Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.96.6.5
      1  1.96.6.5    kardel /*	$NetBSD: kern_clock.c,v 1.96.6.5 2006/06/03 10:42:31 kardel Exp $	*/
      2      1.52   thorpej 
      3      1.52   thorpej /*-
      4      1.94   mycroft  * Copyright (c) 2000, 2004 The NetBSD Foundation, Inc.
      5      1.52   thorpej  * All rights reserved.
      6      1.52   thorpej  *
      7      1.52   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.52   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.52   thorpej  * NASA Ames Research Center.
     10      1.94   mycroft  * This code is derived from software contributed to The NetBSD Foundation
     11      1.94   mycroft  * by Charles M. Hannum.
     12      1.52   thorpej  *
     13      1.52   thorpej  * Redistribution and use in source and binary forms, with or without
     14      1.52   thorpej  * modification, are permitted provided that the following conditions
     15      1.52   thorpej  * are met:
     16      1.52   thorpej  * 1. Redistributions of source code must retain the above copyright
     17      1.52   thorpej  *    notice, this list of conditions and the following disclaimer.
     18      1.52   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     19      1.52   thorpej  *    notice, this list of conditions and the following disclaimer in the
     20      1.52   thorpej  *    documentation and/or other materials provided with the distribution.
     21      1.52   thorpej  * 3. All advertising materials mentioning features or use of this software
     22      1.52   thorpej  *    must display the following acknowledgement:
     23      1.52   thorpej  *	This product includes software developed by the NetBSD
     24      1.52   thorpej  *	Foundation, Inc. and its contributors.
     25      1.52   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26      1.52   thorpej  *    contributors may be used to endorse or promote products derived
     27      1.52   thorpej  *    from this software without specific prior written permission.
     28      1.52   thorpej  *
     29      1.52   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30      1.52   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31      1.52   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32      1.52   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33      1.52   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34      1.52   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35      1.52   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36      1.52   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37      1.52   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38      1.52   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39      1.52   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     40      1.52   thorpej  */
     41      1.19       cgd 
     42      1.19       cgd /*-
     43      1.19       cgd  * Copyright (c) 1982, 1986, 1991, 1993
     44      1.19       cgd  *	The Regents of the University of California.  All rights reserved.
     45      1.19       cgd  * (c) UNIX System Laboratories, Inc.
     46      1.19       cgd  * All or some portions of this file are derived from material licensed
     47      1.19       cgd  * to the University of California by American Telephone and Telegraph
     48      1.19       cgd  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49      1.19       cgd  * the permission of UNIX System Laboratories, Inc.
     50      1.19       cgd  *
     51      1.19       cgd  * Redistribution and use in source and binary forms, with or without
     52      1.19       cgd  * modification, are permitted provided that the following conditions
     53      1.19       cgd  * are met:
     54      1.19       cgd  * 1. Redistributions of source code must retain the above copyright
     55      1.19       cgd  *    notice, this list of conditions and the following disclaimer.
     56      1.19       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     57      1.19       cgd  *    notice, this list of conditions and the following disclaimer in the
     58      1.19       cgd  *    documentation and/or other materials provided with the distribution.
     59      1.87       agc  * 3. Neither the name of the University nor the names of its contributors
     60      1.19       cgd  *    may be used to endorse or promote products derived from this software
     61      1.19       cgd  *    without specific prior written permission.
     62      1.19       cgd  *
     63      1.19       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64      1.19       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65      1.19       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66      1.19       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67      1.19       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68      1.19       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69      1.19       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70      1.19       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71      1.19       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72      1.19       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73      1.19       cgd  * SUCH DAMAGE.
     74      1.19       cgd  *
     75      1.19       cgd  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     76      1.19       cgd  */
     77      1.78     lukem 
     78      1.78     lukem #include <sys/cdefs.h>
     79  1.96.6.5    kardel __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.96.6.5 2006/06/03 10:42:31 kardel Exp $");
     80      1.44  jonathan 
     81      1.44  jonathan #include "opt_ntp.h"
     82      1.86    martin #include "opt_multiprocessor.h"
     83      1.80    briggs #include "opt_perfctrs.h"
     84      1.19       cgd 
     85      1.19       cgd #include <sys/param.h>
     86      1.19       cgd #include <sys/systm.h>
     87      1.19       cgd #include <sys/callout.h>
     88      1.19       cgd #include <sys/kernel.h>
     89      1.19       cgd #include <sys/proc.h>
     90      1.19       cgd #include <sys/resourcevar.h>
     91      1.25  christos #include <sys/signalvar.h>
     92      1.26  christos #include <sys/sysctl.h>
     93      1.27  jonathan #include <sys/timex.h>
     94      1.45      ross #include <sys/sched.h>
     95      1.82   thorpej #include <sys/time.h>
     96  1.96.6.1    simonb #ifdef __HAVE_TIMECOUNTER
     97  1.96.6.1    simonb #include <sys/timetc.h>
     98  1.96.6.1    simonb #endif
     99      1.19       cgd 
    100      1.19       cgd #include <machine/cpu.h>
    101      1.74   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    102      1.74   thorpej #include <machine/intr.h>
    103      1.74   thorpej #endif
    104      1.25  christos 
    105      1.19       cgd #ifdef GPROF
    106      1.19       cgd #include <sys/gmon.h>
    107      1.19       cgd #endif
    108      1.19       cgd 
    109      1.19       cgd /*
    110      1.19       cgd  * Clock handling routines.
    111      1.19       cgd  *
    112      1.19       cgd  * This code is written to operate with two timers that run independently of
    113      1.19       cgd  * each other.  The main clock, running hz times per second, is used to keep
    114      1.19       cgd  * track of real time.  The second timer handles kernel and user profiling,
    115      1.19       cgd  * and does resource use estimation.  If the second timer is programmable,
    116      1.19       cgd  * it is randomized to avoid aliasing between the two clocks.  For example,
    117      1.90       wiz  * the randomization prevents an adversary from always giving up the CPU
    118      1.19       cgd  * just before its quantum expires.  Otherwise, it would never accumulate
    119      1.90       wiz  * CPU ticks.  The mean frequency of the second timer is stathz.
    120      1.19       cgd  *
    121      1.19       cgd  * If no second timer exists, stathz will be zero; in this case we drive
    122      1.19       cgd  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    123      1.19       cgd  * do not do it unless absolutely necessary.
    124      1.19       cgd  *
    125      1.19       cgd  * The statistics clock may (or may not) be run at a higher rate while
    126      1.19       cgd  * profiling.  This profile clock runs at profhz.  We require that profhz
    127      1.19       cgd  * be an integral multiple of stathz.
    128      1.19       cgd  *
    129      1.19       cgd  * If the statistics clock is running fast, it must be divided by the ratio
    130      1.19       cgd  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    131      1.19       cgd  */
    132      1.19       cgd 
    133  1.96.6.1    simonb #ifndef __HAVE_TIMECOUNTER
    134      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
    135      1.27  jonathan /*
    136      1.27  jonathan  * Phase/frequency-lock loop (PLL/FLL) definitions
    137      1.27  jonathan  *
    138      1.27  jonathan  * The following variables are read and set by the ntp_adjtime() system
    139      1.27  jonathan  * call.
    140      1.27  jonathan  *
    141      1.27  jonathan  * time_state shows the state of the system clock, with values defined
    142      1.27  jonathan  * in the timex.h header file.
    143      1.27  jonathan  *
    144      1.27  jonathan  * time_status shows the status of the system clock, with bits defined
    145      1.27  jonathan  * in the timex.h header file.
    146      1.27  jonathan  *
    147      1.27  jonathan  * time_offset is used by the PLL/FLL to adjust the system time in small
    148      1.27  jonathan  * increments.
    149      1.27  jonathan  *
    150      1.27  jonathan  * time_constant determines the bandwidth or "stiffness" of the PLL.
    151      1.27  jonathan  *
    152      1.27  jonathan  * time_tolerance determines maximum frequency error or tolerance of the
    153      1.27  jonathan  * CPU clock oscillator and is a property of the architecture; however,
    154      1.27  jonathan  * in principle it could change as result of the presence of external
    155      1.27  jonathan  * discipline signals, for instance.
    156      1.27  jonathan  *
    157      1.27  jonathan  * time_precision is usually equal to the kernel tick variable; however,
    158      1.27  jonathan  * in cases where a precision clock counter or external clock is
    159      1.27  jonathan  * available, the resolution can be much less than this and depend on
    160      1.27  jonathan  * whether the external clock is working or not.
    161      1.27  jonathan  *
    162      1.27  jonathan  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    163      1.27  jonathan  * the kernel once each second to reflect the maximum error bound
    164      1.27  jonathan  * growth.
    165      1.27  jonathan  *
    166      1.27  jonathan  * time_esterror is set and read by the ntp_adjtime() call, but
    167      1.27  jonathan  * otherwise not used by the kernel.
    168      1.27  jonathan  */
    169      1.27  jonathan int time_state = TIME_OK;	/* clock state */
    170      1.27  jonathan int time_status = STA_UNSYNC;	/* clock status bits */
    171      1.27  jonathan long time_offset = 0;		/* time offset (us) */
    172      1.27  jonathan long time_constant = 0;		/* pll time constant */
    173      1.27  jonathan long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    174      1.27  jonathan long time_precision = 1;	/* clock precision (us) */
    175      1.27  jonathan long time_maxerror = MAXPHASE;	/* maximum error (us) */
    176      1.27  jonathan long time_esterror = MAXPHASE;	/* estimated error (us) */
    177      1.27  jonathan 
    178      1.27  jonathan /*
    179      1.27  jonathan  * The following variables establish the state of the PLL/FLL and the
    180      1.27  jonathan  * residual time and frequency offset of the local clock. The scale
    181      1.27  jonathan  * factors are defined in the timex.h header file.
    182      1.27  jonathan  *
    183      1.27  jonathan  * time_phase and time_freq are the phase increment and the frequency
    184      1.27  jonathan  * increment, respectively, of the kernel time variable.
    185      1.27  jonathan  *
    186      1.27  jonathan  * time_freq is set via ntp_adjtime() from a value stored in a file when
    187      1.27  jonathan  * the synchronization daemon is first started. Its value is retrieved
    188      1.27  jonathan  * via ntp_adjtime() and written to the file about once per hour by the
    189      1.27  jonathan  * daemon.
    190      1.27  jonathan  *
    191      1.27  jonathan  * time_adj is the adjustment added to the value of tick at each timer
    192      1.27  jonathan  * interrupt and is recomputed from time_phase and time_freq at each
    193      1.27  jonathan  * seconds rollover.
    194      1.27  jonathan  *
    195      1.27  jonathan  * time_reftime is the second's portion of the system time at the last
    196      1.27  jonathan  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    197      1.27  jonathan  * and to increase the time_maxerror as the time since last update
    198      1.27  jonathan  * increases.
    199      1.27  jonathan  */
    200      1.27  jonathan long time_phase = 0;		/* phase offset (scaled us) */
    201      1.27  jonathan long time_freq = 0;		/* frequency offset (scaled ppm) */
    202      1.27  jonathan long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    203      1.27  jonathan long time_reftime = 0;		/* time at last adjustment (s) */
    204      1.27  jonathan 
    205      1.27  jonathan #ifdef PPS_SYNC
    206      1.27  jonathan /*
    207      1.27  jonathan  * The following variables are used only if the kernel PPS discipline
    208      1.27  jonathan  * code is configured (PPS_SYNC). The scale factors are defined in the
    209      1.27  jonathan  * timex.h header file.
    210      1.27  jonathan  *
    211      1.27  jonathan  * pps_time contains the time at each calibration interval, as read by
    212      1.27  jonathan  * microtime(). pps_count counts the seconds of the calibration
    213      1.27  jonathan  * interval, the duration of which is nominally pps_shift in powers of
    214      1.27  jonathan  * two.
    215      1.27  jonathan  *
    216      1.27  jonathan  * pps_offset is the time offset produced by the time median filter
    217      1.27  jonathan  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    218      1.27  jonathan  * this filter.
