kern_clock.c revision 1.106.6.4 1 /* $NetBSD: kern_clock.c,v 1.106.6.4 2007/07/01 21:43:41 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.106.6.4 2007/07/01 21:43:41 ad Exp $");
80
81 #include "opt_ntp.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/resourcevar.h>
91 #include <sys/signalvar.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #include <sys/time.h>
96 #include <sys/timetc.h>
97 #include <sys/cpu.h>
98 #include <sys/intr.h>
99
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103
104 /*
105 * Clock handling routines.
106 *
107 * This code is written to operate with two timers that run independently of
108 * each other. The main clock, running hz times per second, is used to keep
109 * track of real time. The second timer handles kernel and user profiling,
110 * and does resource use estimation. If the second timer is programmable,
111 * it is randomized to avoid aliasing between the two clocks. For example,
112 * the randomization prevents an adversary from always giving up the CPU
113 * just before its quantum expires. Otherwise, it would never accumulate
114 * CPU ticks. The mean frequency of the second timer is stathz.
115 *
116 * If no second timer exists, stathz will be zero; in this case we drive
117 * profiling and statistics off the main clock. This WILL NOT be accurate;
118 * do not do it unless absolutely necessary.
119 *
120 * The statistics clock may (or may not) be run at a higher rate while
121 * profiling. This profile clock runs at profhz. We require that profhz
122 * be an integral multiple of stathz.
123 *
124 * If the statistics clock is running fast, it must be divided by the ratio
125 * profhz/stathz for statistics. (For profiling, every tick counts.)
126 */
127
128 #ifndef __HAVE_TIMECOUNTER
129 #ifdef NTP /* NTP phase-locked loop in kernel */
130 /*
131 * Phase/frequency-lock loop (PLL/FLL) definitions
132 *
133 * The following variables are read and set by the ntp_adjtime() system
134 * call.
135 *
136 * time_state shows the state of the system clock, with values defined
137 * in the timex.h header file.
138 *
139 * time_status shows the status of the system clock, with bits defined
140 * in the timex.h header file.
141 *
142 * time_offset is used by the PLL/FLL to adjust the system time in small
143 * increments.
144 *
145 * time_constant determines the bandwidth or "stiffness" of the PLL.
146 *
147 * time_tolerance determines maximum frequency error or tolerance of the
148 * CPU clock oscillator and is a property of the architecture; however,
149 * in principle it could change as result of the presence of external
150 * discipline signals, for instance.
151 *
152 * time_precision is usually equal to the kernel tick variable; however,
153 * in cases where a precision clock counter or external clock is
154 * available, the resolution can be much less than this and depend on
155 * whether the external clock is working or not.
156 *
157 * time_maxerror is initialized by a ntp_adjtime() call and increased by
158 * the kernel once each second to reflect the maximum error bound
159 * growth.
160 *
161 * time_esterror is set and read by the ntp_adjtime() call, but
162 * otherwise not used by the kernel.
163 */
164 int time_state = TIME_OK; /* clock state */
165 int time_status = STA_UNSYNC; /* clock status bits */
166 long time_offset = 0; /* time offset (us) */
167 long time_constant = 0; /* pll time constant */
168 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
169 long time_precision = 1; /* clock precision (us) */
170 long time_maxerror = MAXPHASE; /* maximum error (us) */
171 long time_esterror = MAXPHASE; /* estimated error (us) */
172
173 /*
174 * The following variables establish the state of the PLL/FLL and the
175 * residual time and frequency offset of the local clock. The scale
176 * factors are defined in the timex.h header file.
177 *
178 * time_phase and time_freq are the phase increment and the frequency
179 * increment, respectively, of the kernel time variable.
180 *
181 * time_freq is set via ntp_adjtime() from a value stored in a file when
182 * the synchronization daemon is first started. Its value is retrieved
183 * via ntp_adjtime() and written to the file about once per hour by the
184 * daemon.
185 *
186 * time_adj is the adjustment added to the value of tick at each timer
187 * interrupt and is recomputed from time_phase and time_freq at each
188 * seconds rollover.
189 *
190 * time_reftime is the second's portion of the system time at the last
191 * call to ntp_adjtime(). It is used to adjust the time_freq variable
192 * and to increase the time_maxerror as the time since last update
193 * increases.
194 */
195 long time_phase = 0; /* phase offset (scaled us) */
196 long time_freq = 0; /* frequency offset (scaled ppm) */
197 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
198 long time_reftime = 0; /* time at last adjustment (s) */
199
200 #ifdef PPS_SYNC
201 /*
202 * The following variables are used only if the kernel PPS discipline
203 * code is configured (PPS_SYNC). The scale factors are defined in the
204 * timex.h header file.
205 *
206 * pps_time contains the time at each calibration interval, as read by
207 * microtime(). pps_count counts the seconds of the calibration
208 * interval, the duration of which is nominally pps_shift in powers of
209 * two.
210 *
211 * pps_offset is the time offset produced by the time median filter
212 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
213 * this filter.
214 *
215 * pps_freq is the frequency offset produced by the frequency median
216 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
217 * by this filter.
218 *
219 * pps_usec is latched from a high resolution counter or external clock
220 * at pps_time. Here we want the hardware counter contents only, not the
221 * contents plus the time_tv.usec as usual.
222 *
223 * pps_valid counts the number of seconds since the last PPS update. It
224 * is used as a watchdog timer to disable the PPS discipline should the
225 * PPS signal be lost.
226 *
227 * pps_glitch counts the number of seconds since the beginning of an
228 * offset burst more than tick/2 from current nominal offset. It is used
229 * mainly to suppress error bursts due to priority conflicts between the
230 * PPS interrupt and timer interrupt.
231 *
232 * pps_intcnt counts the calibration intervals for use in the interval-
233 * adaptation algorithm. It's just too complicated for words.
234 *
235 * pps_kc_hardpps_source contains an arbitrary value that uniquely
236 * identifies the currently bound source of the PPS signal, or NULL
237 * if no source is bound.
238 *
239 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
240 * signal should be reported.
241 */
242 struct timeval pps_time; /* kernel time at last interval */
243 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
244 long pps_offset = 0; /* pps time offset (us) */
245 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
246 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
247 long pps_freq = 0; /* frequency offset (scaled ppm) */
248 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
249 long pps_usec = 0; /* microsec counter at last interval */
250 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
251 int pps_glitch = 0; /* pps signal glitch counter */
252 int pps_count = 0; /* calibration interval counter (s) */
253 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
254 int pps_intcnt = 0; /* intervals at current duration */
255 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
256 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
257
258 /*
259 * PPS signal quality monitors
260 *
261 * pps_jitcnt counts the seconds that have been discarded because the
262 * jitter measured by the time median filter exceeds the limit MAXTIME
263 * (100 us).
