kern_clock.c revision 1.148.4.1 1 /* $NetBSD: kern_clock.c,v 1.148.4.1 2023/08/11 14:35:25 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.148.4.1 2023/08/11 14:35:25 martin Exp $");
73
74 #ifdef _KERNEL_OPT
75 #include "opt_dtrace.h"
76 #include "opt_gprof.h"
77 #include "opt_multiprocessor.h"
78 #endif
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signalvar.h>
87 #include <sys/sysctl.h>
88 #include <sys/timex.h>
89 #include <sys/sched.h>
90 #include <sys/time.h>
91 #include <sys/timetc.h>
92 #include <sys/cpu.h>
93 #include <sys/atomic.h>
94 #include <sys/rndsource.h>
95
96 #ifdef GPROF
97 #include <sys/gmon.h>
98 #endif
99
100 #ifdef KDTRACE_HOOKS
101 #include <sys/dtrace_bsd.h>
102 #include <sys/cpu.h>
103
104 cyclic_clock_func_t cyclic_clock_func[MAXCPUS];
105 #endif
106
107 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
108
109 /*
110 * Clock handling routines.
111 *
112 * This code is written to operate with two timers that run independently of
113 * each other. The main clock, running hz times per second, is used to keep
114 * track of real time. The second timer handles kernel and user profiling,
115 * and does resource use estimation. If the second timer is programmable,
116 * it is randomized to avoid aliasing between the two clocks. For example,
117 * the randomization prevents an adversary from always giving up the CPU
118 * just before its quantum expires. Otherwise, it would never accumulate
119 * CPU ticks. The mean frequency of the second timer is stathz.
120 *
121 * If no second timer exists, stathz will be zero; in this case we drive
122 * profiling and statistics off the main clock. This WILL NOT be accurate;
123 * do not do it unless absolutely necessary.
124 *
125 * The statistics clock may (or may not) be run at a higher rate while
126 * profiling. This profile clock runs at profhz. We require that profhz
127 * be an integral multiple of stathz.
128 *
129 * If the statistics clock is running fast, it must be divided by the ratio
130 * profhz/stathz for statistics. (For profiling, every tick counts.)
131 */
132
133 int stathz;
134 int profhz;
135 int profsrc;
136 int schedhz;
137 int profprocs;
138 static int hardclock_ticks;
139 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
140 static int psdiv; /* prof => stat divider */
141 int psratio; /* ratio: prof / stat */
142
143 struct clockrnd {
144 struct krndsource source;
145 unsigned needed;
146 };
147
148 static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
149 static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
150
151 static void
152 clockrnd_get(size_t needed, void *cookie)
153 {
154 struct clockrnd *C = cookie;
155
156 /* Start sampling. */
157 atomic_store_relaxed(&C->needed, 2*NBBY*needed);
158 }
159
160 static void
161 clockrnd_sample(struct clockrnd *C)
162 {
163 struct cpu_info *ci = curcpu();
164
165 /* If there's nothing needed right now, stop here. */
166 if (__predict_true(atomic_load_relaxed(&C->needed) == 0))
167 return;
168
169 /*
170 * If we're not the primary core of a package, we're probably
171 * driven by the same clock as the primary core, so don't
172 * bother.
173 */
174 if (ci != ci->ci_package1st)
175 return;
176
177 /* Take a sample and enter it into the pool. */
178 rnd_add_uint32(&C->source, 0);
179
180 /*
181 * On the primary CPU, count down. Using an atomic decrement
182 * here isn't really necessary -- on every platform we care
183 * about, stores to unsigned int are atomic, and the only other
184 * memory operation that could happen here is for another CPU
185 * to store a higher value for needed. But using an atomic
186 * decrement avoids giving the impression of data races, and is
187 * unlikely to hurt because only one CPU will ever be writing
188 * to the location.
189 */
190 if (CPU_IS_PRIMARY(curcpu())) {
191 unsigned needed __diagused;
192
193 needed = atomic_dec_uint_nv(&C->needed);
194 KASSERT(needed != UINT_MAX);
195 }
196 }
197
198 static u_int get_intr_timecount(struct timecounter *);
199
200 static struct timecounter intr_timecounter = {
201 .tc_get_timecount = get_intr_timecount,
202 .tc_poll_pps = NULL,
203 .tc_counter_mask = ~0u,
204 .tc_frequency = 0,
205 .tc_name = "clockinterrupt",
206 /* quality - minimum implementation level for a clock */
207 .tc_quality = 0,
208 .tc_priv = NULL,
209 };
210
211 static u_int
212 get_intr_timecount(struct timecounter *tc)
213 {
214
215 return (u_int)getticks();
216 }
217
218 int
219 getticks(void)
220 {
221 return atomic_load_relaxed(&hardclock_ticks);
222 }
223
224 /*
225 * Initialize clock frequencies and start both clocks running.
