kern_clock.c revision 1.108 1 /* $NetBSD: kern_clock.c,v 1.108 2007/05/17 14:51:38 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.108 2007/05/17 14:51:38 yamt Exp $");
80
81 #include "opt_ntp.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/resourcevar.h>
91 #include <sys/signalvar.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #include <sys/time.h>
96 #include <sys/timetc.h>
97
98 #include <machine/cpu.h>
99 #include <machine/intr.h>
100
101 #ifdef GPROF
102 #include <sys/gmon.h>
103 #endif
104
105 /*
106 * Clock handling routines.
107 *
108 * This code is written to operate with two timers that run independently of
109 * each other. The main clock, running hz times per second, is used to keep
110 * track of real time. The second timer handles kernel and user profiling,
111 * and does resource use estimation. If the second timer is programmable,
112 * it is randomized to avoid aliasing between the two clocks. For example,
113 * the randomization prevents an adversary from always giving up the CPU
114 * just before its quantum expires. Otherwise, it would never accumulate
115 * CPU ticks. The mean frequency of the second timer is stathz.
116 *
117 * If no second timer exists, stathz will be zero; in this case we drive
118 * profiling and statistics off the main clock. This WILL NOT be accurate;
119 * do not do it unless absolutely necessary.
120 *
121 * The statistics clock may (or may not) be run at a higher rate while
122 * profiling. This profile clock runs at profhz. We require that profhz
123 * be an integral multiple of stathz.
124 *
125 * If the statistics clock is running fast, it must be divided by the ratio
126 * profhz/stathz for statistics. (For profiling, every tick counts.)
127 */
128
129 #ifndef __HAVE_TIMECOUNTER
130 #ifdef NTP /* NTP phase-locked loop in kernel */
131 /*
132 * Phase/frequency-lock loop (PLL/FLL) definitions
133 *
134 * The following variables are read and set by the ntp_adjtime() system
135 * call.
136 *
137 * time_state shows the state of the system clock, with values defined
138 * in the timex.h header file.
139 *
140 * time_status shows the status of the system clock, with bits defined
141 * in the timex.h header file.
142 *
143 * time_offset is used by the PLL/FLL to adjust the system time in small
144 * increments.
145 *
146 * time_constant determines the bandwidth or "stiffness" of the PLL.
147 *
148 * time_tolerance determines maximum frequency error or tolerance of the
149 * CPU clock oscillator and is a property of the architecture; however,
150 * in principle it could change as result of the presence of external
151 * discipline signals, for instance.
152 *
153 * time_precision is usually equal to the kernel tick variable; however,
154 * in cases where a precision clock counter or external clock is
155 * available, the resolution can be much less than this and depend on
156 * whether the external clock is working or not.
157 *
158 * time_maxerror is initialized by a ntp_adjtime() call and increased by
159 * the kernel once each second to reflect the maximum error bound
160 * growth.
161 *
162 * time_esterror is set and read by the ntp_adjtime() call, but
163 * otherwise not used by the kernel.
164 */
165 int time_state = TIME_OK; /* clock state */
166 int time_status = STA_UNSYNC; /* clock status bits */
167 long time_offset = 0; /* time offset (us) */
168 long time_constant = 0; /* pll time constant */
169 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
170 long time_precision = 1; /* clock precision (us) */
171 long time_maxerror = MAXPHASE; /* maximum error (us) */
172 long time_esterror = MAXPHASE; /* estimated error (us) */
173
174 /*
175 * The following variables establish the state of the PLL/FLL and the
176 * residual time and frequency offset of the local clock. The scale
177 * factors are defined in the timex.h header file.
178 *
179 * time_phase and time_freq are the phase increment and the frequency
180 * increment, respectively, of the kernel time variable.
181 *
182 * time_freq is set via ntp_adjtime() from a value stored in a file when
183 * the synchronization daemon is first started. Its value is retrieved
184 * via ntp_adjtime() and written to the file about once per hour by the
185 * daemon.
186 *
187 * time_adj is the adjustment added to the value of tick at each timer
188 * interrupt and is recomputed from time_phase and time_freq at each
189 * seconds rollover.
190 *
191 * time_reftime is the second's portion of the system time at the last
192 * call to ntp_adjtime(). It is used to adjust the time_freq variable
193 * and to increase the time_maxerror as the time since last update
194 * increases.
195 */
196 long time_phase = 0; /* phase offset (scaled us) */
197 long time_freq = 0; /* frequency offset (scaled ppm) */
198 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
199 long time_reftime = 0; /* time at last adjustment (s) */
200
201 #ifdef PPS_SYNC
202 /*
203 * The following variables are used only if the kernel PPS discipline
204 * code is configured (PPS_SYNC). The scale factors are defined in the
205 * timex.h header file.
206 *
207 * pps_time contains the time at each calibration interval, as read by
208 * microtime(). pps_count counts the seconds of the calibration
209 * interval, the duration of which is nominally pps_shift in powers of
210 * two.
211 *
212 * pps_offset is the time offset produced by the time median filter
213 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
214 * this filter.
215 *
216 * pps_freq is the frequency offset produced by the frequency median
217 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
218 * by this filter.
219 *
220 * pps_usec is latched from a high resolution counter or external clock
221 * at pps_time. Here we want the hardware counter contents only, not the
222 * contents plus the time_tv.usec as usual.
223 *
224 * pps_valid counts the number of seconds since the last PPS update. It
225 * is used as a watchdog timer to disable the PPS discipline should the
226 * PPS signal be lost.
227 *
228 * pps_glitch counts the number of seconds since the beginning of an
229 * offset burst more than tick/2 from current nominal offset. It is used
230 * mainly to suppress error bursts due to priority conflicts between the
231 * PPS interrupt and timer interrupt.
232 *
233 * pps_intcnt counts the calibration intervals for use in the interval-
234 * adaptation algorithm. It's just too complicated for words.
235 *
236 * pps_kc_hardpps_source contains an arbitrary value that uniquely
237 * identifies the currently bound source of the PPS signal, or NULL
238 * if no source is bound.
239 *
240 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
241 * signal should be reported.
242 */
243 struct timeval pps_time; /* kernel time at last interval */
244 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
245 long pps_offset = 0; /* pps time offset (us) */
246 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
247 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
248 long pps_freq = 0; /* frequency offset (scaled ppm) */
249 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
250 long pps_usec = 0; /* microsec counter at last interval */
251 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
252 int pps_glitch = 0; /* pps signal glitch counter */
253 int pps_count = 0; /* calibration interval counter (s) */
254 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
255 int pps_intcnt = 0; /* intervals at current duration */
256 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
257 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
258
259 /*
260 * PPS signal quality monitors
261 *
262 * pps_jitcnt counts the seconds that have been discarded because the
263 * jitter measured by the time median filter exceeds the limit MAXTIME
264 * (100 us).
