kern_clock.c revision 1.106.6.6 1 /* $NetBSD: kern_clock.c,v 1.106.6.6 2007/10/09 13:44:23 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.106.6.6 2007/10/09 13:44:23 ad Exp $");
80
81 #include "opt_ntp.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/resourcevar.h>
91 #include <sys/signalvar.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #include <sys/time.h>
96 #include <sys/timetc.h>
97 #include <sys/cpu.h>
98 #include <sys/intr.h>
99
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103
104 /*
105 * Clock handling routines.
106 *
107 * This code is written to operate with two timers that run independently of
108 * each other. The main clock, running hz times per second, is used to keep
109 * track of real time. The second timer handles kernel and user profiling,
110 * and does resource use estimation. If the second timer is programmable,
111 * it is randomized to avoid aliasing between the two clocks. For example,
112 * the randomization prevents an adversary from always giving up the CPU
113 * just before its quantum expires. Otherwise, it would never accumulate
114 * CPU ticks. The mean frequency of the second timer is stathz.
115 *
116 * If no second timer exists, stathz will be zero; in this case we drive
117 * profiling and statistics off the main clock. This WILL NOT be accurate;
118 * do not do it unless absolutely necessary.
119 *
120 * The statistics clock may (or may not) be run at a higher rate while
121 * profiling. This profile clock runs at profhz. We require that profhz
122 * be an integral multiple of stathz.
123 *
124 * If the statistics clock is running fast, it must be divided by the ratio
125 * profhz/stathz for statistics. (For profiling, every tick counts.)
126 */
127
128 #ifndef __HAVE_TIMECOUNTER
129 #ifdef NTP /* NTP phase-locked loop in kernel */
130 /*
131 * Phase/frequency-lock loop (PLL/FLL) definitions
132 *
133 * The following variables are read and set by the ntp_adjtime() system
134 * call.
135 *
136 * time_state shows the state of the system clock, with values defined
137 * in the timex.h header file.
138 *
139 * time_status shows the status of the system clock, with bits defined
140 * in the timex.h header file.
141 *
142 * time_offset is used by the PLL/FLL to adjust the system time in small
143 * increments.
144 *
145 * time_constant determines the bandwidth or "stiffness" of the PLL.
146 *
147 * time_tolerance determines maximum frequency error or tolerance of the
148 * CPU clock oscillator and is a property of the architecture; however,
149 * in principle it could change as result of the presence of external
150 * discipline signals, for instance.
151 *
152 * time_precision is usually equal to the kernel tick variable; however,
153 * in cases where a precision clock counter or external clock is
154 * available, the resolution can be much less than this and depend on
155 * whether the external clock is working or not.
156 *
157 * time_maxerror is initialized by a ntp_adjtime() call and increased by
158 * the kernel once each second to reflect the maximum error bound
159 * growth.
160 *
161 * time_esterror is set and read by the ntp_adjtime() call, but
162 * otherwise not used by the kernel.
163 */
164 int time_state = TIME_OK; /* clock state */
165 int time_status = STA_UNSYNC; /* clock status bits */
166 long time_offset = 0; /* time offset (us) */
167 long time_constant = 0; /* pll time constant */
168 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
169 long time_precision = 1; /* clock precision (us) */
170 long time_maxerror = MAXPHASE; /* maximum error (us) */
171 long time_esterror = MAXPHASE; /* estimated error (us) */
172
173 /*
174 * The following variables establish the state of the PLL/FLL and the
175 * residual time and frequency offset of the local clock. The scale
176 * factors are defined in the timex.h header file.
177 *
178 * time_phase and time_freq are the phase increment and the frequency
179 * increment, respectively, of the kernel time variable.
180 *
181 * time_freq is set via ntp_adjtime() from a value stored in a file when
182 * the synchronization daemon is first started. Its value is retrieved
183 * via ntp_adjtime() and written to the file about once per hour by the
184 * daemon.
185 *
186 * time_adj is the adjustment added to the value of tick at each timer
187 * interrupt and is recomputed from time_phase and time_freq at each
188 * seconds rollover.
189 *
190 * time_reftime is the second's portion of the system time at the last
191 * call to ntp_adjtime(). It is used to adjust the time_freq variable
192 * and to increase the time_maxerror as the time since last update
193 * increases.
194 */
195 long time_phase = 0; /* phase offset (scaled us) */
196 long time_freq = 0; /* frequency offset (scaled ppm) */
197 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
198 long time_reftime = 0; /* time at last adjustment (s) */
199
200 #ifdef PPS_SYNC
201 /*
202 * The following variables are used only if the kernel PPS discipline
203 * code is configured (PPS_SYNC). The scale factors are defined in the
204 * timex.h header file.
205 *
206 * pps_time contains the time at each calibration interval, as read by
207 * microtime(). pps_count counts the seconds of the calibration
208 * interval, the duration of which is nominally pps_shift in powers of
209 * two.
210 *
211 * pps_offset is the time offset produced by the time median filter
212 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
213 * this filter.
214 *
215 * pps_freq is the frequency offset produced by the frequency median
216 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
217 * by this filter.
218 *
219 * pps_usec is latched from a high resolution counter or external clock
220 * at pps_time. Here we want the hardware counter contents only, not the
221 * contents plus the time_tv.usec as usual.
222 *
223 * pps_valid counts the number of seconds since the last PPS update. It
224 * is used as a watchdog timer to disable the PPS discipline should the
225 * PPS signal be lost.
226 *
227 * pps_glitch counts the number of seconds since the beginning of an
228 * offset burst more than tick/2 from current nominal offset. It is used
229 * mainly to suppress error bursts due to priority conflicts between the
230 * PPS interrupt and timer interrupt.
231 *
232 * pps_intcnt counts the calibration intervals for use in the interval-
233 * adaptation algorithm. It's just too complicated for words.
