kern_clock.c revision 1.109 1 /* $NetBSD: kern_clock.c,v 1.109 2007/07/09 21:10:51 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.109 2007/07/09 21:10:51 ad Exp $");
80
81 #include "opt_ntp.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/callout.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/resourcevar.h>
91 #include <sys/signalvar.h>
92 #include <sys/sysctl.h>
93 #include <sys/timex.h>
94 #include <sys/sched.h>
95 #include <sys/time.h>
96 #include <sys/timetc.h>
97 #include <sys/cpu.h>
98
99 #ifdef GPROF
100 #include <sys/gmon.h>
101 #endif
102
103 /*
104 * Clock handling routines.
105 *
106 * This code is written to operate with two timers that run independently of
107 * each other. The main clock, running hz times per second, is used to keep
108 * track of real time. The second timer handles kernel and user profiling,
109 * and does resource use estimation. If the second timer is programmable,
110 * it is randomized to avoid aliasing between the two clocks. For example,
111 * the randomization prevents an adversary from always giving up the CPU
112 * just before its quantum expires. Otherwise, it would never accumulate
113 * CPU ticks. The mean frequency of the second timer is stathz.
114 *
115 * If no second timer exists, stathz will be zero; in this case we drive
116 * profiling and statistics off the main clock. This WILL NOT be accurate;
117 * do not do it unless absolutely necessary.
118 *
119 * The statistics clock may (or may not) be run at a higher rate while
120 * profiling. This profile clock runs at profhz. We require that profhz
121 * be an integral multiple of stathz.
122 *
123 * If the statistics clock is running fast, it must be divided by the ratio
124 * profhz/stathz for statistics. (For profiling, every tick counts.)
125 */
126
127 #ifndef __HAVE_TIMECOUNTER
128 #ifdef NTP /* NTP phase-locked loop in kernel */
129 /*
130 * Phase/frequency-lock loop (PLL/FLL) definitions
131 *
132 * The following variables are read and set by the ntp_adjtime() system
133 * call.
134 *
135 * time_state shows the state of the system clock, with values defined
136 * in the timex.h header file.
137 *
138 * time_status shows the status of the system clock, with bits defined
139 * in the timex.h header file.
140 *
141 * time_offset is used by the PLL/FLL to adjust the system time in small
142 * increments.
143 *
144 * time_constant determines the bandwidth or "stiffness" of the PLL.
145 *
146 * time_tolerance determines maximum frequency error or tolerance of the
147 * CPU clock oscillator and is a property of the architecture; however,
148 * in principle it could change as result of the presence of external
149 * discipline signals, for instance.
150 *
151 * time_precision is usually equal to the kernel tick variable; however,
152 * in cases where a precision clock counter or external clock is
153 * available, the resolution can be much less than this and depend on
154 * whether the external clock is working or not.
155 *
156 * time_maxerror is initialized by a ntp_adjtime() call and increased by
157 * the kernel once each second to reflect the maximum error bound
158 * growth.
159 *
160 * time_esterror is set and read by the ntp_adjtime() call, but
161 * otherwise not used by the kernel.
162 */
163 int time_state = TIME_OK; /* clock state */
164 int time_status = STA_UNSYNC; /* clock status bits */
165 long time_offset = 0; /* time offset (us) */
166 long time_constant = 0; /* pll time constant */
167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
168 long time_precision = 1; /* clock precision (us) */
169 long time_maxerror = MAXPHASE; /* maximum error (us) */
170 long time_esterror = MAXPHASE; /* estimated error (us) */
171
172 /*
173 * The following variables establish the state of the PLL/FLL and the
174 * residual time and frequency offset of the local clock. The scale
175 * factors are defined in the timex.h header file.
176 *
177 * time_phase and time_freq are the phase increment and the frequency
178 * increment, respectively, of the kernel time variable.
179 *
180 * time_freq is set via ntp_adjtime() from a value stored in a file when
181 * the synchronization daemon is first started. Its value is retrieved
182 * via ntp_adjtime() and written to the file about once per hour by the
183 * daemon.
184 *
185 * time_adj is the adjustment added to the value of tick at each timer
186 * interrupt and is recomputed from time_phase and time_freq at each
187 * seconds rollover.
188 *
189 * time_reftime is the second's portion of the system time at the last
190 * call to ntp_adjtime(). It is used to adjust the time_freq variable
191 * and to increase the time_maxerror as the time since last update
192 * increases.
193 */
194 long time_phase = 0; /* phase offset (scaled us) */
195 long time_freq = 0; /* frequency offset (scaled ppm) */
196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0; /* time at last adjustment (s) */
198
199 #ifdef PPS_SYNC
200 /*
201 * The following variables are used only if the kernel PPS discipline
202 * code is configured (PPS_SYNC). The scale factors are defined in the
203 * timex.h header file.
204 *
205 * pps_time contains the time at each calibration interval, as read by
206 * microtime(). pps_count counts the seconds of the calibration
207 * interval, the duration of which is nominally pps_shift in powers of
208 * two.
209 *
210 * pps_offset is the time offset produced by the time median filter
211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212 * this filter.
213 *
214 * pps_freq is the frequency offset produced by the frequency median
215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216 * by this filter.
217 *
218 * pps_usec is latched from a high resolution counter or external clock
219 * at pps_time. Here we want the hardware counter contents only, not the
220 * contents plus the time_tv.usec as usual.
221 *
222 * pps_valid counts the number of seconds since the last PPS update. It
223 * is used as a watchdog timer to disable the PPS discipline should the
224 * PPS signal be lost.
225 *
226 * pps_glitch counts the number of seconds since the beginning of an
227 * offset burst more than tick/2 from current nominal offset. It is used
228 * mainly to suppress error bursts due to priority conflicts between the
229 * PPS interrupt and timer interrupt.
230 *
231 * pps_intcnt counts the calibration intervals for use in the interval-
232 * adaptation algorithm. It's just too complicated for words.
233 *
234 * pps_kc_hardpps_source contains an arbitrary value that uniquely
235 * identifies the currently bound source of the PPS signal, or NULL
236 * if no source is bound.
237 *
238 * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
239 * signal should be reported.
240 */
241 struct timeval pps_time; /* kernel time at last interval */
242 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
243 long pps_offset = 0; /* pps time offset (us) */
244 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
245 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
246 long pps_freq = 0; /* frequency offset (scaled ppm) */
247 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
248 long pps_usec = 0; /* microsec counter at last interval */
249 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
250 int pps_glitch = 0; /* pps signal glitch counter */
251 int pps_count = 0; /* calibration interval counter (s) */
252 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
253 int pps_intcnt = 0; /* intervals at current duration */
254 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
255 int pps_kc_hardpps_mode = 0; /* interesting edges of PPS signal */
256
257 /*
258 * PPS signal quality monitors
259 *
260 * pps_jitcnt counts the seconds that have been discarded because the
261 * jitter measured by the time median filter exceeds the limit MAXTIME
262 * (100 us).