265 *
266 * pps_calcnt counts the frequency calibration intervals, which are
267 * variable from 4 s to 256 s.
268 *
269 * pps_errcnt counts the calibration intervals which have been discarded
270 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
271 * calibration interval jitter exceeds two ticks.
272 *
273 * pps_stbcnt counts the calibration intervals that have been discarded
274 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
275 */
276 long pps_jitcnt = 0; /* jitter limit exceeded */
277 long pps_calcnt = 0; /* calibration intervals */
278 long pps_errcnt = 0; /* calibration errors */
279 long pps_stbcnt = 0; /* stability limit exceeded */
280 #endif /* PPS_SYNC */
281
282 #ifdef EXT_CLOCK
283 /*
284 * External clock definitions
285 *
286 * The following definitions and declarations are used only if an
287 * external clock is configured on the system.
288 */
289 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
290
291 /*
292 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
293 * interrupt and decremented once each second.
294 */
295 int clock_count = 0; /* CPU clock counter */
296
297 #ifdef HIGHBALL
298 /*
299 * The clock_offset and clock_cpu variables are used by the HIGHBALL
300 * interface. The clock_offset variable defines the offset between
301 * system time and the HIGBALL counters. The clock_cpu variable contains
302 * the offset between the system clock and the HIGHBALL clock for use in
303 * disciplining the kernel time variable.
304 */
305 extern struct timeval clock_offset; /* Highball clock offset */
306 long clock_cpu = 0; /* CPU clock adjust */
307 #endif /* HIGHBALL */
308 #endif /* EXT_CLOCK */
309 #endif /* NTP */
310
311 /*
312 * Bump a timeval by a small number of usec's.
313 */
314 #define BUMPTIME(t, usec) { \
315 volatile struct timeval *tp = (t); \
316 long us; \
317 \
318 tp->tv_usec = us = tp->tv_usec + (usec); \
319 if (us >= 1000000) { \
320 tp->tv_usec = us - 1000000; \
321 tp->tv_sec++; \
322 } \
323 }
324 #endif /* !__HAVE_TIMECOUNTER */
325
326 int stathz;
327 int profhz;
328 int profsrc;
329 int schedhz;
330 int profprocs;
331 int hardclock_ticks;
332 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
333 static int psdiv; /* prof => stat divider */
334 int psratio; /* ratio: prof / stat */
335 #ifndef __HAVE_TIMECOUNTER
336 int tickfix, tickfixinterval; /* used if tick not really integral */
337 #ifndef NTP
338 static int tickfixcnt; /* accumulated fractional error */
339 #else
340 int fixtick; /* used by NTP for same */
341 int shifthz;
342 #endif
343
344 /*
345 * We might want ldd to load the both words from time at once.
346 * To succeed we need to be quadword aligned.
347 * The sparc already does that, and that it has worked so far is a fluke.
348 */
349 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
350 volatile struct timeval mono_time;
351 #endif /* !__HAVE_TIMECOUNTER */
352
353 void *softclock_si;
354
355 #ifdef __HAVE_TIMECOUNTER
356 static u_int get_intr_timecount(struct timecounter *);
357
358 static struct timecounter intr_timecounter = {
359 get_intr_timecount, /* get_timecount */
360 0, /* no poll_pps */
361 ~0u, /* counter_mask */
362 0, /* frequency */
363 "clockinterrupt", /* name */
364 0, /* quality - minimum implementation level for a clock */
365 NULL, /* prev */
366 NULL, /* next */
367 };
368
369 static u_int
370 get_intr_timecount(struct timecounter *tc)
371 {
372
373 return (u_int)hardclock_ticks;
374 }
375 #endif
376
377 /*
378 * Initialize clock frequencies and start both clocks running.
379 */
380 void
381 initclocks(void)
382 {
383 int i;
384
385 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
386 if (softclock_si == NULL)
387 panic("initclocks: unable to register softclock intr");
388
389 /*
390 * Set divisors to 1 (normal case) and let the machine-specific
391 * code do its bit.
392 */
393 psdiv = 1;
394 #ifdef __HAVE_TIMECOUNTER
395 /*
396 * provide minimum default time counter
397 * will only run at interrupt resolution
398 */
399 intr_timecounter.tc_frequency = hz;
400 tc_init(&intr_timecounter);
401 #endif
402 cpu_initclocks();
403
404 /*
405 * Compute profhz and stathz, fix profhz if needed.
406 */
407 i = stathz ? stathz : hz;
408 if (profhz == 0)
409 profhz = i;
410 psratio = profhz / i;
411 if (schedhz == 0) {
412 /* 16Hz is best */
413 statscheddiv = i / 16;
414 if (statscheddiv <= 0)
415 panic("statscheddiv");
416 }
417
418 #ifndef __HAVE_TIMECOUNTER
419 #ifdef NTP
420 switch (hz) {
421 case 1:
422 shifthz = SHIFT_SCALE - 0;
423 break;
424 case 2:
425 shifthz = SHIFT_SCALE - 1;
426 break;
427 case 4:
428 shifthz = SHIFT_SCALE - 2;
429 break;
430 case 8:
431 shifthz = SHIFT_SCALE - 3;
432 break;
433 case 16:
434 shifthz = SHIFT_SCALE - 4;
435 break;
436 case 32:
437 shifthz = SHIFT_SCALE - 5;
438 break;
439 case 50:
440 case 60:
441 case 64:
442 shifthz = SHIFT_SCALE - 6;
443 break;
444 case 96:
445 case 100:
446 case 128:
447 shifthz = SHIFT_SCALE - 7;
448 break;
449 case 256:
450 shifthz = SHIFT_SCALE - 8;
451 break;
452 case 512:
453 shifthz = SHIFT_SCALE - 9;
454 break;
455 case 1000:
456 case 1024:
457 shifthz = SHIFT_SCALE - 10;
458 break;
459 case 1200:
460 case 2048:
461 shifthz = SHIFT_SCALE - 11;
462 break;
463 case 4096:
464 shifthz = SHIFT_SCALE - 12;
465 break;
466 case 8192:
467 shifthz = SHIFT_SCALE - 13;
468 break;
469 case 16384:
470 shifthz = SHIFT_SCALE - 14;
471 break;
472 case 32768:
473 shifthz = SHIFT_SCALE - 15;
474 break;
475 case 65536:
476 shifthz = SHIFT_SCALE - 16;
477 break;
478 default:
479 panic("weird hz");
480 }
481 if (fixtick == 0) {
482 /*
483 * Give MD code a chance to set this to a better
484 * value; but, if it doesn't, we should.