    219      1.27  jonathan  *
    220      1.27  jonathan  * pps_freq is the frequency offset produced by the frequency median
    221      1.27  jonathan  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    222      1.27  jonathan  * by this filter.
    223      1.27  jonathan  *
    224      1.27  jonathan  * pps_usec is latched from a high resolution counter or external clock
    225      1.27  jonathan  * at pps_time. Here we want the hardware counter contents only, not the
    226      1.27  jonathan  * contents plus the time_tv.usec as usual.
    227      1.27  jonathan  *
    228      1.27  jonathan  * pps_valid counts the number of seconds since the last PPS update. It
    229      1.27  jonathan  * is used as a watchdog timer to disable the PPS discipline should the
    230      1.27  jonathan  * PPS signal be lost.
    231      1.27  jonathan  *
    232      1.27  jonathan  * pps_glitch counts the number of seconds since the beginning of an
    233      1.27  jonathan  * offset burst more than tick/2 from current nominal offset. It is used
    234      1.27  jonathan  * mainly to suppress error bursts due to priority conflicts between the
    235      1.27  jonathan  * PPS interrupt and timer interrupt.
    236      1.27  jonathan  *
    237      1.27  jonathan  * pps_intcnt counts the calibration intervals for use in the interval-
    238      1.27  jonathan  * adaptation algorithm. It's just too complicated for words.
    239      1.89    simonb  *
    240      1.89    simonb  * pps_kc_hardpps_source contains an arbitrary value that uniquely
    241      1.89    simonb  * identifies the currently bound source of the PPS signal, or NULL
    242      1.89    simonb  * if no source is bound.
    243      1.89    simonb  *
    244      1.89    simonb  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
    245      1.89    simonb  * signal should be reported.
    246      1.27  jonathan  */
    247      1.27  jonathan struct timeval pps_time;	/* kernel time at last interval */
    248      1.27  jonathan long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    249      1.27  jonathan long pps_offset = 0;		/* pps time offset (us) */
    250      1.27  jonathan long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    251      1.27  jonathan long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    252      1.27  jonathan long pps_freq = 0;		/* frequency offset (scaled ppm) */
    253      1.27  jonathan long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    254      1.27  jonathan long pps_usec = 0;		/* microsec counter at last interval */
    255      1.27  jonathan long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    256      1.27  jonathan int pps_glitch = 0;		/* pps signal glitch counter */
    257      1.27  jonathan int pps_count = 0;		/* calibration interval counter (s) */
    258      1.27  jonathan int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    259      1.27  jonathan int pps_intcnt = 0;		/* intervals at current duration */
    260      1.89    simonb void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
    261      1.89    simonb int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
    262      1.27  jonathan 
    263      1.27  jonathan /*
    264      1.27  jonathan  * PPS signal quality monitors
    265      1.27  jonathan  *
    266      1.27  jonathan  * pps_jitcnt counts the seconds that have been discarded because the
    267      1.27  jonathan  * jitter measured by the time median filter exceeds the limit MAXTIME
    268      1.27  jonathan  * (100 us).
    269      1.27  jonathan  *
    270      1.27  jonathan  * pps_calcnt counts the frequency calibration intervals, which are
    271      1.27  jonathan  * variable from 4 s to 256 s.
    272      1.27  jonathan  *
    273      1.27  jonathan  * pps_errcnt counts the calibration intervals which have been discarded
    274      1.27  jonathan  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    275      1.27  jonathan  * calibration interval jitter exceeds two ticks.
    276      1.27  jonathan  *
    277      1.27  jonathan  * pps_stbcnt counts the calibration intervals that have been discarded
    278      1.27  jonathan  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    279      1.27  jonathan  */
    280      1.27  jonathan long pps_jitcnt = 0;		/* jitter limit exceeded */
    281      1.27  jonathan long pps_calcnt = 0;		/* calibration intervals */
    282      1.27  jonathan long pps_errcnt = 0;		/* calibration errors */
    283      1.27  jonathan long pps_stbcnt = 0;		/* stability limit exceeded */
    284      1.27  jonathan #endif /* PPS_SYNC */
    285      1.27  jonathan 
    286      1.27  jonathan #ifdef EXT_CLOCK
    287      1.27  jonathan /*
    288      1.27  jonathan  * External clock definitions
    289      1.27  jonathan  *
    290      1.27  jonathan  * The following definitions and declarations are used only if an
    291      1.27  jonathan  * external clock is configured on the system.
    292      1.27  jonathan  */
    293      1.27  jonathan #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    294      1.27  jonathan 
    295      1.27  jonathan /*
    296      1.27  jonathan  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    297      1.27  jonathan  * interrupt and decremented once each second.
    298      1.27  jonathan  */
    299      1.27  jonathan int clock_count = 0;		/* CPU clock counter */
    300      1.27  jonathan 
    301      1.27  jonathan #ifdef HIGHBALL
    302      1.27  jonathan /*
    303      1.27  jonathan  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    304      1.27  jonathan  * interface. The clock_offset variable defines the offset between
    305      1.27  jonathan  * system time and the HIGBALL counters. The clock_cpu variable contains
    306      1.27  jonathan  * the offset between the system clock and the HIGHBALL clock for use in
    307      1.27  jonathan  * disciplining the kernel time variable.
    308      1.27  jonathan  */
    309      1.27  jonathan extern struct timeval clock_offset; /* Highball clock offset */
    310      1.27  jonathan long clock_cpu = 0;		/* CPU clock adjust */
    311      1.27  jonathan #endif /* HIGHBALL */
    312      1.27  jonathan #endif /* EXT_CLOCK */
    313      1.27  jonathan #endif /* NTP */
    314      1.27  jonathan 
    315      1.19       cgd /*
    316      1.19       cgd  * Bump a timeval by a small number of usec's.
    317      1.19       cgd  */
    318      1.19       cgd #define BUMPTIME(t, usec) { \
    319      1.55  augustss 	volatile struct timeval *tp = (t); \
    320      1.55  augustss 	long us; \
    321      1.19       cgd  \
    322      1.19       cgd 	tp->tv_usec = us = tp->tv_usec + (usec); \
    323      1.19       cgd 	if (us >= 1000000) { \
    324      1.19       cgd 		tp->tv_usec = us - 1000000; \
    325      1.19       cgd 		tp->tv_sec++; \
    326      1.19       cgd 	} \
    327      1.19       cgd }
    328  1.96.6.1    simonb #endif /* !__HAVE_TIMECOUNTER */
    329      1.19       cgd 
    330      1.19       cgd int	stathz;
    331      1.19       cgd int	profhz;
    332      1.80    briggs int	profsrc;
    333      1.75    simonb int	schedhz;
    334      1.19       cgd int	profprocs;
    335  1.96.6.5    kardel u_int	hardclock_ticks;
    336      1.91      yamt static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
    337      1.70  sommerfe static int psdiv;			/* prof => stat divider */
    338      1.22       cgd int	psratio;			/* ratio: prof / stat */
    339  1.96.6.1    simonb #ifndef __HAVE_TIMECOUNTER
    340      1.22       cgd int	tickfix, tickfixinterval;	/* used if tick not really integral */
    341      1.34    briggs #ifndef NTP
    342      1.39       cgd static int tickfixcnt;			/* accumulated fractional error */
    343      1.34    briggs #else
    344      1.27  jonathan int	fixtick;			/* used by NTP for same */
    345      1.31   mycroft int	shifthz;
    346      1.31   mycroft #endif
    347      1.19       cgd 
    348      1.48  christos /*
    349      1.48  christos  * We might want ldd to load the both words from time at once.
    350      1.48  christos  * To succeed we need to be quadword aligned.
    351      1.48  christos  * The sparc already does that, and that it has worked so far is a fluke.
    352      1.48  christos  */
    353      1.48  christos volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
    354      1.19       cgd volatile struct	timeval mono_time;
    355  1.96.6.1    simonb #endif /* !__HAVE_TIMECOUNTER */
    356      1.19       cgd 
    357  1.96.6.1    simonb #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    358      1.73   thorpej void	*softclock_si;
    359  1.96.6.1    simonb #endif
    360      1.73   thorpej 
    361  1.96.6.5    kardel #ifdef __HAVE_TIMECOUNTER
    362  1.96.6.5    kardel static u_int get_intr_timecount(struct timecounter *);
    363  1.96.6.5    kardel 
    364  1.96.6.5    kardel static struct timecounter intr_timecounter = {
    365  1.96.6.5    kardel 	get_intr_timecount,	/* get_timecount */
    366  1.96.6.5    kardel 	0,			/* no poll_pps */
    367  1.96.6.5    kardel 	~0u,			/* counter_mask */
    368  1.96.6.5    kardel 	0,		        /* frequency */
    369  1.96.6.5    kardel 	"clockinterrupt",	/* name */
    370  1.96.6.5    kardel 	0			/* quality - minimum implementation level for a clock */
    371  1.96.6.5    kardel };
    372  1.96.6.5    kardel 
    373  1.96.6.5    kardel static u_int
    374  1.96.6.5    kardel get_intr_timecount(struct timecounter *tc)
    375  1.96.6.5    kardel {
    376  1.96.6.5    kardel 	return hardclock_ticks;
    377  1.96.6.5    kardel }
    378  1.96.6.5    kardel #endif
    379  1.96.6.5    kardel 
    380      1.66   thorpej /*
    381      1.19       cgd  * Initialize clock frequencies and start both clocks running.
    382      1.19       cgd  */
    383      1.19       cgd void
    384      1.63   thorpej initclocks(void)
    385      1.19       cgd {
    386      1.55  augustss 	int i;
    387      1.19       cgd 
    388      1.73   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    389      1.73   thorpej 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
    390      1.73   thorpej 	if (softclock_si == NULL)
    391      1.73   thorpej 		panic("initclocks: unable to register softclock intr");
    392      1.73   thorpej #endif
    393      1.73   thorpej 
    394      1.19       cgd 	/*
    395      1.19       cgd 	 * Set divisors to 1 (normal case) and let the machine-specific
    396      1.19       cgd 	 * code do its bit.
