Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.150
      1 /*	$NetBSD: kern_clock.c,v 1.150 2023/07/07 12:34:50 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.150 2023/07/07 12:34:50 riastradh Exp $");
     73 
     74 #ifdef _KERNEL_OPT
     75 #include "opt_dtrace.h"
     76 #include "opt_gprof.h"
     77 #include "opt_heartbeat.h"
     78 #include "opt_multiprocessor.h"
     79 #endif
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/callout.h>
     84 #include <sys/kernel.h>
     85 #include <sys/proc.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/sysctl.h>
     89 #include <sys/timex.h>
     90 #include <sys/sched.h>
     91 #include <sys/time.h>
     92 #include <sys/timetc.h>
     93 #include <sys/cpu.h>
     94 #include <sys/atomic.h>
     95 #include <sys/rndsource.h>
     96 #include <sys/heartbeat.h>
     97 
     98 #ifdef GPROF
     99 #include <sys/gmon.h>
    100 #endif
    101 
    102 #ifdef KDTRACE_HOOKS
    103 #include <sys/dtrace_bsd.h>
    104 #include <sys/cpu.h>
    105 
    106 cyclic_clock_func_t	cyclic_clock_func[MAXCPUS];
    107 #endif
    108 
    109 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
    110 
    111 /*
    112  * Clock handling routines.
    113  *
    114  * This code is written to operate with two timers that run independently of
    115  * each other.  The main clock, running hz times per second, is used to keep
    116  * track of real time.  The second timer handles kernel and user profiling,
    117  * and does resource use estimation.  If the second timer is programmable,
    118  * it is randomized to avoid aliasing between the two clocks.  For example,
    119  * the randomization prevents an adversary from always giving up the CPU
    120  * just before its quantum expires.  Otherwise, it would never accumulate
    121  * CPU ticks.  The mean frequency of the second timer is stathz.
    122  *
    123  * If no second timer exists, stathz will be zero; in this case we drive
    124  * profiling and statistics off the main clock.  This WILL NOT be accurate;
    125  * do not do it unless absolutely necessary.
    126  *
    127  * The statistics clock may (or may not) be run at a higher rate while
    128  * profiling.  This profile clock runs at profhz.  We require that profhz
    129  * be an integral multiple of stathz.
    130  *
    131  * If the statistics clock is running fast, it must be divided by the ratio
    132  * profhz/stathz for statistics.  (For profiling, every tick counts.)
    133  */
    134 
    135 int	stathz;
    136 int	profhz;
    137 int	profsrc;
    138 int	schedhz;
    139 int	profprocs;
    140 static int hardclock_ticks;
    141 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
    142 static int psdiv;			/* prof => stat divider */
    143 int	psratio;			/* ratio: prof / stat */
    144 
    145 struct clockrnd {
    146 	struct krndsource source;
    147 	unsigned needed;
    148 };
    149 
    150 static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
    151 static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
    152 
    153 static void
    154 clockrnd_get(size_t needed, void *cookie)
    155 {
    156 	struct clockrnd *C = cookie;
    157 
    158 	/* Start sampling.  */
    159 	atomic_store_relaxed(&C->needed, 2*NBBY*needed);
    160 }
    161 
    162 static void
    163 clockrnd_sample(struct clockrnd *C)
    164 {
    165 	struct cpu_info *ci = curcpu();
    166 
    167 	/* If there's nothing needed right now, stop here.  */
    168 	if (__predict_true(atomic_load_relaxed(&C->needed) == 0))
    169 		return;
    170 
    171 	/*
    172 	 * If we're not the primary core of a package, we're probably
    173 	 * driven by the same clock as the primary core, so don't
    174 	 * bother.
    175 	 */
    176 	if (ci != ci->ci_package1st)
    177 		return;
    178 
    179 	/* Take a sample and enter it into the pool.  */
    180 	rnd_add_uint32(&C->source, 0);
    181 
    182 	/*
    183 	 * On the primary CPU, count down.  Using an atomic decrement
    184 	 * here isn't really necessary -- on every platform we care
    185 	 * about, stores to unsigned int are atomic, and the only other
    186 	 * memory operation that could happen here is for another CPU
    187 	 * to store a higher value for needed.  But using an atomic
    188 	 * decrement avoids giving the impression of data races, and is
    189 	 * unlikely to hurt because only one CPU will ever be writing
    190 	 * to the location.