485 */
486 fixtick = (1000000 - (hz*tick));
487 }
488 #endif /* NTP */
489 #endif /* !__HAVE_TIMECOUNTER */
490 }
491
492 /*
493 * The real-time timer, interrupting hz times per second.
494 */
495 void
496 hardclock(struct clockframe *frame)
497 {
498 struct lwp *l;
499 struct proc *p;
500 struct cpu_info *ci = curcpu();
501 struct ptimer *pt;
502 #ifndef __HAVE_TIMECOUNTER
503 int delta;
504 extern int tickdelta;
505 extern long timedelta;
506 #ifdef NTP
507 int time_update;
508 int ltemp;
509 #endif /* NTP */
510 #endif /* __HAVE_TIMECOUNTER */
511
512 l = curlwp;
513 if (!CURCPU_IDLE_P()) {
514 p = l->l_proc;
515 /*
516 * Run current process's virtual and profile time, as needed.
517 */
518 if (CLKF_USERMODE(frame) && p->p_timers &&
519 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
520 if (itimerdecr(pt, tick) == 0)
521 itimerfire(pt);
522 if (p->p_timers &&
523 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
524 if (itimerdecr(pt, tick) == 0)
525 itimerfire(pt);
526 }
527
528 /*
529 * If no separate statistics clock is available, run it from here.
530 */
531 if (stathz == 0)
532 statclock(frame);
533 if ((--ci->ci_schedstate.spc_ticks) <= 0)
534 sched_tick(ci);
535
536 #if defined(MULTIPROCESSOR)
537 /*
538 * If we are not the primary CPU, we're not allowed to do
539 * any more work.
540 */
541 if (CPU_IS_PRIMARY(ci) == 0)
542 return;
543 #endif
544
545 hardclock_ticks++;
546
547 #ifdef __HAVE_TIMECOUNTER
548 tc_ticktock();
549 #else /* __HAVE_TIMECOUNTER */
550 /*
551 * Increment the time-of-day. The increment is normally just
552 * ``tick''. If the machine is one which has a clock frequency
553 * such that ``hz'' would not divide the second evenly into
554 * milliseconds, a periodic adjustment must be applied. Finally,
555 * if we are still adjusting the time (see adjtime()),
556 * ``tickdelta'' may also be added in.
557 */
558 delta = tick;
559
560 #ifndef NTP
561 if (tickfix) {
562 tickfixcnt += tickfix;
563 if (tickfixcnt >= tickfixinterval) {
564 delta++;
565 tickfixcnt -= tickfixinterval;
566 }
567 }
568 #endif /* !NTP */
569 /* Imprecise 4bsd adjtime() handling */
570 if (timedelta != 0) {
571 delta += tickdelta;
572 timedelta -= tickdelta;
573 }
574
575 #ifdef notyet
576 microset();
577 #endif
578
579 #ifndef NTP
580 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
581 #endif
582 BUMPTIME(&mono_time, delta);
583
584 #ifdef NTP
585 time_update = delta;
586
587 /*
588 * Compute the phase adjustment. If the low-order bits
589 * (time_phase) of the update overflow, bump the high-order bits
590 * (time_update).
591 */
592 time_phase += time_adj;
593 if (time_phase <= -FINEUSEC) {
594 ltemp = -time_phase >> SHIFT_SCALE;
595 time_phase += ltemp << SHIFT_SCALE;
596 time_update -= ltemp;
597 } else if (time_phase >= FINEUSEC) {
598 ltemp = time_phase >> SHIFT_SCALE;
599 time_phase -= ltemp << SHIFT_SCALE;
600 time_update += ltemp;
601 }
602
603 #ifdef HIGHBALL
604 /*
605 * If the HIGHBALL board is installed, we need to adjust the
606 * external clock offset in order to close the hardware feedback
607 * loop. This will adjust the external clock phase and frequency
608 * in small amounts. The additional phase noise and frequency
609 * wander this causes should be minimal. We also need to
610 * discipline the kernel time variable, since the PLL is used to
611 * discipline the external clock. If the Highball board is not
612 * present, we discipline kernel time with the PLL as usual. We
613 * assume that the external clock phase adjustment (time_update)
614 * and kernel phase adjustment (clock_cpu) are less than the
615 * value of tick.
616 */
617 clock_offset.tv_usec += time_update;
618 if (clock_offset.tv_usec >= 1000000) {
619 clock_offset.tv_sec++;
620 clock_offset.tv_usec -= 1000000;
621 }
622 if (clock_offset.tv_usec < 0) {
623 clock_offset.tv_sec--;
624 clock_offset.tv_usec += 1000000;
625 }
626 time.tv_usec += clock_cpu;
627 clock_cpu = 0;
628 #else
629 time.tv_usec += time_update;
630 #endif /* HIGHBALL */
631
632 /*
633 * On rollover of the second the phase adjustment to be used for
634 * the next second is calculated. Also, the maximum error is
635 * increased by the tolerance. If the PPS frequency discipline
636 * code is present, the phase is increased to compensate for the
637 * CPU clock oscillator frequency error.
638 *
639 * On a 32-bit machine and given parameters in the timex.h
640 * header file, the maximum phase adjustment is +-512 ms and
641 * maximum frequency offset is a tad less than) +-512 ppm. On a
642 * 64-bit machine, you shouldn't need to ask.
643 */
644 if (time.tv_usec >= 1000000) {
645 time.tv_usec -= 1000000;
646 time.tv_sec++;
647 time_maxerror += time_tolerance >> SHIFT_USEC;
648
649 /*
650 * Leap second processing. If in leap-insert state at
651 * the end of the day, the system clock is set back one
652 * second; if in leap-delete state, the system clock is
653 * set ahead one second. The microtime() routine or
654 * external clock driver will insure that reported time
655 * is always monotonic. The ugly divides should be
656 * replaced.
657 */
658 switch (time_state) {
659 case TIME_OK:
660 if (time_status & STA_INS)
661 time_state = TIME_INS;
662 else if (time_status & STA_DEL)
663 time_state = TIME_DEL;
664 break;
665
666 case TIME_INS:
667 if (time.tv_sec % 86400 == 0) {
668 time.tv_sec--;
669 time_state = TIME_OOP;
670 }
671 break;
672
673 case TIME_DEL:
674 if ((time.tv_sec + 1) % 86400 == 0) {
675 time.tv_sec++;
676 time_state = TIME_WAIT;
677 }
678 break;
679
680 case TIME_OOP:
681 time_state = TIME_WAIT;
682 break;
683
684 case TIME_WAIT:
685 if (!(time_status & (STA_INS | STA_DEL)))
686 time_state = TIME_OK;
687 break;
688 }
689
690 /*
691 * Compute the phase adjustment for the next second. In
692 * PLL mode, the offset is reduced by a fixed factor
693 * times the time constant. In FLL mode the offset is
694 * used directly. In either mode, the maximum phase
695 * adjustment for each second is clamped so as to spread
696 * the adjustment over not more than the number of
697 * seconds between updates.