    397      1.19       cgd 	 */
    398      1.70  sommerfe 	psdiv = 1;
    399  1.96.6.1    simonb #ifdef __HAVE_TIMECOUNTER
    400  1.96.6.1    simonb 	inittimecounter();
    401  1.96.6.5    kardel 	/*
    402  1.96.6.5    kardel 	 * provide minimum default time counter
    403  1.96.6.5    kardel 	 * will only run at interrupt resolution
    404  1.96.6.5    kardel 	 */
    405  1.96.6.5    kardel 	intr_timecounter.tc_frequency = hz;
    406  1.96.6.5    kardel 	tc_init(&intr_timecounter);
    407  1.96.6.1    simonb #endif
    408      1.19       cgd 	cpu_initclocks();
    409      1.19       cgd 
    410      1.19       cgd 	/*
    411      1.70  sommerfe 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
    412      1.19       cgd 	 */
    413      1.19       cgd 	i = stathz ? stathz : hz;
    414      1.19       cgd 	if (profhz == 0)
    415      1.19       cgd 		profhz = i;
    416      1.19       cgd 	psratio = profhz / i;
    417      1.70  sommerfe 	rrticks = hz / 10;
    418      1.91      yamt 	if (schedhz == 0) {
    419      1.91      yamt 		/* 16Hz is best */
    420      1.91      yamt 		statscheddiv = i / 16;
    421      1.91      yamt 		if (statscheddiv <= 0)
    422      1.91      yamt 			panic("statscheddiv");
    423      1.91      yamt 	}
    424      1.31   mycroft 
    425  1.96.6.1    simonb #ifndef __HAVE_TIMECOUNTER
    426      1.31   mycroft #ifdef NTP
    427      1.31   mycroft 	switch (hz) {
    428      1.57   mycroft 	case 1:
    429      1.57   mycroft 		shifthz = SHIFT_SCALE - 0;
    430      1.57   mycroft 		break;
    431      1.57   mycroft 	case 2:
    432      1.57   mycroft 		shifthz = SHIFT_SCALE - 1;
    433      1.57   mycroft 		break;
    434      1.57   mycroft 	case 4:
    435      1.57   mycroft 		shifthz = SHIFT_SCALE - 2;
    436      1.57   mycroft 		break;
    437      1.57   mycroft 	case 8:
    438      1.57   mycroft 		shifthz = SHIFT_SCALE - 3;
    439      1.57   mycroft 		break;
    440      1.57   mycroft 	case 16:
    441      1.57   mycroft 		shifthz = SHIFT_SCALE - 4;
    442      1.57   mycroft 		break;
    443      1.57   mycroft 	case 32:
    444      1.57   mycroft 		shifthz = SHIFT_SCALE - 5;
    445      1.57   mycroft 		break;
    446      1.92       tls 	case 50:
    447      1.31   mycroft 	case 60:
    448      1.31   mycroft 	case 64:
    449      1.31   mycroft 		shifthz = SHIFT_SCALE - 6;
    450      1.31   mycroft 		break;
    451      1.31   mycroft 	case 96:
    452      1.31   mycroft 	case 100:
    453      1.31   mycroft 	case 128:
    454      1.31   mycroft 		shifthz = SHIFT_SCALE - 7;
    455      1.31   mycroft 		break;
    456      1.31   mycroft 	case 256:
    457      1.31   mycroft 		shifthz = SHIFT_SCALE - 8;
    458      1.41       tls 		break;
    459      1.41       tls 	case 512:
    460      1.41       tls 		shifthz = SHIFT_SCALE - 9;
    461      1.31   mycroft 		break;
    462      1.43      ross 	case 1000:
    463      1.31   mycroft 	case 1024:
    464      1.31   mycroft 		shifthz = SHIFT_SCALE - 10;
    465      1.31   mycroft 		break;
    466      1.57   mycroft 	case 1200:
    467      1.57   mycroft 	case 2048:
    468      1.57   mycroft 		shifthz = SHIFT_SCALE - 11;
    469      1.57   mycroft 		break;
    470      1.57   mycroft 	case 4096:
    471      1.57   mycroft 		shifthz = SHIFT_SCALE - 12;
    472      1.57   mycroft 		break;
    473      1.57   mycroft 	case 8192:
    474      1.57   mycroft 		shifthz = SHIFT_SCALE - 13;
    475      1.57   mycroft 		break;
    476      1.57   mycroft 	case 16384:
    477      1.57   mycroft 		shifthz = SHIFT_SCALE - 14;
    478      1.57   mycroft 		break;
    479      1.57   mycroft 	case 32768:
    480      1.57   mycroft 		shifthz = SHIFT_SCALE - 15;
    481      1.57   mycroft 		break;
    482      1.57   mycroft 	case 65536:
    483      1.57   mycroft 		shifthz = SHIFT_SCALE - 16;
    484      1.57   mycroft 		break;
    485      1.31   mycroft 	default:
    486      1.31   mycroft 		panic("weird hz");
    487      1.50  sommerfe 	}
    488      1.50  sommerfe 	if (fixtick == 0) {
    489      1.52   thorpej 		/*
    490      1.52   thorpej 		 * Give MD code a chance to set this to a better
    491      1.52   thorpej 		 * value; but, if it doesn't, we should.
    492      1.52   thorpej 		 */
    493      1.50  sommerfe 		fixtick = (1000000 - (hz*tick));
    494      1.31   mycroft 	}
    495  1.96.6.1    simonb #endif /* NTP */
    496  1.96.6.1    simonb #endif /* !__HAVE_TIMECOUNTER */
    497      1.19       cgd }
    498      1.19       cgd 
    499      1.19       cgd /*
    500      1.19       cgd  * The real-time timer, interrupting hz times per second.
    501      1.19       cgd  */
    502      1.19       cgd void
    503      1.63   thorpej hardclock(struct clockframe *frame)
    504      1.19       cgd {
    505      1.82   thorpej 	struct lwp *l;
    506      1.55  augustss 	struct proc *p;
    507  1.96.6.1    simonb 	struct cpu_info *ci = curcpu();
    508  1.96.6.1    simonb 	struct ptimer *pt;
    509  1.96.6.1    simonb #ifndef __HAVE_TIMECOUNTER
    510      1.55  augustss 	int delta;
    511      1.19       cgd 	extern int tickdelta;
    512      1.19       cgd 	extern long timedelta;
    513      1.30   mycroft #ifdef NTP
    514      1.55  augustss 	int time_update;
    515      1.55  augustss 	int ltemp;
    516  1.96.6.1    simonb #endif /* NTP */
    517  1.96.6.1    simonb #endif /* __HAVE_TIMECOUNTER */
    518      1.19       cgd 
    519      1.82   thorpej 	l = curlwp;
    520      1.82   thorpej 	if (l) {
    521      1.82   thorpej 		p = l->l_proc;
    522      1.19       cgd 		/*
    523      1.19       cgd 		 * Run current process's virtual and profile time, as needed.
    524      1.19       cgd 		 */
    525      1.82   thorpej 		if (CLKF_USERMODE(frame) && p->p_timers &&
    526      1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
    527      1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    528      1.82   thorpej 				itimerfire(pt);
    529      1.82   thorpej 		if (p->p_timers &&
    530      1.82   thorpej 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
    531      1.82   thorpej 			if (itimerdecr(pt, tick) == 0)
    532      1.82   thorpej 				itimerfire(pt);
    533      1.19       cgd 	}
    534      1.19       cgd 
    535      1.19       cgd 	/*
    536      1.19       cgd 	 * If no separate statistics clock is available, run it from here.
    537      1.19       cgd 	 */
    538      1.19       cgd 	if (stathz == 0)
    539      1.19       cgd 		statclock(frame);
    540      1.70  sommerfe 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
    541      1.71  sommerfe 		roundrobin(ci);
    542      1.93     perry 
    543      1.60   thorpej #if defined(MULTIPROCESSOR)
    544      1.60   thorpej 	/*
    545      1.60   thorpej 	 * If we are not the primary CPU, we're not allowed to do
    546      1.60   thorpej 	 * any more work.
    547      1.60   thorpej 	 */
    548      1.70  sommerfe 	if (CPU_IS_PRIMARY(ci) == 0)
    549      1.60   thorpej 		return;
    550      1.60   thorpej #endif
    551      1.60   thorpej 
    552  1.96.6.1    simonb 	hardclock_ticks++;
    553  1.96.6.1    simonb 
    554  1.96.6.2    kardel #ifdef __HAVE_TIMECOUNTER
    555  1.96.6.1    simonb 	tc_ticktock();
    556  1.96.6.1    simonb #else /* __HAVE_TIMECOUNTER */
    557      1.19       cgd 	/*
    558      1.22       cgd 	 * Increment the time-of-day.  The increment is normally just
    559      1.22       cgd 	 * ``tick''.  If the machine is one which has a clock frequency
    560      1.22       cgd 	 * such that ``hz'' would not divide the second evenly into
    561      1.22       cgd 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    562      1.22       cgd 	 * if we are still adjusting the time (see adjtime()),
    563      1.22       cgd 	 * ``tickdelta'' may also be added in.
    564      1.19       cgd 	 */
    565      1.22       cgd 	delta = tick;
    566      1.27  jonathan 
    567      1.27  jonathan #ifndef NTP
    568      1.22       cgd 	if (tickfix) {
    569      1.39       cgd 		tickfixcnt += tickfix;
    570      1.24       cgd 		if (tickfixcnt >= tickfixinterval) {
    571      1.39       cgd 			delta++;
    572      1.39       cgd 			tickfixcnt -= tickfixinterval;
    573      1.22       cgd 		}
    574      1.22       cgd 	}
    575      1.27  jonathan #endif /* !NTP */
    576      1.27  jonathan 	/* Imprecise 4bsd adjtime() handling */
    577      1.22       cgd 	if (timedelta != 0) {
    578      1.38       cgd 		delta += tickdelta;
    579      1.19       cgd 		timedelta -= tickdelta;
    580      1.19       cgd 	}
    581      1.27  jonathan 
    582      1.27  jonathan #ifdef notyet
    583      1.27  jonathan 	microset();
    584      1.27  jonathan #endif
    585      1.27  jonathan 
    586      1.27  jonathan #ifndef NTP
    587      1.27  jonathan 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    588      1.27  jonathan #endif
    589      1.19       cgd 	BUMPTIME(&mono_time, delta);
    590      1.27  jonathan 
    591      1.31   mycroft #ifdef NTP
    592      1.30   mycroft 	time_update = delta;
    593      1.27  jonathan 
    594      1.27  jonathan 	/*
    595      1.27  jonathan 	 * Compute the phase adjustment. If the low-order bits
    596      1.27  jonathan 	 * (time_phase) of the update overflow, bump the high-order bits
    597      1.27  jonathan 	 * (time_update).
    598      1.27  jonathan 	 */
    599      1.27  jonathan 	time_phase += time_adj;
    600      1.27  jonathan 	if (time_phase <= -FINEUSEC) {
    601      1.27  jonathan 		ltemp = -time_phase >> SHIFT_SCALE;
    602      1.27  jonathan 		time_phase += ltemp << SHIFT_SCALE;
    603      1.27  jonathan 		time_update -= ltemp;
    604      1.31   mycroft 	} else if (time_phase >= FINEUSEC) {
    605      1.27  jonathan 		ltemp = time_phase >> SHIFT_SCALE;
    606      1.27  jonathan 		time_phase -= ltemp << SHIFT_SCALE;
    607      1.27  jonathan 		time_update += ltemp;
    608      1.27  jonathan 	}
    609      1.27  jonathan 
    610      1.27  jonathan #ifdef HIGHBALL
    611      1.27  jonathan 	/*
    612      1.27  jonathan 	 * If the HIGHBALL board is installed, we need to adjust the
    613      1.27  jonathan 	 * external clock offset in order to close the hardware feedback
    614      1.27  jonathan 	 * loop. This will adjust the external clock phase and frequency
    615      1.27  jonathan 	 * in small amounts. The additional phase noise and frequency
    616      1.27  jonathan 	 * wander this causes should be minimal. We also need to
    617      1.27  jonathan 	 * discipline the kernel time variable, since the PLL is used to
    618      1.27  jonathan 	 * discipline the external clock. If the Highball board is not
    619      1.27  jonathan 	 * present, we discipline kernel time with the PLL as usual. We
    620      1.27  jonathan 	 * assume that the external clock phase adjustment (time_update)
    621      1.27  jonathan 	 * and kernel phase adjustment (clock_cpu) are less than the
    622      1.27  jonathan 	 * value of tick.
    623      1.27  jonathan 	 */
    624      1.27  jonathan 	clock_offset.tv_usec += time_update;
    625      1.27  jonathan 	if (clock_offset.tv_usec >= 1000000) {
    626      1.27  jonathan 		clock_offset.tv_sec++;
    627      1.27  jonathan 		clock_offset.tv_usec -= 1000000;
    628      1.27  jonathan 	}
    629      1.27  jonathan 	if (clock_offset.tv_usec < 0) {
    630      1.27  jonathan 		clock_offset.tv_sec--;
    631      1.27  jonathan 		clock_offset.tv_usec += 1000000;
    632      1.27  jonathan 	}
    633      1.27  jonathan 	time.tv_usec += clock_cpu;
    634      1.27  jonathan 	clock_cpu = 0;
    635      1.27  jonathan #else
    636      1.27  jonathan 	time.tv_usec += time_update;
    637      1.27  jonathan #endif /* HIGHBALL */
    638      1.27  jonathan 
    639      1.27  jonathan 	/*
    640      1.27  jonathan 	 * On rollover of the second the phase adjustment to be used for
    641      1.27  jonathan 	 * the next second is calculated. Also, the maximum error is
    642      1.27  jonathan 	 * increased by the tolerance. If the PPS frequency discipline
    643      1.27  jonathan 	 * code is present, the phase is increased to compensate for the
    644      1.27  jonathan 	 * CPU clock oscillator frequency error.