    191 	 */
    192 	if (CPU_IS_PRIMARY(curcpu())) {
    193 		unsigned needed __diagused;
    194 
    195 		needed = atomic_dec_uint_nv(&C->needed);
    196 		KASSERT(needed != UINT_MAX);
    197 	}
    198 }
    199 
    200 static u_int get_intr_timecount(struct timecounter *);
    201 
    202 static struct timecounter intr_timecounter = {
    203 	.tc_get_timecount	= get_intr_timecount,
    204 	.tc_poll_pps		= NULL,
    205 	.tc_counter_mask	= ~0u,
    206 	.tc_frequency		= 0,
    207 	.tc_name		= "clockinterrupt",
    208 	/* quality - minimum implementation level for a clock */
    209 	.tc_quality		= 0,
    210 	.tc_priv		= NULL,
    211 };
    212 
    213 static u_int
    214 get_intr_timecount(struct timecounter *tc)
    215 {
    216 
    217 	return (u_int)getticks();
    218 }
    219 
    220 int
    221 getticks(void)
    222 {
    223 	return atomic_load_relaxed(&hardclock_ticks);
    224 }
    225 
    226 /*
    227  * Initialize clock frequencies and start both clocks running.
    228  */
    229 void
    230 initclocks(void)
    231 {
    232 	static struct sysctllog *clog;
    233 	int i;
    234 
    235 	/*
    236 	 * Set divisors to 1 (normal case) and let the machine-specific
    237 	 * code do its bit.
    238 	 */
    239 	psdiv = 1;
    240 
    241 	/*
    242 	 * Call cpu_initclocks() before registering the default
    243 	 * timecounter, in case it needs to adjust hz.
    244 	 */
    245 	const int old_hz = hz;
    246 	cpu_initclocks();
    247 	if (old_hz != hz) {
    248 		tick = 1000000 / hz;
    249 		tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
    250 	}
    251 
    252 	/*
    253 	 * provide minimum default time counter
    254 	 * will only run at interrupt resolution
    255 	 */
    256 	intr_timecounter.tc_frequency = hz;
    257 	tc_init(&intr_timecounter);
    258 
    259 	/*
    260 	 * Compute profhz and stathz, fix profhz if needed.
    261 	 */
    262 	i = stathz ? stathz : hz;
    263 	if (profhz == 0)
    264 		profhz = i;
    265 	psratio = profhz / i;
    266 	if (schedhz == 0) {
    267 		/* 16Hz is best */
    268 		hardscheddiv = hz / 16;
    269 		if (hardscheddiv <= 0)
    270 			panic("hardscheddiv");
    271 	}
    272 
    273 	sysctl_createv(&clog, 0, NULL, NULL,
    274 		       CTLFLAG_PERMANENT,
    275 		       CTLTYPE_STRUCT, "clockrate",
    276 		       SYSCTL_DESCR("Kernel clock rates"),
    277 		       sysctl_kern_clockrate, 0, NULL,
    278 		       sizeof(struct clockinfo),
    279 		       CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
    280 	sysctl_createv(&clog, 0, NULL, NULL,
    281 		       CTLFLAG_PERMANENT,
    282 		       CTLTYPE_INT, "hardclock_ticks",
    283 		       SYSCTL_DESCR("Number of hardclock ticks"),
    284 		       NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
    285 		       CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
    286 
    287 	rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
    288 	rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
    289 	    RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|RND_FLAG_HASCB);
    290 	if (stathz) {
    291 		rndsource_setcb(&statclockrnd.source, clockrnd_get,
    292 		    &statclockrnd);
    293 		rnd_attach_source(&statclockrnd.source, "statclock",
    294 		    RND_TYPE_SKEW,
    295 		    (RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|
    296 			RND_FLAG_HASCB));
    297 	}
    298 }
    299 
    300 /*
    301  * The real-time timer, interrupting hz times per second.