263 *
264 * pps_calcnt counts the frequency calibration intervals, which are
265 * variable from 4 s to 256 s.
266 *
267 * pps_errcnt counts the calibration intervals which have been discarded
268 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
269 * calibration interval jitter exceeds two ticks.
270 *
271 * pps_stbcnt counts the calibration intervals that have been discarded
272 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
273 */
274 long pps_jitcnt = 0; /* jitter limit exceeded */
275 long pps_calcnt = 0; /* calibration intervals */
276 long pps_errcnt = 0; /* calibration errors */
277 long pps_stbcnt = 0; /* stability limit exceeded */
278 #endif /* PPS_SYNC */
279
280 #ifdef EXT_CLOCK
281 /*
282 * External clock definitions
283 *
284 * The following definitions and declarations are used only if an
285 * external clock is configured on the system.
286 */
287 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
288
289 /*
290 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
291 * interrupt and decremented once each second.
292 */
293 int clock_count = 0; /* CPU clock counter */
294
295 #ifdef HIGHBALL
296 /*
297 * The clock_offset and clock_cpu variables are used by the HIGHBALL
298 * interface. The clock_offset variable defines the offset between
299 * system time and the HIGBALL counters. The clock_cpu variable contains
300 * the offset between the system clock and the HIGHBALL clock for use in
301 * disciplining the kernel time variable.
302 */
303 extern struct timeval clock_offset; /* Highball clock offset */
304 long clock_cpu = 0; /* CPU clock adjust */
305 #endif /* HIGHBALL */
306 #endif /* EXT_CLOCK */
307 #endif /* NTP */
308
309 /*
310 * Bump a timeval by a small number of usec's.
311 */
312 #define BUMPTIME(t, usec) { \
313 volatile struct timeval *tp = (t); \
314 long us; \
315 \
316 tp->tv_usec = us = tp->tv_usec + (usec); \
317 if (us >= 1000000) { \
318 tp->tv_usec = us - 1000000; \
319 tp->tv_sec++; \
320 } \
321 }
322 #endif /* !__HAVE_TIMECOUNTER */
323
324 int stathz;
325 int profhz;
326 int profsrc;
327 int schedhz;
328 int profprocs;
329 int hardclock_ticks;
330 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
331 static int psdiv; /* prof => stat divider */
332 int psratio; /* ratio: prof / stat */
333 #ifndef __HAVE_TIMECOUNTER
334 int tickfix, tickfixinterval; /* used if tick not really integral */
335 #ifndef NTP
336 static int tickfixcnt; /* accumulated fractional error */
337 #else
338 int fixtick; /* used by NTP for same */
339 int shifthz;
340 #endif
341
342 /*
343 * We might want ldd to load the both words from time at once.
344 * To succeed we need to be quadword aligned.
345 * The sparc already does that, and that it has worked so far is a fluke.
346 */
347 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
348 volatile struct timeval mono_time;
349 #endif /* !__HAVE_TIMECOUNTER */
350
351 #ifdef __HAVE_TIMECOUNTER
352 static u_int get_intr_timecount(struct timecounter *);
353
354 static struct timecounter intr_timecounter = {
355 get_intr_timecount, /* get_timecount */
356 0, /* no poll_pps */
357 ~0u, /* counter_mask */
358 0, /* frequency */
359 "clockinterrupt", /* name */
360 0, /* quality - minimum implementation level for a clock */
361 NULL, /* prev */
362 NULL, /* next */
363 };
364
365 static u_int
366 get_intr_timecount(struct timecounter *tc)
367 {
368
369 return (u_int)hardclock_ticks;
370 }
371 #endif
372
373 /*
374 * Initialize clock frequencies and start both clocks running.
375 */
376 void
377 initclocks(void)
378 {
379 int i;
380
381 /*
382 * Set divisors to 1 (normal case) and let the machine-specific
383 * code do its bit.
384 */
385 psdiv = 1;
386 #ifdef __HAVE_TIMECOUNTER
387 /*
388 * provide minimum default time counter
389 * will only run at interrupt resolution
390 */
391 intr_timecounter.tc_frequency = hz;
392 tc_init(&intr_timecounter);
393 #endif
394 cpu_initclocks();
395
396 /*
397 * Compute profhz and stathz, fix profhz if needed.
398 */
399 i = stathz ? stathz : hz;
400 if (profhz == 0)
401 profhz = i;
402 psratio = profhz / i;
403 if (schedhz == 0) {
404 /* 16Hz is best */
405 statscheddiv = i / 16;
406 if (statscheddiv <= 0)
407 panic("statscheddiv");
408 }
409
410 #ifndef __HAVE_TIMECOUNTER
411 #ifdef NTP
412 switch (hz) {
413 case 1:
414 shifthz = SHIFT_SCALE - 0;
415 break;
416 case 2:
417 shifthz = SHIFT_SCALE - 1;
418 break;
419 case 4:
420 shifthz = SHIFT_SCALE - 2;
421 break;
422 case 8:
423 shifthz = SHIFT_SCALE - 3;
424 break;
425 case 16:
426 shifthz = SHIFT_SCALE - 4;
427 break;
428 case 32:
429 shifthz = SHIFT_SCALE - 5;
430 break;
431 case 50:
432 case 60:
433 case 64:
434 shifthz = SHIFT_SCALE - 6;
435 break;
436 case 96:
437 case 100:
438 case 128:
439 shifthz = SHIFT_SCALE - 7;
440 break;
441 case 256:
442 shifthz = SHIFT_SCALE - 8;
443 break;
444 case 512:
445 shifthz = SHIFT_SCALE - 9;
446 break;
447 case 1000:
448 case 1024:
449 shifthz = SHIFT_SCALE - 10;
450 break;
451 case 1200:
452 case 2048:
453 shifthz = SHIFT_SCALE - 11;
454 break;
455 case 4096:
456 shifthz = SHIFT_SCALE - 12;
457 break;
458 case 8192:
459 shifthz = SHIFT_SCALE - 13;
460 break;
461 case 16384:
462 shifthz = SHIFT_SCALE - 14;
463 break;
464 case 32768:
465 shifthz = SHIFT_SCALE - 15;
466 break;
467 case 65536:
468 shifthz = SHIFT_SCALE - 16;
469 break;
470 default:
471 panic("weird hz");
472 }
473 if (fixtick == 0) {
474 /*
475 * Give MD code a chance to set this to a better
476 * value; but, if it doesn't, we should.