    645      1.27  jonathan 	 *
    646      1.27  jonathan  	 * On a 32-bit machine and given parameters in the timex.h
    647      1.27  jonathan 	 * header file, the maximum phase adjustment is +-512 ms and
    648      1.27  jonathan 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    649      1.27  jonathan 	 * 64-bit machine, you shouldn't need to ask.
    650      1.27  jonathan 	 */
    651      1.27  jonathan 	if (time.tv_usec >= 1000000) {
    652      1.27  jonathan 		time.tv_usec -= 1000000;
    653      1.27  jonathan 		time.tv_sec++;
    654      1.27  jonathan 		time_maxerror += time_tolerance >> SHIFT_USEC;
    655      1.27  jonathan 
    656      1.27  jonathan 		/*
    657      1.27  jonathan 		 * Leap second processing. If in leap-insert state at
    658      1.27  jonathan 		 * the end of the day, the system clock is set back one
    659      1.27  jonathan 		 * second; if in leap-delete state, the system clock is
    660      1.27  jonathan 		 * set ahead one second. The microtime() routine or
    661      1.27  jonathan 		 * external clock driver will insure that reported time
    662      1.27  jonathan 		 * is always monotonic. The ugly divides should be
    663      1.27  jonathan 		 * replaced.
    664      1.27  jonathan 		 */
    665      1.27  jonathan 		switch (time_state) {
    666      1.31   mycroft 		case TIME_OK:
    667      1.27  jonathan 			if (time_status & STA_INS)
    668      1.27  jonathan 				time_state = TIME_INS;
    669      1.27  jonathan 			else if (time_status & STA_DEL)
    670      1.27  jonathan 				time_state = TIME_DEL;
    671      1.27  jonathan 			break;
    672      1.27  jonathan 
    673      1.31   mycroft 		case TIME_INS:
    674      1.27  jonathan 			if (time.tv_sec % 86400 == 0) {
    675      1.27  jonathan 				time.tv_sec--;
    676      1.27  jonathan 				time_state = TIME_OOP;
    677      1.27  jonathan 			}
    678      1.27  jonathan 			break;
    679      1.27  jonathan 
    680      1.31   mycroft 		case TIME_DEL:
    681      1.27  jonathan 			if ((time.tv_sec + 1) % 86400 == 0) {
    682      1.27  jonathan 				time.tv_sec++;
    683      1.27  jonathan 				time_state = TIME_WAIT;
    684      1.27  jonathan 			}
    685      1.27  jonathan 			break;
    686      1.27  jonathan 
    687      1.31   mycroft 		case TIME_OOP:
    688      1.27  jonathan 			time_state = TIME_WAIT;
    689      1.27  jonathan 			break;
    690      1.27  jonathan 
    691      1.31   mycroft 		case TIME_WAIT:
    692      1.27  jonathan 			if (!(time_status & (STA_INS | STA_DEL)))
    693      1.27  jonathan 				time_state = TIME_OK;
    694      1.31   mycroft 			break;
    695      1.27  jonathan 		}
    696      1.27  jonathan 
    697      1.27  jonathan 		/*
    698      1.27  jonathan 		 * Compute the phase adjustment for the next second. In
    699      1.27  jonathan 		 * PLL mode, the offset is reduced by a fixed factor
    700      1.27  jonathan 		 * times the time constant. In FLL mode the offset is
    701      1.27  jonathan 		 * used directly. In either mode, the maximum phase
    702      1.27  jonathan 		 * adjustment for each second is clamped so as to spread
    703      1.27  jonathan 		 * the adjustment over not more than the number of
    704      1.27  jonathan 		 * seconds between updates.
    705      1.27  jonathan 		 */
    706      1.27  jonathan 		if (time_offset < 0) {
    707      1.27  jonathan 			ltemp = -time_offset;
    708      1.27  jonathan 			if (!(time_status & STA_FLL))
    709      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    710      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    711      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    712      1.27  jonathan 				    SHIFT_UPDATE;
    713      1.27  jonathan 			time_offset += ltemp;
    714      1.31   mycroft 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    715      1.31   mycroft 		} else if (time_offset > 0) {
    716      1.27  jonathan 			ltemp = time_offset;
    717      1.27  jonathan 			if (!(time_status & STA_FLL))
    718      1.27  jonathan 				ltemp >>= SHIFT_KG + time_constant;
    719      1.27  jonathan 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    720      1.27  jonathan 				ltemp = (MAXPHASE / MINSEC) <<
    721      1.27  jonathan 				    SHIFT_UPDATE;
    722      1.27  jonathan 			time_offset -= ltemp;
    723      1.31   mycroft 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    724      1.31   mycroft 		} else
    725      1.31   mycroft 			time_adj = 0;
    726      1.27  jonathan 
    727      1.27  jonathan 		/*
    728      1.27  jonathan 		 * Compute the frequency estimate and additional phase
    729      1.27  jonathan 		 * adjustment due to frequency error for the next
    730      1.27  jonathan 		 * second. When the PPS signal is engaged, gnaw on the
    731      1.27  jonathan 		 * watchdog counter and update the frequency computed by
    732      1.27  jonathan 		 * the pll and the PPS signal.
    733      1.27  jonathan 		 */
    734      1.27  jonathan #ifdef PPS_SYNC
    735      1.27  jonathan 		pps_valid++;
    736      1.27  jonathan 		if (pps_valid == PPS_VALID) {
    737      1.27  jonathan 			pps_jitter = MAXTIME;
    738      1.27  jonathan 			pps_stabil = MAXFREQ;
    739      1.27  jonathan 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    740      1.27  jonathan 			    STA_PPSWANDER | STA_PPSERROR);
    741      1.27  jonathan 		}
    742      1.27  jonathan 		ltemp = time_freq + pps_freq;
    743      1.27  jonathan #else
    744      1.27  jonathan 		ltemp = time_freq;
    745      1.27  jonathan #endif /* PPS_SYNC */
    746      1.27  jonathan 
    747      1.27  jonathan 		if (ltemp < 0)
    748      1.31   mycroft 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    749      1.27  jonathan 		else
    750      1.31   mycroft 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    751      1.31   mycroft 		time_adj += (long)fixtick << shifthz;
    752      1.27  jonathan 
    753      1.27  jonathan 		/*
    754      1.27  jonathan 		 * When the CPU clock oscillator frequency is not a
    755      1.31   mycroft 		 * power of 2 in Hz, shifthz is only an approximate
    756      1.31   mycroft 		 * scale factor.
    757      1.46   mycroft 		 *
    758      1.46   mycroft 		 * To determine the adjustment, you can do the following:
    759      1.46   mycroft 		 *   bc -q
    760      1.46   mycroft 		 *   scale=24
    761      1.46   mycroft 		 *   obase=2
    762      1.46   mycroft 		 *   idealhz/realhz
    763      1.46   mycroft 		 * where `idealhz' is the next higher power of 2, and `realhz'
    764      1.57   mycroft 		 * is the actual value.  You may need to factor this result
    765      1.57   mycroft 		 * into a sequence of 2 multipliers to get better precision.
    766      1.46   mycroft 		 *
    767      1.46   mycroft 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
    768      1.46   mycroft 		 *   bc -q
    769      1.46   mycroft 		 *   scale=24
    770      1.57   mycroft 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
    771      1.57   mycroft 		 * (and then multiply by 1000000 to get ppm).
    772      1.27  jonathan 		 */
    773      1.31   mycroft 		switch (hz) {
    774      1.58   mycroft 		case 60:
    775      1.58   mycroft 			/* A factor of 1.000100010001 gives about 15ppm
    776      1.58   mycroft 			   error. */
    777      1.58   mycroft 			if (time_adj < 0) {
    778      1.58   mycroft 				time_adj -= (-time_adj >> 4);
    779      1.58   mycroft 				time_adj -= (-time_adj >> 8);
    780      1.58   mycroft 			} else {
    781      1.58   mycroft 				time_adj += (time_adj >> 4);
    782      1.58   mycroft 				time_adj += (time_adj >> 8);
    783      1.58   mycroft 			}
    784      1.58   mycroft 			break;
    785      1.58   mycroft 
    786      1.31   mycroft 		case 96:
    787      1.56   mycroft 			/* A factor of 1.0101010101 gives about 244ppm error. */
    788      1.46   mycroft 			if (time_adj < 0) {
    789      1.46   mycroft 				time_adj -= (-time_adj >> 2);
    790      1.46   mycroft 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
    791      1.46   mycroft 			} else {
    792      1.46   mycroft 				time_adj += (time_adj >> 2);
    793      1.46   mycroft 				time_adj += (time_adj >> 4) + (time_adj >> 8);
    794      1.46   mycroft 			}
    795      1.46   mycroft 			break;
    796      1.46   mycroft 
    797      1.92       tls 		case 50:
    798      1.31   mycroft 		case 100:
    799      1.56   mycroft 			/* A factor of 1.010001111010111 gives about 1ppm
    800      1.56   mycroft 			   error. */
    801      1.56   mycroft 			if (time_adj < 0) {
    802      1.46   mycroft 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
    803      1.56   mycroft 				time_adj += (-time_adj >> 10);
    804      1.56   mycroft 			} else {
    805      1.46   mycroft 				time_adj += (time_adj >> 2) + (time_adj >> 5);
    806      1.56   mycroft 				time_adj -= (time_adj >> 10);
    807      1.56   mycroft 			}
    808      1.43      ross 			break;
    809      1.46   mycroft 
    810      1.43      ross 		case 1000:
    811      1.56   mycroft 			/* A factor of 1.000001100010100001 gives about 50ppm
    812      1.56   mycroft 			   error. */
    813      1.56   mycroft 			if (time_adj < 0) {
    814      1.56   mycroft 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
    815      1.56   mycroft 				time_adj -= (-time_adj >> 7);
    816      1.56   mycroft 			} else {
    817      1.56   mycroft 				time_adj += (time_adj >> 6) + (time_adj >> 11);
    818      1.56   mycroft 				time_adj += (time_adj >> 7);
    819      1.56   mycroft 			}
    820      1.56   mycroft 			break;
    821      1.56   mycroft 
    822      1.56   mycroft 		case 1200:
    823      1.56   mycroft 			/* A factor of 1.1011010011100001 gives about 64ppm
    824      1.56   mycroft 			   error. */
    825      1.56   mycroft 			if (time_adj < 0) {
    826      1.56   mycroft 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
    827      1.56   mycroft 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
    828      1.56   mycroft 			} else {
    829      1.56   mycroft 				time_adj += (time_adj >> 1) + (time_adj >> 6);
    830      1.56   mycroft 				time_adj += (time_adj >> 3) + (time_adj >> 10);
    831      1.56   mycroft 			}
    832      1.31   mycroft 			break;
    833      1.27  jonathan 		}
    834      1.27  jonathan 
    835      1.27  jonathan #ifdef EXT_CLOCK
    836      1.27  jonathan 		/*
    837      1.27  jonathan 		 * If an external clock is present, it is necessary to
    838      1.27  jonathan 		 * discipline the kernel time variable anyway, since not
    839      1.27  jonathan 		 * all system components use the microtime() interface.
    840      1.27  jonathan 		 * Here, the time offset between the external clock and
    841      1.27  jonathan 		 * kernel time variable is computed every so often.