    302  */
    303 void
    304 hardclock(struct clockframe *frame)
    305 {
    306 	struct lwp *l;
    307 	struct cpu_info *ci;
    308 
    309 	clockrnd_sample(&hardclockrnd);
    310 
    311 	ci = curcpu();
    312 	l = ci->ci_onproc;
    313 
    314 	ptimer_tick(l, CLKF_USERMODE(frame));
    315 
    316 	/*
    317 	 * If no separate statistics clock is available, run it from here.
    318 	 */
    319 	if (stathz == 0)
    320 		statclock(frame);
    321 	/*
    322 	 * If no separate schedclock is provided, call it here
    323 	 * at about 16 Hz.
    324 	 */
    325 	if (schedhz == 0) {
    326 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
    327 			schedclock(l);
    328 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
    329 		}
    330 	}
    331 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
    332 		sched_tick(ci);
    333 
    334 	if (CPU_IS_PRIMARY(ci)) {
    335 		atomic_store_relaxed(&hardclock_ticks,
    336 		    atomic_load_relaxed(&hardclock_ticks) + 1);
    337 		tc_ticktock();
    338 	}
    339 
    340 #ifdef HEARTBEAT
    341 	/*
    342 	 * Make sure the CPUs and timecounter are making progress.
    343 	 */
    344 	heartbeat();
    345 #endif
    346 
    347 	/*
    348 	 * Update real-time timeout queue.
    349 	 */
    350 	callout_hardclock();
    351 }
    352 
    353 /*
    354  * Start profiling on a process.
    355  *
    356  * Kernel profiling passes proc0 which never exits and hence
    357  * keeps the profile clock running constantly.
    358  */
    359 void
    360 startprofclock(struct proc *p)
    361 {
    362 
    363 	KASSERT(mutex_owned(&p->p_stmutex));
    364 
    365 	if ((p->p_stflag & PST_PROFIL) == 0) {
    366 		p->p_stflag |= PST_PROFIL;
    367 		/*
    368 		 * This is only necessary if using the clock as the
    369 		 * profiling source.
    370 		 */
    371 		if (++profprocs == 1 && stathz != 0)
    372 			psdiv = psratio;
    373 	}
    374 }
    375 
    376 /*
    377  * Stop profiling on a process.
    378  */
    379 void
    380 stopprofclock(struct proc *p)
    381 {
    382 
    383 	KASSERT(mutex_owned(&p->p_stmutex));
    384 
    385 	if (p->p_stflag & PST_PROFIL) {
    386 		p->p_stflag &= ~PST_PROFIL;
    387 		/*
    388 		 * This is only necessary if using the clock as the
    389 		 * profiling source.
    390 		 */
    391 		if (--profprocs == 0 && stathz != 0)
    392 			psdiv = 1;
    393 	}
    394 }
    395 
    396 void
    397 schedclock(struct lwp *l)
    398 {
    399 	if ((l->l_flag & LW_IDLE) != 0)
    400 		return;
    401 
    402 	sched_schedclock(l);
    403 }
    404 
    405 /*
    406  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    407  * do process and kernel statistics.
    408  */
    409 void
    410 statclock(struct clockframe *frame)
    411 {
    412 #ifdef GPROF
    413 	struct gmonparam *g;
    414 	intptr_t i;
    415 #endif
    416 	struct cpu_info *ci = curcpu();
    417 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    418 	struct proc *p;
    419 	struct lwp *l;
    420 
    421 	if (stathz)
    422 		clockrnd_sample(&statclockrnd);
    423 
    424 	/*
    425 	 * Notice changes in divisor frequency, and adjust clock
    426 	 * frequency accordingly.
    427 	 */
    428 	if (spc->spc_psdiv != psdiv) {
    429 		spc->spc_psdiv = psdiv;
    430 		spc->spc_pscnt = psdiv;
    431 		if (psdiv == 1) {
    432 			setstatclockrate(stathz);
    433 		} else {
    434 			setstatclockrate(profhz);
    435 		}
    436 	}
    437 	l = ci->ci_onproc;
    438 	if ((l->l_flag & LW_IDLE) != 0) {
    439 		/*
    440 		 * don't account idle lwps as swapper.