477 */
478 fixtick = (1000000 - (hz*tick));
479 }
480 #endif /* NTP */
481 #endif /* !__HAVE_TIMECOUNTER */
482 }
483
484 /*
485 * The real-time timer, interrupting hz times per second.
486 */
487 void
488 hardclock(struct clockframe *frame)
489 {
490 struct lwp *l;
491 struct proc *p;
492 struct cpu_info *ci = curcpu();
493 struct ptimer *pt;
494 #ifndef __HAVE_TIMECOUNTER
495 int delta;
496 extern int tickdelta;
497 extern long timedelta;
498 #ifdef NTP
499 int time_update;
500 int ltemp;
501 #endif /* NTP */
502 #endif /* __HAVE_TIMECOUNTER */
503
504 l = curlwp;
505 if (!CURCPU_IDLE_P()) {
506 p = l->l_proc;
507 /*
508 * Run current process's virtual and profile time, as needed.
509 */
510 if (CLKF_USERMODE(frame) && p->p_timers &&
511 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
512 if (itimerdecr(pt, tick) == 0)
513 itimerfire(pt);
514 if (p->p_timers &&
515 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
516 if (itimerdecr(pt, tick) == 0)
517 itimerfire(pt);
518 }
519
520 /*
521 * If no separate statistics clock is available, run it from here.
522 */
523 if (stathz == 0)
524 statclock(frame);
525 if ((--ci->ci_schedstate.spc_ticks) <= 0)
526 sched_tick(ci);
527
528 #if defined(MULTIPROCESSOR)
529 /*
530 * If we are not the primary CPU, we're not allowed to do
531 * any more work.
532 */
533 if (CPU_IS_PRIMARY(ci) == 0)
534 return;
535 #endif
536
537 hardclock_ticks++;
538
539 #ifdef __HAVE_TIMECOUNTER
540 tc_ticktock();
541 #else /* __HAVE_TIMECOUNTER */
542 /*
543 * Increment the time-of-day. The increment is normally just
544 * ``tick''. If the machine is one which has a clock frequency
545 * such that ``hz'' would not divide the second evenly into
546 * milliseconds, a periodic adjustment must be applied. Finally,
547 * if we are still adjusting the time (see adjtime()),
548 * ``tickdelta'' may also be added in.
549 */
550 delta = tick;
551
552 #ifndef NTP
553 if (tickfix) {
554 tickfixcnt += tickfix;
555 if (tickfixcnt >= tickfixinterval) {
556 delta++;
557 tickfixcnt -= tickfixinterval;
558 }
559 }
560 #endif /* !NTP */
561 /* Imprecise 4bsd adjtime() handling */
562 if (timedelta != 0) {
563 delta += tickdelta;
564 timedelta -= tickdelta;
565 }
566
567 #ifdef notyet
568 microset();
569 #endif
570
571 #ifndef NTP
572 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
573 #endif
574 BUMPTIME(&mono_time, delta);
575
576 #ifdef NTP
577 time_update = delta;
578
579 /*
580 * Compute the phase adjustment. If the low-order bits
581 * (time_phase) of the update overflow, bump the high-order bits
582 * (time_update).
583 */
584 time_phase += time_adj;
585 if (time_phase <= -FINEUSEC) {
586 ltemp = -time_phase >> SHIFT_SCALE;
587 time_phase += ltemp << SHIFT_SCALE;
588 time_update -= ltemp;
589 } else if (time_phase >= FINEUSEC) {
590 ltemp = time_phase >> SHIFT_SCALE;
591 time_phase -= ltemp << SHIFT_SCALE;
592 time_update += ltemp;
593 }
594
595 #ifdef HIGHBALL
596 /*
597 * If the HIGHBALL board is installed, we need to adjust the
598 * external clock offset in order to close the hardware feedback
599 * loop. This will adjust the external clock phase and frequency
600 * in small amounts. The additional phase noise and frequency
601 * wander this causes should be minimal. We also need to
602 * discipline the kernel time variable, since the PLL is used to
603 * discipline the external clock. If the Highball board is not
604 * present, we discipline kernel time with the PLL as usual. We
605 * assume that the external clock phase adjustment (time_update)
606 * and kernel phase adjustment (clock_cpu) are less than the
607 * value of tick.
608 */
609 clock_offset.tv_usec += time_update;
610 if (clock_offset.tv_usec >= 1000000) {
611 clock_offset.tv_sec++;
612 clock_offset.tv_usec -= 1000000;
613 }
614 if (clock_offset.tv_usec < 0) {
615 clock_offset.tv_sec--;
616 clock_offset.tv_usec += 1000000;
617 }
618 time.tv_usec += clock_cpu;
619 clock_cpu = 0;
620 #else
621 time.tv_usec += time_update;
622 #endif /* HIGHBALL */
623
624 /*
625 * On rollover of the second the phase adjustment to be used for
626 * the next second is calculated. Also, the maximum error is
627 * increased by the tolerance. If the PPS frequency discipline
628 * code is present, the phase is increased to compensate for the
629 * CPU clock oscillator frequency error.
630 *
631 * On a 32-bit machine and given parameters in the timex.h
632 * header file, the maximum phase adjustment is +-512 ms and
633 * maximum frequency offset is a tad less than) +-512 ppm. On a
634 * 64-bit machine, you shouldn't need to ask.
635 */
636 if (time.tv_usec >= 1000000) {
637 time.tv_usec -= 1000000;
638 time.tv_sec++;
639 time_maxerror += time_tolerance >> SHIFT_USEC;
640
641 /*
642 * Leap second processing. If in leap-insert state at
643 * the end of the day, the system clock is set back one
644 * second; if in leap-delete state, the system clock is
645 * set ahead one second. The microtime() routine or
646 * external clock driver will insure that reported time
647 * is always monotonic. The ugly divides should be
648 * replaced.
649 */
650 switch (time_state) {
651 case TIME_OK:
652 if (time_status & STA_INS)
653 time_state = TIME_INS;
654 else if (time_status & STA_DEL)
655 time_state = TIME_DEL;
656 break;
657
658 case TIME_INS:
659 if (time.tv_sec % 86400 == 0) {
660 time.tv_sec--;
661 time_state = TIME_OOP;
662 }
663 break;
664
665 case TIME_DEL:
666 if ((time.tv_sec + 1) % 86400 == 0) {
667 time.tv_sec++;
668 time_state = TIME_WAIT;
669 }
670 break;
671
672 case TIME_OOP:
673 time_state = TIME_WAIT;
674 break;
675
676 case TIME_WAIT:
677 if (!(time_status & (STA_INS | STA_DEL)))
678 time_state = TIME_OK;
679 break;
680 }
681
682 /*
683 * Compute the phase adjustment for the next second. In
684 * PLL mode, the offset is reduced by a fixed factor
685 * times the time constant. In FLL mode the offset is
686 * used directly. In either mode, the maximum phase
687 * adjustment for each second is clamped so as to spread
688 * the adjustment over not more than the number of
689 * seconds between updates.