    842      1.27  jonathan 		 */
    843      1.27  jonathan 		clock_count++;
    844      1.27  jonathan 		if (clock_count > CLOCK_INTERVAL) {
    845      1.27  jonathan 			clock_count = 0;
    846      1.27  jonathan 			microtime(&clock_ext);
    847      1.27  jonathan 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    848      1.27  jonathan 			delta.tv_usec = clock_ext.tv_usec -
    849      1.27  jonathan 			    time.tv_usec;
    850      1.27  jonathan 			if (delta.tv_usec < 0)
    851      1.27  jonathan 				delta.tv_sec--;
    852      1.27  jonathan 			if (delta.tv_usec >= 500000) {
    853      1.27  jonathan 				delta.tv_usec -= 1000000;
    854      1.27  jonathan 				delta.tv_sec++;
    855      1.27  jonathan 			}
    856      1.27  jonathan 			if (delta.tv_usec < -500000) {
    857      1.27  jonathan 				delta.tv_usec += 1000000;
    858      1.27  jonathan 				delta.tv_sec--;
    859      1.27  jonathan 			}
    860      1.27  jonathan 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    861      1.27  jonathan 			    delta.tv_usec > MAXPHASE) ||
    862      1.27  jonathan 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    863      1.27  jonathan 			    delta.tv_usec < -MAXPHASE)) {
    864      1.27  jonathan 				time = clock_ext;
    865      1.27  jonathan 				delta.tv_sec = 0;
    866      1.27  jonathan 				delta.tv_usec = 0;
    867      1.27  jonathan 			}
    868      1.27  jonathan #ifdef HIGHBALL
    869      1.27  jonathan 			clock_cpu = delta.tv_usec;
    870      1.27  jonathan #else /* HIGHBALL */
    871      1.27  jonathan 			hardupdate(delta.tv_usec);
    872      1.27  jonathan #endif /* HIGHBALL */
    873      1.27  jonathan 		}
    874      1.27  jonathan #endif /* EXT_CLOCK */
    875      1.27  jonathan 	}
    876      1.27  jonathan 
    877      1.31   mycroft #endif /* NTP */
    878  1.96.6.1    simonb #endif /* !__HAVE_TIMECOUNTER */
    879      1.19       cgd 
    880      1.19       cgd 	/*
    881      1.84   thorpej 	 * Update real-time timeout queue.
    882      1.90       wiz 	 * Process callouts at a very low CPU priority, so we don't keep the
    883      1.19       cgd 	 * relatively high clock interrupt priority any longer than necessary.
    884      1.19       cgd 	 */
    885      1.84   thorpej 	if (callout_hardclock()) {
    886      1.19       cgd 		if (CLKF_BASEPRI(frame)) {
    887      1.19       cgd 			/*
    888      1.19       cgd 			 * Save the overhead of a software interrupt;
    889      1.52   thorpej 			 * it will happen as soon as we return, so do
    890      1.52   thorpej 			 * it now.
    891      1.19       cgd 			 */
    892      1.65   thorpej 			spllowersoftclock();
    893      1.69   thorpej 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
    894      1.73   thorpej 			softclock(NULL);
    895      1.69   thorpej 			KERNEL_UNLOCK();
    896      1.73   thorpej 		} else {
    897      1.73   thorpej #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    898      1.73   thorpej 			softintr_schedule(softclock_si);
    899      1.73   thorpej #else
    900      1.19       cgd 			setsoftclock();
    901      1.73   thorpej #endif
    902      1.73   thorpej 		}
    903      1.52   thorpej 	}
    904      1.19       cgd }
    905      1.19       cgd 
    906  1.96.6.1    simonb #ifdef __HAVE_TIMECOUNTER
    907  1.96.6.1    simonb /*
    908  1.96.6.1    simonb  * Compute number of hz until specified time.  Used to compute second
    909  1.96.6.1    simonb  * argument to callout_reset() from an absolute time.
    910  1.96.6.1    simonb  */
    911  1.96.6.1    simonb int
    912  1.96.6.1    simonb hzto(struct timeval *tvp)
    913  1.96.6.1    simonb {
    914  1.96.6.1    simonb 	struct timeval now, tv;
    915  1.96.6.1    simonb 
    916  1.96.6.1    simonb 	tv = *tvp;	/* Don't modify original tvp. */
    917  1.96.6.1    simonb 	getmicrotime(&now);
    918  1.96.6.1    simonb 	timersub(&tv, &now, &tv);
    919  1.96.6.1    simonb 	return tvtohz(&tv);
    920  1.96.6.1    simonb }
    921  1.96.6.1    simonb #endif /* __HAVE_TIMECOUNTER */
    922  1.96.6.1    simonb 
    923  1.96.6.1    simonb /*
    924  1.96.6.1    simonb  * Compute number of ticks in the specified amount of time.
    925  1.96.6.1    simonb  */
    926  1.96.6.1    simonb int
    927  1.96.6.1    simonb tvtohz(struct timeval *tv)
    928  1.96.6.1    simonb {
    929  1.96.6.1    simonb 	unsigned long ticks;
    930  1.96.6.1    simonb 	long sec, usec;
    931  1.96.6.1    simonb 
    932  1.96.6.1    simonb 	/*
    933  1.96.6.1    simonb 	 * If the number of usecs in the whole seconds part of the time
    934  1.96.6.1    simonb 	 * difference fits in a long, then the total number of usecs will
    935  1.96.6.1    simonb 	 * fit in an unsigned long.  Compute the total and convert it to
    936  1.96.6.1    simonb 	 * ticks, rounding up and adding 1 to allow for the current tick
    937  1.96.6.1    simonb 	 * to expire.  Rounding also depends on unsigned long arithmetic
    938  1.96.6.1    simonb 	 * to avoid overflow.
    939  1.96.6.1    simonb 	 *
    940  1.96.6.1    simonb 	 * Otherwise, if the number of ticks in the whole seconds part of
    941  1.96.6.1    simonb 	 * the time difference fits in a long, then convert the parts to
    942  1.96.6.1    simonb 	 * ticks separately and add, using similar rounding methods and
    943  1.96.6.1    simonb 	 * overflow avoidance.  This method would work in the previous
    944  1.96.6.1    simonb 	 * case, but it is slightly slower and assumes that hz is integral.
    945  1.96.6.1    simonb 	 *
    946  1.96.6.1    simonb 	 * Otherwise, round the time difference down to the maximum
    947  1.96.6.1    simonb 	 * representable value.
    948  1.96.6.1    simonb 	 *
    949  1.96.6.1    simonb 	 * If ints are 32-bit, then the maximum value for any timeout in
    950  1.96.6.1    simonb 	 * 10ms ticks is 248 days.
    951  1.96.6.1    simonb 	 */
    952  1.96.6.1    simonb 	sec = tv->tv_sec;
    953  1.96.6.1    simonb 	usec = tv->tv_usec;
    954  1.96.6.1    simonb 
    955  1.96.6.1    simonb 	if (usec < 0) {
    956  1.96.6.1    simonb 		sec--;
    957  1.96.6.1    simonb 		usec += 1000000;
    958  1.96.6.1    simonb 	}
    959  1.96.6.1    simonb 
    960  1.96.6.1    simonb 	if (sec < 0 || (sec == 0 && usec <= 0)) {
    961  1.96.6.1    simonb 		/*
    962  1.96.6.1    simonb 		 * Would expire now or in the past.  Return 0 ticks.
    963  1.96.6.1    simonb 		 * This is different from the legacy hzto() interface,
    964  1.96.6.1    simonb 		 * and callers need to check for it.
    965  1.96.6.1    simonb 		 */
    966  1.96.6.1    simonb 		ticks = 0;
    967  1.96.6.1    simonb 	} else if (sec <= (LONG_MAX / 1000000))
    968  1.96.6.1    simonb 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    969  1.96.6.1    simonb 		    / tick) + 1;
    970  1.96.6.1    simonb 	else if (sec <= (LONG_MAX / hz))
    971  1.96.6.1    simonb 		ticks = (sec * hz) +
    972  1.96.6.1    simonb 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    973  1.96.6.1    simonb 	else
    974  1.96.6.1    simonb 		ticks = LONG_MAX;
    975  1.96.6.1    simonb 
    976  1.96.6.1    simonb 	if (ticks > INT_MAX)
    977  1.96.6.1    simonb 		ticks = INT_MAX;
    978  1.96.6.1    simonb 
    979  1.96.6.1    simonb 	return ((int)ticks);
    980  1.96.6.1    simonb }
    981  1.96.6.1    simonb 
    982  1.96.6.1    simonb #ifndef __HAVE_TIMECOUNTER
    983      1.19       cgd /*
    984      1.52   thorpej  * Compute number of hz until specified time.  Used to compute second
    985      1.52   thorpej  * argument to callout_reset() from an absolute time.
    986      1.19       cgd  */
    987      1.19       cgd int
    988      1.63   thorpej hzto(struct timeval *tv)
    989      1.19       cgd {
    990      1.62   thorpej 	unsigned long ticks;
    991      1.62   thorpej 	long sec, usec;
    992      1.19       cgd 	int s;
    993      1.19       cgd 
    994      1.19       cgd 	/*
    995      1.62   thorpej 	 * If the number of usecs in the whole seconds part of the time
    996      1.62   thorpej 	 * difference fits in a long, then the total number of usecs will
    997      1.62   thorpej 	 * fit in an unsigned long.  Compute the total and convert it to
    998      1.62   thorpej 	 * ticks, rounding up and adding 1 to allow for the current tick
    999      1.62   thorpej 	 * to expire.  Rounding also depends on unsigned long arithmetic
   1000      1.62   thorpej 	 * to avoid overflow.
   1001      1.19       cgd 	 *
   1002      1.62   thorpej 	 * Otherwise, if the number of ticks in the whole seconds part of
   1003      1.62   thorpej 	 * the time difference fits in a long, then convert the parts to
   1004      1.62   thorpej 	 * ticks separately and add, using similar rounding methods and
   1005      1.62   thorpej 	 * overflow avoidance.  This method would work in the previous
   1006      1.62   thorpej 	 * case, but it is slightly slower and assume that hz is integral.
   1007      1.62   thorpej 	 *
   1008      1.62   thorpej 	 * Otherwise, round the time difference down to the maximum
   1009      1.62   thorpej 	 * representable value.
   1010      1.62   thorpej 	 *
   1011      1.62   thorpej 	 * If ints are 32-bit, then the maximum value for any timeout in
   1012      1.62   thorpej 	 * 10ms ticks is 248 days.
   1013      1.19       cgd 	 */
   1014      1.40   mycroft 	s = splclock();
   1015      1.19       cgd 	sec = tv->tv_sec - time.tv_sec;
   1016      1.62   thorpej 	usec = tv->tv_usec - time.tv_usec;
   1017      1.62   thorpej 	splx(s);
   1018      1.62   thorpej 
   1019      1.62   thorpej 	if (usec < 0) {
   1020      1.62   thorpej 		sec--;
   1021      1.62   thorpej 		usec += 1000000;
   1022      1.62   thorpej 	}
   1023      1.62   thorpej 
   1024      1.62   thorpej 	if (sec < 0 || (sec == 0 && usec <= 0)) {
   1025      1.62   thorpej 		/*
   1026      1.62   thorpej 		 * Would expire now or in the past.  Return 0 ticks.
   1027      1.62   thorpej 		 * This is different from the legacy hzto() interface,
   1028      1.62   thorpej 		 * and callers need to check for it.
   1029      1.62   thorpej 		 */
   1030      1.62   thorpej 		ticks = 0;
   1031      1.62   thorpej 	} else if (sec <= (LONG_MAX / 1000000))
   1032      1.62   thorpej 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
   1033      1.62   thorpej 		    / tick) + 1;
   1034      1.62   thorpej 	else if (sec <= (LONG_MAX / hz))
   1035      1.62   thorpej 		ticks = (sec * hz) +
   1036      1.62   thorpej 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
   1037      1.19       cgd 	else
   1038      1.62   thorpej 		ticks = LONG_MAX;
   1039      1.62   thorpej 
   1040      1.62   thorpej 	if (ticks > INT_MAX)
   1041      1.62   thorpej 		ticks = INT_MAX;
   1042      1.62   thorpej 
   1043      1.62   thorpej 	return ((int)ticks);
   1044      1.19       cgd }
   1045  1.96.6.1    simonb #endif /* !__HAVE_TIMECOUNTER */
   1046  1.96.6.1    simonb 
   1047  1.96.6.1    simonb /*
   1048  1.96.6.1    simonb  * Compute number of ticks in the specified amount of time.