234 *
235 * pps_kc_hardpps_source contains an arbitrary value that uniquely
236 * identifies the currently bound source of the PPS signal, or NULL
237 * if no source is bound.
238 *
239 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
240 * signal should be reported.
241 */
242 struct timeval pps_time; /* kernel time at last interval */
243 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
244 long pps_offset = 0; /* pps time offset (us) */
245 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
246 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
247 long pps_freq = 0; /* frequency offset (scaled ppm) */
248 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
249 long pps_usec = 0; /* microsec counter at last interval */
250 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
251 int pps_glitch = 0; /* pps signal glitch counter */
252 int pps_count = 0; /* calibration interval counter (s) */
253 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
254 int pps_intcnt = 0; /* intervals at current duration */
255 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
256 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
257
258 /*
259 * PPS signal quality monitors
260 *
261 * pps_jitcnt counts the seconds that have been discarded because the
262 * jitter measured by the time median filter exceeds the limit MAXTIME
263 * (100 us).
264 *
265 * pps_calcnt counts the frequency calibration intervals, which are
266 * variable from 4 s to 256 s.
267 *
268 * pps_errcnt counts the calibration intervals which have been discarded
269 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
270 * calibration interval jitter exceeds two ticks.
271 *
272 * pps_stbcnt counts the calibration intervals that have been discarded
273 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
274 */
275 long pps_jitcnt = 0; /* jitter limit exceeded */
276 long pps_calcnt = 0; /* calibration intervals */
277 long pps_errcnt = 0; /* calibration errors */
278 long pps_stbcnt = 0; /* stability limit exceeded */
279 #endif /* PPS_SYNC */
280
281 #ifdef EXT_CLOCK
282 /*
283 * External clock definitions
284 *
285 * The following definitions and declarations are used only if an
286 * external clock is configured on the system.
287 */
288 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
289
290 /*
291 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
292 * interrupt and decremented once each second.
293 */
294 int clock_count = 0; /* CPU clock counter */
295
296 #endif /* EXT_CLOCK */
297 #endif /* NTP */
298
299 /*
300 * Bump a timeval by a small number of usec's.
301 */
302 #define BUMPTIME(t, usec) { \
303 volatile struct timeval *tp = (t); \
304 long us; \
305 \
306 tp->tv_usec = us = tp->tv_usec + (usec); \
307 if (us >= 1000000) { \
308 tp->tv_usec = us - 1000000; \
309 tp->tv_sec++; \
310 } \
311 }
312 #endif /* !__HAVE_TIMECOUNTER */
313
314 int stathz;
315 int profhz;
316 int profsrc;
317 int schedhz;
318 int profprocs;
319 int hardclock_ticks;
320 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
321 static int psdiv; /* prof => stat divider */
322 int psratio; /* ratio: prof / stat */
323 #ifndef __HAVE_TIMECOUNTER
324 int tickfix, tickfixinterval; /* used if tick not really integral */
325 #ifndef NTP
326 static int tickfixcnt; /* accumulated fractional error */
327 #else
328 int fixtick; /* used by NTP for same */
329 int shifthz;
330 #endif
331
332 /*
333 * We might want ldd to load the both words from time at once.
334 * To succeed we need to be quadword aligned.
335 * The sparc already does that, and that it has worked so far is a fluke.
336 */
337 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
338 volatile struct timeval mono_time;
339 #endif /* !__HAVE_TIMECOUNTER */
340
341 #ifdef __HAVE_TIMECOUNTER
342 static u_int get_intr_timecount(struct timecounter *);
343
344 static struct timecounter intr_timecounter = {
345 get_intr_timecount, /* get_timecount */
346 0, /* no poll_pps */
347 ~0u, /* counter_mask */
348 0, /* frequency */
349 "clockinterrupt", /* name */
350 0, /* quality - minimum implementation level for a clock */
351 NULL, /* prev */
352 NULL, /* next */
353 };
354
355 static u_int
356 get_intr_timecount(struct timecounter *tc)
357 {
358
359 return (u_int)hardclock_ticks;
360 }
361 #endif
362
363 /*
364 * Initialize clock frequencies and start both clocks running.
365 */
366 void
367 initclocks(void)
368 {
369 int i;
370
371 /*
372 * Set divisors to 1 (normal case) and let the machine-specific
373 * code do its bit.
374 */
375 psdiv = 1;
376 #ifdef __HAVE_TIMECOUNTER
377 /*
378 * provide minimum default time counter
379 * will only run at interrupt resolution
380 */
381 intr_timecounter.tc_frequency = hz;
382 tc_init(&intr_timecounter);
383 #endif
384 cpu_initclocks();
385
386 /*
387 * Compute profhz and stathz, fix profhz if needed.