264 *
265 * pps_calcnt counts the frequency calibration intervals, which are
266 * variable from 4 s to 256 s.
267 *
268 * pps_errcnt counts the calibration intervals which have been discarded
269 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
270 * calibration interval jitter exceeds two ticks.
271 *
272 * pps_stbcnt counts the calibration intervals that have been discarded
273 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
274 */
275 long pps_jitcnt = 0; /* jitter limit exceeded */
276 long pps_calcnt = 0; /* calibration intervals */
277 long pps_errcnt = 0; /* calibration errors */
278 long pps_stbcnt = 0; /* stability limit exceeded */
279 #endif /* PPS_SYNC */
280
281 #ifdef EXT_CLOCK
282 /*
283 * External clock definitions
284 *
285 * The following definitions and declarations are used only if an
286 * external clock is configured on the system.
287 */
288 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
289
290 /*
291 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
292 * interrupt and decremented once each second.
293 */
294 int clock_count = 0; /* CPU clock counter */
295
296 #ifdef HIGHBALL
297 /*
298 * The clock_offset and clock_cpu variables are used by the HIGHBALL
299 * interface. The clock_offset variable defines the offset between
300 * system time and the HIGBALL counters. The clock_cpu variable contains
301 * the offset between the system clock and the HIGHBALL clock for use in
302 * disciplining the kernel time variable.
303 */
304 extern struct timeval clock_offset; /* Highball clock offset */
305 long clock_cpu = 0; /* CPU clock adjust */
306 #endif /* HIGHBALL */
307 #endif /* EXT_CLOCK */
308 #endif /* NTP */
309
310 /*
311 * Bump a timeval by a small number of usec's.
312 */
313 #define BUMPTIME(t, usec) { \
314 volatile struct timeval *tp = (t); \
315 long us; \
316 \
317 tp->tv_usec = us = tp->tv_usec + (usec); \
318 if (us >= 1000000) { \
319 tp->tv_usec = us - 1000000; \
320 tp->tv_sec++; \
321 } \
322 }
323 #endif /* !__HAVE_TIMECOUNTER */
324
325 int stathz;
326 int profhz;
327 int profsrc;
328 int schedhz;
329 int profprocs;
330 int hardclock_ticks;
331 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
332 static int psdiv; /* prof => stat divider */
333 int psratio; /* ratio: prof / stat */
334 #ifndef __HAVE_TIMECOUNTER
335 int tickfix, tickfixinterval; /* used if tick not really integral */
336 #ifndef NTP
337 static int tickfixcnt; /* accumulated fractional error */
338 #else
339 int fixtick; /* used by NTP for same */
340 int shifthz;
341 #endif
342
343 /*
344 * We might want ldd to load the both words from time at once.
345 * To succeed we need to be quadword aligned.
346 * The sparc already does that, and that it has worked so far is a fluke.
347 */
348 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
349 volatile struct timeval mono_time;
350 #endif /* !__HAVE_TIMECOUNTER */
351
352 #ifdef __HAVE_TIMECOUNTER
353 static u_int get_intr_timecount(struct timecounter *);
354
355 static struct timecounter intr_timecounter = {
356 get_intr_timecount, /* get_timecount */
357 0, /* no poll_pps */
358 ~0u, /* counter_mask */
359 0, /* frequency */
360 "clockinterrupt", /* name */
361 0, /* quality - minimum implementation level for a clock */
362 NULL, /* prev */
363 NULL, /* next */
364 };
365
366 static u_int
367 get_intr_timecount(struct timecounter *tc)
368 {
369
370 return (u_int)hardclock_ticks;
371 }
372 #endif
373
374 /*
375 * Initialize clock frequencies and start both clocks running.
376 */
377 void
378 initclocks(void)
379 {
380 int i;
381
382 /*
383 * Set divisors to 1 (normal case) and let the machine-specific
384 * code do its bit.
385 */
386 psdiv = 1;
387 #ifdef __HAVE_TIMECOUNTER
388 /*
389 * provide minimum default time counter
390 * will only run at interrupt resolution
391 */
392 intr_timecounter.tc_frequency = hz;
393 tc_init(&intr_timecounter);
394 #endif
395 cpu_initclocks();
396
397 /*
398 * Compute profhz and stathz, fix profhz if needed.
399 */
400 i = stathz ? stathz : hz;
401 if (profhz == 0)
402 profhz = i;
403 psratio = profhz / i;
404 if (schedhz == 0) {
405 /* 16Hz is best */
406 statscheddiv = i / 16;
407 if (statscheddiv <= 0)
408 panic("statscheddiv");
409 }
410
411 #ifndef __HAVE_TIMECOUNTER
412 #ifdef NTP
413 switch (hz) {
414 case 1:
415 shifthz = SHIFT_SCALE - 0;
416 break;
417 case 2:
418 shifthz = SHIFT_SCALE - 1;
419 break;
420 case 4:
421 shifthz = SHIFT_SCALE - 2;
422 break;
423 case 8:
424 shifthz = SHIFT_SCALE - 3;
425 break;
426 case 16:
427 shifthz = SHIFT_SCALE - 4;
428 break;
429 case 32:
430 shifthz = SHIFT_SCALE - 5;
431 break;
432 case 50:
433 case 60:
434 case 64:
435 shifthz = SHIFT_SCALE - 6;
436 break;
437 case 96:
438 case 100:
439 case 128:
440 shifthz = SHIFT_SCALE - 7;
441 break;
442 case 256:
443 shifthz = SHIFT_SCALE - 8;
444 break;
445 case 512:
446 shifthz = SHIFT_SCALE - 9;
447 break;
448 case 1000:
449 case 1024:
450 shifthz = SHIFT_SCALE - 10;
451 break;
452 case 1200:
453 case 2048:
454 shifthz = SHIFT_SCALE - 11;
455 break;
456 case 4096:
457 shifthz = SHIFT_SCALE - 12;
458 break;
459 case 8192:
460 shifthz = SHIFT_SCALE - 13;
461 break;
462 case 16384:
463 shifthz = SHIFT_SCALE - 14;
464 break;
465 case 32768:
466 shifthz = SHIFT_SCALE - 15;
467 break;
468 case 65536:
469 shifthz = SHIFT_SCALE - 16;
470 break;
471 default:
472 panic("weird hz");
473 }
474 if (fixtick == 0) {
475 /*
476 * Give MD code a chance to set this to a better
477 * value; but, if it doesn't, we should.
478 */
479 fixtick = (1000000 - (hz*tick));
480 }
481 #endif /* NTP */
482 #endif /* !__HAVE_TIMECOUNTER */
483 }
484
485 /*
486 * The real-time timer, interrupting hz times per second.