690 */
691 if (time_offset < 0) {
692 ltemp = -time_offset;
693 if (!(time_status & STA_FLL))
694 ltemp >>= SHIFT_KG + time_constant;
695 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
696 ltemp = (MAXPHASE / MINSEC) <<
697 SHIFT_UPDATE;
698 time_offset += ltemp;
699 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
700 } else if (time_offset > 0) {
701 ltemp = time_offset;
702 if (!(time_status & STA_FLL))
703 ltemp >>= SHIFT_KG + time_constant;
704 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
705 ltemp = (MAXPHASE / MINSEC) <<
706 SHIFT_UPDATE;
707 time_offset -= ltemp;
708 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
709 } else
710 time_adj = 0;
711
712 /*
713 * Compute the frequency estimate and additional phase
714 * adjustment due to frequency error for the next
715 * second. When the PPS signal is engaged, gnaw on the
716 * watchdog counter and update the frequency computed by
717 * the pll and the PPS signal.
718 */
719 #ifdef PPS_SYNC
720 pps_valid++;
721 if (pps_valid == PPS_VALID) {
722 pps_jitter = MAXTIME;
723 pps_stabil = MAXFREQ;
724 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
725 STA_PPSWANDER | STA_PPSERROR);
726 }
727 ltemp = time_freq + pps_freq;
728 #else
729 ltemp = time_freq;
730 #endif /* PPS_SYNC */
731
732 if (ltemp < 0)
733 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
734 else
735 time_adj += ltemp >> (SHIFT_USEC - shifthz);
736 time_adj += (long)fixtick << shifthz;
737
738 /*
739 * When the CPU clock oscillator frequency is not a
740 * power of 2 in Hz, shifthz is only an approximate
741 * scale factor.
742 *
743 * To determine the adjustment, you can do the following:
744 * bc -q
745 * scale=24
746 * obase=2
747 * idealhz/realhz
748 * where `idealhz' is the next higher power of 2, and `realhz'
749 * is the actual value. You may need to factor this result
750 * into a sequence of 2 multipliers to get better precision.
751 *
752 * Likewise, the error can be calculated with (e.g. for 100Hz):
753 * bc -q
754 * scale=24
755 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
756 * (and then multiply by 1000000 to get ppm).
757 */
758 switch (hz) {
759 case 60:
760 /* A factor of 1.000100010001 gives about 15ppm
761 error. */
762 if (time_adj < 0) {
763 time_adj -= (-time_adj >> 4);
764 time_adj -= (-time_adj >> 8);
765 } else {
766 time_adj += (time_adj >> 4);
767 time_adj += (time_adj >> 8);
768 }
769 break;
770
771 case 96:
772 /* A factor of 1.0101010101 gives about 244ppm error. */
773 if (time_adj < 0) {
774 time_adj -= (-time_adj >> 2);
775 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
776 } else {
777 time_adj += (time_adj >> 2);
778 time_adj += (time_adj >> 4) + (time_adj >> 8);
779 }
780 break;
781
782 case 50:
783 case 100:
784 /* A factor of 1.010001111010111 gives about 1ppm
785 error. */
786 if (time_adj < 0) {
787 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
788 time_adj += (-time_adj >> 10);
789 } else {
790 time_adj += (time_adj >> 2) + (time_adj >> 5);
791 time_adj -= (time_adj >> 10);
792 }
793 break;
794
795 case 1000:
796 /* A factor of 1.000001100010100001 gives about 50ppm
797 error. */
798 if (time_adj < 0) {
799 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
800 time_adj -= (-time_adj >> 7);
801 } else {
802 time_adj += (time_adj >> 6) + (time_adj >> 11);
803 time_adj += (time_adj >> 7);
804 }
805 break;
806
807 case 1200:
808 /* A factor of 1.1011010011100001 gives about 64ppm
809 error. */
810 if (time_adj < 0) {
811 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
812 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
813 } else {
814 time_adj += (time_adj >> 1) + (time_adj >> 6);
815 time_adj += (time_adj >> 3) + (time_adj >> 10);
816 }
817 break;
818 }
819
820 #ifdef EXT_CLOCK
821 /*
822 * If an external clock is present, it is necessary to
823 * discipline the kernel time variable anyway, since not
824 * all system components use the microtime() interface.
825 * Here, the time offset between the external clock and
826 * kernel time variable is computed every so often.
827 */
828 clock_count++;
829 if (clock_count > CLOCK_INTERVAL) {
830 clock_count = 0;
831 microtime(&clock_ext);
832 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
833 delta.tv_usec = clock_ext.tv_usec -
834 time.tv_usec;
835 if (delta.tv_usec < 0)
836 delta.tv_sec--;
837 if (delta.tv_usec >= 500000) {
838 delta.tv_usec -= 1000000;
839 delta.tv_sec++;
840 }
841 if (delta.tv_usec < -500000) {
842 delta.tv_usec += 1000000;
843 delta.tv_sec--;
844 }
845 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
846 delta.tv_usec > MAXPHASE) ||
847 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
848 delta.tv_usec < -MAXPHASE)) {
849 time = clock_ext;
850 delta.tv_sec = 0;
851 delta.tv_usec = 0;
852 }
853 #ifdef HIGHBALL
854 clock_cpu = delta.tv_usec;
855 #else /* HIGHBALL */
856 hardupdate(delta.tv_usec);
857 #endif /* HIGHBALL */
858 }
859 #endif /* EXT_CLOCK */
860 }
861
862 #endif /* NTP */
863 #endif /* !__HAVE_TIMECOUNTER */
864
865 /*
866 * Update real-time timeout queue. Callouts are processed at a
867 * very low CPU priority, so we don't keep the relatively high
868 * clock interrupt priority any longer than necessary.
869 */
870 callout_hardclock();
871 }
872
873 #ifdef __HAVE_TIMECOUNTER
874 /*
875 * Compute number of hz until specified time. Used to compute second
876 * argument to callout_reset() from an absolute time.
877 */
878 int
879 hzto(struct timeval *tvp)
880 {
881 struct timeval now, tv;
882
883 tv = *tvp; /* Don't modify original tvp. */
884 getmicrotime(&now);
885 timersub(&tv, &now, &tv);
886 return tvtohz(&tv);
887 }
888 #endif /* __HAVE_TIMECOUNTER */
889
890 /*
891 * Compute number of ticks in the specified amount of time.