698 */
699 if (time_offset < 0) {
700 ltemp = -time_offset;
701 if (!(time_status & STA_FLL))
702 ltemp >>= SHIFT_KG + time_constant;
703 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
704 ltemp = (MAXPHASE / MINSEC) <<
705 SHIFT_UPDATE;
706 time_offset += ltemp;
707 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
708 } else if (time_offset > 0) {
709 ltemp = time_offset;
710 if (!(time_status & STA_FLL))
711 ltemp >>= SHIFT_KG + time_constant;
712 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
713 ltemp = (MAXPHASE / MINSEC) <<
714 SHIFT_UPDATE;
715 time_offset -= ltemp;
716 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
717 } else
718 time_adj = 0;
719
720 /*
721 * Compute the frequency estimate and additional phase
722 * adjustment due to frequency error for the next
723 * second. When the PPS signal is engaged, gnaw on the
724 * watchdog counter and update the frequency computed by
725 * the pll and the PPS signal.
726 */
727 #ifdef PPS_SYNC
728 pps_valid++;
729 if (pps_valid == PPS_VALID) {
730 pps_jitter = MAXTIME;
731 pps_stabil = MAXFREQ;
732 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
733 STA_PPSWANDER | STA_PPSERROR);
734 }
735 ltemp = time_freq + pps_freq;
736 #else
737 ltemp = time_freq;
738 #endif /* PPS_SYNC */
739
740 if (ltemp < 0)
741 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
742 else
743 time_adj += ltemp >> (SHIFT_USEC - shifthz);
744 time_adj += (long)fixtick << shifthz;
745
746 /*
747 * When the CPU clock oscillator frequency is not a
748 * power of 2 in Hz, shifthz is only an approximate
749 * scale factor.
750 *
751 * To determine the adjustment, you can do the following:
752 * bc -q
753 * scale=24
754 * obase=2
755 * idealhz/realhz
756 * where `idealhz' is the next higher power of 2, and `realhz'
757 * is the actual value. You may need to factor this result
758 * into a sequence of 2 multipliers to get better precision.
759 *
760 * Likewise, the error can be calculated with (e.g. for 100Hz):
761 * bc -q
762 * scale=24
763 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
764 * (and then multiply by 1000000 to get ppm).
765 */
766 switch (hz) {
767 case 60:
768 /* A factor of 1.000100010001 gives about 15ppm
769 error. */
770 if (time_adj < 0) {
771 time_adj -= (-time_adj >> 4);
772 time_adj -= (-time_adj >> 8);
773 } else {
774 time_adj += (time_adj >> 4);
775 time_adj += (time_adj >> 8);
776 }
777 break;
778
779 case 96:
780 /* A factor of 1.0101010101 gives about 244ppm error. */
781 if (time_adj < 0) {
782 time_adj -= (-time_adj >> 2);
783 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
784 } else {
785 time_adj += (time_adj >> 2);
786 time_adj += (time_adj >> 4) + (time_adj >> 8);
787 }
788 break;
789
790 case 50:
791 case 100:
792 /* A factor of 1.010001111010111 gives about 1ppm
793 error. */
794 if (time_adj < 0) {
795 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
796 time_adj += (-time_adj >> 10);
797 } else {
798 time_adj += (time_adj >> 2) + (time_adj >> 5);
799 time_adj -= (time_adj >> 10);
800 }
801 break;
802
803 case 1000:
804 /* A factor of 1.000001100010100001 gives about 50ppm
805 error. */
806 if (time_adj < 0) {
807 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
808 time_adj -= (-time_adj >> 7);
809 } else {
810 time_adj += (time_adj >> 6) + (time_adj >> 11);
811 time_adj += (time_adj >> 7);
812 }
813 break;
814
815 case 1200:
816 /* A factor of 1.1011010011100001 gives about 64ppm
817 error. */
818 if (time_adj < 0) {
819 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
820 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
821 } else {
822 time_adj += (time_adj >> 1) + (time_adj >> 6);
823 time_adj += (time_adj >> 3) + (time_adj >> 10);
824 }
825 break;
826 }
827
828 #ifdef EXT_CLOCK
829 /*
830 * If an external clock is present, it is necessary to
831 * discipline the kernel time variable anyway, since not
832 * all system components use the microtime() interface.
833 * Here, the time offset between the external clock and
834 * kernel time variable is computed every so often.
835 */
836 clock_count++;
837 if (clock_count > CLOCK_INTERVAL) {
838 clock_count = 0;
839 microtime(&clock_ext);
840 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
841 delta.tv_usec = clock_ext.tv_usec -
842 time.tv_usec;
843 if (delta.tv_usec < 0)
844 delta.tv_sec--;
845 if (delta.tv_usec >= 500000) {
846 delta.tv_usec -= 1000000;
847 delta.tv_sec++;
848 }
849 if (delta.tv_usec < -500000) {
850 delta.tv_usec += 1000000;
851 delta.tv_sec--;
852 }
853 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
854 delta.tv_usec > MAXPHASE) ||
855 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
856 delta.tv_usec < -MAXPHASE)) {
857 time = clock_ext;
858 delta.tv_sec = 0;
859 delta.tv_usec = 0;
860 }
861 #ifdef HIGHBALL
862 clock_cpu = delta.tv_usec;
863 #else /* HIGHBALL */
864 hardupdate(delta.tv_usec);
865 #endif /* HIGHBALL */
866 }
867 #endif /* EXT_CLOCK */
868 }
869
870 #endif /* NTP */
871 #endif /* !__HAVE_TIMECOUNTER */
872
873 /*
874 * Update real-time timeout queue. Callouts are processed at a
875 * very low CPU priority, so we don't keep the relatively high
876 * clock interrupt priority any longer than necessary.
877 */
878 if (callout_hardclock())
879 softintr_schedule(softclock_si);
880 }
881
882 #ifdef __HAVE_TIMECOUNTER
883 /*
884 * Compute number of hz until specified time. Used to compute second
885 * argument to callout_reset() from an absolute time.
886 */
887 int
888 hzto(struct timeval *tvp)
889 {
890 struct timeval now, tv;
891
892 tv = *tvp; /* Don't modify original tvp. */
893 getmicrotime(&now);
894 timersub(&tv, &now, &tv);
895 return tvtohz(&tv);
896 }
897 #endif /* __HAVE_TIMECOUNTER */
898
899 /*
900 * Compute number of ticks in the specified amount of time.