487 */
488 void
489 hardclock(struct clockframe *frame)
490 {
491 struct lwp *l;
492 struct proc *p;
493 struct cpu_info *ci = curcpu();
494 struct ptimer *pt;
495 #ifndef __HAVE_TIMECOUNTER
496 int delta;
497 extern int tickdelta;
498 extern long timedelta;
499 #ifdef NTP
500 int time_update;
501 int ltemp;
502 #endif /* NTP */
503 #endif /* __HAVE_TIMECOUNTER */
504
505 l = curlwp;
506 if (!CURCPU_IDLE_P()) {
507 p = l->l_proc;
508 /*
509 * Run current process's virtual and profile time, as needed.
510 */
511 if (CLKF_USERMODE(frame) && p->p_timers &&
512 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
513 if (itimerdecr(pt, tick) == 0)
514 itimerfire(pt);
515 if (p->p_timers &&
516 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
517 if (itimerdecr(pt, tick) == 0)
518 itimerfire(pt);
519 }
520
521 /*
522 * If no separate statistics clock is available, run it from here.
523 */
524 if (stathz == 0)
525 statclock(frame);
526 if ((--ci->ci_schedstate.spc_ticks) <= 0)
527 sched_tick(ci);
528
529 #if defined(MULTIPROCESSOR)
530 /*
531 * If we are not the primary CPU, we're not allowed to do
532 * any more work.
533 */
534 if (CPU_IS_PRIMARY(ci) == 0)
535 return;
536 #endif
537
538 hardclock_ticks++;
539
540 #ifdef __HAVE_TIMECOUNTER
541 tc_ticktock();
542 #else /* __HAVE_TIMECOUNTER */
543 /*
544 * Increment the time-of-day. The increment is normally just
545 * ``tick''. If the machine is one which has a clock frequency
546 * such that ``hz'' would not divide the second evenly into
547 * milliseconds, a periodic adjustment must be applied. Finally,
548 * if we are still adjusting the time (see adjtime()),
549 * ``tickdelta'' may also be added in.
550 */
551 delta = tick;
552
553 #ifndef NTP
554 if (tickfix) {
555 tickfixcnt += tickfix;
556 if (tickfixcnt >= tickfixinterval) {
557 delta++;
558 tickfixcnt -= tickfixinterval;
559 }
560 }
561 #endif /* !NTP */
562 /* Imprecise 4bsd adjtime() handling */
563 if (timedelta != 0) {
564 delta += tickdelta;
565 timedelta -= tickdelta;
566 }
567
568 #ifdef notyet
569 microset();
570 #endif
571
572 #ifndef NTP
573 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
574 #endif
575 BUMPTIME(&mono_time, delta);
576
577 #ifdef NTP
578 time_update = delta;
579
580 /*
581 * Compute the phase adjustment. If the low-order bits
582 * (time_phase) of the update overflow, bump the high-order bits
583 * (time_update).
584 */
585 time_phase += time_adj;
586 if (time_phase <= -FINEUSEC) {
587 ltemp = -time_phase >> SHIFT_SCALE;
588 time_phase += ltemp << SHIFT_SCALE;
589 time_update -= ltemp;
590 } else if (time_phase >= FINEUSEC) {
591 ltemp = time_phase >> SHIFT_SCALE;
592 time_phase -= ltemp << SHIFT_SCALE;
593 time_update += ltemp;
594 }
595
596 #ifdef HIGHBALL
597 /*
598 * If the HIGHBALL board is installed, we need to adjust the
599 * external clock offset in order to close the hardware feedback
600 * loop. This will adjust the external clock phase and frequency
601 * in small amounts. The additional phase noise and frequency
602 * wander this causes should be minimal. We also need to
603 * discipline the kernel time variable, since the PLL is used to
604 * discipline the external clock. If the Highball board is not
605 * present, we discipline kernel time with the PLL as usual. We
606 * assume that the external clock phase adjustment (time_update)
607 * and kernel phase adjustment (clock_cpu) are less than the
608 * value of tick.
609 */
610 clock_offset.tv_usec += time_update;
611 if (clock_offset.tv_usec >= 1000000) {
612 clock_offset.tv_sec++;
613 clock_offset.tv_usec -= 1000000;
614 }
615 if (clock_offset.tv_usec < 0) {
616 clock_offset.tv_sec--;
617 clock_offset.tv_usec += 1000000;
618 }
619 time.tv_usec += clock_cpu;
620 clock_cpu = 0;
621 #else
622 time.tv_usec += time_update;
623 #endif /* HIGHBALL */
624
625 /*
626 * On rollover of the second the phase adjustment to be used for
627 * the next second is calculated. Also, the maximum error is
628 * increased by the tolerance. If the PPS frequency discipline
629 * code is present, the phase is increased to compensate for the
630 * CPU clock oscillator frequency error.
631 *
632 * On a 32-bit machine and given parameters in the timex.h
633 * header file, the maximum phase adjustment is +-512 ms and
634 * maximum frequency offset is a tad less than) +-512 ppm. On a
635 * 64-bit machine, you shouldn't need to ask.
636 */
637 if (time.tv_usec >= 1000000) {
638 time.tv_usec -= 1000000;
639 time.tv_sec++;
640 time_maxerror += time_tolerance >> SHIFT_USEC;
641
642 /*
643 * Leap second processing. If in leap-insert state at
644 * the end of the day, the system clock is set back one
645 * second; if in leap-delete state, the system clock is
646 * set ahead one second. The microtime() routine or
647 * external clock driver will insure that reported time
648 * is always monotonic. The ugly divides should be
649 * replaced.
650 */
651 switch (time_state) {
652 case TIME_OK:
653 if (time_status & STA_INS)
654 time_state = TIME_INS;
655 else if (time_status & STA_DEL)
656 time_state = TIME_DEL;
657 break;
658
659 case TIME_INS:
660 if (time.tv_sec % 86400 == 0) {
661 time.tv_sec--;
662 time_state = TIME_OOP;
663 }
664 break;
665
666 case TIME_DEL:
667 if ((time.tv_sec + 1) % 86400 == 0) {
668 time.tv_sec++;
669 time_state = TIME_WAIT;
670 }
671 break;
672
673 case TIME_OOP:
674 time_state = TIME_WAIT;
675 break;
676
677 case TIME_WAIT:
678 if (!(time_status & (STA_INS | STA_DEL)))
679 time_state = TIME_OK;
680 break;
681 }
682
683 /*
684 * Compute the phase adjustment for the next second. In
685 * PLL mode, the offset is reduced by a fixed factor
686 * times the time constant. In FLL mode the offset is
687 * used directly. In either mode, the maximum phase
688 * adjustment for each second is clamped so as to spread
689 * the adjustment over not more than the number of
690 * seconds between updates.
