Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.124
      1 /*	$NetBSD: kern_clock.c,v 1.124 2008/06/01 21:24:15 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.124 2008/06/01 21:24:15 ad Exp $");
     73 
     74 #include "opt_ntp.h"
     75 #include "opt_perfctrs.h"
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/callout.h>
     80 #include <sys/kernel.h>
     81 #include <sys/proc.h>
     82 #include <sys/resourcevar.h>
     83 #include <sys/signalvar.h>
     84 #include <sys/sysctl.h>
     85 #include <sys/timex.h>
     86 #include <sys/sched.h>
     87 #include <sys/time.h>
     88 #include <sys/timetc.h>
     89 #include <sys/cpu.h>
     90 #include <sys/atomic.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 #ifdef GPROF
     95 #include <sys/gmon.h>
     96 #endif
     97 
     98 /*
     99  * Clock handling routines.
    100  *
    101  * This code is written to operate with two timers that run independently of
    102  * each other.  The main clock, running hz times per second, is used to keep
    103  * track of real time.  The second timer handles kernel and user profiling,
    104  * and does resource use estimation.  If the second timer is programmable,
    105  * it is randomized to avoid aliasing between the two clocks.  For example,
    106  * the randomization prevents an adversary from always giving up the CPU
    107  * just before its quantum expires.  Otherwise, it would never accumulate
    108  * CPU ticks.  The mean frequency of the second timer is stathz.
    109  *
    110  * If no second timer exists, stathz will be zero; in this case we drive
    111  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    112  * do not do it unless absolutely necessary.
    113  *
    114  * The statistics clock may (or may not) be run at a higher rate while
    115  * profiling.  This profile clock runs at profhz.  We require that profhz
    116  * be an integral multiple of stathz.
    117  *
    118  * If the statistics clock is running fast, it must be divided by the ratio
    119  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    120  */
    121 
    122 int	stathz;
    123 int	profhz;
    124 int	profsrc;
    125 int	schedhz;
    126 int	profprocs;
    127 int	hardclock_ticks;
    128 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    129 static int psdiv;			/* prof => stat divider */
    130 int	psratio;			/* ratio: prof / stat */
    131 
    132 static u_int get_intr_timecount(struct timecounter *);
    133 
    134 static struct timecounter intr_timecounter = {
    135 	get_intr_timecount,	/* get_timecount */
    136 	0,			/* no poll_pps */
    137 	~0u,			/* counter_mask */
    138 	0,		        /* frequency */
    139 	"clockinterrupt",	/* name */
    140 	0,			/* quality - minimum implementation level for a clock */
    141 	NULL,			/* prev */
    142 	NULL,			/* next */
    143 };
    144 
    145 static u_int
    146 get_intr_timecount(struct timecounter *tc)
    147 {
    148 
    149 	return (u_int)hardclock_ticks;
    150 }
    151 
    152 /*
    153  * Initialize clock frequencies and start both clocks running.
    154  */
    155 void
    156 initclocks(void)
    157 {
    158 	int i;
    159 
    160 	/*
    161 	 * Set divisors to 1 (normal case) and let the machine-specific
    162 	 * code do its bit.
    163 	 */
    164 	psdiv = 1;
    165 	/*
    166 	 * provide minimum default time counter
    167 	 * will only run at interrupt resolution
    168 	 */
    169 	intr_timecounter.tc_frequency = hz;
    170 	tc_init(&intr_timecounter);
    171 	cpu_initclocks();
    172 
    173 	/*
    174 	 * Compute profhz and stathz, fix profhz if needed.
    175 	 */
    176 	i = stathz ? stathz : hz;
    177 	if (profhz == 0)
    178 		profhz = i;
    179 	psratio = profhz / i;
    180 	if (schedhz == 0) {
    181 		/* 16Hz is best */
    182 		hardscheddiv = hz / 16;
    183 		if (hardscheddiv <= 0)
    184 			panic("hardscheddiv");
    185 	}
    186 
    187 }
    188 
    189 /*
    190  * The real-time timer, interrupting hz times per second.
    191  */
    192 void
    193 hardclock(struct clockframe *frame)
    194 {
    195 	struct lwp *l;
    196 	struct cpu_info *ci;
    197 
    198 	ci = curcpu();
    199 	l = ci->ci_data.cpu_onproc;
    200 
    201 	timer_tick(l, CLKF_USERMODE(frame));
    202 
    203 	/*
    204 	 * If no separate statistics clock is available, run it from here.