388 */
389 i = stathz ? stathz : hz;
390 if (profhz == 0)
391 profhz = i;
392 psratio = profhz / i;
393 if (schedhz == 0) {
394 /* 16Hz is best */
395 statscheddiv = i / 16;
396 if (statscheddiv <= 0)
397 panic("statscheddiv");
398 }
399
400 #ifndef __HAVE_TIMECOUNTER
401 #ifdef NTP
402 switch (hz) {
403 case 1:
404 shifthz = SHIFT_SCALE - 0;
405 break;
406 case 2:
407 shifthz = SHIFT_SCALE - 1;
408 break;
409 case 4:
410 shifthz = SHIFT_SCALE - 2;
411 break;
412 case 8:
413 shifthz = SHIFT_SCALE - 3;
414 break;
415 case 16:
416 shifthz = SHIFT_SCALE - 4;
417 break;
418 case 32:
419 shifthz = SHIFT_SCALE - 5;
420 break;
421 case 50:
422 case 60:
423 case 64:
424 shifthz = SHIFT_SCALE - 6;
425 break;
426 case 96:
427 case 100:
428 case 128:
429 shifthz = SHIFT_SCALE - 7;
430 break;
431 case 256:
432 shifthz = SHIFT_SCALE - 8;
433 break;
434 case 512:
435 shifthz = SHIFT_SCALE - 9;
436 break;
437 case 1000:
438 case 1024:
439 shifthz = SHIFT_SCALE - 10;
440 break;
441 case 1200:
442 case 2048:
443 shifthz = SHIFT_SCALE - 11;
444 break;
445 case 4096:
446 shifthz = SHIFT_SCALE - 12;
447 break;
448 case 8192:
449 shifthz = SHIFT_SCALE - 13;
450 break;
451 case 16384:
452 shifthz = SHIFT_SCALE - 14;
453 break;
454 case 32768:
455 shifthz = SHIFT_SCALE - 15;
456 break;
457 case 65536:
458 shifthz = SHIFT_SCALE - 16;
459 break;
460 default:
461 panic("weird hz");
462 }
463 if (fixtick == 0) {
464 /*
465 * Give MD code a chance to set this to a better
466 * value; but, if it doesn't, we should.
467 */
468 fixtick = (1000000 - (hz*tick));
469 }
470 #endif /* NTP */
471 #endif /* !__HAVE_TIMECOUNTER */
472 }
473
474 /*
475 * The real-time timer, interrupting hz times per second.
476 */
477 void
478 hardclock(struct clockframe *frame)
479 {
480 struct lwp *l;
481 struct proc *p;
482 struct cpu_info *ci = curcpu();
483 struct ptimer *pt;
484 #ifndef __HAVE_TIMECOUNTER
485 int delta;
486 extern int tickdelta;
487 extern long timedelta;
488 #ifdef NTP
489 int time_update;
490 int ltemp;
491 #endif /* NTP */
492 #endif /* __HAVE_TIMECOUNTER */
493
494 l = curlwp;
495 if (!CURCPU_IDLE_P()) {
496 p = l->l_proc;
497 /*
498 * Run current process's virtual and profile time, as needed.
499 */
500 if (CLKF_USERMODE(frame) && p->p_timers &&
501 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
502 if (itimerdecr(pt, tick) == 0)
503 itimerfire(pt);
504 if (p->p_timers &&
505 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
506 if (itimerdecr(pt, tick) == 0)
507 itimerfire(pt);
508 }
509
510 /*
511 * If no separate statistics clock is available, run it from here.
512 */
513 if (stathz == 0)
514 statclock(frame);
515 if ((--ci->ci_schedstate.spc_ticks) <= 0)
516 sched_tick(ci);
517
518 #if defined(MULTIPROCESSOR)
519 /*
520 * If we are not the primary CPU, we're not allowed to do
521 * any more work.
522 */
523 if (CPU_IS_PRIMARY(ci) == 0)
524 return;
525 #endif
526
527 hardclock_ticks++;
528
529 #ifdef __HAVE_TIMECOUNTER
530 tc_ticktock();
531 #else /* __HAVE_TIMECOUNTER */
532 /*
533 * Increment the time-of-day. The increment is normally just
534 * ``tick''. If the machine is one which has a clock frequency
535 * such that ``hz'' would not divide the second evenly into
536 * milliseconds, a periodic adjustment must be applied. Finally,
537 * if we are still adjusting the time (see adjtime()),
538 * ``tickdelta'' may also be added in.
539 */
540 delta = tick;
541
542 #ifndef NTP
543 if (tickfix) {
544 tickfixcnt += tickfix;
545 if (tickfixcnt >= tickfixinterval) {
546 delta++;
547 tickfixcnt -= tickfixinterval;
548 }
549 }
550 #endif /* !NTP */
551 /* Imprecise 4bsd adjtime() handling */
552 if (timedelta != 0) {
553 delta += tickdelta;
554 timedelta -= tickdelta;
555 }
556
557 #ifdef notyet
558 microset();
559 #endif
560
561 #ifndef NTP
562 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
563 #endif
564 BUMPTIME(&mono_time, delta);
565
566 #ifdef NTP
567 time_update = delta;
568
569 /*
570 * Compute the phase adjustment. If the low-order bits
571 * (time_phase) of the update overflow, bump the high-order bits
572 * (time_update).
573 */
574 time_phase += time_adj;
575 if (time_phase <= -FINEUSEC) {
576 ltemp = -time_phase >> SHIFT_SCALE;
577 time_phase += ltemp << SHIFT_SCALE;
578 time_update -= ltemp;
579 } else if (time_phase >= FINEUSEC) {
580 ltemp = time_phase >> SHIFT_SCALE;
581 time_phase -= ltemp << SHIFT_SCALE;
582 time_update += ltemp;
583 }
584 time.tv_usec += time_update;
585
586 /*
587 * On rollover of the second the phase adjustment to be used for
588 * the next second is calculated. Also, the maximum error is
589 * increased by the tolerance. If the PPS frequency discipline
590 * code is present, the phase is increased to compensate for the
591 * CPU clock oscillator frequency error.
592 *
593 * On a 32-bit machine and given parameters in the timex.h
594 * header file, the maximum phase adjustment is +-512 ms and
595 * maximum frequency offset is a tad less than) +-512 ppm. On a
596 * 64-bit machine, you shouldn't need to ask.
597 */
598 if (time.tv_usec >= 1000000) {
599 time.tv_usec -= 1000000;
600 time.tv_sec++;
601 time_maxerror += time_tolerance >> SHIFT_USEC;
602
603 /*
604 * Leap second processing. If in leap-insert state at
605 * the end of the day, the system clock is set back one
606 * second; if in leap-delete state, the system clock is
607 * set ahead one second. The microtime() routine or
608 * external clock driver will insure that reported time
609 * is always monotonic. The ugly divides should be
610 * replaced.