901 */
902 int
903 tvtohz(struct timeval *tv)
904 {
905 unsigned long ticks;
906 long sec, usec;
907
908 /*
909 * If the number of usecs in the whole seconds part of the time
910 * difference fits in a long, then the total number of usecs will
911 * fit in an unsigned long. Compute the total and convert it to
912 * ticks, rounding up and adding 1 to allow for the current tick
913 * to expire. Rounding also depends on unsigned long arithmetic
914 * to avoid overflow.
915 *
916 * Otherwise, if the number of ticks in the whole seconds part of
917 * the time difference fits in a long, then convert the parts to
918 * ticks separately and add, using similar rounding methods and
919 * overflow avoidance. This method would work in the previous
920 * case, but it is slightly slower and assumes that hz is integral.
921 *
922 * Otherwise, round the time difference down to the maximum
923 * representable value.
924 *
925 * If ints are 32-bit, then the maximum value for any timeout in
926 * 10ms ticks is 248 days.
927 */
928 sec = tv->tv_sec;
929 usec = tv->tv_usec;
930
931 if (usec < 0) {
932 sec--;
933 usec += 1000000;
934 }
935
936 if (sec < 0 || (sec == 0 && usec <= 0)) {
937 /*
938 * Would expire now or in the past. Return 0 ticks.
939 * This is different from the legacy hzto() interface,
940 * and callers need to check for it.
941 */
942 ticks = 0;
943 } else if (sec <= (LONG_MAX / 1000000))
944 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
945 / tick) + 1;
946 else if (sec <= (LONG_MAX / hz))
947 ticks = (sec * hz) +
948 (((unsigned long)usec + (tick - 1)) / tick) + 1;
949 else
950 ticks = LONG_MAX;
951
952 if (ticks > INT_MAX)
953 ticks = INT_MAX;
954
955 return ((int)ticks);
956 }
957
958 #ifndef __HAVE_TIMECOUNTER
959 /*
960 * Compute number of hz until specified time. Used to compute second
961 * argument to callout_reset() from an absolute time.
962 */
963 int
964 hzto(struct timeval *tv)
965 {
966 unsigned long ticks;
967 long sec, usec;
968 int s;
969
970 /*
971 * If the number of usecs in the whole seconds part of the time
972 * difference fits in a long, then the total number of usecs will
973 * fit in an unsigned long. Compute the total and convert it to
974 * ticks, rounding up and adding 1 to allow for the current tick
975 * to expire. Rounding also depends on unsigned long arithmetic
976 * to avoid overflow.
977 *
978 * Otherwise, if the number of ticks in the whole seconds part of
979 * the time difference fits in a long, then convert the parts to
980 * ticks separately and add, using similar rounding methods and
981 * overflow avoidance. This method would work in the previous
982 * case, but it is slightly slower and assume that hz is integral.
983 *
984 * Otherwise, round the time difference down to the maximum
985 * representable value.
986 *
987 * If ints are 32-bit, then the maximum value for any timeout in
988 * 10ms ticks is 248 days.
989 */
990 s = splclock();
991 sec = tv->tv_sec - time.tv_sec;
992 usec = tv->tv_usec - time.tv_usec;
993 splx(s);
994
995 if (usec < 0) {
996 sec--;
997 usec += 1000000;
998 }
999
1000 if (sec < 0 || (sec == 0 && usec <= 0)) {
1001 /*
1002 * Would expire now or in the past. Return 0 ticks.
1003 * This is different from the legacy hzto() interface,
1004 * and callers need to check for it.
1005 */
1006 ticks = 0;
1007 } else if (sec <= (LONG_MAX / 1000000))
1008 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1009 / tick) + 1;
1010 else if (sec <= (LONG_MAX / hz))
1011 ticks = (sec * hz) +
1012 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1013 else
1014 ticks = LONG_MAX;
1015
1016 if (ticks > INT_MAX)
1017 ticks = INT_MAX;
1018
1019 return ((int)ticks);
1020 }
1021 #endif /* !__HAVE_TIMECOUNTER */
1022
1023 /*
1024 * Compute number of ticks in the specified amount of time.
1025 */
1026 int
1027 tstohz(struct timespec *ts)
1028 {
1029 struct timeval tv;
1030
1031 /*
1032 * usec has great enough resolution for hz, so convert to a
1033 * timeval and use tvtohz() above.
1034 */
1035 TIMESPEC_TO_TIMEVAL(&tv, ts);
1036 return tvtohz(&tv);
1037 }
1038
1039 /*
1040 * Start profiling on a process.
1041 *
1042 * Kernel profiling passes proc0 which never exits and hence
1043 * keeps the profile clock running constantly.
1044 */
1045 void
1046 startprofclock(struct proc *p)
1047 {
1048
1049 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
1050
1051 if ((p->p_stflag & PST_PROFIL) == 0) {
1052 p->p_stflag |= PST_PROFIL;
1053 /*
1054 * This is only necessary if using the clock as the
1055 * profiling source.
1056 */
1057 if (++profprocs == 1 && stathz != 0)
1058 psdiv = psratio;
1059 }
1060 }
1061
1062 /*
1063 * Stop profiling on a process.
1064 */
1065 void
1066 stopprofclock(struct proc *p)
1067 {
1068
1069 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
1070
1071 if (p->p_stflag & PST_PROFIL) {
1072 p->p_stflag &= ~PST_PROFIL;
1073 /*
1074 * This is only necessary if using the clock as the
1075 * profiling source.
1076 */
1077 if (--profprocs == 0 && stathz != 0)
1078 psdiv = 1;
1079 }
1080 }
1081
1082 #if defined(PERFCTRS)
1083 /*
1084 * Independent profiling "tick" in case we're using a separate
1085 * clock or profiling event source. Currently, that's just
1086 * performance counters--hence the wrapper.
1087 */
1088 void
1089 proftick(struct clockframe *frame)
1090 {
1091 #ifdef GPROF
1092 struct gmonparam *g;
1093 intptr_t i;
1094 #endif
1095 struct lwp *l;
1096 struct proc *p;
1097
1098 l = curlwp;
1099 p = (l ? l->l_proc : NULL);
1100 if (CLKF_USERMODE(frame)) {
1101 mutex_spin_enter(&p->p_stmutex);
1102 if (p->p_stflag & PST_PROFIL)
1103 addupc_intr(l, CLKF_PC(frame));
1104 mutex_spin_exit(&p->p_stmutex);
1105 } else {
1106 #ifdef GPROF
1107 g = &_gmonparam;
1108 if (g->state == GMON_PROF_ON) {
1109 i = CLKF_PC(frame) - g->lowpc;
1110 if (i < g->textsize) {
1111 i /= HISTFRACTION * sizeof(*g->kcount);
1112 g->kcount[i]++;
1113 }
1114 }
1115 #endif
1116 #ifdef PROC_PC
1117 if (p != NULL) {
1118 mutex_spin_enter(&p->p_stmutex);
1119 if (p->p_stflag & PST_PROFIL))
1120 addupc_intr(l, PROC_PC(p));
1121 mutex_spin_exit(&p->p_stmutex);
1122 }
1123 #endif
1124 }
1125 }
1126 #endif
1127
1128 void
1129 schedclock(struct lwp *l)
1130 {
1131
1132 if ((l->l_flag & LW_IDLE) != 0)
1133 return;
1134
1135 sched_schedclock(l);
1136 }
1137
1138 /*
1139 * Statistics clock. Grab profile sample, and if divider reaches 0,
1140 * do process and kernel statistics.
