Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.96.10.1
      1  1.96.10.1      elad /*	$NetBSD: kern_clock.c,v 1.96.10.1 2006/04/19 05:13:59 elad Exp $	*/
      2       1.52   thorpej 
      3       1.52   thorpej /*-
      4       1.94   mycroft  * Copyright (c) 2000, 2004 The NetBSD Foundation, Inc.
      5       1.52   thorpej  * All rights reserved.
      6       1.52   thorpej  *
      7       1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.52   thorpej  * NASA Ames Research Center.
     10       1.94   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11       1.94   mycroft  * by Charles M. Hannum.
     12       1.52   thorpej  *
     13       1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     14       1.52   thorpej  * modification, are permitted provided that the following conditions
     15       1.52   thorpej  * are met:
     16       1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     17       1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     18       1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19       1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20       1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     21       1.52   thorpej  * 3. All advertising materials mentioning features or use of this software
     22       1.52   thorpej  *    must display the following acknowledgement:
     23       1.52   thorpej  *	This product includes software developed by the NetBSD
     24       1.52   thorpej  *	Foundation, Inc. and its contributors.
     25       1.52   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26       1.52   thorpej  *    contributors may be used to endorse or promote products derived
     27       1.52   thorpej  *    from this software without specific prior written permission.
     28       1.52   thorpej  *
     29       1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30       1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31       1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32       1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33       1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34       1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35       1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36       1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37       1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38       1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39       1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40       1.52   thorpej  */
     41       1.19       cgd 
     42       1.19       cgd /*-
     43       1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     44       1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     45       1.19       cgd  * (c) UNIX System Laboratories, Inc.
     46       1.19       cgd  * All or some portions of this file are derived from material licensed
     47       1.19       cgd  * to the University of California by American Telephone and Telegraph
     48       1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49       1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     50       1.19       cgd  *
     51       1.19       cgd  * Redistribution and use in source and binary forms, with or without
     52       1.19       cgd  * modification, are permitted provided that the following conditions
     53       1.19       cgd  * are met:
     54       1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     55       1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     56       1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57       1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     58       1.19       cgd  *    documentation and/or other materials provided with the distribution.
     59       1.87       agc  * 3. Neither the name of the University nor the names of its contributors
     60       1.19       cgd  *    may be used to endorse or promote products derived from this software
     61       1.19       cgd  *    without specific prior written permission.
     62       1.19       cgd  *
     63       1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64       1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65       1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66       1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67       1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68       1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69       1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70       1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71       1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72       1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73       1.19       cgd  * SUCH DAMAGE.
     74       1.19       cgd  *
     75       1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     76       1.19       cgd  */
     77       1.78     lukem 
     78       1.78     lukem #include <sys/cdefs.h>
     79  1.96.10.1      elad __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.96.10.1 2006/04/19 05:13:59 elad Exp $");
     80       1.44  jonathan 
     81       1.44  jonathan #include "opt_ntp.h"
     82       1.86    martin #include "opt_multiprocessor.h"
     83       1.80    briggs #include "opt_perfctrs.h"
     84       1.19       cgd 
     85       1.19       cgd #include <sys/param.h>
     86       1.19       cgd #include <sys/systm.h>
     87       1.19       cgd #include <sys/callout.h>
     88       1.19       cgd #include <sys/kernel.h>
     89       1.19       cgd #include <sys/proc.h>
     90       1.19       cgd #include <sys/resourcevar.h>
     91       1.25  christos #include <sys/signalvar.h>
     92       1.26  christos #include <sys/sysctl.h>
     93       1.27  jonathan #include <sys/timex.h>
     94       1.45      ross #include <sys/sched.h>
     95       1.82   thorpej #include <sys/time.h>
     96       1.19       cgd 
     97       1.19       cgd #include <machine/cpu.h>
     98       1.74   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
     99       1.74   thorpej #include <machine/intr.h>
    100       1.74   thorpej #endif
    101       1.25  christos 
    102       1.19       cgd #ifdef GPROF
    103       1.19       cgd #include <sys/gmon.h>
    104       1.19       cgd #endif
    105       1.19       cgd 
    106       1.19       cgd /*
    107       1.19       cgd  * Clock handling routines.
    108       1.19       cgd  *
    109       1.19       cgd  * This code is written to operate with two timers that run independently of
    110       1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    111       1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    112       1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    113       1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    114       1.90       wiz  * the randomization prevents an adversary from always giving up the CPU
    115       1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    116       1.90       wiz  * CPU ticks.  The mean frequency of the second timer is stathz.
    117       1.19       cgd  *
    118       1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    119       1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    120       1.19       cgd  * do not do it unless absolutely necessary.
    121       1.19       cgd  *
    122       1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    123       1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    124       1.19       cgd  * be an integral multiple of stathz.
    125       1.19       cgd  *
    126       1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    127       1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    128       1.19       cgd  */
    129       1.19       cgd 
    130       1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    131       1.27  jonathan /*
    132       1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    133       1.27  jonathan  *
    134       1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    135       1.27  jonathan  * call.
    136       1.27  jonathan  *
    137       1.27  jonathan  * time_state shows the state of the system clock, with values defined
    138       1.27  jonathan  * in the timex.h header file.
    139       1.27  jonathan  *
    140       1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    141       1.27  jonathan  * in the timex.h header file.
    142       1.27  jonathan  *
    143       1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    144       1.27  jonathan  * increments.
    145       1.27  jonathan  *
    146       1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    147       1.27  jonathan  *
    148       1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    149       1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    150       1.27  jonathan  * in principle it could change as result of the presence of external
    151       1.27  jonathan  * discipline signals, for instance.
    152       1.27  jonathan  *
    153       1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    154       1.27  jonathan  * in cases where a precision clock counter or external clock is
    155       1.27  jonathan  * available, the resolution can be much less than this and depend on
    156       1.27  jonathan  * whether the external clock is working or not.
    157       1.27  jonathan  *
    158       1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    159       1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    160       1.27  jonathan  * growth.
    161       1.27  jonathan  *
    162       1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    163       1.27  jonathan  * otherwise not used by the kernel.
    164       1.27  jonathan  */
    165       1.27  jonathan int time_state = TIME_OK;	/* clock state */
    166       1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    167       1.27  jonathan long time_offset = 0;		/* time offset (us) */
    168       1.27  jonathan long time_constant = 0;		/* pll time constant */
    169       1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    170       1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    171       1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    172       1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    173       1.27  jonathan 
    174       1.27  jonathan /*
    175       1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    176       1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    177       1.27  jonathan  * factors are defined in the timex.h header file.
    178       1.27  jonathan  *
    179       1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    180       1.27  jonathan  * increment, respectively, of the kernel time variable.
    181       1.27  jonathan  *
    182       1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    183       1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    184       1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    185       1.27  jonathan  * daemon.
    186       1.27  jonathan  *
    187       1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    188       1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    189       1.27  jonathan  * seconds rollover.
    190       1.27  jonathan  *
    191       1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    192       1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    193       1.27  jonathan  * and to increase the time_maxerror as the time since last update
    194       1.27  jonathan  * increases.
    195       1.27  jonathan  */
    196       1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    197       1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    198       1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    199       1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    200       1.27  jonathan 
    201       1.27  jonathan #ifdef PPS_SYNC
    202       1.27  jonathan /*
    203       1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    204       1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    205       1.27  jonathan  * timex.h header file.
    206       1.27  jonathan  *
    207       1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    208       1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    209       1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    210       1.27  jonathan  * two.
    211       1.27  jonathan  *
    212       1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    213       1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    214       1.27  jonathan  * this filter.
    215       1.27  jonathan  *
    216       1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    217       1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    218       1.27  jonathan  * by this filter.