691 */
692 if (time_offset < 0) {
693 ltemp = -time_offset;
694 if (!(time_status & STA_FLL))
695 ltemp >>= SHIFT_KG + time_constant;
696 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
697 ltemp = (MAXPHASE / MINSEC) <<
698 SHIFT_UPDATE;
699 time_offset += ltemp;
700 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
701 } else if (time_offset > 0) {
702 ltemp = time_offset;
703 if (!(time_status & STA_FLL))
704 ltemp >>= SHIFT_KG + time_constant;
705 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
706 ltemp = (MAXPHASE / MINSEC) <<
707 SHIFT_UPDATE;
708 time_offset -= ltemp;
709 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
710 } else
711 time_adj = 0;
712
713 /*
714 * Compute the frequency estimate and additional phase
715 * adjustment due to frequency error for the next
716 * second. When the PPS signal is engaged, gnaw on the
717 * watchdog counter and update the frequency computed by
718 * the pll and the PPS signal.
719 */
720 #ifdef PPS_SYNC
721 pps_valid++;
722 if (pps_valid == PPS_VALID) {
723 pps_jitter = MAXTIME;
724 pps_stabil = MAXFREQ;
725 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
726 STA_PPSWANDER | STA_PPSERROR);
727 }
728 ltemp = time_freq + pps_freq;
729 #else
730 ltemp = time_freq;
731 #endif /* PPS_SYNC */
732
733 if (ltemp < 0)
734 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
735 else
736 time_adj += ltemp >> (SHIFT_USEC - shifthz);
737 time_adj += (long)fixtick << shifthz;
738
739 /*
740 * When the CPU clock oscillator frequency is not a
741 * power of 2 in Hz, shifthz is only an approximate
742 * scale factor.
743 *
744 * To determine the adjustment, you can do the following:
745 * bc -q
746 * scale=24
747 * obase=2
748 * idealhz/realhz
749 * where `idealhz' is the next higher power of 2, and `realhz'
750 * is the actual value. You may need to factor this result
751 * into a sequence of 2 multipliers to get better precision.
752 *
753 * Likewise, the error can be calculated with (e.g. for 100Hz):
754 * bc -q
755 * scale=24
756 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
757 * (and then multiply by 1000000 to get ppm).
758 */
759 switch (hz) {
760 case 60:
761 /* A factor of 1.000100010001 gives about 15ppm
762 error. */
763 if (time_adj < 0) {
764 time_adj -= (-time_adj >> 4);
765 time_adj -= (-time_adj >> 8);
766 } else {
767 time_adj += (time_adj >> 4);
768 time_adj += (time_adj >> 8);
769 }
770 break;
771
772 case 96:
773 /* A factor of 1.0101010101 gives about 244ppm error. */
774 if (time_adj < 0) {
775 time_adj -= (-time_adj >> 2);
776 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
777 } else {
778 time_adj += (time_adj >> 2);
779 time_adj += (time_adj >> 4) + (time_adj >> 8);
780 }
781 break;
782
783 case 50:
784 case 100:
785 /* A factor of 1.010001111010111 gives about 1ppm
786 error. */
787 if (time_adj < 0) {
788 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
789 time_adj += (-time_adj >> 10);
790 } else {
791 time_adj += (time_adj >> 2) + (time_adj >> 5);
792 time_adj -= (time_adj >> 10);
793 }
794 break;
795
796 case 1000:
797 /* A factor of 1.000001100010100001 gives about 50ppm
798 error. */
799 if (time_adj < 0) {
800 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
801 time_adj -= (-time_adj >> 7);
802 } else {
803 time_adj += (time_adj >> 6) + (time_adj >> 11);
804 time_adj += (time_adj >> 7);
805 }
806 break;
807
808 case 1200:
809 /* A factor of 1.1011010011100001 gives about 64ppm
810 error. */
811 if (time_adj < 0) {
812 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
813 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
814 } else {
815 time_adj += (time_adj >> 1) + (time_adj >> 6);
816 time_adj += (time_adj >> 3) + (time_adj >> 10);
817 }
818 break;
819 }
820
821 #ifdef EXT_CLOCK
822 /*
823 * If an external clock is present, it is necessary to
824 * discipline the kernel time variable anyway, since not
825 * all system components use the microtime() interface.
826 * Here, the time offset between the external clock and
827 * kernel time variable is computed every so often.
828 */
829 clock_count++;
830 if (clock_count > CLOCK_INTERVAL) {
831 clock_count = 0;
832 microtime(&clock_ext);
833 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
834 delta.tv_usec = clock_ext.tv_usec -
835 time.tv_usec;
836 if (delta.tv_usec < 0)
837 delta.tv_sec--;
838 if (delta.tv_usec >= 500000) {
839 delta.tv_usec -= 1000000;
840 delta.tv_sec++;
841 }
842 if (delta.tv_usec < -500000) {
843 delta.tv_usec += 1000000;
844 delta.tv_sec--;
845 }
846 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
847 delta.tv_usec > MAXPHASE) ||
848 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
849 delta.tv_usec < -MAXPHASE)) {
850 time = clock_ext;
851 delta.tv_sec = 0;
852 delta.tv_usec = 0;
853 }
854 #ifdef HIGHBALL
855 clock_cpu = delta.tv_usec;
856 #else /* HIGHBALL */
857 hardupdate(delta.tv_usec);
858 #endif /* HIGHBALL */
859 }
860 #endif /* EXT_CLOCK */
861 }
862
863 #endif /* NTP */
864 #endif /* !__HAVE_TIMECOUNTER */
865
866 /*
867 * Update real-time timeout queue. Callouts are processed at a
868 * very low CPU priority, so we don't keep the relatively high
869 * clock interrupt priority any longer than necessary.
870 */
871 callout_hardclock();
872 }
873
874 #ifdef __HAVE_TIMECOUNTER
875 /*
876 * Compute number of hz until specified time. Used to compute second
877 * argument to callout_reset() from an absolute time.
878 */
879 int
880 hzto(struct timeval *tvp)
881 {
882 struct timeval now, tv;
883
884 tv = *tvp; /* Don't modify original tvp. */
885 getmicrotime(&now);
886 timersub(&tv, &now, &tv);
887 return tvtohz(&tv);
888 }
889 #endif /* __HAVE_TIMECOUNTER */
890
891 /*
892 * Compute number of ticks in the specified amount of time.
893 */
894 int
895 tvtohz(struct timeval *tv)
896 {
897 unsigned long ticks;
898 long sec, usec;
899
900 /*
901 * If the number of usecs in the whole seconds part of the time
902 * difference fits in a long, then the total number of usecs will
903 * fit in an unsigned long. Compute the total and convert it to
904 * ticks, rounding up and adding 1 to allow for the current tick
905 * to expire. Rounding also depends on unsigned long arithmetic
906 * to avoid overflow.