1141 */
1142 void
1143 statclock(struct clockframe *frame)
1144 {
1145 #ifdef GPROF
1146 struct gmonparam *g;
1147 intptr_t i;
1148 #endif
1149 struct cpu_info *ci = curcpu();
1150 struct schedstate_percpu *spc = &ci->ci_schedstate;
1151 struct proc *p;
1152 struct lwp *l;
1153
1154 /*
1155 * Notice changes in divisor frequency, and adjust clock
1156 * frequency accordingly.
1157 */
1158 if (spc->spc_psdiv != psdiv) {
1159 spc->spc_psdiv = psdiv;
1160 spc->spc_pscnt = psdiv;
1161 if (psdiv == 1) {
1162 setstatclockrate(stathz);
1163 } else {
1164 setstatclockrate(profhz);
1165 }
1166 }
1167 l = curlwp;
1168 if ((l->l_flag & LW_IDLE) != 0) {
1169 /*
1170 * don't account idle lwps as swapper.
1171 */
1172 p = NULL;
1173 } else {
1174 p = l->l_proc;
1175 mutex_spin_enter(&p->p_stmutex);
1176 }
1177
1178 if (CLKF_USERMODE(frame)) {
1179 if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
1180 addupc_intr(l, CLKF_PC(frame));
1181 if (--spc->spc_pscnt > 0) {
1182 mutex_spin_exit(&p->p_stmutex);
1183 return;
1184 }
1185
1186 /*
1187 * Came from user mode; CPU was in user state.
1188 * If this process is being profiled record the tick.
1189 */
1190 p->p_uticks++;
1191 if (p->p_nice > NZERO)
1192 spc->spc_cp_time[CP_NICE]++;
1193 else
1194 spc->spc_cp_time[CP_USER]++;
1195 } else {
1196 #ifdef GPROF
1197 /*
1198 * Kernel statistics are just like addupc_intr, only easier.
1199 */
1200 g = &_gmonparam;
1201 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1202 i = CLKF_PC(frame) - g->lowpc;
1203 if (i < g->textsize) {
1204 i /= HISTFRACTION * sizeof(*g->kcount);
1205 g->kcount[i]++;
1206 }
1207 }
1208 #endif
1209 #ifdef LWP_PC
1210 if (p != NULL && profsrc == PROFSRC_CLOCK &&
1211 (p->p_stflag & PST_PROFIL)) {
1212 addupc_intr(l, LWP_PC(l));
1213 }
1214 #endif
1215 if (--spc->spc_pscnt > 0) {
1216 if (p != NULL)
1217 mutex_spin_exit(&p->p_stmutex);
1218 return;
1219 }
1220 /*
1221 * Came from kernel mode, so we were:
1222 * - handling an interrupt,
1223 * - doing syscall or trap work on behalf of the current
1224 * user process, or
1225 * - spinning in the idle loop.
1226 * Whichever it is, charge the time as appropriate.
1227 * Note that we charge interrupts to the current process,
1228 * regardless of whether they are ``for'' that process,
1229 * so that we know how much of its real time was spent
1230 * in ``non-process'' (i.e., interrupt) work.
1231 */
1232 if (CLKF_INTR(frame)) {
1233 if (p != NULL) {
1234 p->p_iticks++;
1235 }
1236 spc->spc_cp_time[CP_INTR]++;
1237 } else if (p != NULL) {
1238 p->p_sticks++;
1239 spc->spc_cp_time[CP_SYS]++;
1240 } else {
1241 spc->spc_cp_time[CP_IDLE]++;
1242 }
1243 }
1244 spc->spc_pscnt = psdiv;
1245
1246 if (p != NULL) {
1247 ++l->l_cpticks;
1248 mutex_spin_exit(&p->p_stmutex);
1249 }
1250
1251 /*
1252 * If no separate schedclock is provided, call it here
1253 * at about 16 Hz.
1254 */
1255 if (schedhz == 0) {
1256 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1257 schedclock(l);
1258 ci->ci_schedstate.spc_schedticks = statscheddiv;
1259 }
1260 }
1261 }
1262
1263 #ifndef __HAVE_TIMECOUNTER
1264 #ifdef NTP /* NTP phase-locked loop in kernel */
1265 /*
1266 * hardupdate() - local clock update
1267 *
1268 * This routine is called by ntp_adjtime() to update the local clock
1269 * phase and frequency. The implementation is of an adaptive-parameter,
1270 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1271 * time and frequency offset estimates for each call. If the kernel PPS
1272 * discipline code is configured (PPS_SYNC), the PPS signal itself
1273 * determines the new time offset, instead of the calling argument.
1274 * Presumably, calls to ntp_adjtime() occur only when the caller
1275 * believes the local clock is valid within some bound (+-128 ms with
1276 * NTP). If the caller's time is far different than the PPS time, an
1277 * argument will ensue, and it's not clear who will lose.
1278 *
1279 * For uncompensated quartz crystal oscillatores and nominal update
1280 * intervals less than 1024 s, operation should be in phase-lock mode
1281 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1282 * intervals greater than thiss, operation should be in frequency-lock
1283 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1284 *
1285 * Note: splclock() is in effect.
1286 */
1287 void
1288 hardupdate(long offset)
1289 {
1290 long ltemp, mtemp;
1291
1292 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1293 return;
1294 ltemp = offset;
1295 #ifdef PPS_SYNC
1296 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1297 ltemp = pps_offset;
1298 #endif /* PPS_SYNC */
1299
1300 /*
1301 * Scale the phase adjustment and clamp to the operating range.
1302 */
1303 if (ltemp > MAXPHASE)
1304 time_offset = MAXPHASE << SHIFT_UPDATE;
1305 else if (ltemp < -MAXPHASE)
1306 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1307 else
1308 time_offset = ltemp << SHIFT_UPDATE;
1309
1310 /*
1311 * Select whether the frequency is to be controlled and in which
1312 * mode (PLL or FLL). Clamp to the operating range. Ugly
1313 * multiply/divide should be replaced someday.
