Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.94.4.6
      1  1.94.4.6      yamt /*	$NetBSD: kern_clock.c,v 1.94.4.6 2007/11/15 11:44:39 yamt Exp $	*/
      2      1.52   thorpej 
      3      1.52   thorpej /*-
      4  1.94.4.3      yamt  * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5      1.52   thorpej  * All rights reserved.
      6      1.52   thorpej  *
      7      1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.52   thorpej  * NASA Ames Research Center.
     10      1.94   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11      1.94   mycroft  * by Charles M. Hannum.
     12      1.52   thorpej  *
     13      1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     14      1.52   thorpej  * modification, are permitted provided that the following conditions
     15      1.52   thorpej  * are met:
     16      1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     17      1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     18      1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19      1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20      1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     21      1.52   thorpej  * 3. All advertising materials mentioning features or use of this software
     22      1.52   thorpej  *    must display the following acknowledgement:
     23      1.52   thorpej  *	This product includes software developed by the NetBSD
     24      1.52   thorpej  *	Foundation, Inc. and its contributors.
     25      1.52   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26      1.52   thorpej  *    contributors may be used to endorse or promote products derived
     27      1.52   thorpej  *    from this software without specific prior written permission.
     28      1.52   thorpej  *
     29      1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30      1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31      1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32      1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33      1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34      1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35      1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36      1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37      1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38      1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39      1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40      1.52   thorpej  */
     41      1.19       cgd 
     42      1.19       cgd /*-
     43      1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     44      1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     45      1.19       cgd  * (c) UNIX System Laboratories, Inc.
     46      1.19       cgd  * All or some portions of this file are derived from material licensed
     47      1.19       cgd  * to the University of California by American Telephone and Telegraph
     48      1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49      1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     50      1.19       cgd  *
     51      1.19       cgd  * Redistribution and use in source and binary forms, with or without
     52      1.19       cgd  * modification, are permitted provided that the following conditions
     53      1.19       cgd  * are met:
     54      1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     55      1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     56      1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57      1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     58      1.19       cgd  *    documentation and/or other materials provided with the distribution.
     59      1.87       agc  * 3. Neither the name of the University nor the names of its contributors
     60      1.19       cgd  *    may be used to endorse or promote products derived from this software
     61      1.19       cgd  *    without specific prior written permission.
     62      1.19       cgd  *
     63      1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64      1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65      1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66      1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67      1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68      1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69      1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70      1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71      1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72      1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73      1.19       cgd  * SUCH DAMAGE.
     74      1.19       cgd  *
     75      1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     76      1.19       cgd  */
     77      1.78     lukem 
     78      1.78     lukem #include <sys/cdefs.h>
     79  1.94.4.6      yamt __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.94.4.6 2007/11/15 11:44:39 yamt Exp $");
     80      1.44  jonathan 
     81      1.44  jonathan #include "opt_ntp.h"
     82      1.86    martin #include "opt_multiprocessor.h"
     83      1.80    briggs #include "opt_perfctrs.h"
     84      1.19       cgd 
     85      1.19       cgd #include <sys/param.h>
     86      1.19       cgd #include <sys/systm.h>
     87      1.19       cgd #include <sys/callout.h>
     88      1.19       cgd #include <sys/kernel.h>
     89      1.19       cgd #include <sys/proc.h>
     90      1.19       cgd #include <sys/resourcevar.h>
     91      1.25  christos #include <sys/signalvar.h>
     92      1.26  christos #include <sys/sysctl.h>
     93      1.27  jonathan #include <sys/timex.h>
     94      1.45      ross #include <sys/sched.h>
     95      1.82   thorpej #include <sys/time.h>
     96  1.94.4.1      yamt #include <sys/timetc.h>
     97  1.94.4.4      yamt #include <sys/cpu.h>
     98      1.25  christos 
     99      1.19       cgd #ifdef GPROF
    100      1.19       cgd #include <sys/gmon.h>
    101      1.19       cgd #endif
    102      1.19       cgd 
    103      1.19       cgd /*
    104      1.19       cgd  * Clock handling routines.
    105      1.19       cgd  *
    106      1.19       cgd  * This code is written to operate with two timers that run independently of
    107      1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    108      1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    109      1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    110      1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    111      1.90       wiz  * the randomization prevents an adversary from always giving up the CPU
    112      1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    113      1.90       wiz  * CPU ticks.  The mean frequency of the second timer is stathz.
    114      1.19       cgd  *
    115      1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    116      1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    117      1.19       cgd  * do not do it unless absolutely necessary.
    118      1.19       cgd  *
    119      1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    120      1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    121      1.19       cgd  * be an integral multiple of stathz.
    122      1.19       cgd  *
    123      1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    124      1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    125      1.19       cgd  */
    126      1.19       cgd 
    127  1.94.4.1      yamt #ifndef __HAVE_TIMECOUNTER
    128      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    129      1.27  jonathan /*
    130      1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    131      1.27  jonathan  *
    132      1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    133      1.27  jonathan  * call.
    134      1.27  jonathan  *
    135      1.27  jonathan  * time_state shows the state of the system clock, with values defined
    136      1.27  jonathan  * in the timex.h header file.
    137      1.27  jonathan  *
    138      1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    139      1.27  jonathan  * in the timex.h header file.
    140      1.27  jonathan  *
    141      1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    142      1.27  jonathan  * increments.
    143      1.27  jonathan  *
    144      1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    145      1.27  jonathan  *
    146      1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    147      1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    148      1.27  jonathan  * in principle it could change as result of the presence of external
    149      1.27  jonathan  * discipline signals, for instance.
    150      1.27  jonathan  *
    151      1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    152      1.27  jonathan  * in cases where a precision clock counter or external clock is
    153      1.27  jonathan  * available, the resolution can be much less than this and depend on
    154      1.27  jonathan  * whether the external clock is working or not.
    155      1.27  jonathan  *
    156      1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    157      1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    158      1.27  jonathan  * growth.
    159      1.27  jonathan  *
    160      1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    161      1.27  jonathan  * otherwise not used by the kernel.
    162      1.27  jonathan  */
    163      1.27  jonathan int time_state = TIME_OK;	/* clock state */
    164      1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    165      1.27  jonathan long time_offset = 0;		/* time offset (us) */
    166      1.27  jonathan long time_constant = 0;		/* pll time constant */
    167      1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    168      1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    169      1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    170      1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    171      1.27  jonathan 
    172      1.27  jonathan /*
    173      1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    174      1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    175      1.27  jonathan  * factors are defined in the timex.h header file.
    176      1.27  jonathan  *
    177      1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    178      1.27  jonathan  * increment, respectively, of the kernel time variable.
    179      1.27  jonathan  *
    180      1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    181      1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    182      1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    183      1.27  jonathan  * daemon.
    184      1.27  jonathan  *
    185      1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    186      1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    187      1.27  jonathan  * seconds rollover.
    188      1.27  jonathan  *
    189      1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    190      1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    191      1.27  jonathan  * and to increase the time_maxerror as the time since last update
    192      1.27  jonathan  * increases.
    193      1.27  jonathan  */
    194      1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    195      1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    196      1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    197      1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    198      1.27  jonathan 
    199      1.27  jonathan #ifdef PPS_SYNC
    200      1.27  jonathan /*
    201      1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    202      1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    203      1.27  jonathan  * timex.h header file.
    204      1.27  jonathan  *
    205      1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    206      1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    207      1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    208      1.27  jonathan  * two.
    209      1.27  jonathan  *
    210      1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    211      1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    212      1.27  jonathan  * this filter.
    213      1.27  jonathan  *
    214      1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    215      1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    216      1.27  jonathan  * by this filter.
    217      1.27  jonathan  *
    218      1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    219      1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    220      1.27  jonathan  * contents plus the time_tv.usec as usual.
    221      1.27  jonathan  *
    222      1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    223      1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    224      1.27  jonathan  * PPS signal be lost.
