kern_clock.c revision 1.1.1.2 1 /*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
39 */
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/dkstat.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/resourcevar.h>
48
49 #include <machine/cpu.h>
50
51 #ifdef GPROF
52 #include <sys/gmon.h>
53 #endif
54
55 /*
56 * Clock handling routines.
57 *
58 * This code is written to operate with two timers that run independently of
59 * each other. The main clock, running hz times per second, is used to keep
60 * track of real time. The second timer handles kernel and user profiling,
61 * and does resource use estimation. If the second timer is programmable,
62 * it is randomized to avoid aliasing between the two clocks. For example,
63 * the randomization prevents an adversary from always giving up the cpu
64 * just before its quantum expires. Otherwise, it would never accumulate
65 * cpu ticks. The mean frequency of the second timer is stathz.
66 *
67 * If no second timer exists, stathz will be zero; in this case we drive
68 * profiling and statistics off the main clock. This WILL NOT be accurate;
69 * do not do it unless absolutely necessary.
70 *
71 * The statistics clock may (or may not) be run at a higher rate while
72 * profiling. This profile clock runs at profhz. We require that profhz
73 * be an integral multiple of stathz.
74 *
75 * If the statistics clock is running fast, it must be divided by the ratio
76 * profhz/stathz for statistics. (For profiling, every tick counts.)
77 */
78
79 /*
80 * TODO:
81 * allocate more timeout table slots when table overflows.
82 */
83
84 /*
85 * Bump a timeval by a small number of usec's.
86 */
87 #define BUMPTIME(t, usec) { \
88 register volatile struct timeval *tp = (t); \
89 register long us; \
90 \
91 tp->tv_usec = us = tp->tv_usec + (usec); \
92 if (us >= 1000000) { \
93 tp->tv_usec = us - 1000000; \
94 tp->tv_sec++; \
95 } \
96 }
97
98 int stathz;
99 int profhz;
100 int profprocs;
101 int ticks;
102 static int psdiv, pscnt; /* prof => stat divider */
103 int psratio; /* ratio: prof / stat */
104
105 volatile struct timeval time;
106 volatile struct timeval mono_time;
107
108 /*
109 * Initialize clock frequencies and start both clocks running.
110 */
111 void
112 initclocks()
113 {
114 register int i;
115
116 /*
117 * Set divisors to 1 (normal case) and let the machine-specific
118 * code do its bit.
119 */
120 psdiv = pscnt = 1;
121 cpu_initclocks();
122
123 /*
124 * Compute profhz/stathz, and fix profhz if needed.
125 */
126 i = stathz ? stathz : hz;
127 if (profhz == 0)
128 profhz = i;
129 psratio = profhz / i;
130 }
131
132 /*
133 * The real-time timer, interrupting hz times per second.
134 */
135 void
136 hardclock(frame)
137 register struct clockframe *frame;
138 {
139 register struct callout *p1;
140 register struct proc *p;
141 register int delta, needsoft;
142 extern int tickdelta;
143 extern long timedelta;
144
145 /*
146 * Update real-time timeout queue.
147 * At front of queue are some number of events which are ``due''.
148 * The time to these is <= 0 and if negative represents the
149 * number of ticks which have passed since it was supposed to happen.
150 * The rest of the q elements (times > 0) are events yet to happen,
151 * where the time for each is given as a delta from the previous.
152 * Decrementing just the first of these serves to decrement the time
153 * to all events.
154 */
155 needsoft = 0;
156 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
157 if (--p1->c_time > 0)
158 break;
159 needsoft = 1;
160 if (p1->c_time == 0)
161 break;
162 }
163
164 p = curproc;
165 if (p) {
166 register struct pstats *pstats;
167
168 /*
169 * Run current process's virtual and profile time, as needed.
170 */
171 pstats = p->p_stats;
172 if (CLKF_USERMODE(frame) &&
173 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
174 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
175 psignal(p, SIGVTALRM);
176 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
177 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
178 psignal(p, SIGPROF);
179 }
180
181 /*
182 * If no separate statistics clock is available, run it from here.
183 */
184 if (stathz == 0)
185 statclock(frame);
186
187 /*
188 * Increment the time-of-day. The increment is just ``tick'' unless
189 * we are still adjusting the clock; see adjtime().
190 */
191 ticks++;
192 if (timedelta == 0)
193 delta = tick;
194 else {
195 delta = tick + tickdelta;
196 timedelta -= tickdelta;
197 }
198 BUMPTIME(&time, delta);
199 BUMPTIME(&mono_time, delta);
200
201 /*
202 * Process callouts at a very low cpu priority, so we don't keep the
203 * relatively high clock interrupt priority any longer than necessary.