   1049  1.96.6.1    simonb  */
   1050  1.96.6.1    simonb int
   1051  1.96.6.1    simonb tstohz(struct timespec *ts)
   1052  1.96.6.1    simonb {
   1053  1.96.6.1    simonb 	struct timeval tv;
   1054  1.96.6.1    simonb 
   1055  1.96.6.1    simonb 	/*
   1056  1.96.6.1    simonb 	 * usec has great enough resolution for hz, so convert to a
   1057  1.96.6.1    simonb 	 * timeval and use tvtohz() above.
   1058  1.96.6.1    simonb 	 */
   1059  1.96.6.1    simonb 	TIMESPEC_TO_TIMEVAL(&tv, ts);
   1060  1.96.6.1    simonb 	return tvtohz(&tv);
   1061  1.96.6.1    simonb }
   1062      1.19       cgd 
   1063      1.19       cgd /*
   1064      1.19       cgd  * Start profiling on a process.
   1065      1.19       cgd  *
   1066      1.19       cgd  * Kernel profiling passes proc0 which never exits and hence
   1067      1.19       cgd  * keeps the profile clock running constantly.
   1068      1.19       cgd  */
   1069      1.19       cgd void
   1070      1.63   thorpej startprofclock(struct proc *p)
   1071      1.19       cgd {
   1072      1.19       cgd 
   1073      1.19       cgd 	if ((p->p_flag & P_PROFIL) == 0) {
   1074      1.19       cgd 		p->p_flag |= P_PROFIL;
   1075      1.80    briggs 		/*
   1076      1.80    briggs 		 * This is only necessary if using the clock as the
   1077      1.80    briggs 		 * profiling source.
   1078      1.80    briggs 		 */
   1079      1.70  sommerfe 		if (++profprocs == 1 && stathz != 0)
   1080      1.70  sommerfe 			psdiv = psratio;
   1081      1.19       cgd 	}
   1082      1.19       cgd }
   1083      1.19       cgd 
   1084      1.19       cgd /*
   1085      1.19       cgd  * Stop profiling on a process.
   1086      1.19       cgd  */
   1087      1.19       cgd void
   1088      1.63   thorpej stopprofclock(struct proc *p)
   1089      1.19       cgd {
   1090      1.19       cgd 
   1091      1.19       cgd 	if (p->p_flag & P_PROFIL) {
   1092      1.19       cgd 		p->p_flag &= ~P_PROFIL;
   1093      1.80    briggs 		/*
   1094      1.80    briggs 		 * This is only necessary if using the clock as the
   1095      1.80    briggs 		 * profiling source.
   1096      1.80    briggs 		 */
   1097      1.70  sommerfe 		if (--profprocs == 0 && stathz != 0)
   1098      1.70  sommerfe 			psdiv = 1;
   1099      1.19       cgd 	}
   1100      1.19       cgd }
   1101      1.19       cgd 
   1102      1.80    briggs #if defined(PERFCTRS)
   1103      1.80    briggs /*
   1104      1.80    briggs  * Independent profiling "tick" in case we're using a separate
   1105      1.80    briggs  * clock or profiling event source.  Currently, that's just
   1106      1.80    briggs  * performance counters--hence the wrapper.
   1107      1.80    briggs  */
   1108      1.80    briggs void
   1109      1.80    briggs proftick(struct clockframe *frame)
   1110      1.80    briggs {
   1111      1.80    briggs #ifdef GPROF
   1112      1.93     perry         struct gmonparam *g;
   1113      1.93     perry         intptr_t i;
   1114      1.80    briggs #endif
   1115      1.80    briggs 	struct proc *p;
   1116      1.80    briggs 
   1117      1.80    briggs 	p = curproc;
   1118      1.80    briggs 	if (CLKF_USERMODE(frame)) {
   1119      1.80    briggs 		if (p->p_flag & P_PROFIL)
   1120      1.80    briggs 			addupc_intr(p, CLKF_PC(frame));
   1121      1.80    briggs 	} else {
   1122      1.80    briggs #ifdef GPROF
   1123      1.80    briggs 		g = &_gmonparam;
   1124      1.80    briggs 		if (g->state == GMON_PROF_ON) {
   1125      1.80    briggs 			i = CLKF_PC(frame) - g->lowpc;
   1126      1.80    briggs 			if (i < g->textsize) {
   1127      1.80    briggs 				i /= HISTFRACTION * sizeof(*g->kcount);
   1128      1.80    briggs 				g->kcount[i]++;
   1129      1.80    briggs 			}
   1130      1.80    briggs 		}
   1131      1.80    briggs #endif
   1132      1.93     perry #ifdef PROC_PC
   1133  1.96.6.3    simonb                 if (p && (p->p_flag & P_PROFIL))
   1134      1.80    briggs                         addupc_intr(p, PROC_PC(p));
   1135      1.93     perry #endif
   1136      1.80    briggs 	}
   1137      1.80    briggs }
   1138      1.80    briggs #endif
   1139      1.80    briggs 
   1140      1.19       cgd /*
   1141      1.19       cgd  * Statistics clock.  Grab profile sample, and if divider reaches 0,
   1142      1.19       cgd  * do process and kernel statistics.
   1143      1.19       cgd  */
   1144      1.19       cgd void
   1145      1.63   thorpej statclock(struct clockframe *frame)
   1146      1.19       cgd {
   1147      1.19       cgd #ifdef GPROF
   1148      1.55  augustss 	struct gmonparam *g;
   1149      1.68       eeh 	intptr_t i;
   1150      1.19       cgd #endif
   1151      1.60   thorpej 	struct cpu_info *ci = curcpu();
   1152      1.60   thorpej 	struct schedstate_percpu *spc = &ci->ci_schedstate;
   1153      1.55  augustss 	struct proc *p;
   1154  1.96.6.3    simonb 	struct lwp *l;
   1155      1.19       cgd 
   1156      1.70  sommerfe 	/*
   1157      1.70  sommerfe 	 * Notice changes in divisor frequency, and adjust clock
   1158      1.70  sommerfe 	 * frequency accordingly.
   1159      1.70  sommerfe 	 */
   1160      1.70  sommerfe 	if (spc->spc_psdiv != psdiv) {
   1161      1.70  sommerfe 		spc->spc_psdiv = psdiv;
   1162      1.70  sommerfe 		spc->spc_pscnt = psdiv;
   1163      1.70  sommerfe 		if (psdiv == 1) {
   1164      1.70  sommerfe 			setstatclockrate(stathz);
   1165      1.70  sommerfe 		} else {
   1166      1.93     perry 			setstatclockrate(profhz);
   1167      1.70  sommerfe 		}
   1168      1.70  sommerfe 	}
   1169      1.82   thorpej 	l = curlwp;
   1170  1.96.6.3    simonb 	p = (l ? l->l_proc : NULL);
   1171      1.19       cgd 	if (CLKF_USERMODE(frame)) {
   1172  1.96.6.3    simonb 		KASSERT(p != NULL);
   1173  1.96.6.3    simonb 
   1174  1.96.6.3    simonb 		if ((p->p_flag & P_PROFIL) && profsrc == PROFSRC_CLOCK)
   1175      1.72   mycroft 			addupc_intr(p, CLKF_PC(frame));
   1176      1.70  sommerfe 		if (--spc->spc_pscnt > 0)
   1177      1.19       cgd 			return;
   1178      1.19       cgd 		/*
   1179      1.19       cgd 		 * Came from user mode; CPU was in user state.
   1180      1.19       cgd 		 * If this process is being profiled record the tick.
   1181      1.19       cgd 		 */
   1182      1.19       cgd 		p->p_uticks++;
   1183      1.19       cgd 		if (p->p_nice > NZERO)
   1184      1.60   thorpej 			spc->spc_cp_time[CP_NICE]++;
   1185      1.19       cgd 		else
   1186      1.60   thorpej 			spc->spc_cp_time[CP_USER]++;
   1187      1.19       cgd 	} else {
   1188      1.19       cgd #ifdef GPROF
   1189      1.19       cgd 		/*
   1190      1.19       cgd 		 * Kernel statistics are just like addupc_intr, only easier.
   1191      1.19       cgd 		 */
   1192      1.19       cgd 		g = &_gmonparam;
   1193      1.80    briggs 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
   1194      1.19       cgd 			i = CLKF_PC(frame) - g->lowpc;
   1195      1.19       cgd 			if (i < g->textsize) {
   1196      1.19       cgd 				i /= HISTFRACTION * sizeof(*g->kcount);
   1197      1.19       cgd 				g->kcount[i]++;
   1198      1.19       cgd 			}
   1199      1.19       cgd 		}
   1200      1.19       cgd #endif
   1201      1.82   thorpej #ifdef LWP_PC
   1202  1.96.6.3    simonb 		if (p && profsrc == PROFSRC_CLOCK && (p->p_flag & P_PROFIL))
   1203      1.82   thorpej 			addupc_intr(p, LWP_PC(l));
   1204      1.72   mycroft #endif
   1205      1.70  sommerfe 		if (--spc->spc_pscnt > 0)
   1206      1.19       cgd 			return;
   1207      1.19       cgd 		/*
   1208      1.19       cgd 		 * Came from kernel mode, so we were:
   1209      1.19       cgd 		 * - handling an interrupt,
   1210      1.19       cgd 		 * - doing syscall or trap work on behalf of the current
   1211      1.19       cgd 		 *   user process, or
   1212      1.19       cgd 		 * - spinning in the idle loop.
   1213      1.19       cgd 		 * Whichever it is, charge the time as appropriate.
   1214      1.19       cgd 		 * Note that we charge interrupts to the current process,
   1215      1.19       cgd 		 * regardless of whether they are ``for'' that process,
   1216      1.19       cgd 		 * so that we know how much of its real time was spent
   1217      1.19       cgd 		 * in ``non-process'' (i.e., interrupt) work.
   1218      1.19       cgd 		 */
   1219      1.19       cgd 		if (CLKF_INTR(frame)) {
   1220      1.19       cgd 			if (p != NULL)
   1221      1.19       cgd 				p->p_iticks++;
   1222      1.60   thorpej 			spc->spc_cp_time[CP_INTR]++;
   1223      1.19       cgd 		} else if (p != NULL) {
   1224      1.19       cgd 			p->p_sticks++;
   1225      1.60   thorpej 			spc->spc_cp_time[CP_SYS]++;
   1226      1.19       cgd 		} else
   1227      1.60   thorpej 			spc->spc_cp_time[CP_IDLE]++;
   1228      1.19       cgd 	}
   1229      1.70  sommerfe 	spc->spc_pscnt = psdiv;
   1230      1.19       cgd 
   1231  1.96.6.3    simonb 	if (p != NULL) {
   1232      1.45      ross 		++p->p_cpticks;
   1233      1.45      ross 		/*
   1234      1.93     perry 		 * If no separate schedclock is provided, call it here
   1235      1.91      yamt 		 * at about 16 Hz.
   1236      1.45      ross 		 */
   1237      1.60   thorpej 		if (schedhz == 0)
   1238      1.91      yamt 			if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
   1239      1.82   thorpej 				schedclock(l);
   1240      1.91      yamt 				ci->ci_schedstate.spc_schedticks = statscheddiv;
   1241      1.91      yamt 			}
   1242      1.19       cgd 	}
   1243      1.19       cgd }
   1244      1.27  jonathan 
   1245  1.96.6.1    simonb #ifndef __HAVE_TIMECOUNTER
   1246      1.27  jonathan #ifdef NTP	/* NTP phase-locked loop in kernel */
   1247      1.27  jonathan /*
   1248      1.27  jonathan  * hardupdate() - local clock update
   1249      1.27  jonathan  *
   1250      1.27  jonathan  * This routine is called by ntp_adjtime() to update the local clock
   1251      1.27  jonathan  * phase and frequency. The implementation is of an adaptive-parameter,
   1252      1.27  jonathan  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
   1253      1.27  jonathan  * time and frequency offset estimates for each call. If the kernel PPS
   1254      1.27  jonathan  * discipline code is configured (PPS_SYNC), the PPS signal itself
   1255      1.27  jonathan  * determines the new time offset, instead of the calling argument.