    219       1.27  jonathan  *
    220       1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    221       1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    222       1.27  jonathan  * contents plus the time_tv.usec as usual.
    223       1.27  jonathan  *
    224       1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    225       1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    226       1.27  jonathan  * PPS signal be lost.
    227       1.27  jonathan  *
    228       1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    229       1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    230       1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    231       1.27  jonathan  * PPS interrupt and timer interrupt.
    232       1.27  jonathan  *
    233       1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    234       1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    235       1.89    simonb  *
    236       1.89    simonb  * pps_kc_hardpps_source contains an arbitrary value that uniquely
    237       1.89    simonb  * identifies the currently bound source of the PPS signal, or NULL
    238       1.89    simonb  * if no source is bound.
    239       1.89    simonb  *
    240       1.89    simonb  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
    241       1.89    simonb  * signal should be reported.
    242       1.27  jonathan  */
    243       1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    244       1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    245       1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    246       1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    247       1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    248       1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    249       1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    250       1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    251       1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    252       1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    253       1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    254       1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    255       1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    256       1.89    simonb void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
    257       1.89    simonb int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
    258       1.27  jonathan 
    259       1.27  jonathan /*
    260       1.27  jonathan  * PPS signal quality monitors
    261       1.27  jonathan  *
    262       1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    263       1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    264       1.27  jonathan  * (100 us).
    265       1.27  jonathan  *
    266       1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    267       1.27  jonathan  * variable from 4 s to 256 s.
    268       1.27  jonathan  *
    269       1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    270       1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    271       1.27  jonathan  * calibration interval jitter exceeds two ticks.
    272       1.27  jonathan  *
    273       1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    274       1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    275       1.27  jonathan  */
    276       1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    277       1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    278       1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    279       1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    280       1.27  jonathan #endif /* PPS_SYNC */
    281       1.27  jonathan 
    282       1.27  jonathan #ifdef EXT_CLOCK
    283       1.27  jonathan /*
    284       1.27  jonathan  * External clock definitions
    285       1.27  jonathan  *
    286       1.27  jonathan  * The following definitions and declarations are used only if an
    287       1.27  jonathan  * external clock is configured on the system.
    288       1.27  jonathan  */
    289       1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    290       1.27  jonathan 
    291       1.27  jonathan /*
    292       1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    293       1.27  jonathan  * interrupt and decremented once each second.
    294       1.27  jonathan  */
    295       1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    296       1.27  jonathan 
    297       1.27  jonathan #ifdef HIGHBALL
    298       1.27  jonathan /*
    299       1.27  jonathan  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    300       1.27  jonathan  * interface. The clock_offset variable defines the offset between
    301       1.27  jonathan  * system time and the HIGBALL counters. The clock_cpu variable contains
    302       1.27  jonathan  * the offset between the system clock and the HIGHBALL clock for use in
    303       1.27  jonathan  * disciplining the kernel time variable.
    304       1.27  jonathan  */
    305       1.27  jonathan extern struct timeval clock_offset; /* Highball clock offset */
    306       1.27  jonathan long clock_cpu = 0;		/* CPU clock adjust */
    307       1.27  jonathan #endif /* HIGHBALL */
    308       1.27  jonathan #endif /* EXT_CLOCK */
    309       1.27  jonathan #endif /* NTP */
    310       1.27  jonathan 
    311       1.27  jonathan 
    312       1.19       cgd /*
    313       1.19       cgd  * Bump a timeval by a small number of usec's.
    314       1.19       cgd  */
    315       1.19       cgd #define BUMPTIME(t, usec) { \
    316       1.55  augustss 	volatile struct timeval *tp = (t); \
    317       1.55  augustss 	long us; \
    318       1.19       cgd  \
    319       1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    320       1.19       cgd 	if (us >= 1000000) { \
    321       1.19       cgd 		tp->tv_usec = us - 1000000; \
    322       1.19       cgd 		tp->tv_sec++; \
    323       1.19       cgd 	} \
    324       1.19       cgd }
    325       1.19       cgd 
    326       1.19       cgd int	stathz;
    327       1.19       cgd int	profhz;
    328       1.80    briggs int	profsrc;
    329       1.75    simonb int	schedhz;
    330       1.19       cgd int	profprocs;
    331       1.84   thorpej int	hardclock_ticks;
    332       1.91      yamt static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
    333       1.70  sommerfe static int psdiv;			/* prof => stat divider */
    334       1.22       cgd int	psratio;			/* ratio: prof / stat */
    335       1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    336       1.34    briggs #ifndef NTP
    337       1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    338       1.34    briggs #else
    339       1.27  jonathan int	fixtick;			/* used by NTP for same */
    340       1.31   mycroft int	shifthz;
    341       1.31   mycroft #endif
    342       1.19       cgd 
    343       1.48  christos /*
    344       1.48  christos  * We might want ldd to load the both words from time at once.
    345       1.48  christos  * To succeed we need to be quadword aligned.
    346       1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    347       1.48  christos  */
    348       1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    349       1.19       cgd volatile struct	timeval mono_time;
    350       1.19       cgd 
    351       1.73   thorpej void	*softclock_si;
    352       1.73   thorpej 
    353       1.66   thorpej /*
    354       1.19       cgd  * Initialize clock frequencies and start both clocks running.
    355       1.19       cgd  */
    356       1.19       cgd void
    357       1.63   thorpej initclocks(void)
    358       1.19       cgd {
    359       1.55  augustss 	int i;
    360       1.19       cgd 
    361       1.73   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    362       1.73   thorpej 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    363       1.73   thorpej 	if (softclock_si == NULL)
    364       1.73   thorpej 		panic("initclocks: unable to register softclock intr");
    365       1.73   thorpej #endif
    366       1.73   thorpej 
    367       1.19       cgd 	/*
    368       1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    369       1.19       cgd 	 * code do its bit.
