Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.121.2.1
      1 /*	$NetBSD: kern_clock.c,v 1.121.2.1 2008/05/16 02:25:24 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.121.2.1 2008/05/16 02:25:24 yamt Exp $");
     73 
     74 #include "opt_ntp.h"
     75 #include "opt_multiprocessor.h"
     76 #include "opt_perfctrs.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/callout.h>
     81 #include <sys/kernel.h>
     82 #include <sys/proc.h>
     83 #include <sys/resourcevar.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/sysctl.h>
     86 #include <sys/timex.h>
     87 #include <sys/sched.h>
     88 #include <sys/time.h>
     89 #include <sys/timetc.h>
     90 #include <sys/cpu.h>
     91 #include <sys/atomic.h>
     92 
     93 #include <uvm/uvm_extern.h>
     94 
     95 #ifdef GPROF
     96 #include <sys/gmon.h>
     97 #endif
     98 
     99 /*
    100  * Clock handling routines.
    101  *
    102  * This code is written to operate with two timers that run independently of
    103  * each other.  The main clock, running hz times per second, is used to keep
    104  * track of real time.  The second timer handles kernel and user profiling,
    105  * and does resource use estimation.  If the second timer is programmable,
    106  * it is randomized to avoid aliasing between the two clocks.  For example,
    107  * the randomization prevents an adversary from always giving up the CPU
    108  * just before its quantum expires.  Otherwise, it would never accumulate
    109  * CPU ticks.  The mean frequency of the second timer is stathz.
    110  *
    111  * If no second timer exists, stathz will be zero; in this case we drive
    112  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    113  * do not do it unless absolutely necessary.
    114  *
    115  * The statistics clock may (or may not) be run at a higher rate while
    116  * profiling.  This profile clock runs at profhz.  We require that profhz
    117  * be an integral multiple of stathz.
    118  *
    119  * If the statistics clock is running fast, it must be divided by the ratio
    120  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    121  */
    122 
    123 int	stathz;
    124 int	profhz;
    125 int	profsrc;
    126 int	schedhz;
    127 int	profprocs;
    128 int	hardclock_ticks;
    129 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    130 static int psdiv;			/* prof => stat divider */
    131 int	psratio;			/* ratio: prof / stat */
    132 
    133 static u_int get_intr_timecount(struct timecounter *);
    134 
    135 static struct timecounter intr_timecounter = {
    136 	get_intr_timecount,	/* get_timecount */
    137 	0,			/* no poll_pps */
    138 	~0u,			/* counter_mask */
    139 	0,		        /* frequency */
    140 	"clockinterrupt",	/* name */
    141 	0,			/* quality - minimum implementation level for a clock */
    142 	NULL,			/* prev */
    143 	NULL,			/* next */
    144 };
    145 
    146 static u_int
    147 get_intr_timecount(struct timecounter *tc)
    148 {
    149 
    150 	return (u_int)hardclock_ticks;
    151 }
    152 
    153 /*
    154  * Initialize clock frequencies and start both clocks running.
    155  */
    156 void
    157 initclocks(void)
    158 {
    159 	int i;
    160 
    161 	/*
    162 	 * Set divisors to 1 (normal case) and let the machine-specific
    163 	 * code do its bit.
    164 	 */
    165 	psdiv = 1;
    166 	/*
    167 	 * provide minimum default time counter
    168 	 * will only run at interrupt resolution
    169 	 */
    170 	intr_timecounter.tc_frequency = hz;
    171 	tc_init(&intr_timecounter);
    172 	cpu_initclocks();
    173 
    174 	/*
    175 	 * Compute profhz and stathz, fix profhz if needed.
    176 	 */
    177 	i = stathz ? stathz : hz;
    178 	if (profhz == 0)
    179 		profhz = i;
    180 	psratio = profhz / i;
    181 	if (schedhz == 0) {
    182 		/* 16Hz is best */
    183 		hardscheddiv = hz / 16;
    184 		if (hardscheddiv <= 0)
    185 			panic("hardscheddiv");
    186 	}
    187 
    188 }
    189 
    190 /*
    191  * The real-time timer, interrupting hz times per second.
    192  */
    193 void
    194 hardclock(struct clockframe *frame)
    195 {
    196 	struct lwp *l;
    197 	struct cpu_info *ci;
    198 
    199 	ci = curcpu();
    200 	l = ci->ci_data.cpu_onproc;
    201 
    202 	timer_tick(l, CLKF_USERMODE(frame));
    203 
    204 	/*
    205 	 * If no separate statistics clock is available, run it from here.