   1256      1.27  jonathan  * Presumably, calls to ntp_adjtime() occur only when the caller
   1257      1.27  jonathan  * believes the local clock is valid within some bound (+-128 ms with
   1258      1.27  jonathan  * NTP). If the caller's time is far different than the PPS time, an
   1259      1.27  jonathan  * argument will ensue, and it's not clear who will lose.
   1260      1.27  jonathan  *
   1261      1.27  jonathan  * For uncompensated quartz crystal oscillatores and nominal update
   1262      1.27  jonathan  * intervals less than 1024 s, operation should be in phase-lock mode
   1263      1.27  jonathan  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1264      1.27  jonathan  * intervals greater than thiss, operation should be in frequency-lock
   1265      1.27  jonathan  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1266      1.27  jonathan  *
   1267      1.27  jonathan  * Note: splclock() is in effect.
   1268      1.27  jonathan  */
   1269      1.27  jonathan void
   1270      1.63   thorpej hardupdate(long offset)
   1271      1.27  jonathan {
   1272      1.27  jonathan 	long ltemp, mtemp;
   1273      1.27  jonathan 
   1274      1.27  jonathan 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1275      1.27  jonathan 		return;
   1276      1.27  jonathan 	ltemp = offset;
   1277      1.27  jonathan #ifdef PPS_SYNC
   1278      1.27  jonathan 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1279      1.27  jonathan 		ltemp = pps_offset;
   1280      1.27  jonathan #endif /* PPS_SYNC */
   1281      1.27  jonathan 
   1282      1.27  jonathan 	/*
   1283      1.27  jonathan 	 * Scale the phase adjustment and clamp to the operating range.
   1284      1.27  jonathan 	 */
   1285      1.27  jonathan 	if (ltemp > MAXPHASE)
   1286      1.27  jonathan 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1287      1.27  jonathan 	else if (ltemp < -MAXPHASE)
   1288      1.27  jonathan 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1289      1.27  jonathan 	else
   1290      1.27  jonathan 		time_offset = ltemp << SHIFT_UPDATE;
   1291      1.27  jonathan 
   1292      1.27  jonathan 	/*
   1293      1.27  jonathan 	 * Select whether the frequency is to be controlled and in which
   1294      1.27  jonathan 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1295      1.27  jonathan 	 * multiply/divide should be replaced someday.
   1296      1.27  jonathan 	 */
   1297      1.27  jonathan 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1298      1.27  jonathan 		time_reftime = time.tv_sec;
   1299      1.27  jonathan 	mtemp = time.tv_sec - time_reftime;
   1300      1.27  jonathan 	time_reftime = time.tv_sec;
   1301      1.27  jonathan 	if (time_status & STA_FLL) {
   1302      1.27  jonathan 		if (mtemp >= MINSEC) {
   1303      1.27  jonathan 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1304      1.27  jonathan 			    SHIFT_UPDATE));
   1305      1.27  jonathan 			if (ltemp < 0)
   1306      1.27  jonathan 				time_freq -= -ltemp >> SHIFT_KH;
   1307      1.27  jonathan 			else
   1308      1.27  jonathan 				time_freq += ltemp >> SHIFT_KH;
   1309      1.27  jonathan 		}
   1310      1.27  jonathan 	} else {
   1311      1.27  jonathan 		if (mtemp < MAXSEC) {
   1312      1.27  jonathan 			ltemp *= mtemp;
   1313      1.27  jonathan 			if (ltemp < 0)
   1314      1.27  jonathan 				time_freq -= -ltemp >> (time_constant +
   1315      1.27  jonathan 				    time_constant + SHIFT_KF -
   1316      1.27  jonathan 				    SHIFT_USEC);
   1317      1.27  jonathan 			else
   1318      1.27  jonathan 				time_freq += ltemp >> (time_constant +
   1319      1.27  jonathan 				    time_constant + SHIFT_KF -
   1320      1.27  jonathan 				    SHIFT_USEC);
   1321      1.27  jonathan 		}
   1322      1.27  jonathan 	}
   1323      1.27  jonathan 	if (time_freq > time_tolerance)
   1324      1.27  jonathan 		time_freq = time_tolerance;
   1325      1.27  jonathan 	else if (time_freq < -time_tolerance)
   1326      1.27  jonathan 		time_freq = -time_tolerance;
   1327      1.27  jonathan }
   1328      1.27  jonathan 
   1329      1.27  jonathan #ifdef PPS_SYNC
   1330      1.27  jonathan /*
   1331      1.27  jonathan  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1332      1.27  jonathan  *
   1333      1.27  jonathan  * This routine is called at each PPS interrupt in order to discipline
   1334      1.27  jonathan  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1335      1.27  jonathan  * and leaves it in a handy spot for the hardclock() routine. It
   1336      1.27  jonathan  * integrates successive PPS phase differences and calculates the
   1337      1.27  jonathan  * frequency offset. This is used in hardclock() to discipline the CPU
   1338      1.27  jonathan  * clock oscillator so that intrinsic frequency error is cancelled out.
   1339      1.27  jonathan  * The code requires the caller to capture the time and hardware counter
   1340      1.27  jonathan  * value at the on-time PPS signal transition.
   1341      1.27  jonathan  *
   1342      1.27  jonathan  * Note that, on some Unix systems, this routine runs at an interrupt
   1343      1.27  jonathan  * priority level higher than the timer interrupt routine hardclock().
   1344      1.27  jonathan  * Therefore, the variables used are distinct from the hardclock()
   1345      1.27  jonathan  * variables, except for certain exceptions: The PPS frequency pps_freq
   1346      1.27  jonathan  * and phase pps_offset variables are determined by this routine and
   1347      1.27  jonathan  * updated atomically. The time_tolerance variable can be considered a
   1348      1.27  jonathan  * constant, since it is infrequently changed, and then only when the
   1349      1.27  jonathan  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1350      1.27  jonathan  * once per second by hardclock() and is atomically cleared in this
   1351      1.27  jonathan  * routine.
   1352      1.27  jonathan  */
   1353      1.27  jonathan void
   1354      1.63   thorpej hardpps(struct timeval *tvp,		/* time at PPS */
   1355      1.63   thorpej 	long usec			/* hardware counter at PPS */)
   1356      1.27  jonathan {
   1357      1.27  jonathan 	long u_usec, v_usec, bigtick;
   1358      1.27  jonathan 	long cal_sec, cal_usec;
   1359      1.27  jonathan 
   1360      1.27  jonathan 	/*
   1361      1.27  jonathan 	 * An occasional glitch can be produced when the PPS interrupt
   1362      1.27  jonathan 	 * occurs in the hardclock() routine before the time variable is
   1363      1.27  jonathan 	 * updated. Here the offset is discarded when the difference
   1364      1.27  jonathan 	 * between it and the last one is greater than tick/2, but not
   1365      1.27  jonathan 	 * if the interval since the first discard exceeds 30 s.
   1366      1.27  jonathan 	 */
   1367      1.27  jonathan 	time_status |= STA_PPSSIGNAL;
   1368      1.27  jonathan 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1369      1.27  jonathan 	pps_valid = 0;
   1370      1.27  jonathan 	u_usec = -tvp->tv_usec;
   1371      1.27  jonathan 	if (u_usec < -500000)
   1372      1.27  jonathan 		u_usec += 1000000;
   1373      1.27  jonathan 	v_usec = pps_offset - u_usec;
   1374      1.27  jonathan 	if (v_usec < 0)
   1375      1.27  jonathan 		v_usec = -v_usec;
   1376      1.27  jonathan 	if (v_usec > (tick >> 1)) {
   1377      1.27  jonathan 		if (pps_glitch > MAXGLITCH) {
   1378      1.27  jonathan 			pps_glitch = 0;
   1379      1.27  jonathan 			pps_tf[2] = u_usec;
   1380      1.27  jonathan 			pps_tf[1] = u_usec;
   1381      1.27  jonathan 		} else {
   1382      1.27  jonathan 			pps_glitch++;
   1383      1.27  jonathan 			u_usec = pps_offset;
   1384      1.27  jonathan 		}
   1385      1.27  jonathan 	} else
   1386      1.27  jonathan 		pps_glitch = 0;
   1387      1.27  jonathan 
   1388      1.27  jonathan 	/*
   1389      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1390      1.27  jonathan 	 * time. The median sample becomes the time offset estimate; the
   1391      1.27  jonathan 	 * difference between the other two samples becomes the time
   1392      1.27  jonathan 	 * dispersion (jitter) estimate.
   1393      1.27  jonathan 	 */
   1394      1.27  jonathan 	pps_tf[2] = pps_tf[1];
   1395      1.27  jonathan 	pps_tf[1] = pps_tf[0];
   1396      1.27  jonathan 	pps_tf[0] = u_usec;
   1397      1.27  jonathan 	if (pps_tf[0] > pps_tf[1]) {
   1398      1.27  jonathan 		if (pps_tf[1] > pps_tf[2]) {
   1399      1.27  jonathan 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1400      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[2];
   1401      1.27  jonathan 		} else if (pps_tf[2] > pps_tf[0]) {
   1402      1.27  jonathan 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1403      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[1];
   1404      1.27  jonathan 		} else {
   1405      1.27  jonathan 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1406      1.27  jonathan 			v_usec = pps_tf[0] - pps_tf[1];
   1407      1.27  jonathan 		}
   1408      1.27  jonathan 	} else {
   1409      1.27  jonathan 		if (pps_tf[1] < pps_tf[2]) {
   1410      1.27  jonathan 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1411      1.27  jonathan 			v_usec = pps_tf[2] - pps_tf[0];
   1412      1.27  jonathan 		} else  if (pps_tf[2] < pps_tf[0]) {
   1413      1.27  jonathan 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1414      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[2];
   1415      1.27  jonathan 		} else {
   1416      1.27  jonathan 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1417      1.27  jonathan 			v_usec = pps_tf[1] - pps_tf[0];
   1418      1.27  jonathan 		}
   1419      1.27  jonathan 	}
   1420      1.27  jonathan 	if (v_usec > MAXTIME)
   1421      1.27  jonathan 		pps_jitcnt++;
   1422      1.27  jonathan 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1423      1.27  jonathan 	if (v_usec < 0)
   1424      1.27  jonathan 		pps_jitter -= -v_usec >> PPS_AVG;
   1425      1.27  jonathan 	else
   1426      1.27  jonathan 		pps_jitter += v_usec >> PPS_AVG;
   1427      1.27  jonathan 	if (pps_jitter > (MAXTIME >> 1))
   1428      1.27  jonathan 		time_status |= STA_PPSJITTER;
   1429      1.27  jonathan 
   1430      1.27  jonathan 	/*
   1431      1.27  jonathan 	 * During the calibration interval adjust the starting time when
   1432      1.27  jonathan 	 * the tick overflows. At the end of the interval compute the
   1433      1.27  jonathan 	 * duration of the interval and the difference of the hardware
   1434      1.27  jonathan 	 * counters at the beginning and end of the interval. This code
   1435      1.27  jonathan 	 * is deliciously complicated by the fact valid differences may
   1436      1.27  jonathan 	 * exceed the value of tick when using long calibration
   1437      1.27  jonathan 	 * intervals and small ticks. Note that the counter can be
   1438      1.27  jonathan 	 * greater than tick if caught at just the wrong instant, but
   1439      1.27  jonathan 	 * the values returned and used here are correct.