    441 		 */
    442 		p = NULL;
    443 	} else {
    444 		p = l->l_proc;
    445 		mutex_spin_enter(&p->p_stmutex);
    446 	}
    447 
    448 	if (CLKF_USERMODE(frame)) {
    449 		KASSERT(p != NULL);
    450 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
    451 			addupc_intr(l, CLKF_PC(frame));
    452 		if (--spc->spc_pscnt > 0) {
    453 			mutex_spin_exit(&p->p_stmutex);
    454 			return;
    455 		}
    456 
    457 		/*
    458 		 * Came from user mode; CPU was in user state.
    459 		 * If this process is being profiled record the tick.
    460 		 */
    461 		p->p_uticks++;
    462 		if (p->p_nice > NZERO)
    463 			spc->spc_cp_time[CP_NICE]++;
    464 		else
    465 			spc->spc_cp_time[CP_USER]++;
    466 	} else {
    467 #ifdef GPROF
    468 		/*
    469 		 * Kernel statistics are just like addupc_intr, only easier.
    470 		 */
    471 #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL)
    472 		g = curcpu()->ci_gmon;
    473 		if (g != NULL &&
    474 		    profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    475 #else
    476 		g = &_gmonparam;
    477 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
    478 #endif
    479 			i = CLKF_PC(frame) - g->lowpc;
    480 			if (i < g->textsize) {
    481 				i /= HISTFRACTION * sizeof(*g->kcount);
    482 				g->kcount[i]++;
    483 			}
    484 		}
    485 #endif
    486 #ifdef LWP_PC
    487 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
    488 		    (p->p_stflag & PST_PROFIL)) {
    489 			addupc_intr(l, LWP_PC(l));
    490 		}
    491 #endif
    492 		if (--spc->spc_pscnt > 0) {
    493 			if (p != NULL)
    494 				mutex_spin_exit(&p->p_stmutex);
    495 			return;
    496 		}
    497 		/*
    498 		 * Came from kernel mode, so we were:
    499 		 * - handling an interrupt,
    500 		 * - doing syscall or trap work on behalf of the current
    501 		 *   user process, or
    502 		 * - spinning in the idle loop.
    503 		 * Whichever it is, charge the time as appropriate.
    504 		 * Note that we charge interrupts to the current process,
    505 		 * regardless of whether they are ``for'' that process,
    506 		 * so that we know how much of its real time was spent
    507 		 * in ``non-process'' (i.e., interrupt) work.
    508 		 */
    509 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
    510 			if (p != NULL) {
    511 				p->p_iticks++;
    512 			}
    513 			spc->spc_cp_time[CP_INTR]++;
    514 		} else if (p != NULL) {
    515 			p->p_sticks++;
    516 			spc->spc_cp_time[CP_SYS]++;
    517 		} else {
    518 			spc->spc_cp_time[CP_IDLE]++;
    519 		}
    520 	}
    521 	spc->spc_pscnt = psdiv;
    522 
    523 	if (p != NULL) {
    524 		atomic_inc_uint(&l->l_cpticks);
    525 		mutex_spin_exit(&p->p_stmutex);
    526 	}
    527 
    528 #ifdef KDTRACE_HOOKS
    529 	cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
    530 	if (func) {
    531 		(*func)((struct clockframe *)frame);
    532 	}
    533 #endif
    534 }
    535 
    536 /*
    537  * sysctl helper routine for kern.clockrate. Assembles a struct on
    538  * the fly to be returned to the caller.
    539  */
    540 static int
    541 sysctl_kern_clockrate(SYSCTLFN_ARGS)
    542 {
    543 	struct clockinfo clkinfo;
    544 	struct sysctlnode node;
    545 
    546 	clkinfo.tick = tick;
    547 	clkinfo.tickadj = tickadj;
    548 	clkinfo.hz = hz;
    549 	clkinfo.profhz = profhz;
    550 	clkinfo.stathz = stathz ? stathz : hz;
    551 
    552 	node = *rnode;
    553 	node.sysctl_data = &clkinfo;
    554 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    555 }
    556