892 */
893 int
894 tvtohz(struct timeval *tv)
895 {
896 unsigned long ticks;
897 long sec, usec;
898
899 /*
900 * If the number of usecs in the whole seconds part of the time
901 * difference fits in a long, then the total number of usecs will
902 * fit in an unsigned long. Compute the total and convert it to
903 * ticks, rounding up and adding 1 to allow for the current tick
904 * to expire. Rounding also depends on unsigned long arithmetic
905 * to avoid overflow.
906 *
907 * Otherwise, if the number of ticks in the whole seconds part of
908 * the time difference fits in a long, then convert the parts to
909 * ticks separately and add, using similar rounding methods and
910 * overflow avoidance. This method would work in the previous
911 * case, but it is slightly slower and assumes that hz is integral.
912 *
913 * Otherwise, round the time difference down to the maximum
914 * representable value.
915 *
916 * If ints are 32-bit, then the maximum value for any timeout in
917 * 10ms ticks is 248 days.
918 */
919 sec = tv->tv_sec;
920 usec = tv->tv_usec;
921
922 if (usec < 0) {
923 sec--;
924 usec += 1000000;
925 }
926
927 if (sec < 0 || (sec == 0 && usec <= 0)) {
928 /*
929 * Would expire now or in the past. Return 0 ticks.
930 * This is different from the legacy hzto() interface,
931 * and callers need to check for it.
932 */
933 ticks = 0;
934 } else if (sec <= (LONG_MAX / 1000000))
935 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
936 / tick) + 1;
937 else if (sec <= (LONG_MAX / hz))
938 ticks = (sec * hz) +
939 (((unsigned long)usec + (tick - 1)) / tick) + 1;
940 else
941 ticks = LONG_MAX;
942
943 if (ticks > INT_MAX)
944 ticks = INT_MAX;
945
946 return ((int)ticks);
947 }
948
949 #ifndef __HAVE_TIMECOUNTER
950 /*
951 * Compute number of hz until specified time. Used to compute second
952 * argument to callout_reset() from an absolute time.
953 */
954 int
955 hzto(struct timeval *tv)
956 {
957 unsigned long ticks;
958 long sec, usec;
959 int s;
960
961 /*
962 * If the number of usecs in the whole seconds part of the time
963 * difference fits in a long, then the total number of usecs will
964 * fit in an unsigned long. Compute the total and convert it to
965 * ticks, rounding up and adding 1 to allow for the current tick
966 * to expire. Rounding also depends on unsigned long arithmetic
967 * to avoid overflow.
968 *
969 * Otherwise, if the number of ticks in the whole seconds part of
970 * the time difference fits in a long, then convert the parts to
971 * ticks separately and add, using similar rounding methods and
972 * overflow avoidance. This method would work in the previous
973 * case, but it is slightly slower and assume that hz is integral.
974 *
975 * Otherwise, round the time difference down to the maximum
976 * representable value.
977 *
978 * If ints are 32-bit, then the maximum value for any timeout in
979 * 10ms ticks is 248 days.
980 */
981 s = splclock();
982 sec = tv->tv_sec - time.tv_sec;
983 usec = tv->tv_usec - time.tv_usec;
984 splx(s);
985
986 if (usec < 0) {
987 sec--;
988 usec += 1000000;
989 }
990
991 if (sec < 0 || (sec == 0 && usec <= 0)) {
992 /*
993 * Would expire now or in the past. Return 0 ticks.
994 * This is different from the legacy hzto() interface,
995 * and callers need to check for it.
996 */
997 ticks = 0;
998 } else if (sec <= (LONG_MAX / 1000000))
999 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1000 / tick) + 1;
1001 else if (sec <= (LONG_MAX / hz))
1002 ticks = (sec * hz) +
1003 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1004 else
1005 ticks = LONG_MAX;
1006
1007 if (ticks > INT_MAX)
1008 ticks = INT_MAX;
1009
1010 return ((int)ticks);
1011 }
1012 #endif /* !__HAVE_TIMECOUNTER */
1013
1014 /*
1015 * Compute number of ticks in the specified amount of time.
1016 */
1017 int
1018 tstohz(struct timespec *ts)
1019 {
1020 struct timeval tv;
1021
1022 /*
1023 * usec has great enough resolution for hz, so convert to a
1024 * timeval and use tvtohz() above.
1025 */
1026 TIMESPEC_TO_TIMEVAL(&tv, ts);
1027 return tvtohz(&tv);
1028 }
1029
1030 /*
1031 * Start profiling on a process.
1032 *
1033 * Kernel profiling passes proc0 which never exits and hence
1034 * keeps the profile clock running constantly.
1035 */
1036 void
1037 startprofclock(struct proc *p)
1038 {
1039
1040 KASSERT(mutex_owned(&p->p_stmutex));
1041
1042 if ((p->p_stflag & PST_PROFIL) == 0) {
1043 p->p_stflag |= PST_PROFIL;
1044 /*
1045 * This is only necessary if using the clock as the
1046 * profiling source.
1047 */
1048 if (++profprocs == 1 && stathz != 0)
1049 psdiv = psratio;
1050 }
1051 }
1052
1053 /*
1054 * Stop profiling on a process.
1055 */
1056 void
1057 stopprofclock(struct proc *p)
1058 {
1059
1060 KASSERT(mutex_owned(&p->p_stmutex));
1061
1062 if (p->p_stflag & PST_PROFIL) {
1063 p->p_stflag &= ~PST_PROFIL;
1064 /*
1065 * This is only necessary if using the clock as the
1066 * profiling source.
1067 */
1068 if (--profprocs == 0 && stathz != 0)
1069 psdiv = 1;
1070 }
1071 }
1072
1073 #if defined(PERFCTRS)
1074 /*
1075 * Independent profiling "tick" in case we're using a separate
1076 * clock or profiling event source. Currently, that's just
1077 * performance counters--hence the wrapper.
1078 */
1079 void
1080 proftick(struct clockframe *frame)
1081 {
1082 #ifdef GPROF
1083 struct gmonparam *g;
1084 intptr_t i;
1085 #endif
1086 struct lwp *l;
1087 struct proc *p;
1088
1089 l = curlwp;
1090 p = (l ? l->l_proc : NULL);
1091 if (CLKF_USERMODE(frame)) {
1092 mutex_spin_enter(&p->p_stmutex);
1093 if (p->p_stflag & PST_PROFIL)
1094 addupc_intr(l, CLKF_PC(frame));
1095 mutex_spin_exit(&p->p_stmutex);
1096 } else {
1097 #ifdef GPROF
1098 g = &_gmonparam;
1099 if (g->state == GMON_PROF_ON) {
1100 i = CLKF_PC(frame) - g->lowpc;
1101 if (i < g->textsize) {
1102 i /= HISTFRACTION * sizeof(*g->kcount);
1103 g->kcount[i]++;
1104 }
1105 }
1106 #endif
1107 #ifdef PROC_PC
1108 if (p != NULL) {
1109 mutex_spin_enter(&p->p_stmutex);
1110 if (p->p_stflag & PST_PROFIL))
1111 addupc_intr(l, PROC_PC(p));
1112 mutex_spin_exit(&p->p_stmutex);
1113 }
1114 #endif
1115 }
1116 }
1117 #endif
1118
1119 void
1120 schedclock(struct lwp *l)
1121 {
1122
1123 if ((l->l_flag & LW_IDLE) != 0)
1124 return;
1125
1126 sched_schedclock(l);
1127 }
1128
1129 /*
1130 * Statistics clock. Grab profile sample, and if divider reaches 0,
1131 * do process and kernel statistics.