611 */
612 switch (time_state) {
613 case TIME_OK:
614 if (time_status & STA_INS)
615 time_state = TIME_INS;
616 else if (time_status & STA_DEL)
617 time_state = TIME_DEL;
618 break;
619
620 case TIME_INS:
621 if (time.tv_sec % 86400 == 0) {
622 time.tv_sec--;
623 time_state = TIME_OOP;
624 }
625 break;
626
627 case TIME_DEL:
628 if ((time.tv_sec + 1) % 86400 == 0) {
629 time.tv_sec++;
630 time_state = TIME_WAIT;
631 }
632 break;
633
634 case TIME_OOP:
635 time_state = TIME_WAIT;
636 break;
637
638 case TIME_WAIT:
639 if (!(time_status & (STA_INS | STA_DEL)))
640 time_state = TIME_OK;
641 break;
642 }
643
644 /*
645 * Compute the phase adjustment for the next second. In
646 * PLL mode, the offset is reduced by a fixed factor
647 * times the time constant. In FLL mode the offset is
648 * used directly. In either mode, the maximum phase
649 * adjustment for each second is clamped so as to spread
650 * the adjustment over not more than the number of
651 * seconds between updates.
652 */
653 if (time_offset < 0) {
654 ltemp = -time_offset;
655 if (!(time_status & STA_FLL))
656 ltemp >>= SHIFT_KG + time_constant;
657 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
658 ltemp = (MAXPHASE / MINSEC) <<
659 SHIFT_UPDATE;
660 time_offset += ltemp;
661 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
662 } else if (time_offset > 0) {
663 ltemp = time_offset;
664 if (!(time_status & STA_FLL))
665 ltemp >>= SHIFT_KG + time_constant;
666 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
667 ltemp = (MAXPHASE / MINSEC) <<
668 SHIFT_UPDATE;
669 time_offset -= ltemp;
670 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
671 } else
672 time_adj = 0;
673
674 /*
675 * Compute the frequency estimate and additional phase
676 * adjustment due to frequency error for the next
677 * second. When the PPS signal is engaged, gnaw on the
678 * watchdog counter and update the frequency computed by
679 * the pll and the PPS signal.
680 */
681 #ifdef PPS_SYNC
682 pps_valid++;
683 if (pps_valid == PPS_VALID) {
684 pps_jitter = MAXTIME;
685 pps_stabil = MAXFREQ;
686 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
687 STA_PPSWANDER | STA_PPSERROR);
688 }
689 ltemp = time_freq + pps_freq;
690 #else
691 ltemp = time_freq;
692 #endif /* PPS_SYNC */
693
694 if (ltemp < 0)
695 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
696 else
697 time_adj += ltemp >> (SHIFT_USEC - shifthz);
698 time_adj += (long)fixtick << shifthz;
699
700 /*
701 * When the CPU clock oscillator frequency is not a
702 * power of 2 in Hz, shifthz is only an approximate
703 * scale factor.
704 *
705 * To determine the adjustment, you can do the following:
706 * bc -q
707 * scale=24
708 * obase=2
709 * idealhz/realhz
710 * where `idealhz' is the next higher power of 2, and `realhz'
711 * is the actual value. You may need to factor this result
712 * into a sequence of 2 multipliers to get better precision.
713 *
714 * Likewise, the error can be calculated with (e.g. for 100Hz):
715 * bc -q
716 * scale=24
717 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
718 * (and then multiply by 1000000 to get ppm).
719 */
720 switch (hz) {
721 case 60:
722 /* A factor of 1.000100010001 gives about 15ppm
723 error. */
724 if (time_adj < 0) {
725 time_adj -= (-time_adj >> 4);
726 time_adj -= (-time_adj >> 8);
727 } else {
728 time_adj += (time_adj >> 4);
729 time_adj += (time_adj >> 8);
730 }
731 break;
732
733 case 96:
734 /* A factor of 1.0101010101 gives about 244ppm error. */
735 if (time_adj < 0) {
736 time_adj -= (-time_adj >> 2);
737 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
738 } else {
739 time_adj += (time_adj >> 2);
740 time_adj += (time_adj >> 4) + (time_adj >> 8);
741 }
742 break;
743
744 case 50:
745 case 100:
746 /* A factor of 1.010001111010111 gives about 1ppm
747 error. */
748 if (time_adj < 0) {
749 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
750 time_adj += (-time_adj >> 10);
751 } else {
752 time_adj += (time_adj >> 2) + (time_adj >> 5);
753 time_adj -= (time_adj >> 10);
754 }
755 break;
756
757 case 1000:
758 /* A factor of 1.000001100010100001 gives about 50ppm
759 error. */
760 if (time_adj < 0) {
761 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
762 time_adj -= (-time_adj >> 7);
763 } else {
764 time_adj += (time_adj >> 6) + (time_adj >> 11);
765 time_adj += (time_adj >> 7);
766 }
767 break;
768
769 case 1200:
770 /* A factor of 1.1011010011100001 gives about 64ppm
771 error. */
772 if (time_adj < 0) {
773 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
774 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
775 } else {
776 time_adj += (time_adj >> 1) + (time_adj >> 6);
777 time_adj += (time_adj >> 3) + (time_adj >> 10);
778 }
779 break;
780 }
781
782 #ifdef EXT_CLOCK
783 /*
784 * If an external clock is present, it is necessary to
785 * discipline the kernel time variable anyway, since not
786 * all system components use the microtime() interface.
787 * Here, the time offset between the external clock and
788 * kernel time variable is computed every so often.