    225      1.27  jonathan  *
    226      1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    227      1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    228      1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    229      1.27  jonathan  * PPS interrupt and timer interrupt.
    230      1.27  jonathan  *
    231      1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    232      1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    233      1.89    simonb  *
    234      1.89    simonb  * pps_kc_hardpps_source contains an arbitrary value that uniquely
    235      1.89    simonb  * identifies the currently bound source of the PPS signal, or NULL
    236      1.89    simonb  * if no source is bound.
    237      1.89    simonb  *
    238      1.89    simonb  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
    239      1.89    simonb  * signal should be reported.
    240      1.27  jonathan  */
    241      1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    242      1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    243      1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    244      1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    245      1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    246      1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    247      1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    248      1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    249      1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    250      1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    251      1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    252      1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    253      1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    254      1.89    simonb void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
    255      1.89    simonb int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
    256      1.27  jonathan 
    257      1.27  jonathan /*
    258      1.27  jonathan  * PPS signal quality monitors
    259      1.27  jonathan  *
    260      1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    261      1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    262      1.27  jonathan  * (100 us).
    263      1.27  jonathan  *
    264      1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    265      1.27  jonathan  * variable from 4 s to 256 s.
    266      1.27  jonathan  *
    267      1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    268      1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    269      1.27  jonathan  * calibration interval jitter exceeds two ticks.
    270      1.27  jonathan  *
    271      1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    272      1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    273      1.27  jonathan  */
    274      1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    275      1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    276      1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    277      1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    278      1.27  jonathan #endif /* PPS_SYNC */
    279      1.27  jonathan 
    280      1.27  jonathan #ifdef EXT_CLOCK
    281      1.27  jonathan /*
    282      1.27  jonathan  * External clock definitions
    283      1.27  jonathan  *
    284      1.27  jonathan  * The following definitions and declarations are used only if an
    285      1.27  jonathan  * external clock is configured on the system.
    286      1.27  jonathan  */
    287      1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    288      1.27  jonathan 
    289      1.27  jonathan /*
    290      1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    291      1.27  jonathan  * interrupt and decremented once each second.
    292      1.27  jonathan  */
    293      1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    294      1.27  jonathan 
    295      1.27  jonathan #endif /* EXT_CLOCK */
    296      1.27  jonathan #endif /* NTP */
    297      1.27  jonathan 
    298      1.19       cgd /*
    299      1.19       cgd  * Bump a timeval by a small number of usec's.
    300      1.19       cgd  */
    301      1.19       cgd #define BUMPTIME(t, usec) { \
    302      1.55  augustss 	volatile struct timeval *tp = (t); \
    303      1.55  augustss 	long us; \
    304      1.19       cgd  \
    305      1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    306      1.19       cgd 	if (us >= 1000000) { \
    307      1.19       cgd 		tp->tv_usec = us - 1000000; \
    308      1.19       cgd 		tp->tv_sec++; \
    309      1.19       cgd 	} \
    310      1.19       cgd }
    311  1.94.4.1      yamt #endif /* !__HAVE_TIMECOUNTER */
    312      1.19       cgd 
    313      1.19       cgd int	stathz;
    314      1.19       cgd int	profhz;
    315      1.80    briggs int	profsrc;
    316      1.75    simonb int	schedhz;
    317      1.19       cgd int	profprocs;
    318      1.84   thorpej int	hardclock_ticks;
    319  1.94.4.6      yamt static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    320      1.70  sommerfe static int psdiv;			/* prof => stat divider */
    321      1.22       cgd int	psratio;			/* ratio: prof / stat */
    322  1.94.4.1      yamt #ifndef __HAVE_TIMECOUNTER
    323      1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    324      1.34    briggs #ifndef NTP
    325      1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    326      1.34    briggs #else
    327      1.27  jonathan int	fixtick;			/* used by NTP for same */
    328      1.31   mycroft int	shifthz;
    329      1.31   mycroft #endif
    330      1.19       cgd 
    331      1.48  christos /*
    332      1.48  christos  * We might want ldd to load the both words from time at once.
    333      1.48  christos  * To succeed we need to be quadword aligned.
    334      1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    335      1.48  christos  */
    336      1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    337      1.19       cgd volatile struct	timeval mono_time;
    338  1.94.4.1      yamt #endif /* !__HAVE_TIMECOUNTER */
    339      1.19       cgd 
    340  1.94.4.1      yamt #ifdef __HAVE_TIMECOUNTER
    341  1.94.4.1      yamt static u_int get_intr_timecount(struct timecounter *);
    342  1.94.4.1      yamt 
    343  1.94.4.1      yamt static struct timecounter intr_timecounter = {
    344  1.94.4.1      yamt 	get_intr_timecount,	/* get_timecount */
    345  1.94.4.1      yamt 	0,			/* no poll_pps */
    346  1.94.4.1      yamt 	~0u,			/* counter_mask */
    347  1.94.4.1      yamt 	0,		        /* frequency */
    348  1.94.4.1      yamt 	"clockinterrupt",	/* name */
    349  1.94.4.2      yamt 	0,			/* quality - minimum implementation level for a clock */
    350  1.94.4.2      yamt 	NULL,			/* prev */
    351  1.94.4.2      yamt 	NULL,			/* next */
    352  1.94.4.1      yamt };
    353  1.94.4.1      yamt 
    354  1.94.4.1      yamt static u_int
    355  1.94.4.1      yamt get_intr_timecount(struct timecounter *tc)
    356  1.94.4.1      yamt {
    357  1.94.4.2      yamt 
    358  1.94.4.1      yamt 	return (u_int)hardclock_ticks;
    359  1.94.4.1      yamt }
    360  1.94.4.1      yamt #endif
    361      1.73   thorpej 
    362      1.66   thorpej /*
    363      1.19       cgd  * Initialize clock frequencies and start both clocks running.
    364      1.19       cgd  */
    365      1.19       cgd void
    366      1.63   thorpej initclocks(void)
    367      1.19       cgd {
    368      1.55  augustss 	int i;
    369      1.19       cgd 
    370      1.19       cgd 	/*
    371      1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    372      1.19       cgd 	 * code do its bit.
    373      1.19       cgd 	 */
    374      1.70  sommerfe 	psdiv = 1;
    375  1.94.4.1      yamt #ifdef __HAVE_TIMECOUNTER
    376  1.94.4.1      yamt 	/*
    377  1.94.4.1      yamt 	 * provide minimum default time counter
    378  1.94.4.1      yamt 	 * will only run at interrupt resolution
    379  1.94.4.1      yamt 	 */
    380  1.94.4.1      yamt 	intr_timecounter.tc_frequency = hz;
    381  1.94.4.1      yamt 	tc_init(&intr_timecounter);
    382  1.94.4.1      yamt #endif
    383      1.19       cgd 	cpu_initclocks();
    384      1.19       cgd 
    385      1.19       cgd 	/*
    386  1.94.4.4      yamt 	 * Compute profhz and stathz, fix profhz if needed.