907 *
908 * Otherwise, if the number of ticks in the whole seconds part of
909 * the time difference fits in a long, then convert the parts to
910 * ticks separately and add, using similar rounding methods and
911 * overflow avoidance. This method would work in the previous
912 * case, but it is slightly slower and assumes that hz is integral.
913 *
914 * Otherwise, round the time difference down to the maximum
915 * representable value.
916 *
917 * If ints are 32-bit, then the maximum value for any timeout in
918 * 10ms ticks is 248 days.
919 */
920 sec = tv->tv_sec;
921 usec = tv->tv_usec;
922
923 if (usec < 0) {
924 sec--;
925 usec += 1000000;
926 }
927
928 if (sec < 0 || (sec == 0 && usec <= 0)) {
929 /*
930 * Would expire now or in the past. Return 0 ticks.
931 * This is different from the legacy hzto() interface,
932 * and callers need to check for it.
933 */
934 ticks = 0;
935 } else if (sec <= (LONG_MAX / 1000000))
936 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
937 / tick) + 1;
938 else if (sec <= (LONG_MAX / hz))
939 ticks = (sec * hz) +
940 (((unsigned long)usec + (tick - 1)) / tick) + 1;
941 else
942 ticks = LONG_MAX;
943
944 if (ticks > INT_MAX)
945 ticks = INT_MAX;
946
947 return ((int)ticks);
948 }
949
950 #ifndef __HAVE_TIMECOUNTER
951 /*
952 * Compute number of hz until specified time. Used to compute second
953 * argument to callout_reset() from an absolute time.
954 */
955 int
956 hzto(struct timeval *tv)
957 {
958 unsigned long ticks;
959 long sec, usec;
960 int s;
961
962 /*
963 * If the number of usecs in the whole seconds part of the time
964 * difference fits in a long, then the total number of usecs will
965 * fit in an unsigned long. Compute the total and convert it to
966 * ticks, rounding up and adding 1 to allow for the current tick
967 * to expire. Rounding also depends on unsigned long arithmetic
968 * to avoid overflow.
969 *
970 * Otherwise, if the number of ticks in the whole seconds part of
971 * the time difference fits in a long, then convert the parts to
972 * ticks separately and add, using similar rounding methods and
973 * overflow avoidance. This method would work in the previous
974 * case, but it is slightly slower and assume that hz is integral.
975 *
976 * Otherwise, round the time difference down to the maximum
977 * representable value.
978 *
979 * If ints are 32-bit, then the maximum value for any timeout in
980 * 10ms ticks is 248 days.
981 */
982 s = splclock();
983 sec = tv->tv_sec - time.tv_sec;
984 usec = tv->tv_usec - time.tv_usec;
985 splx(s);
986
987 if (usec < 0) {
988 sec--;
989 usec += 1000000;
990 }
991
992 if (sec < 0 || (sec == 0 && usec <= 0)) {
993 /*
994 * Would expire now or in the past. Return 0 ticks.
995 * This is different from the legacy hzto() interface,
996 * and callers need to check for it.
997 */
998 ticks = 0;
999 } else if (sec <= (LONG_MAX / 1000000))
1000 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1001 / tick) + 1;
1002 else if (sec <= (LONG_MAX / hz))
1003 ticks = (sec * hz) +
1004 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1005 else
1006 ticks = LONG_MAX;
1007
1008 if (ticks > INT_MAX)
1009 ticks = INT_MAX;
1010
1011 return ((int)ticks);
1012 }
1013 #endif /* !__HAVE_TIMECOUNTER */
1014
1015 /*
1016 * Compute number of ticks in the specified amount of time.
1017 */
1018 int
1019 tstohz(struct timespec *ts)
1020 {
1021 struct timeval tv;
1022
1023 /*
1024 * usec has great enough resolution for hz, so convert to a
1025 * timeval and use tvtohz() above.
1026 */
1027 TIMESPEC_TO_TIMEVAL(&tv, ts);
1028 return tvtohz(&tv);
1029 }
1030
1031 /*
1032 * Start profiling on a process.
1033 *
1034 * Kernel profiling passes proc0 which never exits and hence
1035 * keeps the profile clock running constantly.
1036 */
1037 void
1038 startprofclock(struct proc *p)
1039 {
1040
1041 KASSERT(mutex_owned(&p->p_stmutex));
1042
1043 if ((p->p_stflag & PST_PROFIL) == 0) {
1044 p->p_stflag |= PST_PROFIL;
1045 /*
1046 * This is only necessary if using the clock as the
1047 * profiling source.
1048 */
1049 if (++profprocs == 1 && stathz != 0)
1050 psdiv = psratio;
1051 }
1052 }
1053
1054 /*
1055 * Stop profiling on a process.
1056 */
1057 void
1058 stopprofclock(struct proc *p)
1059 {
1060
1061 KASSERT(mutex_owned(&p->p_stmutex));
1062
1063 if (p->p_stflag & PST_PROFIL) {
1064 p->p_stflag &= ~PST_PROFIL;
1065 /*
1066 * This is only necessary if using the clock as the
1067 * profiling source.
1068 */
1069 if (--profprocs == 0 && stathz != 0)
1070 psdiv = 1;
1071 }
1072 }
1073
1074 #if defined(PERFCTRS)
1075 /*
1076 * Independent profiling "tick" in case we're using a separate
1077 * clock or profiling event source. Currently, that's just
1078 * performance counters--hence the wrapper.
1079 */
1080 void
1081 proftick(struct clockframe *frame)
1082 {
1083 #ifdef GPROF
1084 struct gmonparam *g;
1085 intptr_t i;
1086 #endif
1087 struct lwp *l;
1088 struct proc *p;
1089
1090 l = curlwp;
1091 p = (l ? l->l_proc : NULL);
1092 if (CLKF_USERMODE(frame)) {
1093 mutex_spin_enter(&p->p_stmutex);
1094 if (p->p_stflag & PST_PROFIL)
1095 addupc_intr(l, CLKF_PC(frame));
1096 mutex_spin_exit(&p->p_stmutex);
1097 } else {
1098 #ifdef GPROF
1099 g = &_gmonparam;
1100 if (g->state == GMON_PROF_ON) {
1101 i = CLKF_PC(frame) - g->lowpc;
1102 if (i < g->textsize) {
1103 i /= HISTFRACTION * sizeof(*g->kcount);
1104 g->kcount[i]++;
1105 }
1106 }
1107 #endif
1108 #ifdef PROC_PC
1109 if (p != NULL) {
1110 mutex_spin_enter(&p->p_stmutex);
1111 if (p->p_stflag & PST_PROFIL))
1112 addupc_intr(l, PROC_PC(p));
1113 mutex_spin_exit(&p->p_stmutex);
1114 }
1115 #endif
1116 }
1117 }
1118 #endif
1119
1120 void
1121 schedclock(struct lwp *l)
1122 {
1123
1124 if ((l->l_flag & LW_IDLE) != 0)
1125 return;
1126
1127 sched_schedclock(l);
1128 }
1129
1130 /*
1131 * Statistics clock. Grab profile sample, and if divider reaches 0,
1132 * do process and kernel statistics.