789 */
790 clock_count++;
791 if (clock_count > CLOCK_INTERVAL) {
792 clock_count = 0;
793 microtime(&clock_ext);
794 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
795 delta.tv_usec = clock_ext.tv_usec -
796 time.tv_usec;
797 if (delta.tv_usec < 0)
798 delta.tv_sec--;
799 if (delta.tv_usec >= 500000) {
800 delta.tv_usec -= 1000000;
801 delta.tv_sec++;
802 }
803 if (delta.tv_usec < -500000) {
804 delta.tv_usec += 1000000;
805 delta.tv_sec--;
806 }
807 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
808 delta.tv_usec > MAXPHASE) ||
809 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
810 delta.tv_usec < -MAXPHASE)) {
811 time = clock_ext;
812 delta.tv_sec = 0;
813 delta.tv_usec = 0;
814 }
815 hardupdate(delta.tv_usec);
816 }
817 #endif /* EXT_CLOCK */
818 }
819
820 #endif /* NTP */
821 #endif /* !__HAVE_TIMECOUNTER */
822
823 /*
824 * Update real-time timeout queue. Callouts are processed at a
825 * very low CPU priority, so we don't keep the relatively high
826 * clock interrupt priority any longer than necessary.
827 */
828 callout_hardclock();
829 }
830
831 /*
832 * Start profiling on a process.
833 *
834 * Kernel profiling passes proc0 which never exits and hence
835 * keeps the profile clock running constantly.
836 */
837 void
838 startprofclock(struct proc *p)
839 {
840
841 KASSERT(mutex_owned(&p->p_stmutex));
842
843 if ((p->p_stflag & PST_PROFIL) == 0) {
844 p->p_stflag |= PST_PROFIL;
845 /*
846 * This is only necessary if using the clock as the
847 * profiling source.
848 */
849 if (++profprocs == 1 && stathz != 0)
850 psdiv = psratio;
851 }
852 }
853
854 /*
855 * Stop profiling on a process.
856 */
857 void
858 stopprofclock(struct proc *p)
859 {
860
861 KASSERT(mutex_owned(&p->p_stmutex));
862
863 if (p->p_stflag & PST_PROFIL) {
864 p->p_stflag &= ~PST_PROFIL;
865 /*
866 * This is only necessary if using the clock as the
867 * profiling source.
868 */
869 if (--profprocs == 0 && stathz != 0)
870 psdiv = 1;
871 }
872 }
873
874 #if defined(PERFCTRS)
875 /*
876 * Independent profiling "tick" in case we're using a separate
877 * clock or profiling event source. Currently, that's just
878 * performance counters--hence the wrapper.
879 */
880 void
881 proftick(struct clockframe *frame)
882 {
883 #ifdef GPROF
884 struct gmonparam *g;
885 intptr_t i;
886 #endif
887 struct lwp *l;
888 struct proc *p;
889
890 l = curlwp;
891 p = (l ? l->l_proc : NULL);
892 if (CLKF_USERMODE(frame)) {
893 mutex_spin_enter(&p->p_stmutex);
894 if (p->p_stflag & PST_PROFIL)
895 addupc_intr(l, CLKF_PC(frame));
896 mutex_spin_exit(&p->p_stmutex);
897 } else {
898 #ifdef GPROF
899 g = &_gmonparam;
900 if (g->state == GMON_PROF_ON) {
901 i = CLKF_PC(frame) - g->lowpc;
902 if (i < g->textsize) {
903 i /= HISTFRACTION * sizeof(*g->kcount);
904 g->kcount[i]++;
905 }
906 }
907 #endif
908 #ifdef LWP_PC
909 if (p != NULL && (p->p_stflag & PST_PROFIL) != 0)
910 addupc_intr(l, LWP_PC(l));
911 #endif
912 }
913 }
914 #endif
915
916 void
917 schedclock(struct lwp *l)
918 {
919
920 if ((l->l_flag & LW_IDLE) != 0)
921 return;
922
923 sched_schedclock(l);
924 }
925
926 /*
927 * Statistics clock. Grab profile sample, and if divider reaches 0,
928 * do process and kernel statistics.
929 */
930 void
931 statclock(struct clockframe *frame)
932 {
933 #ifdef GPROF
934 struct gmonparam *g;
935 intptr_t i;
936 #endif
937 struct cpu_info *ci = curcpu();
938 struct schedstate_percpu *spc = &ci->ci_schedstate;
939 struct proc *p;
940 struct lwp *l;
941
942 /*
943 * Notice changes in divisor frequency, and adjust clock
944 * frequency accordingly.
945 */
946 if (spc->spc_psdiv != psdiv) {
947 spc->spc_psdiv = psdiv;
948 spc->spc_pscnt = psdiv;
949 if (psdiv == 1) {
950 setstatclockrate(stathz);
951 } else {
952 setstatclockrate(profhz);
953 }
954 }
955 l = curlwp;
956 if ((l->l_flag & LW_IDLE) != 0) {
957 /*
958 * don't account idle lwps as swapper.
959 */
960 p = NULL;
961 } else {
962 p = l->l_proc;
963 mutex_spin_enter(&p->p_stmutex);
964 }
965
966 if (CLKF_USERMODE(frame)) {
967 if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
968 addupc_intr(l, CLKF_PC(frame));
969 if (--spc->spc_pscnt > 0) {
970 mutex_spin_exit(&p->p_stmutex);
971 return;
972 }
973
974 /*
975 * Came from user mode; CPU was in user state.
976 * If this process is being profiled record the tick.
977 */
978 p->p_uticks++;
979 if (p->p_nice > NZERO)
980 spc->spc_cp_time[CP_NICE]++;
981 else
982 spc->spc_cp_time[CP_USER]++;
983 } else {
984 #ifdef GPROF
985 /*
986 * Kernel statistics are just like addupc_intr, only easier.