    387      1.19       cgd 	 */
    388      1.19       cgd 	i = stathz ? stathz : hz;
    389      1.19       cgd 	if (profhz == 0)
    390      1.19       cgd 		profhz = i;
    391      1.19       cgd 	psratio = profhz / i;
    392      1.91      yamt 	if (schedhz == 0) {
    393      1.91      yamt 		/* 16Hz is best */
    394  1.94.4.6      yamt 		hardscheddiv = hz / 16;
    395  1.94.4.6      yamt 		if (hardscheddiv <= 0)
    396  1.94.4.6      yamt 			panic("hardscheddiv");
    397      1.91      yamt 	}
    398      1.31   mycroft 
    399  1.94.4.1      yamt #ifndef __HAVE_TIMECOUNTER
    400      1.31   mycroft #ifdef NTP
    401      1.31   mycroft 	switch (hz) {
    402      1.57   mycroft 	case 1:
    403      1.57   mycroft 		shifthz = SHIFT_SCALE - 0;
    404      1.57   mycroft 		break;
    405      1.57   mycroft 	case 2:
    406      1.57   mycroft 		shifthz = SHIFT_SCALE - 1;
    407      1.57   mycroft 		break;
    408      1.57   mycroft 	case 4:
    409      1.57   mycroft 		shifthz = SHIFT_SCALE - 2;
    410      1.57   mycroft 		break;
    411      1.57   mycroft 	case 8:
    412      1.57   mycroft 		shifthz = SHIFT_SCALE - 3;
    413      1.57   mycroft 		break;
    414      1.57   mycroft 	case 16:
    415      1.57   mycroft 		shifthz = SHIFT_SCALE - 4;
    416      1.57   mycroft 		break;
    417      1.57   mycroft 	case 32:
    418      1.57   mycroft 		shifthz = SHIFT_SCALE - 5;
    419      1.57   mycroft 		break;
    420      1.92       tls 	case 50:
    421      1.31   mycroft 	case 60:
    422      1.31   mycroft 	case 64:
    423      1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    424      1.31   mycroft 		break;
    425      1.31   mycroft 	case 96:
    426      1.31   mycroft 	case 100:
    427      1.31   mycroft 	case 128:
    428      1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    429      1.31   mycroft 		break;
    430      1.31   mycroft 	case 256:
    431      1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    432      1.41       tls 		break;
    433      1.41       tls 	case 512:
    434      1.41       tls 		shifthz = SHIFT_SCALE - 9;
    435      1.31   mycroft 		break;
    436      1.43      ross 	case 1000:
    437      1.31   mycroft 	case 1024:
    438      1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    439      1.31   mycroft 		break;
    440      1.57   mycroft 	case 1200:
    441      1.57   mycroft 	case 2048:
    442      1.57   mycroft 		shifthz = SHIFT_SCALE - 11;
    443      1.57   mycroft 		break;
    444      1.57   mycroft 	case 4096:
    445      1.57   mycroft 		shifthz = SHIFT_SCALE - 12;
    446      1.57   mycroft 		break;
    447      1.57   mycroft 	case 8192:
    448      1.57   mycroft 		shifthz = SHIFT_SCALE - 13;
    449      1.57   mycroft 		break;
    450      1.57   mycroft 	case 16384:
    451      1.57   mycroft 		shifthz = SHIFT_SCALE - 14;
    452      1.57   mycroft 		break;
    453      1.57   mycroft 	case 32768:
    454      1.57   mycroft 		shifthz = SHIFT_SCALE - 15;
    455      1.57   mycroft 		break;
    456      1.57   mycroft 	case 65536:
    457      1.57   mycroft 		shifthz = SHIFT_SCALE - 16;
    458      1.57   mycroft 		break;
    459      1.31   mycroft 	default:
    460      1.31   mycroft 		panic("weird hz");
    461      1.50  sommerfe 	}
    462      1.50  sommerfe 	if (fixtick == 0) {
    463      1.52   thorpej 		/*
    464      1.52   thorpej 		 * Give MD code a chance to set this to a better
    465      1.52   thorpej 		 * value; but, if it doesn't, we should.
    466      1.52   thorpej 		 */
    467      1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    468      1.31   mycroft 	}
    469  1.94.4.1      yamt #endif /* NTP */
    470  1.94.4.1      yamt #endif /* !__HAVE_TIMECOUNTER */
    471      1.19       cgd }
    472      1.19       cgd 
    473      1.19       cgd /*
    474      1.19       cgd  * The real-time timer, interrupting hz times per second.
    475      1.19       cgd  */
    476      1.19       cgd void
    477      1.63   thorpej hardclock(struct clockframe *frame)
    478      1.19       cgd {
    479      1.82   thorpej 	struct lwp *l;
    480      1.55  augustss 	struct proc *p;
    481  1.94.4.1      yamt 	struct cpu_info *ci = curcpu();
    482  1.94.4.1      yamt 	struct ptimer *pt;
    483  1.94.4.1      yamt #ifndef __HAVE_TIMECOUNTER
    484      1.55  augustss 	int delta;
    485      1.19       cgd 	extern int tickdelta;
    486      1.19       cgd 	extern long timedelta;
    487      1.30   mycroft #ifdef NTP
    488      1.55  augustss 	int time_update;
    489      1.55  augustss 	int ltemp;
    490  1.94.4.1      yamt #endif /* NTP */
    491  1.94.4.1      yamt #endif /* __HAVE_TIMECOUNTER */
    492      1.19       cgd 
    493  1.94.4.6      yamt 	l = ci->ci_data.cpu_onproc;
    494  1.94.4.4      yamt 	if (!CURCPU_IDLE_P()) {
    495      1.82   thorpej 		p = l->l_proc;
    496      1.19       cgd 		/*
    497      1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    498      1.19       cgd 		 */
    499      1.82   thorpej 		if (CLKF_USERMODE(frame) && p->p_timers &&
    500      1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    501      1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    502      1.82   thorpej 				itimerfire(pt);
    503      1.82   thorpej 		if (p->p_timers &&
    504      1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    505      1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    506      1.82   thorpej 				itimerfire(pt);
    507      1.19       cgd 	}
    508      1.19       cgd 
    509      1.19       cgd 	/*
    510      1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    511      1.19       cgd 	 */
    512      1.19       cgd 	if (stathz == 0)
    513      1.19       cgd 		statclock(frame);
    514  1.94.4.6      yamt 	/*
    515  1.94.4.6      yamt 	 * If no separate schedclock is provided, call it here
    516  1.94.4.6      yamt 	 * at about 16 Hz.
    517  1.94.4.6      yamt 	 */
    518  1.94.4.6      yamt 	if (schedhz == 0) {
    519  1.94.4.6      yamt 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    520  1.94.4.6      yamt 			schedclock(l);
    521  1.94.4.6      yamt 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    522  1.94.4.6      yamt 		}
    523  1.94.4.6      yamt 	}
    524  1.94.4.4      yamt 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    525  1.94.4.4      yamt 		sched_tick(ci);
    526      1.93     perry 
    527      1.60   thorpej #if defined(MULTIPROCESSOR)
    528      1.60   thorpej 	/*
    529      1.60   thorpej 	 * If we are not the primary CPU, we're not allowed to do
    530      1.60   thorpej 	 * any more work.
    531      1.60   thorpej 	 */
    532      1.70  sommerfe 	if (CPU_IS_PRIMARY(ci) == 0)
    533      1.60   thorpej 		return;
    534      1.60   thorpej #endif
    535      1.60   thorpej 
    536  1.94.4.1      yamt 	hardclock_ticks++;
    537  1.94.4.1      yamt 
    538  1.94.4.1      yamt #ifdef __HAVE_TIMECOUNTER
    539  1.94.4.1      yamt 	tc_ticktock();
    540  1.94.4.1      yamt #else /* __HAVE_TIMECOUNTER */
    541      1.19       cgd 	/*
    542      1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    543      1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    544      1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    545      1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    546      1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    547      1.22       cgd 	 * ``tickdelta'' may also be added in.
    548      1.19       cgd 	 */
    549      1.22       cgd 	delta = tick;
    550      1.27  jonathan 
    551      1.27  jonathan #ifndef NTP
    552      1.22       cgd 	if (tickfix) {
    553      1.39       cgd 		tickfixcnt += tickfix;
    554      1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    555      1.39       cgd 			delta++;
    556      1.39       cgd 			tickfixcnt -= tickfixinterval;
    557      1.22       cgd 		}
    558      1.22       cgd 	}
    559      1.27  jonathan #endif /* !NTP */
    560      1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    561      1.22       cgd 	if (timedelta != 0) {
    562      1.38       cgd 		delta += tickdelta;
    563      1.19       cgd 		timedelta -= tickdelta;
    564      1.19       cgd 	}
    565      1.27  jonathan 
    566      1.27  jonathan #ifdef notyet
    567      1.27  jonathan 	microset();
    568      1.27  jonathan #endif
    569      1.27  jonathan 
    570      1.27  jonathan #ifndef NTP
    571      1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    572      1.27  jonathan #endif
    573      1.19       cgd 	BUMPTIME(&mono_time, delta);
    574      1.27  jonathan 
    575      1.31   mycroft #ifdef NTP
    576      1.30   mycroft 	time_update = delta;
    577      1.27  jonathan 
    578      1.27  jonathan 	/*
    579      1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    580      1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    581      1.27  jonathan 	 * (time_update).