    370       1.19       cgd 	 */
    371       1.70  sommerfe 	psdiv = 1;
    372       1.19       cgd 	cpu_initclocks();
    373       1.19       cgd 
    374       1.19       cgd 	/*
    375       1.70  sommerfe 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    376       1.19       cgd 	 */
    377       1.19       cgd 	i = stathz ? stathz : hz;
    378       1.19       cgd 	if (profhz == 0)
    379       1.19       cgd 		profhz = i;
    380       1.19       cgd 	psratio = profhz / i;
    381       1.70  sommerfe 	rrticks = hz / 10;
    382       1.91      yamt 	if (schedhz == 0) {
    383       1.91      yamt 		/* 16Hz is best */
    384       1.91      yamt 		statscheddiv = i / 16;
    385       1.91      yamt 		if (statscheddiv <= 0)
    386       1.91      yamt 			panic("statscheddiv");
    387       1.91      yamt 	}
    388       1.31   mycroft 
    389       1.31   mycroft #ifdef NTP
    390       1.31   mycroft 	switch (hz) {
    391       1.57   mycroft 	case 1:
    392       1.57   mycroft 		shifthz = SHIFT_SCALE - 0;
    393       1.57   mycroft 		break;
    394       1.57   mycroft 	case 2:
    395       1.57   mycroft 		shifthz = SHIFT_SCALE - 1;
    396       1.57   mycroft 		break;
    397       1.57   mycroft 	case 4:
    398       1.57   mycroft 		shifthz = SHIFT_SCALE - 2;
    399       1.57   mycroft 		break;
    400       1.57   mycroft 	case 8:
    401       1.57   mycroft 		shifthz = SHIFT_SCALE - 3;
    402       1.57   mycroft 		break;
    403       1.57   mycroft 	case 16:
    404       1.57   mycroft 		shifthz = SHIFT_SCALE - 4;
    405       1.57   mycroft 		break;
    406       1.57   mycroft 	case 32:
    407       1.57   mycroft 		shifthz = SHIFT_SCALE - 5;
    408       1.57   mycroft 		break;
    409       1.92       tls 	case 50:
    410       1.31   mycroft 	case 60:
    411       1.31   mycroft 	case 64:
    412       1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    413       1.31   mycroft 		break;
    414       1.31   mycroft 	case 96:
    415       1.31   mycroft 	case 100:
    416       1.31   mycroft 	case 128:
    417       1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    418       1.31   mycroft 		break;
    419       1.31   mycroft 	case 256:
    420       1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    421       1.41       tls 		break;
    422       1.41       tls 	case 512:
    423       1.41       tls 		shifthz = SHIFT_SCALE - 9;
    424       1.31   mycroft 		break;
    425       1.43      ross 	case 1000:
    426       1.31   mycroft 	case 1024:
    427       1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    428       1.31   mycroft 		break;
    429       1.57   mycroft 	case 1200:
    430       1.57   mycroft 	case 2048:
    431       1.57   mycroft 		shifthz = SHIFT_SCALE - 11;
    432       1.57   mycroft 		break;
    433       1.57   mycroft 	case 4096:
    434       1.57   mycroft 		shifthz = SHIFT_SCALE - 12;
    435       1.57   mycroft 		break;
    436       1.57   mycroft 	case 8192:
    437       1.57   mycroft 		shifthz = SHIFT_SCALE - 13;
    438       1.57   mycroft 		break;
    439       1.57   mycroft 	case 16384:
    440       1.57   mycroft 		shifthz = SHIFT_SCALE - 14;
    441       1.57   mycroft 		break;
    442       1.57   mycroft 	case 32768:
    443       1.57   mycroft 		shifthz = SHIFT_SCALE - 15;
    444       1.57   mycroft 		break;
    445       1.57   mycroft 	case 65536:
    446       1.57   mycroft 		shifthz = SHIFT_SCALE - 16;
    447       1.57   mycroft 		break;
    448       1.31   mycroft 	default:
    449       1.31   mycroft 		panic("weird hz");
    450       1.50  sommerfe 	}
    451       1.50  sommerfe 	if (fixtick == 0) {
    452       1.52   thorpej 		/*
    453       1.52   thorpej 		 * Give MD code a chance to set this to a better
    454       1.52   thorpej 		 * value; but, if it doesn't, we should.
    455       1.52   thorpej 		 */
    456       1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    457       1.31   mycroft 	}
    458       1.31   mycroft #endif
    459       1.19       cgd }
    460       1.19       cgd 
    461       1.19       cgd /*
    462       1.19       cgd  * The real-time timer, interrupting hz times per second.
    463       1.19       cgd  */
    464       1.19       cgd void
    465       1.63   thorpej hardclock(struct clockframe *frame)
    466       1.19       cgd {
    467       1.82   thorpej 	struct lwp *l;
    468       1.55  augustss 	struct proc *p;
    469       1.55  augustss 	int delta;
    470       1.19       cgd 	extern int tickdelta;
    471       1.19       cgd 	extern long timedelta;
    472       1.70  sommerfe 	struct cpu_info *ci = curcpu();
    473       1.82   thorpej 	struct ptimer *pt;
    474       1.30   mycroft #ifdef NTP
    475       1.55  augustss 	int time_update;
    476       1.55  augustss 	int ltemp;
    477       1.29  christos #endif
    478       1.19       cgd 
    479       1.82   thorpej 	l = curlwp;
    480       1.82   thorpej 	if (l) {
    481       1.82   thorpej 		p = l->l_proc;
    482       1.19       cgd 		/*
    483       1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    484       1.19       cgd 		 */
    485       1.82   thorpej 		if (CLKF_USERMODE(frame) && p->p_timers &&
    486       1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    487       1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    488       1.82   thorpej 				itimerfire(pt);
    489       1.82   thorpej 		if (p->p_timers &&
    490       1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    491       1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    492       1.82   thorpej 				itimerfire(pt);
    493       1.19       cgd 	}
    494       1.19       cgd 
    495       1.19       cgd 	/*
    496       1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    497       1.19       cgd 	 */
    498       1.19       cgd 	if (stathz == 0)
    499       1.19       cgd 		statclock(frame);
    500       1.70  sommerfe 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    501       1.71  sommerfe 		roundrobin(ci);
    502       1.93     perry 
    503       1.60   thorpej #if defined(MULTIPROCESSOR)
    504       1.60   thorpej 	/*
    505       1.60   thorpej 	 * If we are not the primary CPU, we're not allowed to do
    506       1.60   thorpej 	 * any more work.
    507       1.60   thorpej 	 */
    508       1.70  sommerfe 	if (CPU_IS_PRIMARY(ci) == 0)
    509       1.60   thorpej 		return;
    510       1.60   thorpej #endif
    511       1.60   thorpej 
    512       1.19       cgd 	/*
    513       1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    514       1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    515       1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    516       1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    517       1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    518       1.22       cgd 	 * ``tickdelta'' may also be added in.
    519       1.19       cgd 	 */
    520       1.84   thorpej 	hardclock_ticks++;
    521       1.22       cgd 	delta = tick;
    522       1.27  jonathan 
    523       1.27  jonathan #ifndef NTP
    524       1.22       cgd 	if (tickfix) {
    525       1.39       cgd 		tickfixcnt += tickfix;
    526       1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    527       1.39       cgd 			delta++;
    528       1.39       cgd 			tickfixcnt -= tickfixinterval;
    529       1.22       cgd 		}
    530       1.22       cgd 	}
    531       1.27  jonathan #endif /* !NTP */
    532       1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    533       1.22       cgd 	if (timedelta != 0) {
    534       1.38       cgd 		delta += tickdelta;
    535       1.19       cgd 		timedelta -= tickdelta;
    536       1.19       cgd 	}
    537       1.27  jonathan 
    538       1.27  jonathan #ifdef notyet
    539       1.27  jonathan 	microset();
    540       1.27  jonathan #endif
    541       1.27  jonathan 
    542       1.27  jonathan #ifndef NTP
    543       1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    544       1.27  jonathan #endif
    545       1.19       cgd 	BUMPTIME(&mono_time, delta);
    546       1.27  jonathan 
    547       1.31   mycroft #ifdef NTP
    548       1.30   mycroft 	time_update = delta;
    549       1.27  jonathan 
    550       1.27  jonathan 	/*
    551       1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    552       1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    553       1.27  jonathan 	 * (time_update).
    554       1.27  jonathan 	 */
    555       1.27  jonathan 	time_phase += time_adj;
    556       1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    557       1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    558       1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    559       1.27  jonathan 		time_update -= ltemp;
    560       1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    561       1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    562       1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    563       1.27  jonathan 		time_update += ltemp;
    564       1.27  jonathan 	}
    565       1.27  jonathan 
    566       1.27  jonathan #ifdef HIGHBALL
    567       1.27  jonathan 	/*
    568       1.27  jonathan 	 * If the HIGHBALL board is installed, we need to adjust the
    569       1.27  jonathan 	 * external clock offset in order to close the hardware feedback
    570       1.27  jonathan 	 * loop. This will adjust the external clock phase and frequency
    571       1.27  jonathan 	 * in small amounts. The additional phase noise and frequency
    572       1.27  jonathan 	 * wander this causes should be minimal. We also need to
    573       1.27  jonathan 	 * discipline the kernel time variable, since the PLL is used to
    574       1.27  jonathan 	 * discipline the external clock. If the Highball board is not
    575       1.27  jonathan 	 * present, we discipline kernel time with the PLL as usual. We
    576       1.27  jonathan 	 * assume that the external clock phase adjustment (time_update)
    577       1.27  jonathan 	 * and kernel phase adjustment (clock_cpu) are less than the
    578       1.27  jonathan 	 * value of tick.