1132 */
1133 void
1134 statclock(struct clockframe *frame)
1135 {
1136 #ifdef GPROF
1137 struct gmonparam *g;
1138 intptr_t i;
1139 #endif
1140 struct cpu_info *ci = curcpu();
1141 struct schedstate_percpu *spc = &ci->ci_schedstate;
1142 struct proc *p;
1143 struct lwp *l;
1144
1145 /*
1146 * Notice changes in divisor frequency, and adjust clock
1147 * frequency accordingly.
1148 */
1149 if (spc->spc_psdiv != psdiv) {
1150 spc->spc_psdiv = psdiv;
1151 spc->spc_pscnt = psdiv;
1152 if (psdiv == 1) {
1153 setstatclockrate(stathz);
1154 } else {
1155 setstatclockrate(profhz);
1156 }
1157 }
1158 l = curlwp;
1159 if ((l->l_flag & LW_IDLE) != 0) {
1160 /*
1161 * don't account idle lwps as swapper.
1162 */
1163 p = NULL;
1164 } else {
1165 p = l->l_proc;
1166 mutex_spin_enter(&p->p_stmutex);
1167 }
1168
1169 if (CLKF_USERMODE(frame)) {
1170 if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
1171 addupc_intr(l, CLKF_PC(frame));
1172 if (--spc->spc_pscnt > 0) {
1173 mutex_spin_exit(&p->p_stmutex);
1174 return;
1175 }
1176
1177 /*
1178 * Came from user mode; CPU was in user state.
1179 * If this process is being profiled record the tick.
1180 */
1181 p->p_uticks++;
1182 if (p->p_nice > NZERO)
1183 spc->spc_cp_time[CP_NICE]++;
1184 else
1185 spc->spc_cp_time[CP_USER]++;
1186 } else {
1187 #ifdef GPROF
1188 /*
1189 * Kernel statistics are just like addupc_intr, only easier.
1190 */
1191 g = &_gmonparam;
1192 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1193 i = CLKF_PC(frame) - g->lowpc;
1194 if (i < g->textsize) {
1195 i /= HISTFRACTION * sizeof(*g->kcount);
1196 g->kcount[i]++;
1197 }
1198 }
1199 #endif
1200 #ifdef LWP_PC
1201 if (p != NULL && profsrc == PROFSRC_CLOCK &&
1202 (p->p_stflag & PST_PROFIL)) {
1203 addupc_intr(l, LWP_PC(l));
1204 }
1205 #endif
1206 if (--spc->spc_pscnt > 0) {
1207 if (p != NULL)
1208 mutex_spin_exit(&p->p_stmutex);
1209 return;
1210 }
1211 /*
1212 * Came from kernel mode, so we were:
1213 * - handling an interrupt,
1214 * - doing syscall or trap work on behalf of the current
1215 * user process, or
1216 * - spinning in the idle loop.
1217 * Whichever it is, charge the time as appropriate.
1218 * Note that we charge interrupts to the current process,
1219 * regardless of whether they are ``for'' that process,
1220 * so that we know how much of its real time was spent
1221 * in ``non-process'' (i.e., interrupt) work.
1222 */
1223 if (CLKF_INTR(frame) || (l->l_flag & LW_INTR) != 0) {
1224 if (p != NULL) {
1225 p->p_iticks++;
1226 }
1227 spc->spc_cp_time[CP_INTR]++;
1228 } else if (p != NULL) {
1229 p->p_sticks++;
1230 spc->spc_cp_time[CP_SYS]++;
1231 } else {
1232 spc->spc_cp_time[CP_IDLE]++;
1233 }
1234 }
1235 spc->spc_pscnt = psdiv;
1236
1237 if (p != NULL) {
1238 ++l->l_cpticks;
1239 mutex_spin_exit(&p->p_stmutex);
1240 }
1241
1242 /*
1243 * If no separate schedclock is provided, call it here
1244 * at about 16 Hz.
1245 */
1246 if (schedhz == 0) {
1247 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1248 schedclock(l);
1249 ci->ci_schedstate.spc_schedticks = statscheddiv;
1250 }
1251 }
1252 }
1253
1254 #ifndef __HAVE_TIMECOUNTER
1255 #ifdef NTP /* NTP phase-locked loop in kernel */
1256 /*
1257 * hardupdate() - local clock update
1258 *
1259 * This routine is called by ntp_adjtime() to update the local clock
1260 * phase and frequency. The implementation is of an adaptive-parameter,
1261 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1262 * time and frequency offset estimates for each call. If the kernel PPS
1263 * discipline code is configured (PPS_SYNC), the PPS signal itself
1264 * determines the new time offset, instead of the calling argument.
1265 * Presumably, calls to ntp_adjtime() occur only when the caller
1266 * believes the local clock is valid within some bound (+-128 ms with
1267 * NTP). If the caller's time is far different than the PPS time, an
1268 * argument will ensue, and it's not clear who will lose.
1269 *
1270 * For uncompensated quartz crystal oscillatores and nominal update
1271 * intervals less than 1024 s, operation should be in phase-lock mode
1272 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1273 * intervals greater than thiss, operation should be in frequency-lock
1274 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1275 *
1276 * Note: splclock() is in effect.
1277 */
1278 void
1279 hardupdate(long offset)
1280 {
1281 long ltemp, mtemp;
1282
1283 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1284 return;
1285 ltemp = offset;
1286 #ifdef PPS_SYNC
1287 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1288 ltemp = pps_offset;
1289 #endif /* PPS_SYNC */
1290
1291 /*
1292 * Scale the phase adjustment and clamp to the operating range.
1293 */
1294 if (ltemp > MAXPHASE)
1295 time_offset = MAXPHASE << SHIFT_UPDATE;
1296 else if (ltemp < -MAXPHASE)
1297 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1298 else
1299 time_offset = ltemp << SHIFT_UPDATE;
1300
1301 /*
1302 * Select whether the frequency is to be controlled and in which
1303 * mode (PLL or FLL). Clamp to the operating range. Ugly
1304 * multiply/divide should be replaced someday.