1133 */
1134 void
1135 statclock(struct clockframe *frame)
1136 {
1137 #ifdef GPROF
1138 struct gmonparam *g;
1139 intptr_t i;
1140 #endif
1141 struct cpu_info *ci = curcpu();
1142 struct schedstate_percpu *spc = &ci->ci_schedstate;
1143 struct proc *p;
1144 struct lwp *l;
1145
1146 /*
1147 * Notice changes in divisor frequency, and adjust clock
1148 * frequency accordingly.
1149 */
1150 if (spc->spc_psdiv != psdiv) {
1151 spc->spc_psdiv = psdiv;
1152 spc->spc_pscnt = psdiv;
1153 if (psdiv == 1) {
1154 setstatclockrate(stathz);
1155 } else {
1156 setstatclockrate(profhz);
1157 }
1158 }
1159 l = curlwp;
1160 if ((l->l_flag & LW_IDLE) != 0) {
1161 /*
1162 * don't account idle lwps as swapper.
1163 */
1164 p = NULL;
1165 } else {
1166 p = l->l_proc;
1167 mutex_spin_enter(&p->p_stmutex);
1168 }
1169
1170 if (CLKF_USERMODE(frame)) {
1171 if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
1172 addupc_intr(l, CLKF_PC(frame));
1173 if (--spc->spc_pscnt > 0) {
1174 mutex_spin_exit(&p->p_stmutex);
1175 return;
1176 }
1177
1178 /*
1179 * Came from user mode; CPU was in user state.
1180 * If this process is being profiled record the tick.
1181 */
1182 p->p_uticks++;
1183 if (p->p_nice > NZERO)
1184 spc->spc_cp_time[CP_NICE]++;
1185 else
1186 spc->spc_cp_time[CP_USER]++;
1187 } else {
1188 #ifdef GPROF
1189 /*
1190 * Kernel statistics are just like addupc_intr, only easier.
1191 */
1192 g = &_gmonparam;
1193 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1194 i = CLKF_PC(frame) - g->lowpc;
1195 if (i < g->textsize) {
1196 i /= HISTFRACTION * sizeof(*g->kcount);
1197 g->kcount[i]++;
1198 }
1199 }
1200 #endif
1201 #ifdef LWP_PC
1202 if (p != NULL && profsrc == PROFSRC_CLOCK &&
1203 (p->p_stflag & PST_PROFIL)) {
1204 addupc_intr(l, LWP_PC(l));
1205 }
1206 #endif
1207 if (--spc->spc_pscnt > 0) {
1208 if (p != NULL)
1209 mutex_spin_exit(&p->p_stmutex);
1210 return;
1211 }
1212 /*
1213 * Came from kernel mode, so we were:
1214 * - handling an interrupt,
1215 * - doing syscall or trap work on behalf of the current
1216 * user process, or
1217 * - spinning in the idle loop.
1218 * Whichever it is, charge the time as appropriate.
1219 * Note that we charge interrupts to the current process,
1220 * regardless of whether they are ``for'' that process,
1221 * so that we know how much of its real time was spent
1222 * in ``non-process'' (i.e., interrupt) work.
1223 */
1224 if (CLKF_INTR(frame) || (l->l_flag & LW_INTR) != 0) {
1225 if (p != NULL) {
1226 p->p_iticks++;
1227 }
1228 spc->spc_cp_time[CP_INTR]++;
1229 } else if (p != NULL) {
1230 p->p_sticks++;
1231 spc->spc_cp_time[CP_SYS]++;
1232 } else {
1233 spc->spc_cp_time[CP_IDLE]++;
1234 }
1235 }
1236 spc->spc_pscnt = psdiv;
1237
1238 if (p != NULL) {
1239 ++l->l_cpticks;
1240 mutex_spin_exit(&p->p_stmutex);
1241 }
1242
1243 /*
1244 * If no separate schedclock is provided, call it here
1245 * at about 16 Hz.
1246 */
1247 if (schedhz == 0) {
1248 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1249 schedclock(l);
1250 ci->ci_schedstate.spc_schedticks = statscheddiv;
1251 }
1252 }
1253 }
1254
1255 #ifndef __HAVE_TIMECOUNTER
1256 #ifdef NTP /* NTP phase-locked loop in kernel */
1257 /*
1258 * hardupdate() - local clock update
1259 *
1260 * This routine is called by ntp_adjtime() to update the local clock
1261 * phase and frequency. The implementation is of an adaptive-parameter,
1262 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1263 * time and frequency offset estimates for each call. If the kernel PPS
1264 * discipline code is configured (PPS_SYNC), the PPS signal itself
1265 * determines the new time offset, instead of the calling argument.
1266 * Presumably, calls to ntp_adjtime() occur only when the caller
1267 * believes the local clock is valid within some bound (+-128 ms with
1268 * NTP). If the caller's time is far different than the PPS time, an
1269 * argument will ensue, and it's not clear who will lose.
1270 *
1271 * For uncompensated quartz crystal oscillatores and nominal update
1272 * intervals less than 1024 s, operation should be in phase-lock mode
1273 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1274 * intervals greater than thiss, operation should be in frequency-lock
1275 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1276 *
1277 * Note: splclock() is in effect.
1278 */
1279 void
1280 hardupdate(long offset)
1281 {
1282 long ltemp, mtemp;
1283
1284 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1285 return;
1286 ltemp = offset;
1287 #ifdef PPS_SYNC
1288 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1289 ltemp = pps_offset;
1290 #endif /* PPS_SYNC */
1291
1292 /*
1293 * Scale the phase adjustment and clamp to the operating range.
1294 */
1295 if (ltemp > MAXPHASE)
1296 time_offset = MAXPHASE << SHIFT_UPDATE;
1297 else if (ltemp < -MAXPHASE)
1298 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1299 else
1300 time_offset = ltemp << SHIFT_UPDATE;
1301
1302 /*
1303 * Select whether the frequency is to be controlled and in which
1304 * mode (PLL or FLL). Clamp to the operating range. Ugly
1305 * multiply/divide should be replaced someday.