    205 	 */
    206 	if (stathz == 0)
    207 		statclock(frame);
    208 	/*
    209 	 * If no separate schedclock is provided, call it here
    210 	 * at about 16 Hz.
    211 	 */
    212 	if (schedhz == 0) {
    213 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    214 			schedclock(l);
    215 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    216 		}
    217 	}
    218 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    219 		sched_tick(ci);
    220 
    221 	if (CPU_IS_PRIMARY(ci)) {
    222 		hardclock_ticks++;
    223 		tc_ticktock();
    224 	}
    225 
    226 	/*
    227 	 * Update real-time timeout queue.  Callouts are processed at a
    228 	 * very low CPU priority, so we don't keep the relatively high
    229 	 * clock interrupt priority any longer than necessary.
    230 	 */
    231 	callout_hardclock();
    232 }
    233 
    234 /*
    235  * Start profiling on a process.
    236  *
    237  * Kernel profiling passes proc0 which never exits and hence
    238  * keeps the profile clock running constantly.
    239  */
    240 void
    241 startprofclock(struct proc *p)
    242 {
    243 
    244 	KASSERT(mutex_owned(&p->p_stmutex));
    245 
    246 	if ((p->p_stflag & PST_PROFIL) == 0) {
    247 		p->p_stflag |= PST_PROFIL;
    248 		/*
    249 		 * This is only necessary if using the clock as the
    250 		 * profiling source.
    251 		 */
    252 		if (++profprocs == 1 && stathz != 0)
    253 			psdiv = psratio;
    254 	}
    255 }
    256 
    257 /*
    258  * Stop profiling on a process.
    259  */
    260 void
    261 stopprofclock(struct proc *p)
    262 {
    263 
    264 	KASSERT(mutex_owned(&p->p_stmutex));
    265 
    266 	if (p->p_stflag & PST_PROFIL) {
    267 		p->p_stflag &= ~PST_PROFIL;
    268 		/*
    269 		 * This is only necessary if using the clock as the
    270 		 * profiling source.
    271 		 */
    272 		if (--profprocs == 0 && stathz != 0)
    273 			psdiv = 1;
    274 	}
    275 }
    276 
    277 #if defined(PERFCTRS)
    278 /*
    279  * Independent profiling "tick" in case we're using a separate
    280  * clock or profiling event source.  Currently, that's just
    281  * performance counters--hence the wrapper.
    282  */
    283 void
    284 proftick(struct clockframe *frame)
    285 {
    286 #ifdef GPROF
    287         struct gmonparam *g;
    288         intptr_t i;
    289 #endif
    290 	struct lwp *l;
    291 	struct proc *p;
    292 
    293 	l = curcpu()->ci_data.cpu_onproc;
    294 	p = (l ? l->l_proc : NULL);
    295 	if (CLKF_USERMODE(frame)) {
    296 		mutex_spin_enter(&p->p_stmutex);
    297 		if (p->p_stflag & PST_PROFIL)
    298 			addupc_intr(l, CLKF_PC(frame));
    299 		mutex_spin_exit(&p->p_stmutex);
    300 	} else {
    301 #ifdef GPROF
    302 		g = &_gmonparam;
    303 		if (g->state == GMON_PROF_ON) {
    304 			i = CLKF_PC(frame) - g->lowpc;
    305 			if (i < g->textsize) {
    306 				i /= HISTFRACTION * sizeof(*g->kcount);
    307 				g->kcount[i]++;
    308 			}
    309 		}
    310 #endif
    311 #ifdef LWP_PC
    312 		if (p != NULL && (p->p_stflag & PST_PROFIL) != 0)
    313 			addupc_intr(l, LWP_PC(l));
    314 #endif
    315 	}
    316 }
    317 #endif
    318 
    319 void
    320 schedclock(struct lwp *l)
    321 {
    322 	struct cpu_info *ci;
    323 
    324 	ci = l->l_cpu;
    325 
    326 	/* Accumulate syscall and context switch counts. */
    327 	atomic_add_int((unsigned *)&uvmexp.swtch, ci->ci_data.cpu_nswtch);
    328 	ci->ci_data.cpu_nswtch = 0;
    329 	atomic_add_int((unsigned *)&uvmexp.syscalls, ci->ci_data.cpu_nsyscall);
    330 	ci->ci_data.cpu_nsyscall = 0;
    331 	atomic_add_int((unsigned *)&uvmexp.traps, ci->ci_data.cpu_ntrap);
    332 	ci->ci_data.cpu_ntrap = 0;
    333 
    334 	if ((l->l_flag & LW_IDLE) != 0)
    335 		return;
    336 
    337 	sched_schedclock(l);
    338 }
    339 
    340 /*
    341  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    342  * do process and kernel statistics.