    579       1.27  jonathan 	 */
    580       1.27  jonathan 	clock_offset.tv_usec += time_update;
    581       1.27  jonathan 	if (clock_offset.tv_usec >= 1000000) {
    582       1.27  jonathan 		clock_offset.tv_sec++;
    583       1.27  jonathan 		clock_offset.tv_usec -= 1000000;
    584       1.27  jonathan 	}
    585       1.27  jonathan 	if (clock_offset.tv_usec < 0) {
    586       1.27  jonathan 		clock_offset.tv_sec--;
    587       1.27  jonathan 		clock_offset.tv_usec += 1000000;
    588       1.27  jonathan 	}
    589       1.27  jonathan 	time.tv_usec += clock_cpu;
    590       1.27  jonathan 	clock_cpu = 0;
    591       1.27  jonathan #else
    592       1.27  jonathan 	time.tv_usec += time_update;
    593       1.27  jonathan #endif /* HIGHBALL */
    594       1.27  jonathan 
    595       1.27  jonathan 	/*
    596       1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    597       1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    598       1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    599       1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    600       1.27  jonathan 	 * CPU clock oscillator frequency error.
    601       1.27  jonathan 	 *
    602       1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    603       1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    604       1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    605       1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    606       1.27  jonathan 	 */
    607       1.27  jonathan 	if (time.tv_usec >= 1000000) {
    608       1.27  jonathan 		time.tv_usec -= 1000000;
    609       1.27  jonathan 		time.tv_sec++;
    610       1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    611       1.27  jonathan 
    612       1.27  jonathan 		/*
    613       1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    614       1.27  jonathan 		 * the end of the day, the system clock is set back one
    615       1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    616       1.27  jonathan 		 * set ahead one second. The microtime() routine or
    617       1.27  jonathan 		 * external clock driver will insure that reported time
    618       1.27  jonathan 		 * is always monotonic. The ugly divides should be
    619       1.27  jonathan 		 * replaced.
    620       1.27  jonathan 		 */
    621       1.27  jonathan 		switch (time_state) {
    622       1.31   mycroft 		case TIME_OK:
    623       1.27  jonathan 			if (time_status & STA_INS)
    624       1.27  jonathan 				time_state = TIME_INS;
    625       1.27  jonathan 			else if (time_status & STA_DEL)
    626       1.27  jonathan 				time_state = TIME_DEL;
    627       1.27  jonathan 			break;
    628       1.27  jonathan 
    629       1.31   mycroft 		case TIME_INS:
    630       1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    631       1.27  jonathan 				time.tv_sec--;
    632       1.27  jonathan 				time_state = TIME_OOP;
    633       1.27  jonathan 			}
    634       1.27  jonathan 			break;
    635       1.27  jonathan 
    636       1.31   mycroft 		case TIME_DEL:
    637       1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    638       1.27  jonathan 				time.tv_sec++;
    639       1.27  jonathan 				time_state = TIME_WAIT;
    640       1.27  jonathan 			}
    641       1.27  jonathan 			break;
    642       1.27  jonathan 
    643       1.31   mycroft 		case TIME_OOP:
    644       1.27  jonathan 			time_state = TIME_WAIT;
    645       1.27  jonathan 			break;
    646       1.27  jonathan 
    647       1.31   mycroft 		case TIME_WAIT:
    648       1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    649       1.27  jonathan 				time_state = TIME_OK;
    650       1.31   mycroft 			break;
    651       1.27  jonathan 		}
    652       1.27  jonathan 
    653       1.27  jonathan 		/*
    654       1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    655       1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    656       1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    657       1.27  jonathan 		 * used directly. In either mode, the maximum phase
    658       1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    659       1.27  jonathan 		 * the adjustment over not more than the number of
    660       1.27  jonathan 		 * seconds between updates.
    661       1.27  jonathan 		 */
    662       1.27  jonathan 		if (time_offset < 0) {
    663       1.27  jonathan 			ltemp = -time_offset;
    664       1.27  jonathan 			if (!(time_status & STA_FLL))
    665       1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    666       1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    667       1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    668       1.27  jonathan 				    SHIFT_UPDATE;
    669       1.27  jonathan 			time_offset += ltemp;
    670       1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    671       1.31   mycroft 		} else if (time_offset > 0) {
    672       1.27  jonathan 			ltemp = time_offset;
    673       1.27  jonathan 			if (!(time_status & STA_FLL))
    674       1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    675       1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    676       1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    677       1.27  jonathan 				    SHIFT_UPDATE;
    678       1.27  jonathan 			time_offset -= ltemp;
    679       1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    680       1.31   mycroft 		} else
    681       1.31   mycroft 			time_adj = 0;
    682       1.27  jonathan 
    683       1.27  jonathan 		/*
    684       1.27  jonathan 		 * Compute the frequency estimate and additional phase
    685       1.27  jonathan 		 * adjustment due to frequency error for the next
    686       1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    687       1.27  jonathan 		 * watchdog counter and update the frequency computed by
    688       1.27  jonathan 		 * the pll and the PPS signal.
    689       1.27  jonathan 		 */
    690       1.27  jonathan #ifdef PPS_SYNC
    691       1.27  jonathan 		pps_valid++;
    692       1.27  jonathan 		if (pps_valid == PPS_VALID) {
    693       1.27  jonathan 			pps_jitter = MAXTIME;
    694       1.27  jonathan 			pps_stabil = MAXFREQ;
    695       1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    696       1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    697       1.27  jonathan 		}
    698       1.27  jonathan 		ltemp = time_freq + pps_freq;
    699       1.27  jonathan #else
    700       1.27  jonathan 		ltemp = time_freq;
    701       1.27  jonathan #endif /* PPS_SYNC */
    702       1.27  jonathan 
    703       1.27  jonathan 		if (ltemp < 0)
    704       1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    705       1.27  jonathan 		else
    706       1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    707       1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    708       1.27  jonathan 
    709       1.27  jonathan 		/*
    710       1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    711       1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    712       1.31   mycroft 		 * scale factor.
    713       1.46   mycroft 		 *
    714       1.46   mycroft 		 * To determine the adjustment, you can do the following:
    715       1.46   mycroft 		 *   bc -q
    716       1.46   mycroft 		 *   scale=24
    717       1.46   mycroft 		 *   obase=2
    718       1.46   mycroft 		 *   idealhz/realhz
    719       1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    720       1.57   mycroft 		 * is the actual value.  You may need to factor this result
    721       1.57   mycroft 		 * into a sequence of 2 multipliers to get better precision.
    722       1.46   mycroft 		 *
    723       1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    724       1.46   mycroft 		 *   bc -q
    725       1.46   mycroft 		 *   scale=24
    726       1.57   mycroft 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    727       1.57   mycroft 		 * (and then multiply by 1000000 to get ppm).