    582      1.27  jonathan 	 */
    583      1.27  jonathan 	time_phase += time_adj;
    584      1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    585      1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    586      1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    587      1.27  jonathan 		time_update -= ltemp;
    588      1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    589      1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    590      1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    591      1.27  jonathan 		time_update += ltemp;
    592      1.27  jonathan 	}
    593      1.27  jonathan 	time.tv_usec += time_update;
    594      1.27  jonathan 
    595      1.27  jonathan 	/*
    596      1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    597      1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    598      1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    599      1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    600      1.27  jonathan 	 * CPU clock oscillator frequency error.
    601      1.27  jonathan 	 *
    602      1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    603      1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    604      1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    605      1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    606      1.27  jonathan 	 */
    607      1.27  jonathan 	if (time.tv_usec >= 1000000) {
    608      1.27  jonathan 		time.tv_usec -= 1000000;
    609      1.27  jonathan 		time.tv_sec++;
    610      1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    611      1.27  jonathan 
    612      1.27  jonathan 		/*
    613      1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    614      1.27  jonathan 		 * the end of the day, the system clock is set back one
    615      1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    616      1.27  jonathan 		 * set ahead one second. The microtime() routine or
    617      1.27  jonathan 		 * external clock driver will insure that reported time
    618      1.27  jonathan 		 * is always monotonic. The ugly divides should be
    619      1.27  jonathan 		 * replaced.
    620      1.27  jonathan 		 */
    621      1.27  jonathan 		switch (time_state) {
    622      1.31   mycroft 		case TIME_OK:
    623      1.27  jonathan 			if (time_status & STA_INS)
    624      1.27  jonathan 				time_state = TIME_INS;
    625      1.27  jonathan 			else if (time_status & STA_DEL)
    626      1.27  jonathan 				time_state = TIME_DEL;
    627      1.27  jonathan 			break;
    628      1.27  jonathan 
    629      1.31   mycroft 		case TIME_INS:
    630      1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    631      1.27  jonathan 				time.tv_sec--;
    632      1.27  jonathan 				time_state = TIME_OOP;
    633      1.27  jonathan 			}
    634      1.27  jonathan 			break;
    635      1.27  jonathan 
    636      1.31   mycroft 		case TIME_DEL:
    637      1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    638      1.27  jonathan 				time.tv_sec++;
    639      1.27  jonathan 				time_state = TIME_WAIT;
    640      1.27  jonathan 			}
    641      1.27  jonathan 			break;
    642      1.27  jonathan 
    643      1.31   mycroft 		case TIME_OOP:
    644      1.27  jonathan 			time_state = TIME_WAIT;
    645      1.27  jonathan 			break;
    646      1.27  jonathan 
    647      1.31   mycroft 		case TIME_WAIT:
    648      1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    649      1.27  jonathan 				time_state = TIME_OK;
    650      1.31   mycroft 			break;
    651      1.27  jonathan 		}
    652      1.27  jonathan 
    653      1.27  jonathan 		/*
    654      1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    655      1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    656      1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    657      1.27  jonathan 		 * used directly. In either mode, the maximum phase
    658      1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    659      1.27  jonathan 		 * the adjustment over not more than the number of
    660      1.27  jonathan 		 * seconds between updates.
    661      1.27  jonathan 		 */
    662      1.27  jonathan 		if (time_offset < 0) {
    663      1.27  jonathan 			ltemp = -time_offset;
    664      1.27  jonathan 			if (!(time_status & STA_FLL))
    665      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    666      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    667      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    668      1.27  jonathan 				    SHIFT_UPDATE;
    669      1.27  jonathan 			time_offset += ltemp;
    670      1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    671      1.31   mycroft 		} else if (time_offset > 0) {
    672      1.27  jonathan 			ltemp = time_offset;
    673      1.27  jonathan 			if (!(time_status & STA_FLL))
    674      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    675      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    676      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    677      1.27  jonathan 				    SHIFT_UPDATE;
    678      1.27  jonathan 			time_offset -= ltemp;
    679      1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    680      1.31   mycroft 		} else
    681      1.31   mycroft 			time_adj = 0;
    682      1.27  jonathan 
    683      1.27  jonathan 		/*
    684      1.27  jonathan 		 * Compute the frequency estimate and additional phase
    685      1.27  jonathan 		 * adjustment due to frequency error for the next
    686      1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    687      1.27  jonathan 		 * watchdog counter and update the frequency computed by
    688      1.27  jonathan 		 * the pll and the PPS signal.
    689      1.27  jonathan 		 */
    690      1.27  jonathan #ifdef PPS_SYNC
    691      1.27  jonathan 		pps_valid++;
    692      1.27  jonathan 		if (pps_valid == PPS_VALID) {
    693      1.27  jonathan 			pps_jitter = MAXTIME;
    694      1.27  jonathan 			pps_stabil = MAXFREQ;
    695      1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    696      1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    697      1.27  jonathan 		}
    698      1.27  jonathan 		ltemp = time_freq + pps_freq;
    699      1.27  jonathan #else
    700      1.27  jonathan 		ltemp = time_freq;
    701      1.27  jonathan #endif /* PPS_SYNC */
    702      1.27  jonathan 
    703      1.27  jonathan 		if (ltemp < 0)
    704      1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    705      1.27  jonathan 		else
    706      1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    707      1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    708      1.27  jonathan 
    709      1.27  jonathan 		/*
    710      1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    711      1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    712      1.31   mycroft 		 * scale factor.
    713      1.46   mycroft 		 *
    714      1.46   mycroft 		 * To determine the adjustment, you can do the following:
    715      1.46   mycroft 		 *   bc -q
    716      1.46   mycroft 		 *   scale=24
    717      1.46   mycroft 		 *   obase=2
    718      1.46   mycroft 		 *   idealhz/realhz
    719      1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    720      1.57   mycroft 		 * is the actual value.  You may need to factor this result
    721      1.57   mycroft 		 * into a sequence of 2 multipliers to get better precision.
    722      1.46   mycroft 		 *
    723      1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    724      1.46   mycroft 		 *   bc -q
    725      1.46   mycroft 		 *   scale=24
    726      1.57   mycroft 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    727      1.57   mycroft 		 * (and then multiply by 1000000 to get ppm).