204 */
205 if (needsoft) {
206 if (CLKF_BASEPRI(frame)) {
207 /*
208 * Save the overhead of a software interrupt;
209 * it will happen as soon as we return, so do it now.
210 */
211 (void)splsoftclock();
212 softclock();
213 } else
214 setsoftclock();
215 }
216 }
217
218 /*
219 * Software (low priority) clock interrupt.
220 * Run periodic events from timeout queue.
221 */
222 /*ARGSUSED*/
223 void
224 softclock()
225 {
226 register struct callout *c;
227 register void *arg;
228 register void (*func) __P((void *));
229 register int s;
230
231 s = splhigh();
232 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
233 func = c->c_func;
234 arg = c->c_arg;
235 calltodo.c_next = c->c_next;
236 c->c_next = callfree;
237 callfree = c;
238 splx(s);
239 (*func)(arg);
240 (void) splhigh();
241 }
242 splx(s);
243 }
244
245 /*
246 * timeout --
247 * Execute a function after a specified length of time.
248 *
249 * untimeout --
250 * Cancel previous timeout function call.
251 *
252 * See AT&T BCI Driver Reference Manual for specification. This
253 * implementation differs from that one in that no identification
254 * value is returned from timeout, rather, the original arguments
255 * to timeout are used to identify entries for untimeout.
256 */
257 void
258 timeout(ftn, arg, ticks)
259 void (*ftn) __P((void *));
260 void *arg;
261 register int ticks;
262 {
263 register struct callout *new, *p, *t;
264 register int s;
265
266 if (ticks <= 0)
267 ticks = 1;
268
269 /* Lock out the clock. */
270 s = splhigh();
271
272 /* Fill in the next free callout structure. */
273 if (callfree == NULL)
274 panic("timeout table full");
275 new = callfree;
276 callfree = new->c_next;
277 new->c_arg = arg;
278 new->c_func = ftn;
279
280 /*
281 * The time for each event is stored as a difference from the time
282 * of the previous event on the queue. Walk the queue, correcting
283 * the ticks argument for queue entries passed. Correct the ticks
284 * value for the queue entry immediately after the insertion point
285 * as well. Watch out for negative c_time values; these represent
286 * overdue events.
287 */
288 for (p = &calltodo;
289 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
290 if (t->c_time > 0)
291 ticks -= t->c_time;
292 new->c_time = ticks;
293 if (t != NULL)
294 t->c_time -= ticks;
295
296 /* Insert the new entry into the queue. */
297 p->c_next = new;
298 new->c_next = t;
299 splx(s);
300 }
301
302 void
303 untimeout(ftn, arg)
304 void (*ftn) __P((void *));
305 void *arg;
306 {
307 register struct callout *p, *t;
308 register int s;
309
310 s = splhigh();
311 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
312 if (t->c_func == ftn && t->c_arg == arg) {
313 /* Increment next entry's tick count. */
314 if (t->c_next && t->c_time > 0)
315 t->c_next->c_time += t->c_time;
316
317 /* Move entry from callout queue to callfree queue. */
318 p->c_next = t->c_next;
319 t->c_next = callfree;
320 callfree = t;
321 break;
322 }
323 splx(s);
324 }
325
326 /*
327 * Compute number of hz until specified time. Used to
328 * compute third argument to timeout() from an absolute time.
329 */
330 int
331 hzto(tv)
332 struct timeval *tv;
333 {
334 register long ticks, sec;
335 int s;
336
337 /*
338 * If number of milliseconds will fit in 32 bit arithmetic,
339 * then compute number of milliseconds to time and scale to
340 * ticks. Otherwise just compute number of hz in time, rounding
341 * times greater than representible to maximum value.
342 *
343 * Delta times less than 25 days can be computed ``exactly''.
344 * Maximum value for any timeout in 10ms ticks is 250 days.
345 */
346 s = splhigh();
347 sec = tv->tv_sec - time.tv_sec;
348 if (sec <= 0x7fffffff / 1000 - 1000)
349 ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
350 (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
351 else if (sec <= 0x7fffffff / hz)
352 ticks = sec * hz;
353 else
354 ticks = 0x7fffffff;
355 splx(s);
356 return (ticks);
357 }
358
359 /*
360 * Start profiling on a process.
361 *
362 * Kernel profiling passes proc0 which never exits and hence
363 * keeps the profile clock running constantly.
364 */
365 void
366 startprofclock(p)
367 register struct proc *p;
368 {
369 int s;
370
371 if ((p->p_flag & P_PROFIL) == 0) {
372 p->p_flag |= P_PROFIL;
373 if (++profprocs == 1 && stathz != 0) {
374 s = splstatclock();
375 psdiv = pscnt = psratio;
376 setstatclockrate(profhz);
377 splx(s);
378 }
379 }
380 }
381
382 /*
383 * Stop profiling on a process.