    206 	 */
    207 	if (stathz == 0)
    208 		statclock(frame);
    209 	/*
    210 	 * If no separate schedclock is provided, call it here
    211 	 * at about 16 Hz.
    212 	 */
    213 	if (schedhz == 0) {
    214 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    215 			schedclock(l);
    216 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    217 		}
    218 	}
    219 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    220 		sched_tick(ci);
    221 
    222 #if defined(MULTIPROCESSOR)
    223 	if (CPU_IS_PRIMARY(ci))
    224 #endif
    225 	{
    226 		hardclock_ticks++;
    227 		tc_ticktock();
    228 	}
    229 
    230 	/*
    231 	 * Update real-time timeout queue.  Callouts are processed at a
    232 	 * very low CPU priority, so we don't keep the relatively high
    233 	 * clock interrupt priority any longer than necessary.
    234 	 */
    235 	callout_hardclock();
    236 }
    237 
    238 /*
    239  * Start profiling on a process.
    240  *
    241  * Kernel profiling passes proc0 which never exits and hence
    242  * keeps the profile clock running constantly.
    243  */
    244 void
    245 startprofclock(struct proc *p)
    246 {
    247 
    248 	KASSERT(mutex_owned(&p->p_stmutex));
    249 
    250 	if ((p->p_stflag & PST_PROFIL) == 0) {
    251 		p->p_stflag |= PST_PROFIL;
    252 		/*
    253 		 * This is only necessary if using the clock as the
    254 		 * profiling source.
    255 		 */
    256 		if (++profprocs == 1 && stathz != 0)
    257 			psdiv = psratio;
    258 	}
    259 }
    260 
    261 /*
    262  * Stop profiling on a process.
    263  */
    264 void
    265 stopprofclock(struct proc *p)
    266 {
    267 
    268 	KASSERT(mutex_owned(&p->p_stmutex));
    269 
    270 	if (p->p_stflag & PST_PROFIL) {
    271 		p->p_stflag &= ~PST_PROFIL;
    272 		/*
    273 		 * This is only necessary if using the clock as the
    274 		 * profiling source.
    275 		 */
    276 		if (--profprocs == 0 && stathz != 0)
    277 			psdiv = 1;
    278 	}
    279 }
    280 
    281 #if defined(PERFCTRS)
    282 /*
    283  * Independent profiling "tick" in case we're using a separate
    284  * clock or profiling event source.  Currently, that's just
    285  * performance counters--hence the wrapper.
    286  */
    287 void
    288 proftick(struct clockframe *frame)
    289 {
    290 #ifdef GPROF
    291         struct gmonparam *g;
    292         intptr_t i;
    293 #endif
    294 	struct lwp *l;
    295 	struct proc *p;
    296 
    297 	l = curcpu()->ci_data.cpu_onproc;
    298 	p = (l ? l->l_proc : NULL);
    299 	if (CLKF_USERMODE(frame)) {
    300 		mutex_spin_enter(&p->p_stmutex);
    301 		if (p->p_stflag & PST_PROFIL)
    302 			addupc_intr(l, CLKF_PC(frame));
    303 		mutex_spin_exit(&p->p_stmutex);
    304 	} else {
    305 #ifdef GPROF
    306 		g = &_gmonparam;
    307 		if (g->state == GMON_PROF_ON) {
    308 			i = CLKF_PC(frame) - g->lowpc;
    309 			if (i < g->textsize) {
    310 				i /= HISTFRACTION * sizeof(*g->kcount);
    311 				g->kcount[i]++;
    312 			}
    313 		}
    314 #endif
    315 #ifdef LWP_PC
    316 		if (p != NULL && (p->p_stflag & PST_PROFIL) != 0)
    317 			addupc_intr(l, LWP_PC(l));
    318 #endif
    319 	}
    320 }
    321 #endif
    322 
    323 void
    324 schedclock(struct lwp *l)
    325 {
    326 	struct cpu_info *ci;
    327 
    328 	ci = l->l_cpu;
    329 
    330 	/* Accumulate syscall and context switch counts. */
    331 	atomic_add_int((unsigned *)&uvmexp.swtch, ci->ci_data.cpu_nswtch);
    332 	ci->ci_data.cpu_nswtch = 0;
    333 	atomic_add_int((unsigned *)&uvmexp.syscalls, ci->ci_data.cpu_nsyscall);
    334 	ci->ci_data.cpu_nsyscall = 0;
    335 
    336 	if ((l->l_flag & LW_IDLE) != 0)
    337 		return;
    338 
    339 	sched_schedclock(l);
    340 }
    341 
    342 /*
    343  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    344  * do process and kernel statistics.