    728      1.27  jonathan 		 */
    729      1.31   mycroft 		switch (hz) {
    730      1.58   mycroft 		case 60:
    731      1.58   mycroft 			/* A factor of 1.000100010001 gives about 15ppm
    732      1.58   mycroft 			   error. */
    733      1.58   mycroft 			if (time_adj < 0) {
    734      1.58   mycroft 				time_adj -= (-time_adj >> 4);
    735      1.58   mycroft 				time_adj -= (-time_adj >> 8);
    736      1.58   mycroft 			} else {
    737      1.58   mycroft 				time_adj += (time_adj >> 4);
    738      1.58   mycroft 				time_adj += (time_adj >> 8);
    739      1.58   mycroft 			}
    740      1.58   mycroft 			break;
    741      1.58   mycroft 
    742      1.31   mycroft 		case 96:
    743      1.56   mycroft 			/* A factor of 1.0101010101 gives about 244ppm error. */
    744      1.46   mycroft 			if (time_adj < 0) {
    745      1.46   mycroft 				time_adj -= (-time_adj >> 2);
    746      1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    747      1.46   mycroft 			} else {
    748      1.46   mycroft 				time_adj += (time_adj >> 2);
    749      1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    750      1.46   mycroft 			}
    751      1.46   mycroft 			break;
    752      1.46   mycroft 
    753      1.92       tls 		case 50:
    754      1.31   mycroft 		case 100:
    755      1.56   mycroft 			/* A factor of 1.010001111010111 gives about 1ppm
    756      1.56   mycroft 			   error. */
    757      1.56   mycroft 			if (time_adj < 0) {
    758      1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    759      1.56   mycroft 				time_adj += (-time_adj >> 10);
    760      1.56   mycroft 			} else {
    761      1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    762      1.56   mycroft 				time_adj -= (time_adj >> 10);
    763      1.56   mycroft 			}
    764      1.43      ross 			break;
    765      1.46   mycroft 
    766      1.43      ross 		case 1000:
    767      1.56   mycroft 			/* A factor of 1.000001100010100001 gives about 50ppm
    768      1.56   mycroft 			   error. */
    769      1.56   mycroft 			if (time_adj < 0) {
    770      1.56   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    771      1.56   mycroft 				time_adj -= (-time_adj >> 7);
    772      1.56   mycroft 			} else {
    773      1.56   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    774      1.56   mycroft 				time_adj += (time_adj >> 7);
    775      1.56   mycroft 			}
    776      1.56   mycroft 			break;
    777      1.56   mycroft 
    778      1.56   mycroft 		case 1200:
    779      1.56   mycroft 			/* A factor of 1.1011010011100001 gives about 64ppm
    780      1.56   mycroft 			   error. */
    781      1.56   mycroft 			if (time_adj < 0) {
    782      1.56   mycroft 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    783      1.56   mycroft 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    784      1.56   mycroft 			} else {
    785      1.56   mycroft 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    786      1.56   mycroft 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    787      1.56   mycroft 			}
    788      1.31   mycroft 			break;
    789      1.27  jonathan 		}
    790      1.27  jonathan 
    791      1.27  jonathan #ifdef EXT_CLOCK
    792      1.27  jonathan 		/*
    793      1.27  jonathan 		 * If an external clock is present, it is necessary to
    794      1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    795      1.27  jonathan 		 * all system components use the microtime() interface.
    796      1.27  jonathan 		 * Here, the time offset between the external clock and
    797      1.27  jonathan 		 * kernel time variable is computed every so often.
    798      1.27  jonathan 		 */
    799      1.27  jonathan 		clock_count++;
    800      1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    801      1.27  jonathan 			clock_count = 0;
    802      1.27  jonathan 			microtime(&clock_ext);
    803      1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    804      1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    805      1.27  jonathan 			    time.tv_usec;
    806      1.27  jonathan 			if (delta.tv_usec < 0)
    807      1.27  jonathan 				delta.tv_sec--;
    808      1.27  jonathan 			if (delta.tv_usec >= 500000) {
    809      1.27  jonathan 				delta.tv_usec -= 1000000;
    810      1.27  jonathan 				delta.tv_sec++;
    811      1.27  jonathan 			}
    812      1.27  jonathan 			if (delta.tv_usec < -500000) {
    813      1.27  jonathan 				delta.tv_usec += 1000000;
    814      1.27  jonathan 				delta.tv_sec--;
    815      1.27  jonathan 			}
    816      1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    817      1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    818      1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    819      1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    820      1.27  jonathan 				time = clock_ext;
    821      1.27  jonathan 				delta.tv_sec = 0;
    822      1.27  jonathan 				delta.tv_usec = 0;
    823      1.27  jonathan 			}
    824      1.27  jonathan 			hardupdate(delta.tv_usec);
    825      1.27  jonathan 		}
    826      1.27  jonathan #endif /* EXT_CLOCK */
    827      1.27  jonathan 	}
    828      1.27  jonathan 
    829      1.31   mycroft #endif /* NTP */
    830  1.94.4.1      yamt #endif /* !__HAVE_TIMECOUNTER */
    831      1.19       cgd 
    832      1.19       cgd 	/*
    833  1.94.4.3      yamt 	 * Update real-time timeout queue.  Callouts are processed at a
    834  1.94.4.3      yamt 	 * very low CPU priority, so we don't keep the relatively high
    835  1.94.4.3      yamt 	 * clock interrupt priority any longer than necessary.
    836  1.94.4.3      yamt 	 */
    837  1.94.4.4      yamt 	callout_hardclock();
    838  1.94.4.1      yamt }
    839      1.19       cgd 
    840      1.19       cgd /*
    841      1.19       cgd  * Start profiling on a process.
    842      1.19       cgd  *
    843      1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
    844      1.19       cgd  * keeps the profile clock running constantly.
    845      1.19       cgd  */
    846      1.19       cgd void
    847      1.63   thorpej startprofclock(struct proc *p)
    848      1.19       cgd {
    849      1.19       cgd 
    850  1.94.4.4      yamt 	KASSERT(mutex_owned(&p->p_stmutex));
    851  1.94.4.3      yamt 
    852  1.94.4.3      yamt 	if ((p->p_stflag & PST_PROFIL) == 0) {
    853  1.94.4.3      yamt 		p->p_stflag |= PST_PROFIL;
    854      1.80    briggs 		/*
    855      1.80    briggs 		 * This is only necessary if using the clock as the
    856      1.80    briggs 		 * profiling source.
    857      1.80    briggs 		 */
    858      1.70  sommerfe 		if (++profprocs == 1 && stathz != 0)
    859      1.70  sommerfe 			psdiv = psratio;
    860      1.19       cgd 	}
    861      1.19       cgd }
    862      1.19       cgd 
    863      1.19       cgd /*
    864      1.19       cgd  * Stop profiling on a process.
    865      1.19       cgd  */
    866      1.19       cgd void
    867      1.63   thorpej stopprofclock(struct proc *p)
    868      1.19       cgd {
    869      1.19       cgd 
    870  1.94.4.4      yamt 	KASSERT(mutex_owned(&p->p_stmutex));
    871  1.94.4.3      yamt 
    872  1.94.4.3      yamt 	if (p->p_stflag & PST_PROFIL) {
    873  1.94.4.3      yamt 		p->p_stflag &= ~PST_PROFIL;
    874      1.80    briggs 		/*
    875      1.80    briggs 		 * This is only necessary if using the clock as the
    876      1.80    briggs 		 * profiling source.
    877      1.80    briggs 		 */
    878      1.70  sommerfe 		if (--profprocs == 0 && stathz != 0)
    879      1.70  sommerfe 			psdiv = 1;
    880      1.19       cgd 	}
    881      1.19       cgd }
    882      1.19       cgd 
    883      1.80    briggs #if defined(PERFCTRS)
    884      1.80    briggs /*
    885      1.80    briggs  * Independent profiling "tick" in case we're using a separate
    886      1.80    briggs  * clock or profiling event source.  Currently, that's just
    887      1.80    briggs  * performance counters--hence the wrapper.
