Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.144
      1 /*	$NetBSD: kern_clock.c,v 1.144 2021/01/16 02:20:00 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.144 2021/01/16 02:20:00 riastradh Exp $");
     73 
     74 #ifdef _KERNEL_OPT
     75 #include "opt_dtrace.h"
     76 #include "opt_gprof.h"
     77 #endif
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/callout.h>
     82 #include <sys/kernel.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/sysctl.h>
     87 #include <sys/timex.h>
     88 #include <sys/sched.h>
     89 #include <sys/time.h>
     90 #include <sys/timetc.h>
     91 #include <sys/cpu.h>
     92 #include <sys/atomic.h>
     93 #include <sys/rndsource.h>
     94 
     95 #ifdef GPROF
     96 #include <sys/gmon.h>
     97 #endif
     98 
     99 #ifdef KDTRACE_HOOKS
    100 #include <sys/dtrace_bsd.h>
    101 #include <sys/cpu.h>
    102 
    103 cyclic_clock_func_t	cyclic_clock_func[MAXCPUS];
    104 #endif
    105 
    106 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
    107 
    108 /*
    109  * Clock handling routines.
    110  *
    111  * This code is written to operate with two timers that run independently of
    112  * each other.  The main clock, running hz times per second, is used to keep
    113  * track of real time.  The second timer handles kernel and user profiling,
    114  * and does resource use estimation.  If the second timer is programmable,
    115  * it is randomized to avoid aliasing between the two clocks.  For example,
    116  * the randomization prevents an adversary from always giving up the CPU
    117  * just before its quantum expires.  Otherwise, it would never accumulate
    118  * CPU ticks.  The mean frequency of the second timer is stathz.
    119  *
    120  * If no second timer exists, stathz will be zero; in this case we drive
    121  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    122  * do not do it unless absolutely necessary.
    123  *
    124  * The statistics clock may (or may not) be run at a higher rate while
    125  * profiling.  This profile clock runs at profhz.  We require that profhz
    126  * be an integral multiple of stathz.
    127  *
    128  * If the statistics clock is running fast, it must be divided by the ratio
    129  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    130  */
    131 
    132 int	stathz;
    133 int	profhz;
    134 int	profsrc;
    135 int	schedhz;
    136 int	profprocs;
    137 int	hardclock_ticks;
    138 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    139 static int psdiv;			/* prof => stat divider */
    140 int	psratio;			/* ratio: prof / stat */
    141 
    142 struct clockrnd {
    143 	struct krndsource source;
    144 	unsigned needed;
    145 };
    146 
    147 static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
    148 static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
    149 
    150 static void
    151 clockrnd_get(size_t needed, void *cookie)
    152 {
    153 	struct clockrnd *C = cookie;
    154 
    155 	/* Start sampling.  */
    156 	atomic_store_relaxed(&C->needed, 2*NBBY*needed);
    157 }
    158 
    159 static void
    160 clockrnd_sample(struct clockrnd *C)
    161 {
    162 	struct cpu_info *ci = curcpu();
    163 
    164 	/* If there's nothing needed right now, stop here.  */
    165 	if (__predict_true(C->needed == 0))
    166 		return;
    167 
    168 	/*
    169 	 * If we're not the primary core of a package, we're probably
    170 	 * driven by the same clock as the primary core, so don't
    171 	 * bother.
    172 	 */
    173 	if (ci != ci->ci_package1st)
    174 		return;
    175 
    176 	/* Take a sample and enter it into the pool.  */
    177 	rnd_add_uint32(&C->source, 0);
    178 
    179 	/*
    180 	 * On the primary CPU, count down.  Using an atomic decrement
    181 	 * here isn't really necessary -- on every platform we care
    182 	 * about, stores to unsigned int are atomic, and the only other
    183 	 * memory operation that could happen here is for another CPU
    184 	 * to store a higher value for needed.  But using an atomic
    185 	 * decrement avoids giving the impression of data races, and is
    186 	 * unlikely to hurt because only one CPU will ever be writing
    187 	 * to the location.