226 */
227 void
228 initclocks(void)
229 {
230 static struct sysctllog *clog;
231 int i;
232
233 /*
234 * Set divisors to 1 (normal case) and let the machine-specific
235 * code do its bit.
236 */
237 psdiv = 1;
238
239 /*
240 * Call cpu_initclocks() before registering the default
241 * timecounter, in case it needs to adjust hz.
242 */
243 const int old_hz = hz;
244 cpu_initclocks();
245 if (old_hz != hz) {
246 tick = 1000000 / hz;
247 tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
248 }
249
250 /*
251 * provide minimum default time counter
252 * will only run at interrupt resolution
253 */
254 intr_timecounter.tc_frequency = hz;
255 tc_init(&intr_timecounter);
256
257 /*
258 * Compute profhz and stathz, fix profhz if needed.
259 */
260 i = stathz ? stathz : hz;
261 if (profhz == 0)
262 profhz = i;
263 psratio = profhz / i;
264 if (schedhz == 0) {
265 /* 16Hz is best */
266 hardscheddiv = hz / 16;
267 if (hardscheddiv <= 0)
268 panic("hardscheddiv");
269 }
270
271 sysctl_createv(&clog, 0, NULL, NULL,
272 CTLFLAG_PERMANENT,
273 CTLTYPE_STRUCT, "clockrate",
274 SYSCTL_DESCR("Kernel clock rates"),
275 sysctl_kern_clockrate, 0, NULL,
276 sizeof(struct clockinfo),
277 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
278 sysctl_createv(&clog, 0, NULL, NULL,
279 CTLFLAG_PERMANENT,
280 CTLTYPE_INT, "hardclock_ticks",
281 SYSCTL_DESCR("Number of hardclock ticks"),
282 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
283 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
284
285 rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
286 rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
287 RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|RND_FLAG_HASCB);
288 if (stathz) {
289 rndsource_setcb(&statclockrnd.source, clockrnd_get,
290 &statclockrnd);
291 rnd_attach_source(&statclockrnd.source, "statclock",
292 RND_TYPE_SKEW,
293 (RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|
294 RND_FLAG_HASCB));
295 }
296 }
297
298 /*
299 * The real-time timer, interrupting hz times per second.
300 */
301 void
302 hardclock(struct clockframe *frame)
303 {
304 struct lwp *l;
305 struct cpu_info *ci;
306
307 clockrnd_sample(&hardclockrnd);
308
309 ci = curcpu();
310 l = ci->ci_onproc;
311
312 ptimer_tick(l, CLKF_USERMODE(frame));
313
314 /*
315 * If no separate statistics clock is available, run it from here.
316 */
317 if (stathz == 0)
318 statclock(frame);
319 /*
320 * If no separate schedclock is provided, call it here
321 * at about 16 Hz.
322 */
323 if (schedhz == 0) {
324 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
325 schedclock(l);
326 ci->ci_schedstate.spc_schedticks = hardscheddiv;
327 }
328 }
329 if ((--ci->ci_schedstate.spc_ticks) <= 0)
330 sched_tick(ci);
331
332 if (CPU_IS_PRIMARY(ci)) {
333 atomic_store_relaxed(&hardclock_ticks,
334 atomic_load_relaxed(&hardclock_ticks) + 1);
335 tc_ticktock();
336 }
337
338 /*
339 * Update real-time timeout queue.
340 */
341 callout_hardclock();
342 }
343
344 /*
345 * Start profiling on a process.
346 *
347 * Kernel profiling passes proc0 which never exits and hence
348 * keeps the profile clock running constantly.
349 */
350 void
351 startprofclock(struct proc *p)
352 {
353
354 KASSERT(mutex_owned(&p->p_stmutex));
355
356 if ((p->p_stflag & PST_PROFIL) == 0) {
357 p->p_stflag |= PST_PROFIL;
358 /*
359 * This is only necessary if using the clock as the
360 * profiling source.
361 */
362 if (++profprocs == 1 && stathz != 0)
363 psdiv = psratio;
364 }
365 }
366
367 /*
368 * Stop profiling on a process.
369 */
370 void
371 stopprofclock(struct proc *p)
372 {
373
374 KASSERT(mutex_owned(&p->p_stmutex));
375
376 if (p->p_stflag & PST_PROFIL) {
377 p->p_stflag &= ~PST_PROFIL;
378 /*
379 * This is only necessary if using the clock as the
380 * profiling source.
381 */
382 if (--profprocs == 0 && stathz != 0)
383 psdiv = 1;
384 }
385 }
386
387 void
388 schedclock(struct lwp *l)
389 {
390 if ((l->l_flag & LW_IDLE) != 0)
391 return;
392
393 sched_schedclock(l);
394 }
395
396 /*
397 * Statistics clock. Grab profile sample, and if divider reaches 0,
398 * do process and kernel statistics.