1305 */
1306 if (time_status & STA_FREQHOLD || time_reftime == 0)
1307 time_reftime = time.tv_sec;
1308 mtemp = time.tv_sec - time_reftime;
1309 time_reftime = time.tv_sec;
1310 if (time_status & STA_FLL) {
1311 if (mtemp >= MINSEC) {
1312 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1313 SHIFT_UPDATE));
1314 if (ltemp < 0)
1315 time_freq -= -ltemp >> SHIFT_KH;
1316 else
1317 time_freq += ltemp >> SHIFT_KH;
1318 }
1319 } else {
1320 if (mtemp < MAXSEC) {
1321 ltemp *= mtemp;
1322 if (ltemp < 0)
1323 time_freq -= -ltemp >> (time_constant +
1324 time_constant + SHIFT_KF -
1325 SHIFT_USEC);
1326 else
1327 time_freq += ltemp >> (time_constant +
1328 time_constant + SHIFT_KF -
1329 SHIFT_USEC);
1330 }
1331 }
1332 if (time_freq > time_tolerance)
1333 time_freq = time_tolerance;
1334 else if (time_freq < -time_tolerance)
1335 time_freq = -time_tolerance;
1336 }
1337
1338 #ifdef PPS_SYNC
1339 /*
1340 * hardpps() - discipline CPU clock oscillator to external PPS signal
1341 *
1342 * This routine is called at each PPS interrupt in order to discipline
1343 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1344 * and leaves it in a handy spot for the hardclock() routine. It
1345 * integrates successive PPS phase differences and calculates the
1346 * frequency offset. This is used in hardclock() to discipline the CPU
1347 * clock oscillator so that intrinsic frequency error is cancelled out.
1348 * The code requires the caller to capture the time and hardware counter
1349 * value at the on-time PPS signal transition.
1350 *
1351 * Note that, on some Unix systems, this routine runs at an interrupt
1352 * priority level higher than the timer interrupt routine hardclock().
1353 * Therefore, the variables used are distinct from the hardclock()
1354 * variables, except for certain exceptions: The PPS frequency pps_freq
1355 * and phase pps_offset variables are determined by this routine and
1356 * updated atomically. The time_tolerance variable can be considered a
1357 * constant, since it is infrequently changed, and then only when the
1358 * PPS signal is disabled. The watchdog counter pps_valid is updated
1359 * once per second by hardclock() and is atomically cleared in this
1360 * routine.
1361 */
1362 void
1363 hardpps(struct timeval *tvp, /* time at PPS */
1364 long usec /* hardware counter at PPS */)
1365 {
1366 long u_usec, v_usec, bigtick;
1367 long cal_sec, cal_usec;
1368
1369 /*
1370 * An occasional glitch can be produced when the PPS interrupt
1371 * occurs in the hardclock() routine before the time variable is
1372 * updated. Here the offset is discarded when the difference
1373 * between it and the last one is greater than tick/2, but not
1374 * if the interval since the first discard exceeds 30 s.
1375 */
1376 time_status |= STA_PPSSIGNAL;
1377 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1378 pps_valid = 0;
1379 u_usec = -tvp->tv_usec;
1380 if (u_usec < -500000)
1381 u_usec += 1000000;
1382 v_usec = pps_offset - u_usec;
1383 if (v_usec < 0)
1384 v_usec = -v_usec;
1385 if (v_usec > (tick >> 1)) {
1386 if (pps_glitch > MAXGLITCH) {
1387 pps_glitch = 0;
1388 pps_tf[2] = u_usec;
1389 pps_tf[1] = u_usec;
1390 } else {
1391 pps_glitch++;
1392 u_usec = pps_offset;
1393 }
1394 } else
1395 pps_glitch = 0;
1396
1397 /*
1398 * A three-stage median filter is used to help deglitch the pps
1399 * time. The median sample becomes the time offset estimate; the
1400 * difference between the other two samples becomes the time
1401 * dispersion (jitter) estimate.
1402 */
1403 pps_tf[2] = pps_tf[1];
1404 pps_tf[1] = pps_tf[0];
1405 pps_tf[0] = u_usec;
1406 if (pps_tf[0] > pps_tf[1]) {
1407 if (pps_tf[1] > pps_tf[2]) {
1408 pps_offset = pps_tf[1]; /* 0 1 2 */
1409 v_usec = pps_tf[0] - pps_tf[2];
1410 } else if (pps_tf[2] > pps_tf[0]) {
1411 pps_offset = pps_tf[0]; /* 2 0 1 */
1412 v_usec = pps_tf[2] - pps_tf[1];
1413 } else {
1414 pps_offset = pps_tf[2]; /* 0 2 1 */
1415 v_usec = pps_tf[0] - pps_tf[1];
1416 }
1417 } else {
1418 if (pps_tf[1] < pps_tf[2]) {
1419 pps_offset = pps_tf[1]; /* 2 1 0 */
1420 v_usec = pps_tf[2] - pps_tf[0];
1421 } else if (pps_tf[2] < pps_tf[0]) {
1422 pps_offset = pps_tf[0]; /* 1 0 2 */
1423 v_usec = pps_tf[1] - pps_tf[2];
1424 } else {
1425 pps_offset = pps_tf[2]; /* 1 2 0 */
1426 v_usec = pps_tf[1] - pps_tf[0];
1427 }
1428 }
1429 if (v_usec > MAXTIME)
1430 pps_jitcnt++;
1431 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1432 if (v_usec < 0)
1433 pps_jitter -= -v_usec >> PPS_AVG;
1434 else
1435 pps_jitter += v_usec >> PPS_AVG;
1436 if (pps_jitter > (MAXTIME >> 1))
1437 time_status |= STA_PPSJITTER;
1438
1439 /*
1440 * During the calibration interval adjust the starting time when
1441 * the tick overflows. At the end of the interval compute the
1442 * duration of the interval and the difference of the hardware
1443 * counters at the beginning and end of the interval. This code
1444 * is deliciously complicated by the fact valid differences may
1445 * exceed the value of tick when using long calibration
1446 * intervals and small ticks. Note that the counter can be
1447 * greater than tick if caught at just the wrong instant, but
1448 * the values returned and used here are correct.