    188 	 */
    189 	if (CPU_IS_PRIMARY(curcpu())) {
    190 		unsigned needed __diagused;
    191 
    192 		needed = atomic_dec_uint_nv(&C->needed);
    193 		KASSERT(needed != UINT_MAX);
    194 	}
    195 }
    196 
    197 static u_int get_intr_timecount(struct timecounter *);
    198 
    199 static struct timecounter intr_timecounter = {
    200 	.tc_get_timecount	= get_intr_timecount,
    201 	.tc_poll_pps		= NULL,
    202 	.tc_counter_mask	= ~0u,
    203 	.tc_frequency		= 0,
    204 	.tc_name		= "clockinterrupt",
    205 	/* quality - minimum implementation level for a clock */
    206 	.tc_quality		= 0,
    207 	.tc_priv		= NULL,
    208 };
    209 
    210 static u_int
    211 get_intr_timecount(struct timecounter *tc)
    212 {
    213 
    214 	return (u_int)getticks();
    215 }
    216 
    217 int
    218 getticks(void)
    219 {
    220 	return atomic_load_relaxed(&hardclock_ticks);
    221 }
    222 
    223 /*
    224  * Initialize clock frequencies and start both clocks running.
    225  */
    226 void
    227 initclocks(void)
    228 {
    229 	static struct sysctllog *clog;
    230 	int i;
    231 
    232 	/*
    233 	 * Set divisors to 1 (normal case) and let the machine-specific
    234 	 * code do its bit.
    235 	 */
    236 	psdiv = 1;
    237 
    238 	/*
    239 	 * Call cpu_initclocks() before registering the default
    240 	 * timecounter, in case it needs to adjust hz.
    241 	 */
    242 	const int old_hz = hz;
    243 	cpu_initclocks();
    244 	if (old_hz != hz) {
    245 		tick = 1000000 / hz;
    246 		tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
    247 	}
    248 
    249 	/*
    250 	 * provide minimum default time counter
    251 	 * will only run at interrupt resolution
    252 	 */
    253 	intr_timecounter.tc_frequency = hz;
    254 	tc_init(&intr_timecounter);
    255 
    256 	/*
    257 	 * Compute profhz and stathz, fix profhz if needed.
    258 	 */
    259 	i = stathz ? stathz : hz;
    260 	if (profhz == 0)
    261 		profhz = i;
    262 	psratio = profhz / i;
    263 	if (schedhz == 0) {
    264 		/* 16Hz is best */
    265 		hardscheddiv = hz / 16;
    266 		if (hardscheddiv <= 0)
    267 			panic("hardscheddiv");
    268 	}
    269 
    270 	sysctl_createv(&clog, 0, NULL, NULL,
    271 		       CTLFLAG_PERMANENT,
    272 		       CTLTYPE_STRUCT, "clockrate",
    273 		       SYSCTL_DESCR("Kernel clock rates"),
    274 		       sysctl_kern_clockrate, 0, NULL,
    275 		       sizeof(struct clockinfo),
    276 		       CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
    277 	sysctl_createv(&clog, 0, NULL, NULL,
    278 		       CTLFLAG_PERMANENT,
    279 		       CTLTYPE_INT, "hardclock_ticks",
    280 		       SYSCTL_DESCR("Number of hardclock ticks"),
    281 		       NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
    282 		       CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
    283 
    284 	rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
    285 	rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
    286 	    RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
    287 	if (stathz) {
    288 		rndsource_setcb(&statclockrnd.source, clockrnd_get,
    289 		    &statclockrnd);
    290 		rnd_attach_source(&statclockrnd.source, "statclock",
    291 		    RND_TYPE_SKEW, RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB);
    292 	}
    293 }
    294 
    295 /*
    296  * The real-time timer, interrupting hz times per second.