1314 */
1315 if (time_status & STA_FREQHOLD || time_reftime == 0)
1316 time_reftime = time.tv_sec;
1317 mtemp = time.tv_sec - time_reftime;
1318 time_reftime = time.tv_sec;
1319 if (time_status & STA_FLL) {
1320 if (mtemp >= MINSEC) {
1321 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1322 SHIFT_UPDATE));
1323 if (ltemp < 0)
1324 time_freq -= -ltemp >> SHIFT_KH;
1325 else
1326 time_freq += ltemp >> SHIFT_KH;
1327 }
1328 } else {
1329 if (mtemp < MAXSEC) {
1330 ltemp *= mtemp;
1331 if (ltemp < 0)
1332 time_freq -= -ltemp >> (time_constant +
1333 time_constant + SHIFT_KF -
1334 SHIFT_USEC);
1335 else
1336 time_freq += ltemp >> (time_constant +
1337 time_constant + SHIFT_KF -
1338 SHIFT_USEC);
1339 }
1340 }
1341 if (time_freq > time_tolerance)
1342 time_freq = time_tolerance;
1343 else if (time_freq < -time_tolerance)
1344 time_freq = -time_tolerance;
1345 }
1346
1347 #ifdef PPS_SYNC
1348 /*
1349 * hardpps() - discipline CPU clock oscillator to external PPS signal
1350 *
1351 * This routine is called at each PPS interrupt in order to discipline
1352 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1353 * and leaves it in a handy spot for the hardclock() routine. It
1354 * integrates successive PPS phase differences and calculates the
1355 * frequency offset. This is used in hardclock() to discipline the CPU
1356 * clock oscillator so that intrinsic frequency error is cancelled out.
1357 * The code requires the caller to capture the time and hardware counter
1358 * value at the on-time PPS signal transition.
1359 *
1360 * Note that, on some Unix systems, this routine runs at an interrupt
1361 * priority level higher than the timer interrupt routine hardclock().
1362 * Therefore, the variables used are distinct from the hardclock()
1363 * variables, except for certain exceptions: The PPS frequency pps_freq
1364 * and phase pps_offset variables are determined by this routine and
1365 * updated atomically. The time_tolerance variable can be considered a
1366 * constant, since it is infrequently changed, and then only when the
1367 * PPS signal is disabled. The watchdog counter pps_valid is updated
1368 * once per second by hardclock() and is atomically cleared in this
1369 * routine.
1370 */
1371 void
1372 hardpps(struct timeval *tvp, /* time at PPS */
1373 long usec /* hardware counter at PPS */)
1374 {
1375 long u_usec, v_usec, bigtick;
1376 long cal_sec, cal_usec;
1377
1378 /*
1379 * An occasional glitch can be produced when the PPS interrupt
1380 * occurs in the hardclock() routine before the time variable is
1381 * updated. Here the offset is discarded when the difference
1382 * between it and the last one is greater than tick/2, but not
1383 * if the interval since the first discard exceeds 30 s.
1384 */
1385 time_status |= STA_PPSSIGNAL;
1386 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1387 pps_valid = 0;
1388 u_usec = -tvp->tv_usec;
1389 if (u_usec < -500000)
1390 u_usec += 1000000;
1391 v_usec = pps_offset - u_usec;
1392 if (v_usec < 0)
1393 v_usec = -v_usec;
1394 if (v_usec > (tick >> 1)) {
1395 if (pps_glitch > MAXGLITCH) {
1396 pps_glitch = 0;
1397 pps_tf[2] = u_usec;
1398 pps_tf[1] = u_usec;
1399 } else {
1400 pps_glitch++;
1401 u_usec = pps_offset;
1402 }
1403 } else
1404 pps_glitch = 0;
1405
1406 /*
1407 * A three-stage median filter is used to help deglitch the pps
1408 * time. The median sample becomes the time offset estimate; the
1409 * difference between the other two samples becomes the time
1410 * dispersion (jitter) estimate.
1411 */
1412 pps_tf[2] = pps_tf[1];
1413 pps_tf[1] = pps_tf[0];
1414 pps_tf[0] = u_usec;
1415 if (pps_tf[0] > pps_tf[1]) {
1416 if (pps_tf[1] > pps_tf[2]) {
1417 pps_offset = pps_tf[1]; /* 0 1 2 */
1418 v_usec = pps_tf[0] - pps_tf[2];
1419 } else if (pps_tf[2] > pps_tf[0]) {
1420 pps_offset = pps_tf[0]; /* 2 0 1 */
1421 v_usec = pps_tf[2] - pps_tf[1];
1422 } else {
1423 pps_offset = pps_tf[2]; /* 0 2 1 */
1424 v_usec = pps_tf[0] - pps_tf[1];
1425 }
1426 } else {
1427 if (pps_tf[1] < pps_tf[2]) {
1428 pps_offset = pps_tf[1]; /* 2 1 0 */
1429 v_usec = pps_tf[2] - pps_tf[0];
1430 } else if (pps_tf[2] < pps_tf[0]) {
1431 pps_offset = pps_tf[0]; /* 1 0 2 */
1432 v_usec = pps_tf[1] - pps_tf[2];
1433 } else {
1434 pps_offset = pps_tf[2]; /* 1 2 0 */
1435 v_usec = pps_tf[1] - pps_tf[0];
1436 }
1437 }
1438 if (v_usec > MAXTIME)
1439 pps_jitcnt++;
1440 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1441 if (v_usec < 0)
1442 pps_jitter -= -v_usec >> PPS_AVG;
1443 else
1444 pps_jitter += v_usec >> PPS_AVG;
1445 if (pps_jitter > (MAXTIME >> 1))
1446 time_status |= STA_PPSJITTER;
1447
1448 /*
1449 * During the calibration interval adjust the starting time when
1450 * the tick overflows. At the end of the interval compute the
1451 * duration of the interval and the difference of the hardware
1452 * counters at the beginning and end of the interval. This code
1453 * is deliciously complicated by the fact valid differences may
1454 * exceed the value of tick when using long calibration
1455 * intervals and small ticks. Note that the counter can be
1456 * greater than tick if caught at just the wrong instant, but
1457 * the values returned and used here are correct.