1449 */
1450 bigtick = (long)tick << SHIFT_USEC;
1451 pps_usec -= pps_freq;
1452 if (pps_usec >= bigtick)
1453 pps_usec -= bigtick;
1454 if (pps_usec < 0)
1455 pps_usec += bigtick;
1456 pps_time.tv_sec++;
1457 pps_count++;
1458 if (pps_count < (1 << pps_shift))
1459 return;
1460 pps_count = 0;
1461 pps_calcnt++;
1462 u_usec = usec << SHIFT_USEC;
1463 v_usec = pps_usec - u_usec;
1464 if (v_usec >= bigtick >> 1)
1465 v_usec -= bigtick;
1466 if (v_usec < -(bigtick >> 1))
1467 v_usec += bigtick;
1468 if (v_usec < 0)
1469 v_usec = -(-v_usec >> pps_shift);
1470 else
1471 v_usec = v_usec >> pps_shift;
1472 pps_usec = u_usec;
1473 cal_sec = tvp->tv_sec;
1474 cal_usec = tvp->tv_usec;
1475 cal_sec -= pps_time.tv_sec;
1476 cal_usec -= pps_time.tv_usec;
1477 if (cal_usec < 0) {
1478 cal_usec += 1000000;
1479 cal_sec--;
1480 }
1481 pps_time = *tvp;
1482
1483 /*
1484 * Check for lost interrupts, noise, excessive jitter and
1485 * excessive frequency error. The number of timer ticks during
1486 * the interval may vary +-1 tick. Add to this a margin of one
1487 * tick for the PPS signal jitter and maximum frequency
1488 * deviation. If the limits are exceeded, the calibration
1489 * interval is reset to the minimum and we start over.
1490 */
1491 u_usec = (long)tick << 1;
1492 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1493 || (cal_sec == 0 && cal_usec < u_usec))
1494 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1495 pps_errcnt++;
1496 pps_shift = PPS_SHIFT;
1497 pps_intcnt = 0;
1498 time_status |= STA_PPSERROR;
1499 return;
1500 }
1501
1502 /*
1503 * A three-stage median filter is used to help deglitch the pps
1504 * frequency. The median sample becomes the frequency offset
1505 * estimate; the difference between the other two samples
1506 * becomes the frequency dispersion (stability) estimate.
1507 */
1508 pps_ff[2] = pps_ff[1];
1509 pps_ff[1] = pps_ff[0];
1510 pps_ff[0] = v_usec;
1511 if (pps_ff[0] > pps_ff[1]) {
1512 if (pps_ff[1] > pps_ff[2]) {
1513 u_usec = pps_ff[1]; /* 0 1 2 */
1514 v_usec = pps_ff[0] - pps_ff[2];
1515 } else if (pps_ff[2] > pps_ff[0]) {
1516 u_usec = pps_ff[0]; /* 2 0 1 */
1517 v_usec = pps_ff[2] - pps_ff[1];
1518 } else {
1519 u_usec = pps_ff[2]; /* 0 2 1 */
1520 v_usec = pps_ff[0] - pps_ff[1];
1521 }
1522 } else {
1523 if (pps_ff[1] < pps_ff[2]) {
1524 u_usec = pps_ff[1]; /* 2 1 0 */
1525 v_usec = pps_ff[2] - pps_ff[0];
1526 } else if (pps_ff[2] < pps_ff[0]) {
1527 u_usec = pps_ff[0]; /* 1 0 2 */
1528 v_usec = pps_ff[1] - pps_ff[2];
1529 } else {
1530 u_usec = pps_ff[2]; /* 1 2 0 */
1531 v_usec = pps_ff[1] - pps_ff[0];
1532 }
1533 }
1534
1535 /*
1536 * Here the frequency dispersion (stability) is updated. If it
1537 * is less than one-fourth the maximum (MAXFREQ), the frequency
1538 * offset is updated as well, but clamped to the tolerance. It
1539 * will be processed later by the hardclock() routine.
1540 */
1541 v_usec = (v_usec >> 1) - pps_stabil;
1542 if (v_usec < 0)
1543 pps_stabil -= -v_usec >> PPS_AVG;
1544 else
1545 pps_stabil += v_usec >> PPS_AVG;
1546 if (pps_stabil > MAXFREQ >> 2) {
1547 pps_stbcnt++;
1548 time_status |= STA_PPSWANDER;
1549 return;
1550 }
1551 if (time_status & STA_PPSFREQ) {
1552 if (u_usec < 0) {
1553 pps_freq -= -u_usec >> PPS_AVG;
1554 if (pps_freq < -time_tolerance)
1555 pps_freq = -time_tolerance;
1556 u_usec = -u_usec;
1557 } else {
1558 pps_freq += u_usec >> PPS_AVG;
1559 if (pps_freq > time_tolerance)
1560 pps_freq = time_tolerance;
1561 }
1562 }
1563
1564 /*
1565 * Here the calibration interval is adjusted. If the maximum
1566 * time difference is greater than tick / 4, reduce the interval
1567 * by half. If this is not the case for four consecutive
1568 * intervals, double the interval.
1569 */
1570 if (u_usec << pps_shift > bigtick >> 2) {
1571 pps_intcnt = 0;
1572 if (pps_shift > PPS_SHIFT)
1573 pps_shift--;
1574 } else if (pps_intcnt >= 4) {
1575 pps_intcnt = 0;
1576 if (pps_shift < PPS_SHIFTMAX)
1577 pps_shift++;
1578 } else
1579 pps_intcnt++;
1580 }
1581 #endif /* PPS_SYNC */
1582 #endif /* NTP */
1583
1584 /* timecounter compat functions */
1585 void
1586 nanotime(struct timespec *ts)
1587 {
1588 struct timeval tv;
1589
1590 microtime(&tv);
1591 TIMEVAL_TO_TIMESPEC(&tv, ts);
1592 }
1593
1594 void
1595 getbinuptime(struct bintime *bt)
1596 {
1597 struct timeval tv;
1598
1599 microtime(&tv);
1600 timeval2bintime(&tv, bt);
1601 }
1602
1603 void
1604 nanouptime(struct timespec *tsp)
1605 {
1606 int s;
1607
1608 s = splclock();
1609 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1610 splx(s);
1611 }
1612
1613 void
1614 getnanouptime(struct timespec *tsp)
1615 {
1616 int s;
1617
1618 s = splclock();
1619 TIMEVAL_TO_TIMESPEC(&mono_time, tsp);
1620 splx(s);
1621 }
1622
1623 void
1624 getmicrouptime(struct timeval *tvp)
1625 {
1626 int s;
1627
1628 s = splclock();
1629 *tvp = mono_time;
1630 splx(s);
1631 }
1632
1633 void
1634 getnanotime(struct timespec *tsp)
1635 {
1636 int s;
1637
1638 s = splclock();
1639 TIMEVAL_TO_TIMESPEC(&time, tsp);
1640 splx(s);
1641 }
1642
1643 void
1644 getmicrotime(struct timeval *tvp)
1645 {
1646 int s;
1647
1648 s = splclock();
1649 *tvp = time;
1650 splx(s);
1651 }
1652
1653 u_int64_t
1654 tc_getfrequency(void)
1655 {
1656 return hz;
1657 }
1658 #endif /* !__HAVE_TIMECOUNTER */
1659