    297  */
    298 void
    299 hardclock(struct clockframe *frame)
    300 {
    301 	struct lwp *l;
    302 	struct cpu_info *ci;
    303 
    304 	clockrnd_sample(&hardclockrnd);
    305 
    306 	ci = curcpu();
    307 	l = ci->ci_onproc;
    308 
    309 	ptimer_tick(l, CLKF_USERMODE(frame));
    310 
    311 	/*
    312 	 * If no separate statistics clock is available, run it from here.
    313 	 */
    314 	if (stathz == 0)
    315 		statclock(frame);
    316 	/*
    317 	 * If no separate schedclock is provided, call it here
    318 	 * at about 16 Hz.
    319 	 */
    320 	if (schedhz == 0) {
    321 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    322 			schedclock(l);
    323 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    324 		}
    325 	}
    326 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    327 		sched_tick(ci);
    328 
    329 	if (CPU_IS_PRIMARY(ci)) {
    330 		atomic_store_relaxed(&hardclock_ticks,
    331 		    atomic_load_relaxed(&hardclock_ticks) + 1);
    332 		tc_ticktock();
    333 	}
    334 
    335 	/*
    336 	 * Update real-time timeout queue.
    337 	 */
    338 	callout_hardclock();
    339 }
    340 
    341 /*
    342  * Start profiling on a process.
    343  *
    344  * Kernel profiling passes proc0 which never exits and hence
    345  * keeps the profile clock running constantly.
    346  */
    347 void
    348 startprofclock(struct proc *p)
    349 {
    350 
    351 	KASSERT(mutex_owned(&p->p_stmutex));
    352 
    353 	if ((p->p_stflag & PST_PROFIL) == 0) {
    354 		p->p_stflag |= PST_PROFIL;
    355 		/*
    356 		 * This is only necessary if using the clock as the
    357 		 * profiling source.
    358 		 */
    359 		if (++profprocs == 1 && stathz != 0)
    360 			psdiv = psratio;
    361 	}
    362 }
    363 
    364 /*
    365  * Stop profiling on a process.
    366  */
    367 void
    368 stopprofclock(struct proc *p)
    369 {
    370 
    371 	KASSERT(mutex_owned(&p->p_stmutex));
    372 
    373 	if (p->p_stflag & PST_PROFIL) {
    374 		p->p_stflag &= ~PST_PROFIL;
    375 		/*
    376 		 * This is only necessary if using the clock as the
    377 		 * profiling source.
    378 		 */
    379 		if (--profprocs == 0 && stathz != 0)
    380 			psdiv = 1;
    381 	}
    382 }
    383 
    384 void
    385 schedclock(struct lwp *l)
    386 {
    387 	if ((l->l_flag & LW_IDLE) != 0)
    388 		return;
    389 
    390 	sched_schedclock(l);
    391 }
    392 
    393 /*
    394  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    395  * do process and kernel statistics.
    396  */
    397 void
    398 statclock(struct clockframe *frame)
    399 {
    400 #ifdef GPROF
    401 	struct gmonparam *g;
    402 	intptr_t i;
    403 #endif
    404 	struct cpu_info *ci = curcpu();
    405 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    406 	struct proc *p;
    407 	struct lwp *l;
    408 
    409 	if (stathz)
    410 		clockrnd_sample(&statclockrnd);
    411 
    412 	/*
    413 	 * Notice changes in divisor frequency, and adjust clock
    414 	 * frequency accordingly.
    415 	 */
    416 	if (spc->spc_psdiv != psdiv) {
    417 		spc->spc_psdiv = psdiv;
    418 		spc->spc_pscnt = psdiv;
    419 		if (psdiv == 1) {
    420 			setstatclockrate(stathz);
    421 		} else {
    422 			setstatclockrate(profhz);
    423 		}
    424 	}
    425 	l = ci->ci_onproc;
    426 	if ((l->l_flag & LW_IDLE) != 0) {
    427 		/*
    428 		 * don't account idle lwps as swapper.