987 */
988 g = &_gmonparam;
989 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
990 i = CLKF_PC(frame) - g->lowpc;
991 if (i < g->textsize) {
992 i /= HISTFRACTION * sizeof(*g->kcount);
993 g->kcount[i]++;
994 }
995 }
996 #endif
997 #ifdef LWP_PC
998 if (p != NULL && profsrc == PROFSRC_CLOCK &&
999 (p->p_stflag & PST_PROFIL)) {
1000 addupc_intr(l, LWP_PC(l));
1001 }
1002 #endif
1003 if (--spc->spc_pscnt > 0) {
1004 if (p != NULL)
1005 mutex_spin_exit(&p->p_stmutex);
1006 return;
1007 }
1008 /*
1009 * Came from kernel mode, so we were:
1010 * - handling an interrupt,
1011 * - doing syscall or trap work on behalf of the current
1012 * user process, or
1013 * - spinning in the idle loop.
1014 * Whichever it is, charge the time as appropriate.
1015 * Note that we charge interrupts to the current process,
1016 * regardless of whether they are ``for'' that process,
1017 * so that we know how much of its real time was spent
1018 * in ``non-process'' (i.e., interrupt) work.
1019 */
1020 if (CLKF_INTR(frame) || (l->l_flag & LW_INTR) != 0) {
1021 if (p != NULL) {
1022 p->p_iticks++;
1023 }
1024 spc->spc_cp_time[CP_INTR]++;
1025 } else if (p != NULL) {
1026 p->p_sticks++;
1027 spc->spc_cp_time[CP_SYS]++;
1028 } else {
1029 spc->spc_cp_time[CP_IDLE]++;
1030 }
1031 }
1032 spc->spc_pscnt = psdiv;
1033
1034 if (p != NULL) {
1035 ++l->l_cpticks;
1036 mutex_spin_exit(&p->p_stmutex);
1037 }
1038
1039 /*
1040 * If no separate schedclock is provided, call it here
1041 * at about 16 Hz.
1042 */
1043 if (schedhz == 0) {
1044 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1045 schedclock(l);
1046 ci->ci_schedstate.spc_schedticks = statscheddiv;
1047 }
1048 }
1049 }
1050
1051 #ifndef __HAVE_TIMECOUNTER
1052 #ifdef NTP /* NTP phase-locked loop in kernel */
1053 /*
1054 * hardupdate() - local clock update
1055 *
1056 * This routine is called by ntp_adjtime() to update the local clock
1057 * phase and frequency. The implementation is of an adaptive-parameter,
1058 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1059 * time and frequency offset estimates for each call. If the kernel PPS
1060 * discipline code is configured (PPS_SYNC), the PPS signal itself
1061 * determines the new time offset, instead of the calling argument.
1062 * Presumably, calls to ntp_adjtime() occur only when the caller
1063 * believes the local clock is valid within some bound (+-128 ms with
1064 * NTP). If the caller's time is far different than the PPS time, an
1065 * argument will ensue, and it's not clear who will lose.
1066 *
1067 * For uncompensated quartz crystal oscillatores and nominal update
1068 * intervals less than 1024 s, operation should be in phase-lock mode
1069 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1070 * intervals greater than thiss, operation should be in frequency-lock
1071 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1072 *
1073 * Note: splclock() is in effect.
1074 */
1075 void
1076 hardupdate(long offset)
1077 {
1078 long ltemp, mtemp;
1079
1080 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1081 return;
1082 ltemp = offset;
1083 #ifdef PPS_SYNC
1084 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1085 ltemp = pps_offset;
1086 #endif /* PPS_SYNC */
1087
1088 /*
1089 * Scale the phase adjustment and clamp to the operating range.
1090 */
1091 if (ltemp > MAXPHASE)
1092 time_offset = MAXPHASE << SHIFT_UPDATE;
1093 else if (ltemp < -MAXPHASE)
1094 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1095 else
1096 time_offset = ltemp << SHIFT_UPDATE;
1097
1098 /*
1099 * Select whether the frequency is to be controlled and in which
1100 * mode (PLL or FLL). Clamp to the operating range. Ugly
1101 * multiply/divide should be replaced someday.
1102 */
1103 if (time_status & STA_FREQHOLD || time_reftime == 0)
1104 time_reftime = time.tv_sec;
1105 mtemp = time.tv_sec - time_reftime;
1106 time_reftime = time.tv_sec;
1107 if (time_status & STA_FLL) {
1108 if (mtemp >= MINSEC) {
1109 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1110 SHIFT_UPDATE));
1111 if (ltemp < 0)
1112 time_freq -= -ltemp >> SHIFT_KH;
1113 else
1114 time_freq += ltemp >> SHIFT_KH;
1115 }
1116 } else {
1117 if (mtemp < MAXSEC) {
1118 ltemp *= mtemp;
1119 if (ltemp < 0)
1120 time_freq -= -ltemp >> (time_constant +
1121 time_constant + SHIFT_KF -
1122 SHIFT_USEC);
1123 else
1124 time_freq += ltemp >> (time_constant +
1125 time_constant + SHIFT_KF -
1126 SHIFT_USEC);
1127 }
1128 }
1129 if (time_freq > time_tolerance)
1130 time_freq = time_tolerance;
1131 else if (time_freq < -time_tolerance)
1132 time_freq = -time_tolerance;
1133 }
1134
1135 #ifdef PPS_SYNC
1136 /*
1137 * hardpps() - discipline CPU clock oscillator to external PPS signal
1138 *
1139 * This routine is called at each PPS interrupt in order to discipline
1140 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1141 * and leaves it in a handy spot for the hardclock() routine. It
1142 * integrates successive PPS phase differences and calculates the
1143 * frequency offset. This is used in hardclock() to discipline the CPU
1144 * clock oscillator so that intrinsic frequency error is cancelled out.
1145 * The code requires the caller to capture the time and hardware counter
1146 * value at the on-time PPS signal transition.
1147 *
1148 * Note that, on some Unix systems, this routine runs at an interrupt
1149 * priority level higher than the timer interrupt routine hardclock().