    728       1.27  jonathan 		 */
    729       1.31   mycroft 		switch (hz) {
    730       1.58   mycroft 		case 60:
    731       1.58   mycroft 			/* A factor of 1.000100010001 gives about 15ppm
    732       1.58   mycroft 			   error. */
    733       1.58   mycroft 			if (time_adj < 0) {
    734       1.58   mycroft 				time_adj -= (-time_adj >> 4);
    735       1.58   mycroft 				time_adj -= (-time_adj >> 8);
    736       1.58   mycroft 			} else {
    737       1.58   mycroft 				time_adj += (time_adj >> 4);
    738       1.58   mycroft 				time_adj += (time_adj >> 8);
    739       1.58   mycroft 			}
    740       1.58   mycroft 			break;
    741       1.58   mycroft 
    742       1.31   mycroft 		case 96:
    743       1.56   mycroft 			/* A factor of 1.0101010101 gives about 244ppm error. */
    744       1.46   mycroft 			if (time_adj < 0) {
    745       1.46   mycroft 				time_adj -= (-time_adj >> 2);
    746       1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    747       1.46   mycroft 			} else {
    748       1.46   mycroft 				time_adj += (time_adj >> 2);
    749       1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    750       1.46   mycroft 			}
    751       1.46   mycroft 			break;
    752       1.46   mycroft 
    753       1.92       tls 		case 50:
    754       1.31   mycroft 		case 100:
    755       1.56   mycroft 			/* A factor of 1.010001111010111 gives about 1ppm
    756       1.56   mycroft 			   error. */
    757       1.56   mycroft 			if (time_adj < 0) {
    758       1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    759       1.56   mycroft 				time_adj += (-time_adj >> 10);
    760       1.56   mycroft 			} else {
    761       1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    762       1.56   mycroft 				time_adj -= (time_adj >> 10);
    763       1.56   mycroft 			}
    764       1.43      ross 			break;
    765       1.46   mycroft 
    766       1.43      ross 		case 1000:
    767       1.56   mycroft 			/* A factor of 1.000001100010100001 gives about 50ppm
    768       1.56   mycroft 			   error. */
    769       1.56   mycroft 			if (time_adj < 0) {
    770       1.56   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    771       1.56   mycroft 				time_adj -= (-time_adj >> 7);
    772       1.56   mycroft 			} else {
    773       1.56   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    774       1.56   mycroft 				time_adj += (time_adj >> 7);
    775       1.56   mycroft 			}
    776       1.56   mycroft 			break;
    777       1.56   mycroft 
    778       1.56   mycroft 		case 1200:
    779       1.56   mycroft 			/* A factor of 1.1011010011100001 gives about 64ppm
    780       1.56   mycroft 			   error. */
    781       1.56   mycroft 			if (time_adj < 0) {
    782       1.56   mycroft 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    783       1.56   mycroft 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    784       1.56   mycroft 			} else {
    785       1.56   mycroft 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    786       1.56   mycroft 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    787       1.56   mycroft 			}
    788       1.31   mycroft 			break;
    789       1.27  jonathan 		}
    790       1.27  jonathan 
    791       1.27  jonathan #ifdef EXT_CLOCK
    792       1.27  jonathan 		/*
    793       1.27  jonathan 		 * If an external clock is present, it is necessary to
    794       1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    795       1.27  jonathan 		 * all system components use the microtime() interface.
    796       1.27  jonathan 		 * Here, the time offset between the external clock and
    797       1.27  jonathan 		 * kernel time variable is computed every so often.
    798       1.27  jonathan 		 */
    799       1.27  jonathan 		clock_count++;
    800       1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    801       1.27  jonathan 			clock_count = 0;
    802       1.27  jonathan 			microtime(&clock_ext);
    803       1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    804       1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    805       1.27  jonathan 			    time.tv_usec;
    806       1.27  jonathan 			if (delta.tv_usec < 0)
    807       1.27  jonathan 				delta.tv_sec--;
    808       1.27  jonathan 			if (delta.tv_usec >= 500000) {
    809       1.27  jonathan 				delta.tv_usec -= 1000000;
    810       1.27  jonathan 				delta.tv_sec++;
    811       1.27  jonathan 			}
    812       1.27  jonathan 			if (delta.tv_usec < -500000) {
    813       1.27  jonathan 				delta.tv_usec += 1000000;
    814       1.27  jonathan 				delta.tv_sec--;
    815       1.27  jonathan 			}
    816       1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    817       1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    818       1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    819       1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    820       1.27  jonathan 				time = clock_ext;
    821       1.27  jonathan 				delta.tv_sec = 0;
    822       1.27  jonathan 				delta.tv_usec = 0;
    823       1.27  jonathan 			}
    824       1.27  jonathan #ifdef HIGHBALL
    825       1.27  jonathan 			clock_cpu = delta.tv_usec;
    826       1.27  jonathan #else /* HIGHBALL */
    827       1.27  jonathan 			hardupdate(delta.tv_usec);
    828       1.27  jonathan #endif /* HIGHBALL */
    829       1.27  jonathan 		}
    830       1.27  jonathan #endif /* EXT_CLOCK */
    831       1.27  jonathan 	}
    832       1.27  jonathan 
    833       1.31   mycroft #endif /* NTP */
    834       1.19       cgd 
    835       1.19       cgd 	/*
    836       1.84   thorpej 	 * Update real-time timeout queue.
    837       1.90       wiz 	 * Process callouts at a very low CPU priority, so we don't keep the
    838       1.19       cgd 	 * relatively high clock interrupt priority any longer than necessary.
    839       1.19       cgd 	 */
    840       1.84   thorpej 	if (callout_hardclock()) {
    841       1.19       cgd 		if (CLKF_BASEPRI(frame)) {
    842       1.19       cgd 			/*
    843       1.19       cgd 			 * Save the overhead of a software interrupt;
    844       1.52   thorpej 			 * it will happen as soon as we return, so do
    845       1.52   thorpej 			 * it now.
    846       1.19       cgd 			 */
    847       1.65   thorpej 			spllowersoftclock();
    848       1.69   thorpej 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    849       1.73   thorpej 			softclock(NULL);
    850       1.69   thorpej 			KERNEL_UNLOCK();
    851       1.73   thorpej 		} else {
    852       1.73   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    853       1.73   thorpej 			softintr_schedule(softclock_si);
    854       1.73   thorpej #else
    855       1.19       cgd 			setsoftclock();
    856       1.73   thorpej #endif
    857       1.73   thorpej 		}
    858       1.52   thorpej 	}
    859       1.19       cgd }
    860       1.19       cgd 
    861       1.19       cgd /*
    862       1.52   thorpej  * Compute number of hz until specified time.  Used to compute second
    863       1.52   thorpej  * argument to callout_reset() from an absolute time.
    864       1.19       cgd  */
    865       1.19       cgd int
    866       1.63   thorpej hzto(struct timeval *tv)
    867       1.19       cgd {
    868       1.62   thorpej 	unsigned long ticks;
    869       1.62   thorpej 	long sec, usec;
    870       1.19       cgd 	int s;
    871       1.19       cgd 
    872       1.19       cgd 	/*
    873       1.62   thorpej 	 * If the number of usecs in the whole seconds part of the time
    874       1.62   thorpej 	 * difference fits in a long, then the total number of usecs will
    875       1.62   thorpej 	 * fit in an unsigned long.  Compute the total and convert it to
    876       1.62   thorpej 	 * ticks, rounding up and adding 1 to allow for the current tick
    877       1.62   thorpej 	 * to expire.  Rounding also depends on unsigned long arithmetic
    878       1.62   thorpej 	 * to avoid overflow.
    879       1.19       cgd 	 *
    880       1.62   thorpej 	 * Otherwise, if the number of ticks in the whole seconds part of
    881       1.62   thorpej 	 * the time difference fits in a long, then convert the parts to
    882       1.62   thorpej 	 * ticks separately and add, using similar rounding methods and
    883       1.62   thorpej 	 * overflow avoidance.  This method would work in the previous
    884       1.62   thorpej 	 * case, but it is slightly slower and assume that hz is integral.
    885       1.62   thorpej 	 *
    886       1.62   thorpej 	 * Otherwise, round the time difference down to the maximum
    887       1.62   thorpej 	 * representable value.
    888       1.62   thorpej 	 *
    889       1.62   thorpej 	 * If ints are 32-bit, then the maximum value for any timeout in
    890       1.62   thorpej 	 * 10ms ticks is 248 days.