    429 		 */
    430 		p = NULL;
    431 	} else {
    432 		p = l->l_proc;
    433 		mutex_spin_enter(&p->p_stmutex);
    434 	}
    435 
    436 	if (CLKF_USERMODE(frame)) {
    437 		KASSERT(p != NULL);
    438 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    439 			addupc_intr(l, CLKF_PC(frame));
    440 		if (--spc->spc_pscnt > 0) {
    441 			mutex_spin_exit(&p->p_stmutex);
    442 			return;
    443 		}
    444 
    445 		/*
    446 		 * Came from user mode; CPU was in user state.
    447 		 * If this process is being profiled record the tick.
    448 		 */
    449 		p->p_uticks++;
    450 		if (p->p_nice > NZERO)
    451 			spc->spc_cp_time[CP_NICE]++;
    452 		else
    453 			spc->spc_cp_time[CP_USER]++;
    454 	} else {
    455 #ifdef GPROF
    456 		/*
    457 		 * Kernel statistics are just like addupc_intr, only easier.
    458 		 */
    459 		g = &_gmonparam;
    460 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    461 			i = CLKF_PC(frame) - g->lowpc;
    462 			if (i < g->textsize) {
    463 				i /= HISTFRACTION * sizeof(*g->kcount);
    464 				g->kcount[i]++;
    465 			}
    466 		}
    467 #endif
    468 #ifdef LWP_PC
    469 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
    470 		    (p->p_stflag & PST_PROFIL)) {
    471 			addupc_intr(l, LWP_PC(l));
    472 		}
    473 #endif
    474 		if (--spc->spc_pscnt > 0) {
    475 			if (p != NULL)
    476 				mutex_spin_exit(&p->p_stmutex);
    477 			return;
    478 		}
    479 		/*
    480 		 * Came from kernel mode, so we were:
    481 		 * - handling an interrupt,
    482 		 * - doing syscall or trap work on behalf of the current
    483 		 *   user process, or
    484 		 * - spinning in the idle loop.
    485 		 * Whichever it is, charge the time as appropriate.
    486 		 * Note that we charge interrupts to the current process,
    487 		 * regardless of whether they are ``for'' that process,
    488 		 * so that we know how much of its real time was spent
    489 		 * in ``non-process'' (i.e., interrupt) work.
    490 		 */
    491 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
    492 			if (p != NULL) {
    493 				p->p_iticks++;
    494 			}
    495 			spc->spc_cp_time[CP_INTR]++;
    496 		} else if (p != NULL) {
    497 			p->p_sticks++;
    498 			spc->spc_cp_time[CP_SYS]++;
    499 		} else {
    500 			spc->spc_cp_time[CP_IDLE]++;
    501 		}
    502 	}
    503 	spc->spc_pscnt = psdiv;
    504 
    505 	if (p != NULL) {
    506 		atomic_inc_uint(&l->l_cpticks);
    507 		mutex_spin_exit(&p->p_stmutex);
    508 	}
    509 
    510 #ifdef KDTRACE_HOOKS
    511 	cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
    512 	if (func) {
    513 		(*func)((struct clockframe *)frame);
    514 	}
    515 #endif
    516 }
    517 
    518 /*
    519  * sysctl helper routine for kern.clockrate. Assembles a struct on
    520  * the fly to be returned to the caller.
    521  */
    522 static int
    523 sysctl_kern_clockrate(SYSCTLFN_ARGS)
    524 {
    525 	struct clockinfo clkinfo;
    526 	struct sysctlnode node;
    527 
    528 	clkinfo.tick = tick;
    529 	clkinfo.tickadj = tickadj;
    530 	clkinfo.hz = hz;
    531 	clkinfo.profhz = profhz;
    532 	clkinfo.stathz = stathz ? stathz : hz;
    533 
    534 	node = *rnode;
    535 	node.sysctl_data = &clkinfo;
    536 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    537 }
    538