399 */
400 void
401 statclock(struct clockframe *frame)
402 {
403 #ifdef GPROF
404 struct gmonparam *g;
405 intptr_t i;
406 #endif
407 struct cpu_info *ci = curcpu();
408 struct schedstate_percpu *spc = &ci->ci_schedstate;
409 struct proc *p;
410 struct lwp *l;
411
412 if (stathz)
413 clockrnd_sample(&statclockrnd);
414
415 /*
416 * Notice changes in divisor frequency, and adjust clock
417 * frequency accordingly.
418 */
419 if (spc->spc_psdiv != psdiv) {
420 spc->spc_psdiv = psdiv;
421 spc->spc_pscnt = psdiv;
422 if (psdiv == 1) {
423 setstatclockrate(stathz);
424 } else {
425 setstatclockrate(profhz);
426 }
427 }
428 l = ci->ci_onproc;
429 if ((l->l_flag & LW_IDLE) != 0) {
430 /*
431 * don't account idle lwps as swapper.
432 */
433 p = NULL;
434 } else {
435 p = l->l_proc;
436 mutex_spin_enter(&p->p_stmutex);
437 }
438
439 if (CLKF_USERMODE(frame)) {
440 KASSERT(p != NULL);
441 if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
442 addupc_intr(l, CLKF_PC(frame));
443 if (--spc->spc_pscnt > 0) {
444 mutex_spin_exit(&p->p_stmutex);
445 return;
446 }
447
448 /*
449 * Came from user mode; CPU was in user state.
450 * If this process is being profiled record the tick.
451 */
452 p->p_uticks++;
453 if (p->p_nice > NZERO)
454 spc->spc_cp_time[CP_NICE]++;
455 else
456 spc->spc_cp_time[CP_USER]++;
457 } else {
458 #ifdef GPROF
459 /*
460 * Kernel statistics are just like addupc_intr, only easier.
461 */
462 #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL)
463 g = curcpu()->ci_gmon;
464 if (g != NULL &&
465 profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
466 #else
467 g = &_gmonparam;
468 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
469 #endif
470 i = CLKF_PC(frame) - g->lowpc;
471 if (i < g->textsize) {
472 i /= HISTFRACTION * sizeof(*g->kcount);
473 g->kcount[i]++;
474 }
475 }
476 #endif
477 #ifdef LWP_PC
478 if (p != NULL && profsrc == PROFSRC_CLOCK &&
479 (p->p_stflag & PST_PROFIL)) {
480 addupc_intr(l, LWP_PC(l));
481 }
482 #endif
483 if (--spc->spc_pscnt > 0) {
484 if (p != NULL)
485 mutex_spin_exit(&p->p_stmutex);
486 return;
487 }
488 /*
489 * Came from kernel mode, so we were:
490 * - handling an interrupt,
491 * - doing syscall or trap work on behalf of the current
492 * user process, or
493 * - spinning in the idle loop.
494 * Whichever it is, charge the time as appropriate.
495 * Note that we charge interrupts to the current process,
496 * regardless of whether they are ``for'' that process,
497 * so that we know how much of its real time was spent
498 * in ``non-process'' (i.e., interrupt) work.
499 */
500 if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
501 if (p != NULL) {
502 p->p_iticks++;
503 }
504 spc->spc_cp_time[CP_INTR]++;
505 } else if (p != NULL) {
506 p->p_sticks++;
507 spc->spc_cp_time[CP_SYS]++;
508 } else {
509 spc->spc_cp_time[CP_IDLE]++;
510 }
511 }
512 spc->spc_pscnt = psdiv;
513
514 if (p != NULL) {
515 atomic_inc_uint(&l->l_cpticks);
516 mutex_spin_exit(&p->p_stmutex);
517 }
518
519 #ifdef KDTRACE_HOOKS
520 cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
521 if (func) {
522 (*func)((struct clockframe *)frame);
523 }
524 #endif
525 }
526
527 /*
528 * sysctl helper routine for kern.clockrate. Assembles a struct on
529 * the fly to be returned to the caller.
530 */
531 static int
532 sysctl_kern_clockrate(SYSCTLFN_ARGS)
533 {
534 struct clockinfo clkinfo;
535 struct sysctlnode node;
536
537 clkinfo.tick = tick;
538 clkinfo.tickadj = tickadj;
539 clkinfo.hz = hz;
540 clkinfo.profhz = profhz;
541 clkinfo.stathz = stathz ? stathz : hz;
542
543 node = *rnode;
544 node.sysctl_data = &clkinfo;
545 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
546 }
547