384 */
385 void
386 stopprofclock(p)
387 register struct proc *p;
388 {
389 int s;
390
391 if (p->p_flag & P_PROFIL) {
392 p->p_flag &= ~P_PROFIL;
393 if (--profprocs == 0 && stathz != 0) {
394 s = splstatclock();
395 psdiv = pscnt = 1;
396 setstatclockrate(stathz);
397 splx(s);
398 }
399 }
400 }
401
402 int dk_ndrive = DK_NDRIVE;
403
404 /*
405 * Statistics clock. Grab profile sample, and if divider reaches 0,
406 * do process and kernel statistics.
407 */
408 void
409 statclock(frame)
410 register struct clockframe *frame;
411 {
412 #ifdef GPROF
413 register struct gmonparam *g;
414 #endif
415 register struct proc *p;
416 register int i;
417
418 if (CLKF_USERMODE(frame)) {
419 p = curproc;
420 if (p->p_flag & P_PROFIL)
421 addupc_intr(p, CLKF_PC(frame), 1);
422 if (--pscnt > 0)
423 return;
424 /*
425 * Came from user mode; CPU was in user state.
426 * If this process is being profiled record the tick.
427 */
428 p->p_uticks++;
429 if (p->p_nice > NZERO)
430 cp_time[CP_NICE]++;
431 else
432 cp_time[CP_USER]++;
433 } else {
434 #ifdef GPROF
435 /*
436 * Kernel statistics are just like addupc_intr, only easier.
437 */
438 g = &_gmonparam;
439 if (g->state == GMON_PROF_ON) {
440 i = CLKF_PC(frame) - g->lowpc;
441 if (i < g->textsize) {
442 i /= HISTFRACTION * sizeof(*g->kcount);
443 g->kcount[i]++;
444 }
445 }
446 #endif
447 if (--pscnt > 0)
448 return;
449 /*
450 * Came from kernel mode, so we were:
451 * - handling an interrupt,
452 * - doing syscall or trap work on behalf of the current
453 * user process, or
454 * - spinning in the idle loop.
455 * Whichever it is, charge the time as appropriate.
456 * Note that we charge interrupts to the current process,
457 * regardless of whether they are ``for'' that process,
458 * so that we know how much of its real time was spent
459 * in ``non-process'' (i.e., interrupt) work.
460 */
461 p = curproc;
462 if (CLKF_INTR(frame)) {
463 if (p != NULL)
464 p->p_iticks++;
465 cp_time[CP_INTR]++;
466 } else if (p != NULL) {
467 p->p_sticks++;
468 cp_time[CP_SYS]++;
469 } else
470 cp_time[CP_IDLE]++;
471 }
472 pscnt = psdiv;
473
474 /*
475 * We maintain statistics shown by user-level statistics
476 * programs: the amount of time in each cpu state, and
477 * the amount of time each of DK_NDRIVE ``drives'' is busy.
478 *
479 * XXX should either run linked list of drives, or (better)
480 * grab timestamps in the start & done code.
481 */
482 for (i = 0; i < DK_NDRIVE; i++)
483 if (dk_busy & (1 << i))
484 dk_time[i]++;
485
486 /*
487 * We adjust the priority of the current process. The priority of
488 * a process gets worse as it accumulates CPU time. The cpu usage
489 * estimator (p_estcpu) is increased here. The formula for computing
490 * priorities (in kern_synch.c) will compute a different value each
491 * time p_estcpu increases by 4. The cpu usage estimator ramps up
492 * quite quickly when the process is running (linearly), and decays
493 * away exponentially, at a rate which is proportionally slower when
494 * the system is busy. The basic principal is that the system will
495 * 90% forget that the process used a lot of CPU time in 5 * loadav
496 * seconds. This causes the system to favor processes which haven't
497 * run much recently, and to round-robin among other processes.
498 */
499 if (p != NULL) {
500 p->p_cpticks++;
501 if (++p->p_estcpu == 0)
502 p->p_estcpu--;
503 if ((p->p_estcpu & 3) == 0) {
504 resetpriority(p);
505 if (p->p_priority >= PUSER)
506 p->p_priority = p->p_usrpri;
507 }
508 }
509 }
510
511 /*
512 * Return information about system clocks.
513 */
514 sysctl_clockrate(where, sizep)
515 register char *where;
516 size_t *sizep;
517 {
518 struct clockinfo clkinfo;
519
520 /*
521 * Construct clockinfo structure.
522 */
523 clkinfo.hz = hz;
524 clkinfo.tick = tick;
525 clkinfo.profhz = profhz;
526 clkinfo.stathz = stathz ? stathz : hz;
527 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
528 }
529