    891       1.19       cgd 	 */
    892       1.40   mycroft 	s = splclock();
    893       1.19       cgd 	sec = tv->tv_sec - time.tv_sec;
    894       1.62   thorpej 	usec = tv->tv_usec - time.tv_usec;
    895       1.62   thorpej 	splx(s);
    896       1.62   thorpej 
    897       1.62   thorpej 	if (usec < 0) {
    898       1.62   thorpej 		sec--;
    899       1.62   thorpej 		usec += 1000000;
    900       1.62   thorpej 	}
    901       1.62   thorpej 
    902       1.62   thorpej 	if (sec < 0 || (sec == 0 && usec <= 0)) {
    903       1.62   thorpej 		/*
    904       1.62   thorpej 		 * Would expire now or in the past.  Return 0 ticks.
    905       1.62   thorpej 		 * This is different from the legacy hzto() interface,
    906       1.62   thorpej 		 * and callers need to check for it.
    907       1.62   thorpej 		 */
    908       1.62   thorpej 		ticks = 0;
    909       1.62   thorpej 	} else if (sec <= (LONG_MAX / 1000000))
    910       1.62   thorpej 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    911       1.62   thorpej 		    / tick) + 1;
    912       1.62   thorpej 	else if (sec <= (LONG_MAX / hz))
    913       1.62   thorpej 		ticks = (sec * hz) +
    914       1.62   thorpej 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    915       1.19       cgd 	else
    916       1.62   thorpej 		ticks = LONG_MAX;
    917       1.62   thorpej 
    918       1.62   thorpej 	if (ticks > INT_MAX)
    919       1.62   thorpej 		ticks = INT_MAX;
    920       1.62   thorpej 
    921       1.62   thorpej 	return ((int)ticks);
    922       1.19       cgd }
    923       1.19       cgd 
    924       1.19       cgd /*
    925       1.19       cgd  * Start profiling on a process.
    926       1.19       cgd  *
    927       1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
    928       1.19       cgd  * keeps the profile clock running constantly.
    929       1.19       cgd  */
    930       1.19       cgd void
    931       1.63   thorpej startprofclock(struct proc *p)
    932       1.19       cgd {
    933       1.19       cgd 
    934       1.19       cgd 	if ((p->p_flag & P_PROFIL) == 0) {
    935       1.19       cgd 		p->p_flag |= P_PROFIL;
    936       1.80    briggs 		/*
    937       1.80    briggs 		 * This is only necessary if using the clock as the
    938       1.80    briggs 		 * profiling source.
    939       1.80    briggs 		 */
    940       1.70  sommerfe 		if (++profprocs == 1 && stathz != 0)
    941       1.70  sommerfe 			psdiv = psratio;
    942       1.19       cgd 	}
    943       1.19       cgd }
    944       1.19       cgd 
    945       1.19       cgd /*
    946       1.19       cgd  * Stop profiling on a process.
    947       1.19       cgd  */
    948       1.19       cgd void
    949       1.63   thorpej stopprofclock(struct proc *p)
    950       1.19       cgd {
    951       1.19       cgd 
    952       1.19       cgd 	if (p->p_flag & P_PROFIL) {
    953       1.19       cgd 		p->p_flag &= ~P_PROFIL;
    954       1.80    briggs 		/*
    955       1.80    briggs 		 * This is only necessary if using the clock as the
    956       1.80    briggs 		 * profiling source.
    957       1.80    briggs 		 */
    958       1.70  sommerfe 		if (--profprocs == 0 && stathz != 0)
    959       1.70  sommerfe 			psdiv = 1;
    960       1.19       cgd 	}
    961       1.19       cgd }
    962       1.19       cgd 
    963       1.80    briggs #if defined(PERFCTRS)
    964       1.80    briggs /*
    965       1.80    briggs  * Independent profiling "tick" in case we're using a separate
    966       1.80    briggs  * clock or profiling event source.  Currently, that's just
    967       1.80    briggs  * performance counters--hence the wrapper.
    968       1.80    briggs  */
    969       1.80    briggs void
    970       1.80    briggs proftick(struct clockframe *frame)
    971       1.80    briggs {
    972       1.80    briggs #ifdef GPROF
    973       1.93     perry         struct gmonparam *g;
    974       1.93     perry         intptr_t i;
    975       1.80    briggs #endif
    976       1.80    briggs 	struct proc *p;
    977       1.80    briggs 
    978       1.80    briggs 	p = curproc;
    979       1.80    briggs 	if (CLKF_USERMODE(frame)) {
    980       1.80    briggs 		if (p->p_flag & P_PROFIL)
    981       1.80    briggs 			addupc_intr(p, CLKF_PC(frame));
    982       1.80    briggs 	} else {
    983       1.80    briggs #ifdef GPROF
    984       1.80    briggs 		g = &_gmonparam;
    985       1.80    briggs 		if (g->state == GMON_PROF_ON) {
    986       1.80    briggs 			i = CLKF_PC(frame) - g->lowpc;
    987       1.80    briggs 			if (i < g->textsize) {
    988       1.80    briggs 				i /= HISTFRACTION * sizeof(*g->kcount);
    989       1.80    briggs 				g->kcount[i]++;
    990       1.80    briggs 			}
    991       1.80    briggs 		}
    992       1.80    briggs #endif
    993       1.93     perry #ifdef PROC_PC
    994  1.96.10.1      elad                 if (p && (p->p_flag & P_PROFIL))
    995       1.80    briggs                         addupc_intr(p, PROC_PC(p));
    996       1.93     perry #endif
    997       1.80    briggs 	}
    998       1.80    briggs }
    999       1.80    briggs #endif
   1000       1.80    briggs 
   1001       1.19       cgd /*
   1002       1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1003       1.19       cgd  * do process and kernel statistics.
   1004       1.19       cgd  */
   1005       1.19       cgd void
   1006       1.63   thorpej statclock(struct clockframe *frame)
   1007       1.19       cgd {
   1008       1.19       cgd #ifdef GPROF
   1009       1.55  augustss 	struct gmonparam *g;
   1010       1.68       eeh 	intptr_t i;
   1011       1.19       cgd #endif
   1012       1.60   thorpej 	struct cpu_info *ci = curcpu();
   1013       1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1014       1.55  augustss 	struct proc *p;
   1015  1.96.10.1      elad 	struct lwp *l;
   1016       1.19       cgd 
   1017       1.70  sommerfe 	/*
   1018       1.70  sommerfe 	 * Notice changes in divisor frequency, and adjust clock
   1019       1.70  sommerfe 	 * frequency accordingly.
   1020       1.70  sommerfe 	 */
   1021       1.70  sommerfe 	if (spc->spc_psdiv != psdiv) {
   1022       1.70  sommerfe 		spc->spc_psdiv = psdiv;
   1023       1.70  sommerfe 		spc->spc_pscnt = psdiv;
   1024       1.70  sommerfe 		if (psdiv == 1) {
   1025       1.70  sommerfe 			setstatclockrate(stathz);
   1026       1.70  sommerfe 		} else {
   1027       1.93     perry 			setstatclockrate(profhz);
   1028       1.70  sommerfe 		}
   1029       1.70  sommerfe 	}
   1030       1.82   thorpej 	l = curlwp;
   1031  1.96.10.1      elad 	p = (l ? l->l_proc : NULL);
   1032       1.19       cgd 	if (CLKF_USERMODE(frame)) {
   1033  1.96.10.1      elad 		KASSERT(p != NULL);
   1034  1.96.10.1      elad 
   1035  1.96.10.1      elad 		if ((p->p_flag & P_PROFIL) && profsrc == PROFSRC_CLOCK)
   1036       1.72   mycroft 			addupc_intr(p, CLKF_PC(frame));
   1037       1.70  sommerfe 		if (--spc->spc_pscnt > 0)
   1038       1.19       cgd 			return;
   1039       1.19       cgd 		/*
   1040       1.19       cgd 		 * Came from user mode; CPU was in user state.
   1041       1.19       cgd 		 * If this process is being profiled record the tick.