    888      1.80    briggs  */
    889      1.80    briggs void
    890      1.80    briggs proftick(struct clockframe *frame)
    891      1.80    briggs {
    892      1.80    briggs #ifdef GPROF
    893      1.93     perry         struct gmonparam *g;
    894      1.93     perry         intptr_t i;
    895      1.80    briggs #endif
    896  1.94.4.3      yamt 	struct lwp *l;
    897      1.80    briggs 	struct proc *p;
    898      1.80    briggs 
    899  1.94.4.6      yamt 	l = curcpu()->ci_data.cpu_onproc;
    900  1.94.4.3      yamt 	p = (l ? l->l_proc : NULL);
    901      1.80    briggs 	if (CLKF_USERMODE(frame)) {
    902  1.94.4.3      yamt 		mutex_spin_enter(&p->p_stmutex);
    903  1.94.4.3      yamt 		if (p->p_stflag & PST_PROFIL)
    904  1.94.4.3      yamt 			addupc_intr(l, CLKF_PC(frame));
    905  1.94.4.3      yamt 		mutex_spin_exit(&p->p_stmutex);
    906      1.80    briggs 	} else {
    907      1.80    briggs #ifdef GPROF
    908      1.80    briggs 		g = &_gmonparam;
    909      1.80    briggs 		if (g->state == GMON_PROF_ON) {
    910      1.80    briggs 			i = CLKF_PC(frame) - g->lowpc;
    911      1.80    briggs 			if (i < g->textsize) {
    912      1.80    briggs 				i /= HISTFRACTION * sizeof(*g->kcount);
    913      1.80    briggs 				g->kcount[i]++;
    914      1.80    briggs 			}
    915      1.80    briggs 		}
    916      1.80    briggs #endif
    917  1.94.4.5      yamt #ifdef LWP_PC
    918  1.94.4.5      yamt 		if (p != NULL && (p->p_stflag & PST_PROFIL) != 0)
    919  1.94.4.5      yamt 			addupc_intr(l, LWP_PC(l));
    920      1.93     perry #endif
    921      1.80    briggs 	}
    922      1.80    briggs }
    923      1.80    briggs #endif
    924      1.80    briggs 
    925  1.94.4.4      yamt void
    926  1.94.4.4      yamt schedclock(struct lwp *l)
    927  1.94.4.4      yamt {
    928  1.94.4.4      yamt 
    929  1.94.4.4      yamt 	if ((l->l_flag & LW_IDLE) != 0)
    930  1.94.4.4      yamt 		return;
    931  1.94.4.4      yamt 
    932  1.94.4.4      yamt 	sched_schedclock(l);
    933  1.94.4.4      yamt }
    934  1.94.4.4      yamt 
    935      1.19       cgd /*
    936      1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    937      1.19       cgd  * do process and kernel statistics.
    938      1.19       cgd  */
    939      1.19       cgd void
    940      1.63   thorpej statclock(struct clockframe *frame)
    941      1.19       cgd {
    942      1.19       cgd #ifdef GPROF
    943      1.55  augustss 	struct gmonparam *g;
    944      1.68       eeh 	intptr_t i;
    945      1.19       cgd #endif
    946      1.60   thorpej 	struct cpu_info *ci = curcpu();
    947      1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    948      1.55  augustss 	struct proc *p;
    949  1.94.4.1      yamt 	struct lwp *l;
    950      1.19       cgd 
    951      1.70  sommerfe 	/*
    952      1.70  sommerfe 	 * Notice changes in divisor frequency, and adjust clock
    953      1.70  sommerfe 	 * frequency accordingly.
    954      1.70  sommerfe 	 */
    955      1.70  sommerfe 	if (spc->spc_psdiv != psdiv) {
    956      1.70  sommerfe 		spc->spc_psdiv = psdiv;
    957      1.70  sommerfe 		spc->spc_pscnt = psdiv;
    958      1.70  sommerfe 		if (psdiv == 1) {
    959      1.70  sommerfe 			setstatclockrate(stathz);
    960      1.70  sommerfe 		} else {
    961      1.93     perry 			setstatclockrate(profhz);
    962      1.70  sommerfe 		}
    963      1.70  sommerfe 	}
    964  1.94.4.6      yamt 	l = ci->ci_data.cpu_onproc;
    965  1.94.4.4      yamt 	if ((l->l_flag & LW_IDLE) != 0) {
    966  1.94.4.4      yamt 		/*
    967  1.94.4.4      yamt 		 * don't account idle lwps as swapper.
    968  1.94.4.4      yamt 		 */
    969  1.94.4.4      yamt 		p = NULL;
    970  1.94.4.4      yamt 	} else {
    971  1.94.4.4      yamt 		p = l->l_proc;
    972  1.94.4.3      yamt 		mutex_spin_enter(&p->p_stmutex);
    973  1.94.4.4      yamt 	}
    974  1.94.4.1      yamt 
    975  1.94.4.4      yamt 	if (CLKF_USERMODE(frame)) {
    976  1.94.4.3      yamt 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    977  1.94.4.3      yamt 			addupc_intr(l, CLKF_PC(frame));
    978  1.94.4.3      yamt 		if (--spc->spc_pscnt > 0) {
    979  1.94.4.3      yamt 			mutex_spin_exit(&p->p_stmutex);
    980      1.19       cgd 			return;
    981  1.94.4.3      yamt 		}
    982  1.94.4.3      yamt 
    983      1.19       cgd 		/*
    984      1.19       cgd 		 * Came from user mode; CPU was in user state.
    985      1.19       cgd 		 * If this process is being profiled record the tick.
    986      1.19       cgd 		 */
    987      1.19       cgd 		p->p_uticks++;
    988      1.19       cgd 		if (p->p_nice > NZERO)
    989      1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
    990      1.19       cgd 		else
    991      1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
    992      1.19       cgd 	} else {
    993      1.19       cgd #ifdef GPROF
    994      1.19       cgd 		/*
    995      1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
    996      1.19       cgd 		 */
    997      1.19       cgd 		g = &_gmonparam;
    998      1.80    briggs 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    999      1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1000      1.19       cgd 			if (i < g->textsize) {
   1001      1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1002      1.19       cgd 				g->kcount[i]++;
   1003      1.19       cgd 			}
   1004      1.19       cgd 		}
   1005      1.19       cgd #endif
   1006      1.82   thorpej #ifdef LWP_PC
   1007  1.94.4.4      yamt 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
   1008  1.94.4.4      yamt 		    (p->p_stflag & PST_PROFIL)) {
   1009  1.94.4.3      yamt 			addupc_intr(l, LWP_PC(l));
   1010  1.94.4.4      yamt 		}
   1011      1.72   mycroft #endif
   1012  1.94.4.3      yamt 		if (--spc->spc_pscnt > 0) {
   1013  1.94.4.3      yamt 			if (p != NULL)
   1014  1.94.4.3      yamt 				mutex_spin_exit(&p->p_stmutex);
   1015      1.19       cgd 			return;
   1016  1.94.4.3      yamt 		}
   1017      1.19       cgd 		/*
   1018      1.19       cgd 		 * Came from kernel mode, so we were:
   1019      1.19       cgd 		 * - handling an interrupt,
   1020      1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1021      1.19       cgd 		 *   user process, or
   1022      1.19       cgd 		 * - spinning in the idle loop.
   1023      1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1024      1.19       cgd 		 * Note that we charge interrupts to the current process,
   1025      1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1026      1.19       cgd 		 * so that we know how much of its real time was spent
   1027      1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1028      1.19       cgd 		 */
   1029  1.94.4.6      yamt 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
   1030  1.94.4.4      yamt 			if (p != NULL) {
   1031      1.19       cgd 				p->p_iticks++;
   1032  1.94.4.4      yamt 			}
   1033      1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
   1034      1.19       cgd 		} else if (p != NULL) {
   1035      1.19       cgd 			p->p_sticks++;
   1036      1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
   1037  1.94.4.4      yamt 		} else {
   1038      1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
   1039  1.94.4.4      yamt 		}
   1040      1.19       cgd 	}
   1041      1.70  sommerfe 	spc->spc_pscnt = psdiv;
   1042      1.19       cgd 
   1043  1.94.4.1      yamt 	if (p != NULL) {
   1044  1.94.4.4      yamt 		++l->l_cpticks;
   1045  1.94.4.3      yamt 		mutex_spin_exit(&p->p_stmutex);
   1046  1.94.4.4      yamt 	}
   1047      1.19       cgd }
   1048      1.27  jonathan 
   1049  1.94.4.1      yamt #ifndef __HAVE_TIMECOUNTER
   1050      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1051      1.27  jonathan /*
   1052      1.27  jonathan  * hardupdate() - local clock update
   1053      1.27  jonathan  *
   1054      1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1055      1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1056      1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1057      1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1058      1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1059      1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1060      1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1061      1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1062      1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1063      1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1064      1.27  jonathan  *
   1065      1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1066      1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1067      1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1068      1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1069      1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1070      1.27  jonathan  *
   1071      1.27  jonathan  * Note: splclock() is in effect.
