1 2 0 */
1360 1.27 jonathan v_usec = pps_ff[1] - pps_ff[0];
1361 1.27 jonathan }
1362 1.27 jonathan }
1363 1.27 jonathan
1364 1.27 jonathan /*
1365 1.27 jonathan * Here the frequency dispersion (stability) is updated. If it
1366 1.27 jonathan * is less than one-fourth the maximum (MAXFREQ), the frequency
1367 1.27 jonathan * offset is updated as well, but clamped to the tolerance. It
1368 1.27 jonathan * will be processed later by the hardclock() routine.
1369 1.27 jonathan */
1370 1.27 jonathan v_usec = (v_usec >> 1) - pps_stabil;
1371 1.27 jonathan if (v_usec < 0)
1372 1.27 jonathan pps_stabil -= -v_usec >> PPS_AVG;
1373 1.27 jonathan else
1374 1.27 jonathan pps_stabil += v_usec >> PPS_AVG;
1375 1.27 jonathan if (pps_stabil > MAXFREQ >> 2) {
1376 1.27 jonathan pps_stbcnt++;
1377 1.27 jonathan time_status |= STA_PPSWANDER;
1378 1.27 jonathan return;
1379 1.27 jonathan }
1380 1.27 jonathan if (time_status & STA_PPSFREQ) {
1381 1.27 jonathan if (u_usec < 0) {
1382 1.27 jonathan pps_freq -= -u_usec >> PPS_AVG;
1383 1.27 jonathan if (pps_freq < -time_tolerance)
1384 1.27 jonathan pps_freq = -time_tolerance;
1385 1.27 jonathan u_usec = -u_usec;
1386 1.27 jonathan } else {
1387 1.27 jonathan pps_freq += u_usec >> PPS_AVG;
1388 1.27 jonathan if (pps_freq > time_tolerance)
1389 1.27 jonathan pps_freq = time_tolerance;
1390 1.27 jonathan }
1391 1.27 jonathan }
1392 1.27 jonathan
1393 1.27 jonathan /*
1394 1.27 jonathan * Here the calibration interval is adjusted. If the maximum
1395 1.27 jonathan * time difference is greater than tick / 4, reduce the interval
1396 1.27 jonathan * by half. If this is not the case for four consecutive
1397 1.27 jonathan * intervals, double the interval.
1398 1.27 jonathan */
1399 1.27 jonathan if (u_usec << pps_shift > bigtick >> 2) {
1400 1.27 jonathan pps_intcnt = 0;
1401 1.27 jonathan if (pps_shift > PPS_SHIFT)
1402 1.27 jonathan pps_shift--;
1403 1.27 jonathan } else if (pps_intcnt >= 4) {
1404 1.27 jonathan pps_intcnt = 0;
1405 1.27 jonathan if (pps_shift < PPS_SHIFTMAX)
1406 1.27 jonathan pps_shift++;
1407 1.27 jonathan } else
1408 1.27 jonathan pps_intcnt++;
1409 1.27 jonathan }
1410 1.27 jonathan #endif /* PPS_SYNC */
1411 1.27 jonathan #endif /* NTP */
1412 1.27 jonathan
1413 1.19 cgd /*
1414 1.19 cgd * Return information about system clocks.
1415 1.19 cgd */
1416 1.25 christos int
1417 1.63 thorpej sysctl_clockrate(void *where, size_t *sizep)
1418 1.19 cgd {
1419 1.19 cgd struct clockinfo clkinfo;
1420 1.19 cgd
1421 1.19 cgd /*
1422 1.19 cgd * Construct clockinfo structure.
1423 1.19 cgd */
1424 1.20 mycroft clkinfo.tick = tick;
1425 1.20 mycroft clkinfo.tickadj = tickadj;
1426 1.19 cgd clkinfo.hz = hz;
1427 1.19 cgd clkinfo.profhz = profhz;
1428 1.19 cgd clkinfo.stathz = stathz ? stathz : hz;
1429 1.19 cgd return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1430 1.19 cgd }
1431