    345  */
    346 void
    347 statclock(struct clockframe *frame)
    348 {
    349 #ifdef GPROF
    350 	struct gmonparam *g;
    351 	intptr_t i;
    352 #endif
    353 	struct cpu_info *ci = curcpu();
    354 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    355 	struct proc *p;
    356 	struct lwp *l;
    357 
    358 	/*
    359 	 * Notice changes in divisor frequency, and adjust clock
    360 	 * frequency accordingly.
    361 	 */
    362 	if (spc->spc_psdiv != psdiv) {
    363 		spc->spc_psdiv = psdiv;
    364 		spc->spc_pscnt = psdiv;
    365 		if (psdiv == 1) {
    366 			setstatclockrate(stathz);
    367 		} else {
    368 			setstatclockrate(profhz);
    369 		}
    370 	}
    371 	l = ci->ci_data.cpu_onproc;
    372 	if ((l->l_flag & LW_IDLE) != 0) {
    373 		/*
    374 		 * don't account idle lwps as swapper.
    375 		 */
    376 		p = NULL;
    377 	} else {
    378 		p = l->l_proc;
    379 		mutex_spin_enter(&p->p_stmutex);
    380 	}
    381 
    382 	if (CLKF_USERMODE(frame)) {
    383 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    384 			addupc_intr(l, CLKF_PC(frame));
    385 		if (--spc->spc_pscnt > 0) {
    386 			mutex_spin_exit(&p->p_stmutex);
    387 			return;
    388 		}
    389 
    390 		/*
    391 		 * Came from user mode; CPU was in user state.
    392 		 * If this process is being profiled record the tick.
    393 		 */
    394 		p->p_uticks++;
    395 		if (p->p_nice > NZERO)
    396 			spc->spc_cp_time[CP_NICE]++;
    397 		else
    398 			spc->spc_cp_time[CP_USER]++;
    399 	} else {
    400 #ifdef GPROF
    401 		/*
    402 		 * Kernel statistics are just like addupc_intr, only easier.
    403 		 */
    404 		g = &_gmonparam;
    405 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    406 			i = CLKF_PC(frame) - g->lowpc;
    407 			if (i < g->textsize) {
    408 				i /= HISTFRACTION * sizeof(*g->kcount);
    409 				g->kcount[i]++;
    410 			}
    411 		}
    412 #endif
    413 #ifdef LWP_PC
    414 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
    415 		    (p->p_stflag & PST_PROFIL)) {
    416 			addupc_intr(l, LWP_PC(l));
    417 		}
    418 #endif
    419 		if (--spc->spc_pscnt > 0) {
    420 			if (p != NULL)
    421 				mutex_spin_exit(&p->p_stmutex);
    422 			return;
    423 		}
    424 		/*
    425 		 * Came from kernel mode, so we were:
    426 		 * - handling an interrupt,
    427 		 * - doing syscall or trap work on behalf of the current
    428 		 *   user process, or
    429 		 * - spinning in the idle loop.
    430 		 * Whichever it is, charge the time as appropriate.
    431 		 * Note that we charge interrupts to the current process,
    432 		 * regardless of whether they are ``for'' that process,
    433 		 * so that we know how much of its real time was spent
    434 		 * in ``non-process'' (i.e., interrupt) work.
    435 		 */
    436 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
    437 			if (p != NULL) {
    438 				p->p_iticks++;
    439 			}
    440 			spc->spc_cp_time[CP_INTR]++;
    441 		} else if (p != NULL) {
    442 			p->p_sticks++;
    443 			spc->spc_cp_time[CP_SYS]++;
    444 		} else {
    445 			spc->spc_cp_time[CP_IDLE]++;
    446 		}
    447 	}
    448 	spc->spc_pscnt = psdiv;
    449 
    450 	if (p != NULL) {
    451 		++l->l_cpticks;
    452 		mutex_spin_exit(&p->p_stmutex);
    453 	}
    454 }
    455