   1440      1.27  jonathan 	 */
   1441      1.27  jonathan 	bigtick = (long)tick << SHIFT_USEC;
   1442      1.27  jonathan 	pps_usec -= pps_freq;
   1443      1.27  jonathan 	if (pps_usec >= bigtick)
   1444      1.27  jonathan 		pps_usec -= bigtick;
   1445      1.27  jonathan 	if (pps_usec < 0)
   1446      1.27  jonathan 		pps_usec += bigtick;
   1447      1.27  jonathan 	pps_time.tv_sec++;
   1448      1.27  jonathan 	pps_count++;
   1449      1.27  jonathan 	if (pps_count < (1 << pps_shift))
   1450      1.27  jonathan 		return;
   1451      1.27  jonathan 	pps_count = 0;
   1452      1.27  jonathan 	pps_calcnt++;
   1453      1.27  jonathan 	u_usec = usec << SHIFT_USEC;
   1454      1.27  jonathan 	v_usec = pps_usec - u_usec;
   1455      1.27  jonathan 	if (v_usec >= bigtick >> 1)
   1456      1.27  jonathan 		v_usec -= bigtick;
   1457      1.27  jonathan 	if (v_usec < -(bigtick >> 1))
   1458      1.27  jonathan 		v_usec += bigtick;
   1459      1.27  jonathan 	if (v_usec < 0)
   1460      1.27  jonathan 		v_usec = -(-v_usec >> pps_shift);
   1461      1.27  jonathan 	else
   1462      1.27  jonathan 		v_usec = v_usec >> pps_shift;
   1463      1.27  jonathan 	pps_usec = u_usec;
   1464      1.27  jonathan 	cal_sec = tvp->tv_sec;
   1465      1.27  jonathan 	cal_usec = tvp->tv_usec;
   1466      1.27  jonathan 	cal_sec -= pps_time.tv_sec;
   1467      1.27  jonathan 	cal_usec -= pps_time.tv_usec;
   1468      1.27  jonathan 	if (cal_usec < 0) {
   1469      1.27  jonathan 		cal_usec += 1000000;
   1470      1.27  jonathan 		cal_sec--;
   1471      1.27  jonathan 	}
   1472      1.27  jonathan 	pps_time = *tvp;
   1473      1.27  jonathan 
   1474      1.27  jonathan 	/*
   1475      1.27  jonathan 	 * Check for lost interrupts, noise, excessive jitter and
   1476      1.27  jonathan 	 * excessive frequency error. The number of timer ticks during
   1477      1.27  jonathan 	 * the interval may vary +-1 tick. Add to this a margin of one
   1478      1.27  jonathan 	 * tick for the PPS signal jitter and maximum frequency
   1479      1.27  jonathan 	 * deviation. If the limits are exceeded, the calibration
   1480      1.27  jonathan 	 * interval is reset to the minimum and we start over.
   1481      1.27  jonathan 	 */
   1482      1.27  jonathan 	u_usec = (long)tick << 1;
   1483      1.27  jonathan 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1484      1.27  jonathan 	    || (cal_sec == 0 && cal_usec < u_usec))
   1485      1.27  jonathan 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1486      1.27  jonathan 		pps_errcnt++;
   1487      1.27  jonathan 		pps_shift = PPS_SHIFT;
   1488      1.27  jonathan 		pps_intcnt = 0;
   1489      1.27  jonathan 		time_status |= STA_PPSERROR;
   1490      1.27  jonathan 		return;
   1491      1.27  jonathan 	}
   1492      1.27  jonathan 
   1493      1.27  jonathan 	/*
   1494      1.27  jonathan 	 * A three-stage median filter is used to help deglitch the pps
   1495      1.27  jonathan 	 * frequency. The median sample becomes the frequency offset
   1496      1.27  jonathan 	 * estimate; the difference between the other two samples
   1497      1.27  jonathan 	 * becomes the frequency dispersion (stability) estimate.
   1498      1.27  jonathan 	 */
   1499      1.27  jonathan 	pps_ff[2] = pps_ff[1];
   1500      1.27  jonathan 	pps_ff[1] = pps_ff[0];
   1501      1.27  jonathan 	pps_ff[0] = v_usec;
   1502      1.27  jonathan 	if (pps_ff[0] > pps_ff[1]) {
   1503      1.27  jonathan 		if (pps_ff[1] > pps_ff[2]) {
   1504      1.27  jonathan 			u_usec = pps_ff[1];		/* 0 1 2 */
   1505      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[2];
   1506      1.27  jonathan 		} else if (pps_ff[2] > pps_ff[0]) {
   1507      1.27  jonathan 			u_usec = pps_ff[0];		/* 2 0 1 */
   1508      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[1];
   1509      1.27  jonathan 		} else {
   1510      1.27  jonathan 			u_usec = pps_ff[2];		/* 0 2 1 */
   1511      1.27  jonathan 			v_usec = pps_ff[0] - pps_ff[1];
   1512      1.27  jonathan 		}
   1513      1.27  jonathan 	} else {
   1514      1.27  jonathan 		if (pps_ff[1] < pps_ff[2]) {
   1515      1.27  jonathan 			u_usec = pps_ff[1];		/* 2 1 0 */
   1516      1.27  jonathan 			v_usec = pps_ff[2] - pps_ff[0];
   1517      1.27  jonathan 		} else  if (pps_ff[2] < pps_ff[0]) {
   1518      1.27  jonathan 			u_usec = pps_ff[0];		/* 1 0 2 */
   1519      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[2];
   1520      1.27  jonathan 		} else {
   1521      1.27  jonathan 			u_usec = pps_ff[2];		/* 1 2 0 */
   1522      1.27  jonathan 			v_usec = pps_ff[1] - pps_ff[0];
   1523      1.27  jonathan 		}
   1524      1.27  jonathan 	}
   1525      1.27  jonathan 
   1526      1.27  jonathan 	/*
   1527      1.27  jonathan 	 * Here the frequency dispersion (stability) is updated. If it
   1528      1.27  jonathan 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1529      1.27  jonathan 	 * offset is updated as well, but clamped to the tolerance. It
   1530      1.27  jonathan 	 * will be processed later by the hardclock() routine.
   1531      1.27  jonathan 	 */
   1532      1.27  jonathan 	v_usec = (v_usec >> 1) - pps_stabil;
   1533      1.27  jonathan 	if (v_usec < 0)
   1534      1.27  jonathan 		pps_stabil -= -v_usec >> PPS_AVG;
   1535      1.27  jonathan 	else
   1536      1.27  jonathan 		pps_stabil += v_usec >> PPS_AVG;
   1537      1.27  jonathan 	if (pps_stabil > MAXFREQ >> 2) {
   1538      1.27  jonathan 		pps_stbcnt++;
   1539      1.27  jonathan 		time_status |= STA_PPSWANDER;
   1540      1.27  jonathan 		return;
   1541      1.27  jonathan 	}
   1542      1.27  jonathan 	if (time_status & STA_PPSFREQ) {
   1543      1.27  jonathan 		if (u_usec < 0) {
   1544      1.27  jonathan 			pps_freq -= -u_usec >> PPS_AVG;
   1545      1.27  jonathan 			if (pps_freq < -time_tolerance)
   1546      1.27  jonathan 				pps_freq = -time_tolerance;
   1547      1.27  jonathan 			u_usec = -u_usec;
   1548      1.27  jonathan 		} else {
   1549      1.27  jonathan 			pps_freq += u_usec >> PPS_AVG;
   1550      1.27  jonathan 			if (pps_freq > time_tolerance)
   1551      1.27  jonathan 				pps_freq = time_tolerance;
   1552      1.27  jonathan 		}
   1553      1.27  jonathan 	}
   1554      1.27  jonathan 
   1555      1.27  jonathan 	/*
   1556      1.27  jonathan 	 * Here the calibration interval is adjusted. If the maximum
   1557      1.27  jonathan 	 * time difference is greater than tick / 4, reduce the interval
   1558      1.27  jonathan 	 * by half. If this is not the case for four consecutive
   1559      1.27  jonathan 	 * intervals, double the interval.
   1560      1.27  jonathan 	 */
   1561      1.27  jonathan 	if (u_usec << pps_shift > bigtick >> 2) {
   1562      1.27  jonathan 		pps_intcnt = 0;
   1563      1.27  jonathan 		if (pps_shift > PPS_SHIFT)
   1564      1.27  jonathan 			pps_shift--;
   1565      1.27  jonathan 	} else if (pps_intcnt >= 4) {
   1566      1.27  jonathan 		pps_intcnt = 0;
   1567      1.27  jonathan 		if (pps_shift < PPS_SHIFTMAX)
   1568      1.27  jonathan 			pps_shift++;
   1569      1.27  jonathan 	} else
   1570      1.27  jonathan 		pps_intcnt++;
   1571      1.27  jonathan }
   1572      1.27  jonathan #endif /* PPS_SYNC */
   1573      1.27  jonathan #endif /* NTP  */
   1574      1.95  christos 
   1575  1.96.6.1    simonb /* timecounter compat functions */
   1576  1.96.6.1    simonb void
   1577      1.95  christos nanotime(struct timespec *ts)
   1578      1.95  christos {
   1579      1.95  christos 	struct timeval tv;
   1580      1.95  christos 
   1581      1.95  christos 	microtime(&tv);
   1582      1.95  christos 	TIMEVAL_TO_TIMESPEC(&tv, ts);
   1583      1.95  christos }
   1584  1.96.6.1    simonb 
   1585  1.96.6.1    simonb void
   1586  1.96.6.1    simonb getbinuptime(struct bintime *bt)
   1587  1.96.6.1    simonb {
   1588  1.96.6.1    simonb 	struct timeval tv;
   1589  1.96.6.1    simonb 
   1590  1.96.6.1    simonb 	microtime(&tv);
   1591  1.96.6.1    simonb 	timeval2bintime(&tv, bt);
   1592  1.96.6.1    simonb }
   1593  1.96.6.1    simonb 
   1594  1.96.6.1    simonb void
   1595  1.96.6.4    kardel nanouptime(struct timespec *tsp)
   1596  1.96.6.4    kardel {
   1597  1.96.6.4    kardel 	int s;
   1598  1.96.6.4    kardel 
   1599  1.96.6.4    kardel 	s = splclock();
   1600  1.96.6.4    kardel 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1601  1.96.6.4    kardel 	splx(s);
   1602  1.96.6.4    kardel }
   1603  1.96.6.4    kardel 
   1604  1.96.6.4    kardel void
   1605  1.96.6.1    simonb getnanouptime(struct timespec *tsp)
   1606  1.96.6.1    simonb {
   1607  1.96.6.1    simonb 	int s;
   1608  1.96.6.1    simonb 
   1609  1.96.6.1    simonb 	s = splclock();
   1610  1.96.6.1    simonb 	TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
   1611  1.96.6.1    simonb 	splx(s);
   1612  1.96.6.1    simonb }
   1613  1.96.6.1    simonb 
   1614  1.96.6.1    simonb void
   1615  1.96.6.1    simonb getmicrouptime(struct timeval *tvp)
   1616  1.96.6.1    simonb {
   1617  1.96.6.1    simonb 	int s;
   1618  1.96.6.1    simonb 
   1619  1.96.6.1    simonb 	s = splclock();
   1620  1.96.6.1    simonb 	*tvp = mono_time;
   1621  1.96.6.1    simonb 	splx(s);
   1622  1.96.6.1    simonb }
   1623  1.96.6.1    simonb 
   1624  1.96.6.1    simonb void
   1625  1.96.6.1    simonb getnanotime(struct timespec *tsp)
   1626  1.96.6.1    simonb {
   1627  1.96.6.1    simonb 	int s;
   1628  1.96.6.1    simonb 
   1629  1.96.6.1    simonb 	s = splclock();
   1630  1.96.6.1    simonb 	TIMEVAL_TO_TIMESPEC(&time, tsp);
   1631  1.96.6.1    simonb 	splx(s);
   1632  1.96.6.1    simonb }
   1633  1.96.6.1    simonb 
   1634  1.96.6.1    simonb void
   1635  1.96.6.1    simonb getmicrotime(struct timeval *tvp)
   1636  1.96.6.1    simonb {
   1637  1.96.6.1    simonb 	int s;
   1638  1.96.6.1    simonb 
   1639  1.96.6.1    simonb 	s = splclock();
   1640  1.96.6.1    simonb 	*tvp = time;
   1641  1.96.6.1    simonb 	splx(s);
   1642  1.96.6.1    simonb }
   1643  1.96.6.1    simonb #endif /* !__HAVE_TIMECOUNTER */
   1644