   1042       1.19       cgd 		 */
   1043       1.19       cgd 		p->p_uticks++;
   1044       1.19       cgd 		if (p->p_nice > NZERO)
   1045       1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
   1046       1.19       cgd 		else
   1047       1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
   1048       1.19       cgd 	} else {
   1049       1.19       cgd #ifdef GPROF
   1050       1.19       cgd 		/*
   1051       1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
   1052       1.19       cgd 		 */
   1053       1.19       cgd 		g = &_gmonparam;
   1054       1.80    briggs 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
   1055       1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1056       1.19       cgd 			if (i < g->textsize) {
   1057       1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1058       1.19       cgd 				g->kcount[i]++;
   1059       1.19       cgd 			}
   1060       1.19       cgd 		}
   1061       1.19       cgd #endif
   1062       1.82   thorpej #ifdef LWP_PC
   1063  1.96.10.1      elad 		if (p && profsrc == PROFSRC_CLOCK && (p->p_flag & P_PROFIL))
   1064       1.82   thorpej 			addupc_intr(p, LWP_PC(l));
   1065       1.72   mycroft #endif
   1066       1.70  sommerfe 		if (--spc->spc_pscnt > 0)
   1067       1.19       cgd 			return;
   1068       1.19       cgd 		/*
   1069       1.19       cgd 		 * Came from kernel mode, so we were:
   1070       1.19       cgd 		 * - handling an interrupt,
   1071       1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1072       1.19       cgd 		 *   user process, or
   1073       1.19       cgd 		 * - spinning in the idle loop.
   1074       1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1075       1.19       cgd 		 * Note that we charge interrupts to the current process,
   1076       1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1077       1.19       cgd 		 * so that we know how much of its real time was spent
   1078       1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1079       1.19       cgd 		 */
   1080       1.19       cgd 		if (CLKF_INTR(frame)) {
   1081       1.19       cgd 			if (p != NULL)
   1082       1.19       cgd 				p->p_iticks++;
   1083       1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
   1084       1.19       cgd 		} else if (p != NULL) {
   1085       1.19       cgd 			p->p_sticks++;
   1086       1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
   1087       1.19       cgd 		} else
   1088       1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
   1089       1.19       cgd 	}
   1090       1.70  sommerfe 	spc->spc_pscnt = psdiv;
   1091       1.19       cgd 
   1092  1.96.10.1      elad 	if (p != NULL) {
   1093       1.45      ross 		++p->p_cpticks;
   1094       1.45      ross 		/*
   1095       1.93     perry 		 * If no separate schedclock is provided, call it here
   1096       1.91      yamt 		 * at about 16 Hz.
   1097       1.45      ross 		 */
   1098       1.60   thorpej 		if (schedhz == 0)
   1099       1.91      yamt 			if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
   1100       1.82   thorpej 				schedclock(l);
   1101       1.91      yamt 				ci->ci_schedstate.spc_schedticks = statscheddiv;
   1102       1.91      yamt 			}
   1103       1.19       cgd 	}
   1104       1.19       cgd }
   1105       1.27  jonathan 
   1106       1.27  jonathan 
   1107       1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1108       1.27  jonathan 
   1109       1.27  jonathan /*
   1110       1.27  jonathan  * hardupdate() - local clock update
   1111       1.27  jonathan  *
   1112       1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1113       1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1114       1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1115       1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1116       1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1117       1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1118       1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1119       1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1120       1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1121       1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1122       1.27  jonathan  *
   1123       1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1124       1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1125       1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1126       1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1127       1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1128       1.27  jonathan  *
   1129       1.27  jonathan  * Note: splclock() is in effect.
   1130       1.27  jonathan  */
   1131       1.27  jonathan void
   1132       1.63   thorpej hardupdate(long offset)
   1133       1.27  jonathan {
   1134       1.27  jonathan 	long ltemp, mtemp;
   1135       1.27  jonathan 
   1136       1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1137       1.27  jonathan 		return;
   1138       1.27  jonathan 	ltemp = offset;
   1139       1.27  jonathan #ifdef PPS_SYNC
   1140       1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1141       1.27  jonathan 		ltemp = pps_offset;
   1142       1.27  jonathan #endif /* PPS_SYNC */
   1143       1.27  jonathan 
   1144       1.27  jonathan 	/*
   1145       1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1146       1.27  jonathan 	 */
   1147       1.27  jonathan 	if (ltemp > MAXPHASE)
   1148       1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1149       1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1150       1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1151       1.27  jonathan 	else
   1152       1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1153       1.27  jonathan 
   1154       1.27  jonathan 	/*
   1155       1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1156       1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1157       1.27  jonathan 	 * multiply/divide should be replaced someday.
   1158       1.27  jonathan 	 */
   1159       1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1160       1.27  jonathan 		time_reftime = time.tv_sec;
   1161       1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1162       1.27  jonathan 	time_reftime = time.tv_sec;
   1163       1.27  jonathan 	if (time_status & STA_FLL) {
   1164       1.27  jonathan 		if (mtemp >= MINSEC) {
   1165       1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1166       1.27  jonathan 			    SHIFT_UPDATE));
   1167       1.27  jonathan 			if (ltemp < 0)
   1168       1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1169       1.27  jonathan 			else
   1170       1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1171       1.27  jonathan 		}
   1172       1.27  jonathan 	} else {
   1173       1.27  jonathan 		if (mtemp < MAXSEC) {
   1174       1.27  jonathan 			ltemp *= mtemp;
   1175       1.27  jonathan 			if (ltemp < 0)
   1176       1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1177       1.27  jonathan 				    time_constant + SHIFT_KF -
   1178       1.27  jonathan 				    SHIFT_USEC);
   1179       1.27  jonathan 			else
   1180       1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1181       1.27  jonathan 				    time_constant + SHIFT_KF -
   1182       1.27  jonathan 				    SHIFT_USEC);
   1183       1.27  jonathan 		}
   1184       1.27  jonathan 	}
   1185       1.27  jonathan 	if (time_freq > time_tolerance)
   1186       1.27  jonathan 		time_freq = time_tolerance;
   1187       1.27  jonathan 	else if (time_freq < -time_tolerance)
   1188       1.27  jonathan 		time_freq = -time_tolerance;
   1189       1.27  jonathan }
   1190       1.27  jonathan 
   1191       1.27  jonathan #ifdef PPS_SYNC
   1192       1.27  jonathan /*
   1193       1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1194       1.27  jonathan  *
   1195       1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1196       1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1197       1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1198       1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1199       1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1200       1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1201       1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1202       1.27  jonathan  * value at the on-time PPS signal transition.
   1203       1.27  jonathan  *
   1204       1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1205       1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1206       1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1207       1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1208       1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1209       1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1210       1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1211       1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1212       1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1213       1.27  jonathan  * routine.
   1214       1.27  jonathan  */
   1215       1.27  jonathan void
   1216       1.63   thorpej hardpps(struct timeval *tvp,		/* time at PPS */
   1217       1.63   thorpej 	long usec			/* hardware counter at PPS */)
   1218       1.27  jonathan {
   1219       1.27  jonathan 	long u_usec, v_usec, bigtick;
   1220       1.27  jonathan 	long cal_sec, cal_usec;
   1221       1.27  jonathan 
   1222       1.27  jonathan 	/*
   1223       1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1224       1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1225       1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1226       1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1227       1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1228       1.27  jonathan 	 */
   1229       1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1230       1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1231       1.27  jonathan 	pps_valid = 0;
   1232       1.27  jonathan 	u_usec = -tvp->tv_usec;
   1233       1.27  jonathan 	if (u_usec < -500000)
   1234       1.27  jonathan 		u_usec += 1000000;
   1235       1.27  jonathan 	v_usec = pps_offset - u_usec;
   1236       1.27  jonathan 	if (v_usec < 0)
   1237       1.27  jonathan 		v_usec = -v_usec;
   1238       1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1239       1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1240       1.27  jonathan 			pps_glitch = 0;
   1241       1.27  jonathan 			pps_tf[2] = u_usec;
   1242       1.27  jonathan 			pps_tf[1] = u_usec;
   1243       1.27  jonathan 		} else {
   1244       1.27  jonathan 			pps_glitch++;
   1245       1.27  jonathan 			u_usec = pps_offset;
   1246       1.27  jonathan 		}
   1247       1.27  jonathan 	} else
   1248       1.27  jonathan 		pps_glitch = 0;
   1249       1.27  jonathan 
   1250       1.27  jonathan 	/*
   1251       1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1252       1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1253       1.27  jonathan 	 * difference between the other two samples becomes the time
   1254       1.27  jonathan 	 * dispersion (jitter) estimate.