    343  */
    344 void
    345 statclock(struct clockframe *frame)
    346 {
    347 #ifdef GPROF
    348 	struct gmonparam *g;
    349 	intptr_t i;
    350 #endif
    351 	struct cpu_info *ci = curcpu();
    352 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    353 	struct proc *p;
    354 	struct lwp *l;
    355 
    356 	/*
    357 	 * Notice changes in divisor frequency, and adjust clock
    358 	 * frequency accordingly.
    359 	 */
    360 	if (spc->spc_psdiv != psdiv) {
    361 		spc->spc_psdiv = psdiv;
    362 		spc->spc_pscnt = psdiv;
    363 		if (psdiv == 1) {
    364 			setstatclockrate(stathz);
    365 		} else {
    366 			setstatclockrate(profhz);
    367 		}
    368 	}
    369 	l = ci->ci_data.cpu_onproc;
    370 	if ((l->l_flag & LW_IDLE) != 0) {
    371 		/*
    372 		 * don't account idle lwps as swapper.
    373 		 */
    374 		p = NULL;
    375 	} else {
    376 		p = l->l_proc;
    377 		mutex_spin_enter(&p->p_stmutex);
    378 	}
    379 
    380 	if (CLKF_USERMODE(frame)) {
    381 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    382 			addupc_intr(l, CLKF_PC(frame));
    383 		if (--spc->spc_pscnt > 0) {
    384 			mutex_spin_exit(&p->p_stmutex);
    385 			return;
    386 		}
    387 
    388 		/*
    389 		 * Came from user mode; CPU was in user state.
    390 		 * If this process is being profiled record the tick.
    391 		 */
    392 		p->p_uticks++;
    393 		if (p->p_nice > NZERO)
    394 			spc->spc_cp_time[CP_NICE]++;
    395 		else
    396 			spc->spc_cp_time[CP_USER]++;
    397 	} else {
    398 #ifdef GPROF
    399 		/*
    400 		 * Kernel statistics are just like addupc_intr, only easier.
    401 		 */
    402 		g = &_gmonparam;
    403 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    404 			i = CLKF_PC(frame) - g->lowpc;
    405 			if (i < g->textsize) {
    406 				i /= HISTFRACTION * sizeof(*g->kcount);
    407 				g->kcount[i]++;
    408 			}
    409 		}
    410 #endif
    411 #ifdef LWP_PC
    412 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
    413 		    (p->p_stflag & PST_PROFIL)) {
    414 			addupc_intr(l, LWP_PC(l));
    415 		}
    416 #endif
    417 		if (--spc->spc_pscnt > 0) {
    418 			if (p != NULL)
    419 				mutex_spin_exit(&p->p_stmutex);
    420 			return;
    421 		}
    422 		/*
    423 		 * Came from kernel mode, so we were:
    424 		 * - handling an interrupt,
    425 		 * - doing syscall or trap work on behalf of the current
    426 		 *   user process, or
    427 		 * - spinning in the idle loop.
    428 		 * Whichever it is, charge the time as appropriate.
    429 		 * Note that we charge interrupts to the current process,
    430 		 * regardless of whether they are ``for'' that process,
    431 		 * so that we know how much of its real time was spent
    432 		 * in ``non-process'' (i.e., interrupt) work.
    433 		 */
    434 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
    435 			if (p != NULL) {
    436 				p->p_iticks++;
    437 			}
    438 			spc->spc_cp_time[CP_INTR]++;
    439 		} else if (p != NULL) {
    440 			p->p_sticks++;
    441 			spc->spc_cp_time[CP_SYS]++;
    442 		} else {
    443 			spc->spc_cp_time[CP_IDLE]++;
    444 		}
    445 	}
    446 	spc->spc_pscnt = psdiv;
    447 
    448 	if (p != NULL) {
    449 		++l->l_cpticks;
    450 		mutex_spin_exit(&p->p_stmutex);
    451 	}
    452 }
    453