1306 */
1307 if (time_status & STA_FREQHOLD || time_reftime == 0)
1308 time_reftime = time.tv_sec;
1309 mtemp = time.tv_sec - time_reftime;
1310 time_reftime = time.tv_sec;
1311 if (time_status & STA_FLL) {
1312 if (mtemp >= MINSEC) {
1313 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1314 SHIFT_UPDATE));
1315 if (ltemp < 0)
1316 time_freq -= -ltemp >> SHIFT_KH;
1317 else
1318 time_freq += ltemp >> SHIFT_KH;
1319 }
1320 } else {
1321 if (mtemp < MAXSEC) {
1322 ltemp *= mtemp;
1323 if (ltemp < 0)
1324 time_freq -= -ltemp >> (time_constant +
1325 time_constant + SHIFT_KF -
1326 SHIFT_USEC);
1327 else
1328 time_freq += ltemp >> (time_constant +
1329 time_constant + SHIFT_KF -
1330 SHIFT_USEC);
1331 }
1332 }
1333 if (time_freq > time_tolerance)
1334 time_freq = time_tolerance;
1335 else if (time_freq < -time_tolerance)
1336 time_freq = -time_tolerance;
1337 }
1338
1339 #ifdef PPS_SYNC
1340 /*
1341 * hardpps() - discipline CPU clock oscillator to external PPS signal
1342 *
1343 * This routine is called at each PPS interrupt in order to discipline
1344 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1345 * and leaves it in a handy spot for the hardclock() routine. It
1346 * integrates successive PPS phase differences and calculates the
1347 * frequency offset. This is used in hardclock() to discipline the CPU
1348 * clock oscillator so that intrinsic frequency error is cancelled out.
1349 * The code requires the caller to capture the time and hardware counter
1350 * value at the on-time PPS signal transition.
1351 *
1352 * Note that, on some Unix systems, this routine runs at an interrupt
1353 * priority level higher than the timer interrupt routine hardclock().
1354 * Therefore, the variables used are distinct from the hardclock()
1355 * variables, except for certain exceptions: The PPS frequency pps_freq
1356 * and phase pps_offset variables are determined by this routine and
1357 * updated atomically. The time_tolerance variable can be considered a
1358 * constant, since it is infrequently changed, and then only when the
1359 * PPS signal is disabled. The watchdog counter pps_valid is updated
1360 * once per second by hardclock() and is atomically cleared in this
1361 * routine.
1362 */
1363 void
1364 hardpps(struct timeval *tvp, /* time at PPS */
1365 long usec /* hardware counter at PPS */)
1366 {
1367 long u_usec, v_usec, bigtick;
1368 long cal_sec, cal_usec;
1369
1370 /*
1371 * An occasional glitch can be produced when the PPS interrupt
1372 * occurs in the hardclock() routine before the time variable is
1373 * updated. Here the offset is discarded when the difference
1374 * between it and the last one is greater than tick/2, but not
1375 * if the interval since the first discard exceeds 30 s.
1376 */
1377 time_status |= STA_PPSSIGNAL;
1378 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1379 pps_valid = 0;
1380 u_usec = -tvp->tv_usec;
1381 if (u_usec < -500000)
1382 u_usec += 1000000;
1383 v_usec = pps_offset - u_usec;
1384 if (v_usec < 0)
1385 v_usec = -v_usec;
1386 if (v_usec > (tick >> 1)) {
1387 if (pps_glitch > MAXGLITCH) {
1388 pps_glitch = 0;
1389 pps_tf[2] = u_usec;
1390 pps_tf[1] = u_usec;
1391 } else {
1392 pps_glitch++;
1393 u_usec = pps_offset;
1394 }
1395 } else
1396 pps_glitch = 0;
1397
1398 /*
1399 * A three-stage median filter is used to help deglitch the pps
1400 * time. The median sample becomes the time offset estimate; the
1401 * difference between the other two samples becomes the time
1402 * dispersion (jitter) estimate.
1403 */
1404 pps_tf[2] = pps_tf[1];
1405 pps_tf[1] = pps_tf[0];
1406 pps_tf[0] = u_usec;
1407 if (pps_tf[0] > pps_tf[1]) {
1408 if (pps_tf[1] > pps_tf[2]) {
1409 pps_offset = pps_tf[1]; /* 0 1 2 */
1410 v_usec = pps_tf[0] - pps_tf[2];
1411 } else if (pps_tf[2] > pps_tf[0]) {
1412 pps_offset = pps_tf[0]; /* 2 0 1 */
1413 v_usec = pps_tf[2] - pps_tf[1];
1414 } else {
1415 pps_offset = pps_tf[2]; /* 0 2 1 */
1416 v_usec = pps_tf[0] - pps_tf[1];
1417 }
1418 } else {
1419 if (pps_tf[1] < pps_tf[2]) {
1420 pps_offset = pps_tf[1]; /* 2 1 0 */
1421 v_usec = pps_tf[2] - pps_tf[0];
1422 } else if (pps_tf[2] < pps_tf[0]) {
1423 pps_offset = pps_tf[0]; /* 1 0 2 */
1424 v_usec = pps_tf[1] - pps_tf[2];
1425 } else {
1426 pps_offset = pps_tf[2]; /* 1 2 0 */
1427 v_usec = pps_tf[1] - pps_tf[0];
1428 }
1429 }
1430 if (v_usec > MAXTIME)
1431 pps_jitcnt++;
1432 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1433 if (v_usec < 0)
1434 pps_jitter -= -v_usec >> PPS_AVG;
1435 else
1436 pps_jitter += v_usec >> PPS_AVG;
1437 if (pps_jitter > (MAXTIME >> 1))
1438 time_status |= STA_PPSJITTER;
1439
1440 /*
1441 * During the calibration interval adjust the starting time when
1442 * the tick overflows. At the end of the interval compute the
1443 * duration of the interval and the difference of the hardware
1444 * counters at the beginning and end of the interval. This code
1445 * is deliciously complicated by the fact valid differences may
1446 * exceed the value of tick when using long calibration
1447 * intervals and small ticks. Note that the counter can be
1448 * greater than tick if caught at just the wrong instant, but
1449 * the values returned and used here are correct.