1150 * Therefore, the variables used are distinct from the hardclock()
1151 * variables, except for certain exceptions: The PPS frequency pps_freq
1152 * and phase pps_offset variables are determined by this routine and
1153 * updated atomically. The time_tolerance variable can be considered a
1154 * constant, since it is infrequently changed, and then only when the
1155 * PPS signal is disabled. The watchdog counter pps_valid is updated
1156 * once per second by hardclock() and is atomically cleared in this
1157 * routine.
1158 */
1159 void
1160 hardpps(struct timeval *tvp, /* time at PPS */
1161 long usec /* hardware counter at PPS */)
1162 {
1163 long u_usec, v_usec, bigtick;
1164 long cal_sec, cal_usec;
1165
1166 /*
1167 * An occasional glitch can be produced when the PPS interrupt
1168 * occurs in the hardclock() routine before the time variable is
1169 * updated. Here the offset is discarded when the difference
1170 * between it and the last one is greater than tick/2, but not
1171 * if the interval since the first discard exceeds 30 s.
1172 */
1173 time_status |= STA_PPSSIGNAL;
1174 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1175 pps_valid = 0;
1176 u_usec = -tvp->tv_usec;
1177 if (u_usec < -500000)
1178 u_usec += 1000000;
1179 v_usec = pps_offset - u_usec;
1180 if (v_usec < 0)
1181 v_usec = -v_usec;
1182 if (v_usec > (tick >> 1)) {
1183 if (pps_glitch > MAXGLITCH) {
1184 pps_glitch = 0;
1185 pps_tf[2] = u_usec;
1186 pps_tf[1] = u_usec;
1187 } else {
1188 pps_glitch++;
1189 u_usec = pps_offset;
1190 }
1191 } else
1192 pps_glitch = 0;
1193
1194 /*
1195 * A three-stage median filter is used to help deglitch the pps
1196 * time. The median sample becomes the time offset estimate; the
1197 * difference between the other two samples becomes the time
1198 * dispersion (jitter) estimate.
1199 */
1200 pps_tf[2] = pps_tf[1];
1201 pps_tf[1] = pps_tf[0];
1202 pps_tf[0] = u_usec;
1203 if (pps_tf[0] > pps_tf[1]) {
1204 if (pps_tf[1] > pps_tf[2]) {
1205 pps_offset = pps_tf[1]; /* 0 1 2 */
1206 v_usec = pps_tf[0] - pps_tf[2];
1207 } else if (pps_tf[2] > pps_tf[0]) {
1208 pps_offset = pps_tf[0]; /* 2 0 1 */
1209 v_usec = pps_tf[2] - pps_tf[1];
1210 } else {
1211 pps_offset = pps_tf[2]; /* 0 2 1 */
1212 v_usec = pps_tf[0] - pps_tf[1];
1213 }
1214 } else {
1215 if (pps_tf[1] < pps_tf[2]) {
1216 pps_offset = pps_tf[1]; /* 2 1 0 */
1217 v_usec = pps_tf[2] - pps_tf[0];
1218 } else if (pps_tf[2] < pps_tf[0]) {
1219 pps_offset = pps_tf[0]; /* 1 0 2 */
1220 v_usec = pps_tf[1] - pps_tf[2];
1221 } else {
1222 pps_offset = pps_tf[2]; /* 1 2 0 */
1223 v_usec = pps_tf[1] - pps_tf[0];
1224 }
1225 }
1226 if (v_usec > MAXTIME)
1227 pps_jitcnt++;
1228 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1229 if (v_usec < 0)
1230 pps_jitter -= -v_usec >> PPS_AVG;
1231 else
1232 pps_jitter += v_usec >> PPS_AVG;
1233 if (pps_jitter > (MAXTIME >> 1))
1234 time_status |= STA_PPSJITTER;
1235
1236 /*
1237 * During the calibration interval adjust the starting time when
1238 * the tick overflows. At the end of the interval compute the
1239 * duration of the interval and the difference of the hardware
1240 * counters at the beginning and end of the interval. This code
1241 * is deliciously complicated by the fact valid differences may
1242 * exceed the value of tick when using long calibration
1243 * intervals and small ticks. Note that the counter can be
1244 * greater than tick if caught at just the wrong instant, but
1245 * the values returned and used here are correct.
1246 */
1247 bigtick = (long)tick << SHIFT_USEC;
1248 pps_usec -= pps_freq;
1249 if (pps_usec >= bigtick)
1250 pps_usec -= bigtick;
1251 if (pps_usec < 0)
1252 pps_usec += bigtick;
1253 pps_time.tv_sec++;
1254 pps_count++;
1255 if (pps_count < (1 << pps_shift))
1256 return;
1257 pps_count = 0;
1258 pps_calcnt++;
1259 u_usec = usec << SHIFT_USEC;
1260 v_usec = pps_usec - u_usec;
1261 if (v_usec >= bigtick >> 1)
1262 v_usec -= bigtick;
1263 if (v_usec < -(bigtick >> 1))
1264 v_usec += bigtick;
1265 if (v_usec < 0)
1266 v_usec = -(-v_usec >> pps_shift);
1267 else
1268 v_usec = v_usec >> pps_shift;
1269 pps_usec = u_usec;
1270 cal_sec = tvp->tv_sec;
1271 cal_usec = tvp->tv_usec;
1272 cal_sec -= pps_time.tv_sec;
1273 cal_usec -= pps_time.tv_usec;
1274 if (cal_usec < 0) {
1275 cal_usec += 1000000;
1276 cal_sec--;
1277 }
1278 pps_time = *tvp;
1279
1280 /*
1281 * Check for lost interrupts, noise, excessive jitter and
1282 * excessive frequency error. The number of timer ticks during
1283 * the interval may vary +-1 tick. Add to this a margin of one
1284 * tick for the PPS signal jitter and maximum frequency
1285 * deviation. If the limits are exceeded, the calibration
1286 * interval is reset to the minimum and we start over.