   1072      1.27  jonathan  */
   1073      1.27  jonathan void
   1074      1.63   thorpej hardupdate(long offset)
   1075      1.27  jonathan {
   1076      1.27  jonathan 	long ltemp, mtemp;
   1077      1.27  jonathan 
   1078      1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1079      1.27  jonathan 		return;
   1080      1.27  jonathan 	ltemp = offset;
   1081      1.27  jonathan #ifdef PPS_SYNC
   1082      1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1083      1.27  jonathan 		ltemp = pps_offset;
   1084      1.27  jonathan #endif /* PPS_SYNC */
   1085      1.27  jonathan 
   1086      1.27  jonathan 	/*
   1087      1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1088      1.27  jonathan 	 */
   1089      1.27  jonathan 	if (ltemp > MAXPHASE)
   1090      1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1091      1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1092      1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1093      1.27  jonathan 	else
   1094      1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1095      1.27  jonathan 
   1096      1.27  jonathan 	/*
   1097      1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1098      1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1099      1.27  jonathan 	 * multiply/divide should be replaced someday.
   1100      1.27  jonathan 	 */
   1101      1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1102      1.27  jonathan 		time_reftime = time.tv_sec;
   1103      1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1104      1.27  jonathan 	time_reftime = time.tv_sec;
   1105      1.27  jonathan 	if (time_status & STA_FLL) {
   1106      1.27  jonathan 		if (mtemp >= MINSEC) {
   1107      1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1108      1.27  jonathan 			    SHIFT_UPDATE));
   1109      1.27  jonathan 			if (ltemp < 0)
   1110      1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1111      1.27  jonathan 			else
   1112      1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1113      1.27  jonathan 		}
   1114      1.27  jonathan 	} else {
   1115      1.27  jonathan 		if (mtemp < MAXSEC) {
   1116      1.27  jonathan 			ltemp *= mtemp;
   1117      1.27  jonathan 			if (ltemp < 0)
   1118      1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1119      1.27  jonathan 				    time_constant + SHIFT_KF -
   1120      1.27  jonathan 				    SHIFT_USEC);
   1121      1.27  jonathan 			else
   1122      1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1123      1.27  jonathan 				    time_constant + SHIFT_KF -
   1124      1.27  jonathan 				    SHIFT_USEC);
   1125      1.27  jonathan 		}
   1126      1.27  jonathan 	}
   1127      1.27  jonathan 	if (time_freq > time_tolerance)
   1128      1.27  jonathan 		time_freq = time_tolerance;
   1129      1.27  jonathan 	else if (time_freq < -time_tolerance)
   1130      1.27  jonathan 		time_freq = -time_tolerance;
   1131      1.27  jonathan }
   1132      1.27  jonathan 
   1133      1.27  jonathan #ifdef PPS_SYNC
   1134      1.27  jonathan /*
   1135      1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1136      1.27  jonathan  *
   1137      1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1138      1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1139      1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1140      1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1141      1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1142      1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1143      1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1144      1.27  jonathan  * value at the on-time PPS signal transition.
   1145      1.27  jonathan  *
   1146      1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1147      1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1148      1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1149      1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1150      1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1151      1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1152      1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1153      1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1154      1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1155      1.27  jonathan  * routine.
   1156      1.27  jonathan  */
   1157      1.27  jonathan void
   1158      1.63   thorpej hardpps(struct timeval *tvp,		/* time at PPS */
   1159      1.63   thorpej 	long usec			/* hardware counter at PPS */)
   1160      1.27  jonathan {
   1161      1.27  jonathan 	long u_usec, v_usec, bigtick;
   1162      1.27  jonathan 	long cal_sec, cal_usec;
   1163      1.27  jonathan 
   1164      1.27  jonathan 	/*
   1165      1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1166      1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1167      1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1168      1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1169      1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1170      1.27  jonathan 	 */
   1171      1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1172      1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1173      1.27  jonathan 	pps_valid = 0;
   1174      1.27  jonathan 	u_usec = -tvp->tv_usec;
   1175      1.27  jonathan 	if (u_usec < -500000)
   1176      1.27  jonathan 		u_usec += 1000000;
   1177      1.27  jonathan 	v_usec = pps_offset - u_usec;
   1178      1.27  jonathan 	if (v_usec < 0)
   1179      1.27  jonathan 		v_usec = -v_usec;
   1180      1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1181      1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1182      1.27  jonathan 			pps_glitch = 0;
   1183      1.27  jonathan 			pps_tf[2] = u_usec;
   1184      1.27  jonathan 			pps_tf[1] = u_usec;
   1185      1.27  jonathan 		} else {
   1186      1.27  jonathan 			pps_glitch++;
   1187      1.27  jonathan 			u_usec = pps_offset;
   1188      1.27  jonathan 		}
   1189      1.27  jonathan 	} else
   1190      1.27  jonathan 		pps_glitch = 0;
   1191      1.27  jonathan 
   1192      1.27  jonathan 	/*
   1193      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1194      1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1195      1.27  jonathan 	 * difference between the other two samples becomes the time
   1196      1.27  jonathan 	 * dispersion (jitter) estimate.
   1197      1.27  jonathan 	 */
   1198      1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1199      1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1200      1.27  jonathan 	pps_tf[0] = u_usec;
   1201      1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1202      1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1203      1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1204      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1205      1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1206      1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1207      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1208      1.27  jonathan 		} else {
   1209      1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1210      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1211      1.27  jonathan 		}
   1212      1.27  jonathan 	} else {
   1213      1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1214      1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1215      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1216      1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1217      1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1218      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1219      1.27  jonathan 		} else {
   1220      1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1221      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1222      1.27  jonathan 		}
   1223      1.27  jonathan 	}
   1224      1.27  jonathan 	if (v_usec > MAXTIME)
   1225      1.27  jonathan 		pps_jitcnt++;
   1226      1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1227      1.27  jonathan 	if (v_usec < 0)
   1228      1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1229      1.27  jonathan 	else
   1230      1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1231      1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1232      1.27  jonathan 		time_status |= STA_PPSJITTER;
   1233      1.27  jonathan 
   1234      1.27  jonathan 	/*
   1235      1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1236      1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1237      1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1238      1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1239      1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1240      1.27  jonathan 	 * exceed the value of tick when using long calibration
   1241      1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1242      1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1243      1.27  jonathan 	 * the values returned and used here are correct.