1450 */
1451 bigtick = (long)tick << SHIFT_USEC;
1452 pps_usec -= pps_freq;
1453 if (pps_usec >= bigtick)
1454 pps_usec -= bigtick;
1455 if (pps_usec < 0)
1456 pps_usec += bigtick;
1457 pps_time.tv_sec++;
1458 pps_count++;
1459 if (pps_count < (1 << pps_shift))
1460 return;
1461 pps_count = 0;
1462 pps_calcnt++;
1463 u_usec = usec << SHIFT_USEC;
1464 v_usec = pps_usec - u_usec;
1465 if (v_usec >= bigtick >> 1)
1466 v_usec -= bigtick;
1467 if (v_usec < -(bigtick >> 1))
1468 v_usec += bigtick;
1469 if (v_usec < 0)
1470 v_usec = -(-v_usec >> pps_shift);
1471 else
1472 v_usec = v_usec >> pps_shift;
1473 pps_usec = u_usec;
1474 cal_sec = tvp->tv_sec;
1475 cal_usec = tvp->tv_usec;
1476 cal_sec -= pps_time.tv_sec;
1477 cal_usec -= pps_time.tv_usec;
1478 if (cal_usec < 0) {
1479 cal_usec += 1000000;
1480 cal_sec--;
1481 }
1482 pps_time = *tvp;
1483
1484 /*
1485 * Check for lost interrupts, noise, excessive jitter and
1486 * excessive frequency error. The number of timer ticks during
1487 * the interval may vary +-1 tick. Add to this a margin of one
1488 * tick for the PPS signal jitter and maximum frequency
1489 * deviation. If the limits are exceeded, the calibration
1490 * interval is reset to the minimum and we start over.
1491 */
1492 u_usec = (long)tick << 1;
1493 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1494 || (cal_sec == 0 && cal_usec < u_usec))
1495 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1496 pps_errcnt++;
1497 pps_shift = PPS_SHIFT;
1498 pps_intcnt = 0;
1499 time_status |= STA_PPSERROR;
1500 return;
1501 }
1502
1503 /*
1504 * A three-stage median filter is used to help deglitch the pps
1505 * frequency. The median sample becomes the frequency offset
1506 * estimate; the difference between the other two samples
1507 * becomes the frequency dispersion (stability) estimate.
1508 */
1509 pps_ff[2] = pps_ff[1];
1510 pps_ff[1] = pps_ff[0];
1511 pps_ff[0] = v_usec;
1512 if (pps_ff[0] > pps_ff[1]) {
1513 if (pps_ff[1] > pps_ff[2]) {
1514 u_usec = pps_ff[1]; /* 0 1 2 */
1515 v_usec = pps_ff[0] - pps_ff[2];
1516 } else if (pps_ff[2] > pps_ff[0]) {
1517 u_usec = pps_ff[0]; /* 2 0 1 */
1518 v_usec = pps_ff[2] - pps_ff[1];
1519 } else {
1520 u_usec = pps_ff[2]; /* 0 2 1 */
1521 v_usec = pps_ff[0] - pps_ff[1];
1522 }
1523 } else {
1524 if (pps_ff[1] < pps_ff[2]) {
1525 u_usec = pps_ff[1]; /* 2 1 0 */
1526 v_usec = pps_ff[2] - pps_ff[0];
1527 } else if (pps_ff[2] < pps_ff[0]) {
1528 u_usec = pps_ff[0]; /* 1 0 2 */
1529 v_usec = pps_ff[1] - pps_ff[2];
1530 } else {
1531 u_usec = pps_ff[2]; /* 1 2 0 */
1532 v_usec = pps_ff[1] - pps_ff[0];
1533 }
1534 }
1535
1536 /*
1537 * Here the frequency dispersion (stability) is updated. If it
1538 * is less than one-fourth the maximum (MAXFREQ), the frequency
1539 * offset is updated as well, but clamped to the tolerance. It
1540 * will be processed later by the hardclock() routine.
1541 */
1542 v_usec = (v_usec >> 1) - pps_stabil;
1543 if (v_usec < 0)
1544 pps_stabil -= -v_usec >> PPS_AVG;
1545 else
1546 pps_stabil += v_usec >> PPS_AVG;
1547 if (pps_stabil > MAXFREQ >> 2) {
1548 pps_stbcnt++;
1549 time_status |= STA_PPSWANDER;
1550 return;
1551 }
1552 if (time_status & STA_PPSFREQ) {
1553 if (u_usec < 0) {
1554 pps_freq -= -u_usec >> PPS_AVG;
1555 if (pps_freq < -time_tolerance)
1556 pps_freq = -time_tolerance;
1557 u_usec = -u_usec;
1558 } else {
1559 pps_freq += u_usec >> PPS_AVG;
1560 if (pps_freq > time_tolerance)
1561 pps_freq = time_tolerance;
1562 }
1563 }
1564
1565 /*
1566 * Here the calibration interval is adjusted. If the maximum
1567 * time difference is greater than tick / 4, reduce the interval
1568 * by half. If this is not the case for four consecutive
1569 * intervals, double the interval.
1570 */
1571 if (u_usec << pps_shift > bigtick >> 2) {
1572 pps_intcnt = 0;
1573 if (pps_shift > PPS_SHIFT)
1574 pps_shift--;
1575 } else if (pps_intcnt >= 4) {
1576 pps_intcnt = 0;
1577 if (pps_shift < PPS_SHIFTMAX)
1578 pps_shift++;
1579 } else
1580 pps_intcnt++;
1581 }
1582 #endif /* PPS_SYNC */
1583 #endif /* NTP */
1584
1585 /* timecounter compat functions */
1586 void
1587 nanotime(struct timespec *ts)
1588 {
1589 struct timeval tv;
1590
1591 microtime(&tv);
1592 TIMEVAL_TO_TIMESPEC(&tv, ts);
1593 }
1594
1595 void
1596 getbinuptime(struct bintime *bt)
1597 {
1598 struct timeval tv;
1599
1600 microtime(&tv);
1601 timeval2bintime(&tv, bt);
1602 }
1603
1604 void
1605 nanouptime(struct timespec *tsp)
1606 {
1607 int s;
1608
1609 s = splclock();
1610 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1611 splx(s);
1612 }
1613
1614 void
1615 getnanouptime(struct timespec *tsp)
1616 {
1617 int s;
1618
1619 s = splclock();
1620 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1621 splx(s);
1622 }
1623
1624 void
1625 getmicrouptime(struct timeval *tvp)
1626 {
1627 int s;
1628
1629 s = splclock();
1630 *tvp = mono_time;
1631 splx(s);
1632 }
1633
1634 void
1635 getnanotime(struct timespec *tsp)
1636 {
1637 int s;
1638
1639 s = splclock();
1640 TIMEVAL_TO_TIMESPEC(&time, tsp);
1641 splx(s);
1642 }
1643
1644 void
1645 getmicrotime(struct timeval *tvp)
1646 {
1647 int s;
1648
1649 s = splclock();
1650 *tvp = time;
1651 splx(s);
1652 }
1653
1654 u_int64_t
1655 tc_getfrequency(void)
1656 {
1657 return hz;
1658 }
1659 #endif /* !__HAVE_TIMECOUNTER */
1660