   1255       1.27  jonathan 	 */
   1256       1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1257       1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1258       1.27  jonathan 	pps_tf[0] = u_usec;
   1259       1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1260       1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1261       1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1262       1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1263       1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1264       1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1265       1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1266       1.27  jonathan 		} else {
   1267       1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1268       1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1269       1.27  jonathan 		}
   1270       1.27  jonathan 	} else {
   1271       1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1272       1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1273       1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1274       1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1275       1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1276       1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1277       1.27  jonathan 		} else {
   1278       1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1279       1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1280       1.27  jonathan 		}
   1281       1.27  jonathan 	}
   1282       1.27  jonathan 	if (v_usec > MAXTIME)
   1283       1.27  jonathan 		pps_jitcnt++;
   1284       1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1285       1.27  jonathan 	if (v_usec < 0)
   1286       1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1287       1.27  jonathan 	else
   1288       1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1289       1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1290       1.27  jonathan 		time_status |= STA_PPSJITTER;
   1291       1.27  jonathan 
   1292       1.27  jonathan 	/*
   1293       1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1294       1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1295       1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1296       1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1297       1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1298       1.27  jonathan 	 * exceed the value of tick when using long calibration
   1299       1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1300       1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1301       1.27  jonathan 	 * the values returned and used here are correct.
   1302       1.27  jonathan 	 */
   1303       1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1304       1.27  jonathan 	pps_usec -= pps_freq;
   1305       1.27  jonathan 	if (pps_usec >= bigtick)
   1306       1.27  jonathan 		pps_usec -= bigtick;
   1307       1.27  jonathan 	if (pps_usec < 0)
   1308       1.27  jonathan 		pps_usec += bigtick;
   1309       1.27  jonathan 	pps_time.tv_sec++;
   1310       1.27  jonathan 	pps_count++;
   1311       1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1312       1.27  jonathan 		return;
   1313       1.27  jonathan 	pps_count = 0;
   1314       1.27  jonathan 	pps_calcnt++;
   1315       1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1316       1.27  jonathan 	v_usec = pps_usec - u_usec;
   1317       1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1318       1.27  jonathan 		v_usec -= bigtick;
   1319       1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1320       1.27  jonathan 		v_usec += bigtick;
   1321       1.27  jonathan 	if (v_usec < 0)
   1322       1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1323       1.27  jonathan 	else
   1324       1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1325       1.27  jonathan 	pps_usec = u_usec;
   1326       1.27  jonathan 	cal_sec = tvp->tv_sec;
   1327       1.27  jonathan 	cal_usec = tvp->tv_usec;
   1328       1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1329       1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1330       1.27  jonathan 	if (cal_usec < 0) {
   1331       1.27  jonathan 		cal_usec += 1000000;
   1332       1.27  jonathan 		cal_sec--;
   1333       1.27  jonathan 	}
   1334       1.27  jonathan 	pps_time = *tvp;
   1335       1.27  jonathan 
   1336       1.27  jonathan 	/*
   1337       1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1338       1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1339       1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1340       1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1341       1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1342       1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1343       1.27  jonathan 	 */
   1344       1.27  jonathan 	u_usec = (long)tick << 1;
   1345       1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1346       1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1347       1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1348       1.27  jonathan 		pps_errcnt++;
   1349       1.27  jonathan 		pps_shift = PPS_SHIFT;
   1350       1.27  jonathan 		pps_intcnt = 0;
   1351       1.27  jonathan 		time_status |= STA_PPSERROR;
   1352       1.27  jonathan 		return;
   1353       1.27  jonathan 	}
   1354       1.27  jonathan 
   1355       1.27  jonathan 	/*
   1356       1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1357       1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1358       1.27  jonathan 	 * estimate; the difference between the other two samples
   1359       1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1360       1.27  jonathan 	 */
   1361       1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1362       1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1363       1.27  jonathan 	pps_ff[0] = v_usec;
   1364       1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1365       1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1366       1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1367       1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1368       1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1369       1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1370       1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1371       1.27  jonathan 		} else {
   1372       1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1373       1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1374       1.27  jonathan 		}
   1375       1.27  jonathan 	} else {
   1376       1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1377       1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1378       1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1379       1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1380       1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1381       1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1382       1.27  jonathan 		} else {
   1383       1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1384       1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1385       1.27  jonathan 		}
   1386       1.27  jonathan 	}
   1387       1.27  jonathan 
   1388       1.27  jonathan 	/*
   1389       1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1390       1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1391       1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1392       1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1393       1.27  jonathan 	 */
   1394       1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1395       1.27  jonathan 	if (v_usec < 0)
   1396       1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1397       1.27  jonathan 	else
   1398       1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1399       1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1400       1.27  jonathan 		pps_stbcnt++;
   1401       1.27  jonathan 		time_status |= STA_PPSWANDER;
   1402       1.27  jonathan 		return;
   1403       1.27  jonathan 	}
   1404       1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1405       1.27  jonathan 		if (u_usec < 0) {
   1406       1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1407       1.27  jonathan 			if (pps_freq < -time_tolerance)
   1408       1.27  jonathan 				pps_freq = -time_tolerance;
   1409       1.27  jonathan 			u_usec = -u_usec;
   1410       1.27  jonathan 		} else {
   1411       1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1412       1.27  jonathan 			if (pps_freq > time_tolerance)
   1413       1.27  jonathan 				pps_freq = time_tolerance;
   1414       1.27  jonathan 		}
   1415       1.27  jonathan 	}
   1416       1.27  jonathan 
   1417       1.27  jonathan 	/*
   1418       1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1419       1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1420       1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1421       1.27  jonathan 	 * intervals, double the interval.
   1422       1.27  jonathan 	 */
   1423       1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1424       1.27  jonathan 		pps_intcnt = 0;
   1425       1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1426       1.27  jonathan 			pps_shift--;
   1427       1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1428       1.27  jonathan 		pps_intcnt = 0;
   1429       1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1430       1.27  jonathan 			pps_shift++;
   1431       1.27  jonathan 	} else
   1432       1.27  jonathan 		pps_intcnt++;
   1433       1.27  jonathan }
   1434       1.27  jonathan #endif /* PPS_SYNC */
   1435       1.27  jonathan #endif /* NTP  */
   1436       1.95  christos 
   1437       1.95  christos /*
   1438       1.95  christos  * XXX: Until all md code has it.
   1439       1.95  christos  */
   1440       1.95  christos struct timespec *
   1441       1.95  christos nanotime(struct timespec *ts)
   1442       1.95  christos {
   1443       1.95  christos 	struct timeval tv;
   1444       1.95  christos 
   1445       1.95  christos 	microtime(&tv);
   1446       1.95  christos 	TIMEVAL_TO_TIMESPEC(&tv, ts);
   1447       1.95  christos 	return ts;
   1448       1.95  christos }
   1449