1287 */
1288 u_usec = (long)tick << 1;
1289 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1290 || (cal_sec == 0 && cal_usec < u_usec))
1291 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1292 pps_errcnt++;
1293 pps_shift = PPS_SHIFT;
1294 pps_intcnt = 0;
1295 time_status |= STA_PPSERROR;
1296 return;
1297 }
1298
1299 /*
1300 * A three-stage median filter is used to help deglitch the pps
1301 * frequency. The median sample becomes the frequency offset
1302 * estimate; the difference between the other two samples
1303 * becomes the frequency dispersion (stability) estimate.
1304 */
1305 pps_ff[2] = pps_ff[1];
1306 pps_ff[1] = pps_ff[0];
1307 pps_ff[0] = v_usec;
1308 if (pps_ff[0] > pps_ff[1]) {
1309 if (pps_ff[1] > pps_ff[2]) {
1310 u_usec = pps_ff[1]; /* 0 1 2 */
1311 v_usec = pps_ff[0] - pps_ff[2];
1312 } else if (pps_ff[2] > pps_ff[0]) {
1313 u_usec = pps_ff[0]; /* 2 0 1 */
1314 v_usec = pps_ff[2] - pps_ff[1];
1315 } else {
1316 u_usec = pps_ff[2]; /* 0 2 1 */
1317 v_usec = pps_ff[0] - pps_ff[1];
1318 }
1319 } else {
1320 if (pps_ff[1] < pps_ff[2]) {
1321 u_usec = pps_ff[1]; /* 2 1 0 */
1322 v_usec = pps_ff[2] - pps_ff[0];
1323 } else if (pps_ff[2] < pps_ff[0]) {
1324 u_usec = pps_ff[0]; /* 1 0 2 */
1325 v_usec = pps_ff[1] - pps_ff[2];
1326 } else {
1327 u_usec = pps_ff[2]; /* 1 2 0 */
1328 v_usec = pps_ff[1] - pps_ff[0];
1329 }
1330 }
1331
1332 /*
1333 * Here the frequency dispersion (stability) is updated. If it
1334 * is less than one-fourth the maximum (MAXFREQ), the frequency
1335 * offset is updated as well, but clamped to the tolerance. It
1336 * will be processed later by the hardclock() routine.
1337 */
1338 v_usec = (v_usec >> 1) - pps_stabil;
1339 if (v_usec < 0)
1340 pps_stabil -= -v_usec >> PPS_AVG;
1341 else
1342 pps_stabil += v_usec >> PPS_AVG;
1343 if (pps_stabil > MAXFREQ >> 2) {
1344 pps_stbcnt++;
1345 time_status |= STA_PPSWANDER;
1346 return;
1347 }
1348 if (time_status & STA_PPSFREQ) {
1349 if (u_usec < 0) {
1350 pps_freq -= -u_usec >> PPS_AVG;
1351 if (pps_freq < -time_tolerance)
1352 pps_freq = -time_tolerance;
1353 u_usec = -u_usec;
1354 } else {
1355 pps_freq += u_usec >> PPS_AVG;
1356 if (pps_freq > time_tolerance)
1357 pps_freq = time_tolerance;
1358 }
1359 }
1360
1361 /*
1362 * Here the calibration interval is adjusted. If the maximum
1363 * time difference is greater than tick / 4, reduce the interval
1364 * by half. If this is not the case for four consecutive
1365 * intervals, double the interval.
1366 */
1367 if (u_usec << pps_shift > bigtick >> 2) {
1368 pps_intcnt = 0;
1369 if (pps_shift > PPS_SHIFT)
1370 pps_shift--;
1371 } else if (pps_intcnt >= 4) {
1372 pps_intcnt = 0;
1373 if (pps_shift < PPS_SHIFTMAX)
1374 pps_shift++;
1375 } else
1376 pps_intcnt++;
1377 }
1378 #endif /* PPS_SYNC */
1379 #endif /* NTP */
1380
1381 /* timecounter compat functions */
1382 void
1383 nanotime(struct timespec *ts)
1384 {
1385 struct timeval tv;
1386
1387 microtime(&tv);
1388 TIMEVAL_TO_TIMESPEC(&tv, ts);
1389 }
1390
1391 void
1392 getbinuptime(struct bintime *bt)
1393 {
1394 struct timeval tv;
1395
1396 microtime(&tv);
1397 timeval2bintime(&tv, bt);
1398 }
1399
1400 void
1401 nanouptime(struct timespec *tsp)
1402 {
1403 int s;
1404
1405 s = splclock();
1406 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1407 splx(s);
1408 }
1409
1410 void
1411 getnanouptime(struct timespec *tsp)
1412 {
1413 int s;
1414
1415 s = splclock();
1416 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1417 splx(s);
1418 }
1419
1420 void
1421 getmicrouptime(struct timeval *tvp)
1422 {
1423 int s;
1424
1425 s = splclock();
1426 *tvp = mono_time;
1427 splx(s);
1428 }
1429
1430 void
1431 getnanotime(struct timespec *tsp)
1432 {
1433 int s;
1434
1435 s = splclock();
1436 TIMEVAL_TO_TIMESPEC(&time, tsp);
1437 splx(s);
1438 }
1439
1440 void
1441 getmicrotime(struct timeval *tvp)
1442 {
1443 int s;
1444
1445 s = splclock();
1446 *tvp = time;
1447 splx(s);
1448 }
1449
1450 u_int64_t
1451 tc_getfrequency(void)
1452 {
1453 return hz;
1454 }
1455 #endif /* !__HAVE_TIMECOUNTER */
1456