   1244      1.27  jonathan 	 */
   1245      1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1246      1.27  jonathan 	pps_usec -= pps_freq;
   1247      1.27  jonathan 	if (pps_usec >= bigtick)
   1248      1.27  jonathan 		pps_usec -= bigtick;
   1249      1.27  jonathan 	if (pps_usec < 0)
   1250      1.27  jonathan 		pps_usec += bigtick;
   1251      1.27  jonathan 	pps_time.tv_sec++;
   1252      1.27  jonathan 	pps_count++;
   1253      1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1254      1.27  jonathan 		return;
   1255      1.27  jonathan 	pps_count = 0;
   1256      1.27  jonathan 	pps_calcnt++;
   1257      1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1258      1.27  jonathan 	v_usec = pps_usec - u_usec;
   1259      1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1260      1.27  jonathan 		v_usec -= bigtick;
   1261      1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1262      1.27  jonathan 		v_usec += bigtick;
   1263      1.27  jonathan 	if (v_usec < 0)
   1264      1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1265      1.27  jonathan 	else
   1266      1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1267      1.27  jonathan 	pps_usec = u_usec;
   1268      1.27  jonathan 	cal_sec = tvp->tv_sec;
   1269      1.27  jonathan 	cal_usec = tvp->tv_usec;
   1270      1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1271      1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1272      1.27  jonathan 	if (cal_usec < 0) {
   1273      1.27  jonathan 		cal_usec += 1000000;
   1274      1.27  jonathan 		cal_sec--;
   1275      1.27  jonathan 	}
   1276      1.27  jonathan 	pps_time = *tvp;
   1277      1.27  jonathan 
   1278      1.27  jonathan 	/*
   1279      1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1280      1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1281      1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1282      1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1283      1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1284      1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1285      1.27  jonathan 	 */
   1286      1.27  jonathan 	u_usec = (long)tick << 1;
   1287      1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1288      1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1289      1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1290      1.27  jonathan 		pps_errcnt++;
   1291      1.27  jonathan 		pps_shift = PPS_SHIFT;
   1292      1.27  jonathan 		pps_intcnt = 0;
   1293      1.27  jonathan 		time_status |= STA_PPSERROR;
   1294      1.27  jonathan 		return;
   1295      1.27  jonathan 	}
   1296      1.27  jonathan 
   1297      1.27  jonathan 	/*
   1298      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1299      1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1300      1.27  jonathan 	 * estimate; the difference between the other two samples
   1301      1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1302      1.27  jonathan 	 */
   1303      1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1304      1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1305      1.27  jonathan 	pps_ff[0] = v_usec;
   1306      1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1307      1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1308      1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1309      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1310      1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1311      1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1312      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1313      1.27  jonathan 		} else {
   1314      1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1315      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1316      1.27  jonathan 		}
   1317      1.27  jonathan 	} else {
   1318      1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1319      1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1320      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1321      1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1322      1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1323      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1324      1.27  jonathan 		} else {
   1325      1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1326      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1327      1.27  jonathan 		}
   1328      1.27  jonathan 	}
   1329      1.27  jonathan 
   1330      1.27  jonathan 	/*
   1331      1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1332      1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1333      1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1334      1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1335      1.27  jonathan 	 */
   1336      1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1337      1.27  jonathan 	if (v_usec < 0)
   1338      1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1339      1.27  jonathan 	else
   1340      1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1341      1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1342      1.27  jonathan 		pps_stbcnt++;
   1343      1.27  jonathan 		time_status |= STA_PPSWANDER;
   1344      1.27  jonathan 		return;
   1345      1.27  jonathan 	}
   1346      1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1347      1.27  jonathan 		if (u_usec < 0) {
   1348      1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1349      1.27  jonathan 			if (pps_freq < -time_tolerance)
   1350      1.27  jonathan 				pps_freq = -time_tolerance;
   1351      1.27  jonathan 			u_usec = -u_usec;
   1352      1.27  jonathan 		} else {
   1353      1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1354      1.27  jonathan 			if (pps_freq > time_tolerance)
   1355      1.27  jonathan 				pps_freq = time_tolerance;
   1356      1.27  jonathan 		}
   1357      1.27  jonathan 	}
   1358      1.27  jonathan 
   1359      1.27  jonathan 	/*
   1360      1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1361      1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1362      1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1363      1.27  jonathan 	 * intervals, double the interval.
   1364      1.27  jonathan 	 */
   1365      1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1366      1.27  jonathan 		pps_intcnt = 0;
   1367      1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1368      1.27  jonathan 			pps_shift--;
   1369      1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1370      1.27  jonathan 		pps_intcnt = 0;
   1371      1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1372      1.27  jonathan 			pps_shift++;
   1373      1.27  jonathan 	} else
   1374      1.27  jonathan 		pps_intcnt++;
   1375      1.27  jonathan }
   1376      1.27  jonathan #endif /* PPS_SYNC */
   1377      1.27  jonathan #endif /* NTP  */
   1378  1.94.4.1      yamt 
   1379  1.94.4.1      yamt /* timecounter compat functions */
   1380  1.94.4.1      yamt void
   1381  1.94.4.1      yamt nanotime(struct timespec *ts)
   1382  1.94.4.1      yamt {
   1383  1.94.4.1      yamt 	struct timeval tv;
   1384  1.94.4.1      yamt 
   1385  1.94.4.1      yamt 	microtime(&tv);
   1386  1.94.4.1      yamt 	TIMEVAL_TO_TIMESPEC(&tv, ts);
   1387  1.94.4.1      yamt }
   1388  1.94.4.1      yamt 
   1389  1.94.4.1      yamt void
   1390  1.94.4.1      yamt getbinuptime(struct bintime *bt)
   1391  1.94.4.1      yamt {
   1392  1.94.4.1      yamt 	struct timeval tv;
   1393  1.94.4.1      yamt 
   1394  1.94.4.1      yamt 	microtime(&tv);
   1395  1.94.4.1      yamt 	timeval2bintime(&tv, bt);
   1396  1.94.4.1      yamt }
   1397  1.94.4.1      yamt 
   1398  1.94.4.1      yamt void
   1399  1.94.4.1      yamt nanouptime(struct timespec *tsp)
   1400  1.94.4.1      yamt {
   1401  1.94.4.1      yamt 	int s;
   1402  1.94.4.1      yamt 
   1403  1.94.4.1      yamt 	s = splclock();
   1404  1.94.4.1      yamt 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1405  1.94.4.1      yamt 	splx(s);
   1406  1.94.4.1      yamt }
   1407  1.94.4.1      yamt 
   1408  1.94.4.1      yamt void
   1409  1.94.4.1      yamt getnanouptime(struct timespec *tsp)
   1410  1.94.4.1      yamt {
   1411  1.94.4.1      yamt 	int s;
   1412  1.94.4.1      yamt 
   1413  1.94.4.1      yamt 	s = splclock();
   1414  1.94.4.1      yamt 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1415  1.94.4.1      yamt 	splx(s);
   1416  1.94.4.1      yamt }
   1417  1.94.4.1      yamt 
   1418  1.94.4.1      yamt void
   1419  1.94.4.1      yamt getmicrouptime(struct timeval *tvp)
   1420  1.94.4.1      yamt {
   1421  1.94.4.1      yamt 	int s;
   1422  1.94.4.1      yamt 
   1423  1.94.4.1      yamt 	s = splclock();
   1424  1.94.4.1      yamt 	*tvp = mono_time;
   1425  1.94.4.1      yamt 	splx(s);
   1426  1.94.4.1      yamt }
   1427  1.94.4.1      yamt 
   1428  1.94.4.1      yamt void
   1429  1.94.4.1      yamt getnanotime(struct timespec *tsp)
   1430  1.94.4.1      yamt {
   1431  1.94.4.1      yamt 	int s;
   1432  1.94.4.1      yamt 
   1433  1.94.4.1      yamt 	s = splclock();
   1434  1.94.4.1      yamt 	TIMEVAL_TO_TIMESPEC(&time, tsp);
   1435  1.94.4.1      yamt 	splx(s);
   1436  1.94.4.1      yamt }
   1437  1.94.4.1      yamt 
   1438  1.94.4.1      yamt void
   1439  1.94.4.1      yamt getmicrotime(struct timeval *tvp)
   1440  1.94.4.1      yamt {
   1441  1.94.4.1      yamt 	int s;
   1442  1.94.4.1      yamt 
   1443  1.94.4.1      yamt 	s = splclock();
   1444  1.94.4.1      yamt 	*tvp = time;
   1445  1.94.4.1      yamt 	splx(s);
   1446  1.94.4.1      yamt }
   1447  1.94.4.4      yamt 
   1448  1.94.4.4      yamt u_int64_t
   1449  1.94.4.4      yamt tc_getfrequency(void)
   1450  1.94.4.4      yamt {
   1451  1.94.4.4      yamt 	return hz;
   1452  1.94.4.4      yamt }
   1453  1.94.4.1      yamt #endif /* !__HAVE_TIMECOUNTER */
   1454