1458 */
1459 bigtick = (long)tick << SHIFT_USEC;
1460 pps_usec -= pps_freq;
1461 if (pps_usec >= bigtick)
1462 pps_usec -= bigtick;
1463 if (pps_usec < 0)
1464 pps_usec += bigtick;
1465 pps_time.tv_sec++;
1466 pps_count++;
1467 if (pps_count < (1 << pps_shift))
1468 return;
1469 pps_count = 0;
1470 pps_calcnt++;
1471 u_usec = usec << SHIFT_USEC;
1472 v_usec = pps_usec - u_usec;
1473 if (v_usec >= bigtick >> 1)
1474 v_usec -= bigtick;
1475 if (v_usec < -(bigtick >> 1))
1476 v_usec += bigtick;
1477 if (v_usec < 0)
1478 v_usec = -(-v_usec >> pps_shift);
1479 else
1480 v_usec = v_usec >> pps_shift;
1481 pps_usec = u_usec;
1482 cal_sec = tvp->tv_sec;
1483 cal_usec = tvp->tv_usec;
1484 cal_sec -= pps_time.tv_sec;
1485 cal_usec -= pps_time.tv_usec;
1486 if (cal_usec < 0) {
1487 cal_usec += 1000000;
1488 cal_sec--;
1489 }
1490 pps_time = *tvp;
1491
1492 /*
1493 * Check for lost interrupts, noise, excessive jitter and
1494 * excessive frequency error. The number of timer ticks during
1495 * the interval may vary +-1 tick. Add to this a margin of one
1496 * tick for the PPS signal jitter and maximum frequency
1497 * deviation. If the limits are exceeded, the calibration
1498 * interval is reset to the minimum and we start over.
1499 */
1500 u_usec = (long)tick << 1;
1501 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1502 || (cal_sec == 0 && cal_usec < u_usec))
1503 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1504 pps_errcnt++;
1505 pps_shift = PPS_SHIFT;
1506 pps_intcnt = 0;
1507 time_status |= STA_PPSERROR;
1508 return;
1509 }
1510
1511 /*
1512 * A three-stage median filter is used to help deglitch the pps
1513 * frequency. The median sample becomes the frequency offset
1514 * estimate; the difference between the other two samples
1515 * becomes the frequency dispersion (stability) estimate.
1516 */
1517 pps_ff[2] = pps_ff[1];
1518 pps_ff[1] = pps_ff[0];
1519 pps_ff[0] = v_usec;
1520 if (pps_ff[0] > pps_ff[1]) {
1521 if (pps_ff[1] > pps_ff[2]) {
1522 u_usec = pps_ff[1]; /* 0 1 2 */
1523 v_usec = pps_ff[0] - pps_ff[2];
1524 } else if (pps_ff[2] > pps_ff[0]) {
1525 u_usec = pps_ff[0]; /* 2 0 1 */
1526 v_usec = pps_ff[2] - pps_ff[1];
1527 } else {
1528 u_usec = pps_ff[2]; /* 0 2 1 */
1529 v_usec = pps_ff[0] - pps_ff[1];
1530 }
1531 } else {
1532 if (pps_ff[1] < pps_ff[2]) {
1533 u_usec = pps_ff[1]; /* 2 1 0 */
1534 v_usec = pps_ff[2] - pps_ff[0];
1535 } else if (pps_ff[2] < pps_ff[0]) {
1536 u_usec = pps_ff[0]; /* 1 0 2 */
1537 v_usec = pps_ff[1] - pps_ff[2];
1538 } else {
1539 u_usec = pps_ff[2]; /* 1 2 0 */
1540 v_usec = pps_ff[1] - pps_ff[0];
1541 }
1542 }
1543
1544 /*
1545 * Here the frequency dispersion (stability) is updated. If it
1546 * is less than one-fourth the maximum (MAXFREQ), the frequency
1547 * offset is updated as well, but clamped to the tolerance. It
1548 * will be processed later by the hardclock() routine.
1549 */
1550 v_usec = (v_usec >> 1) - pps_stabil;
1551 if (v_usec < 0)
1552 pps_stabil -= -v_usec >> PPS_AVG;
1553 else
1554 pps_stabil += v_usec >> PPS_AVG;
1555 if (pps_stabil > MAXFREQ >> 2) {
1556 pps_stbcnt++;
1557 time_status |= STA_PPSWANDER;
1558 return;
1559 }
1560 if (time_status & STA_PPSFREQ) {
1561 if (u_usec < 0) {
1562 pps_freq -= -u_usec >> PPS_AVG;
1563 if (pps_freq < -time_tolerance)
1564 pps_freq = -time_tolerance;
1565 u_usec = -u_usec;
1566 } else {
1567 pps_freq += u_usec >> PPS_AVG;
1568 if (pps_freq > time_tolerance)
1569 pps_freq = time_tolerance;
1570 }
1571 }
1572
1573 /*
1574 * Here the calibration interval is adjusted. If the maximum
1575 * time difference is greater than tick / 4, reduce the interval
1576 * by half. If this is not the case for four consecutive
1577 * intervals, double the interval.
1578 */
1579 if (u_usec << pps_shift > bigtick >> 2) {
1580 pps_intcnt = 0;
1581 if (pps_shift > PPS_SHIFT)
1582 pps_shift--;
1583 } else if (pps_intcnt >= 4) {
1584 pps_intcnt = 0;
1585 if (pps_shift < PPS_SHIFTMAX)
1586 pps_shift++;
1587 } else
1588 pps_intcnt++;
1589 }
1590 #endif /* PPS_SYNC */
1591 #endif /* NTP */
1592
1593 /* timecounter compat functions */
1594 void
1595 nanotime(struct timespec *ts)
1596 {
1597 struct timeval tv;
1598
1599 microtime(&tv);
1600 TIMEVAL_TO_TIMESPEC(&tv, ts);
1601 }
1602
1603 void
1604 getbinuptime(struct bintime *bt)
1605 {
1606 struct timeval tv;
1607
1608 microtime(&tv);
1609 timeval2bintime(&tv, bt);
1610 }
1611
1612 void
1613 nanouptime(struct timespec *tsp)
1614 {
1615 int s;
1616
1617 s = splclock();
1618 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1619 splx(s);
1620 }
1621
1622 void
1623 getnanouptime(struct timespec *tsp)
1624 {
1625 int s;
1626
1627 s = splclock();
1628 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1629 splx(s);
1630 }
1631
1632 void
1633 getmicrouptime(struct timeval *tvp)
1634 {
1635 int s;
1636
1637 s = splclock();
1638 *tvp = mono_time;
1639 splx(s);
1640 }
1641
1642 void
1643 getnanotime(struct timespec *tsp)
1644 {
1645 int s;
1646
1647 s = splclock();
1648 TIMEVAL_TO_TIMESPEC(&time, tsp);
1649 splx(s);
1650 }
1651
1652 void
1653 getmicrotime(struct timeval *tvp)
1654 {
1655 int s;
1656
1657 s = splclock();
1658 *tvp = time;
1659 splx(s);
1660 }
1661
1662 u_int64_t
1663 tc_getfrequency(void)
1664 {
1665 return hz;
1666 }
1667 #endif /* !__HAVE_TIMECOUNTER */
1668