Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.19
      1 /*	$NetBSD: kern_clock.c,v 1.19 1994/06/29 06:32:19 cgd Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/dkstat.h>
     46 #include <sys/callout.h>
     47 #include <sys/kernel.h>
     48 #include <sys/proc.h>
     49 #include <sys/resourcevar.h>
     50 
     51 #include <machine/cpu.h>
     52 
     53 #ifdef GPROF
     54 #include <sys/gmon.h>
     55 #endif
     56 
     57 /*
     58  * Clock handling routines.
     59  *
     60  * This code is written to operate with two timers that run independently of
     61  * each other.  The main clock, running hz times per second, is used to keep
     62  * track of real time.  The second timer handles kernel and user profiling,
     63  * and does resource use estimation.  If the second timer is programmable,
     64  * it is randomized to avoid aliasing between the two clocks.  For example,
     65  * the randomization prevents an adversary from always giving up the cpu
     66  * just before its quantum expires.  Otherwise, it would never accumulate
     67  * cpu ticks.  The mean frequency of the second timer is stathz.
     68  *
     69  * If no second timer exists, stathz will be zero; in this case we drive
     70  * profiling and statistics off the main clock.  This WILL NOT be accurate;
     71  * do not do it unless absolutely necessary.
     72  *
     73  * The statistics clock may (or may not) be run at a higher rate while
     74  * profiling.  This profile clock runs at profhz.  We require that profhz
     75  * be an integral multiple of stathz.
     76  *
     77  * If the statistics clock is running fast, it must be divided by the ratio
     78  * profhz/stathz for statistics.  (For profiling, every tick counts.)
     79  */
     80 
     81 /*
     82  * TODO:
     83  *	allocate more timeout table slots when table overflows.
     84  */
     85 
     86 /*
     87  * Bump a timeval by a small number of usec's.
     88  */
     89 #define BUMPTIME(t, usec) { \
     90 	register volatile struct timeval *tp = (t); \
     91 	register long us; \
     92  \
     93 	tp->tv_usec = us = tp->tv_usec + (usec); \
     94 	if (us >= 1000000) { \
     95 		tp->tv_usec = us - 1000000; \
     96 		tp->tv_sec++; \
     97 	} \
     98 }
     99 
    100 int	stathz;
    101 int	profhz;
    102 int	profprocs;
    103 int	ticks;
    104 static int psdiv, pscnt;	/* prof => stat divider */
    105 int	psratio;		/* ratio: prof / stat */
    106 
    107 volatile struct	timeval time;
    108 volatile struct	timeval mono_time;
    109 
    110 /*
    111  * Initialize clock frequencies and start both clocks running.
    112  */
    113 void
    114 initclocks()
    115 {
    116 	register int i;
    117 
    118 	/*
    119 	 * Set divisors to 1 (normal case) and let the machine-specific
    120 	 * code do its bit.
    121 	 */
    122 	psdiv = pscnt = 1;
    123 	cpu_initclocks();
    124 
    125 	/*
    126 	 * Compute profhz/stathz, and fix profhz if needed.
    127 	 */
    128 	i = stathz ? stathz : hz;
    129 	if (profhz == 0)
    130 		profhz = i;
    131 	psratio = profhz / i;
    132 }
    133 
    134 /*
    135  * The real-time timer, interrupting hz times per second.
    136  */
    137 void
    138 hardclock(frame)
    139 	register struct clockframe *frame;
    140 {
    141 	register struct callout *p1;
    142 	register struct proc *p;
    143 	register int delta, needsoft;
    144 	extern int tickdelta;
    145 	extern long timedelta;
    146 
    147 	/*
    148 	 * Update real-time timeout queue.
    149 	 * At front of queue are some number of events which are ``due''.
    150 	 * The time to these is <= 0 and if negative represents the
    151 	 * number of ticks which have passed since it was supposed to happen.
    152 	 * The rest of the q elements (times > 0) are events yet to happen,
    153 	 * where the time for each is given as a delta from the previous.
    154 	 * Decrementing just the first of these serves to decrement the time
    155 	 * to all events.
    156 	 */
    157 	needsoft = 0;
    158 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
    159 		if (--p1->c_time > 0)
    160 			break;
    161 		needsoft = 1;
    162 		if (p1->c_time == 0)
    163 			break;
    164 	}
    165 
    166 	p = curproc;
    167 	if (p) {
    168 		register struct pstats *pstats;
    169 
    170 		/*
    171 		 * Run current process's virtual and profile time, as needed.
    172 		 */
    173 		pstats = p->p_stats;
    174 		if (CLKF_USERMODE(frame) &&
    175 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    176 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    177 			psignal(p, SIGVTALRM);
    178 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    179 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    180 			psignal(p, SIGPROF);
    181 	}
    182 
    183 	/*
    184 	 * If no separate statistics clock is available, run it from here.
    185 	 */
    186 	if (stathz == 0)
    187 		statclock(frame);
    188 
    189 	/*
    190 	 * Increment the time-of-day.  The increment is just ``tick'' unless
    191 	 * we are still adjusting the clock; see adjtime().
    192 	 */
    193 	ticks++;
    194 	if (timedelta == 0)
    195 		delta = tick;
    196 	else {
    197 		delta = tick + tickdelta;
    198 		timedelta -= tickdelta;
    199 	}
    200 	BUMPTIME(&time, delta);
    201 	BUMPTIME(&mono_time, delta);
    202 
    203 	/*
    204 	 * Process callouts at a very low cpu priority, so we don't keep the
    205 	 * relatively high clock interrupt priority any longer than necessary.
    206 	 */
    207 	if (needsoft) {
    208 		if (CLKF_BASEPRI(frame)) {
    209 			/*
    210 			 * Save the overhead of a software interrupt;
    211 			 * it will happen as soon as we return, so do it now.
    212 			 */
    213 			(void)splsoftclock();
    214 			softclock();
    215 		} else
    216 			setsoftclock();
    217 	}
    218 }
    219 
    220 /*
    221  * Software (low priority) clock interrupt.
    222  * Run periodic events from timeout queue.
    223  */
    224 /*ARGSUSED*/
    225 void
    226 softclock()
    227 {
    228 	register struct callout *c;
    229 	register void *arg;
    230 	register void (*func) __P((void *));
    231 	register int s;
    232 
    233 	s = splhigh();
    234 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
    235 		func = c->c_func;
    236 		arg = c->c_arg;
    237 		calltodo.c_next = c->c_next;
    238 		c->c_next = callfree;
    239 		callfree = c;
    240 		splx(s);
    241 		(*func)(arg);
    242 		(void) splhigh();
    243 	}
    244 	splx(s);
    245 }
    246 
    247 /*
    248  * timeout --
    249  *	Execute a function after a specified length of time.
    250  *
    251  * untimeout --
    252  *	Cancel previous timeout function call.
    253  *
    254  *	See AT&T BCI Driver Reference Manual for specification.  This
    255  *	implementation differs from that one in that no identification
    256  *	value is returned from timeout, rather, the original arguments
    257  *	to timeout are used to identify entries for untimeout.
    258  */
    259 void
    260 timeout(ftn, arg, ticks)
    261 	void (*ftn) __P((void *));
    262 	void *arg;
    263 	register int ticks;
    264 {
    265 	register struct callout *new, *p, *t;
    266 	register int s;
    267 
    268 	if (ticks <= 0)
    269 		ticks = 1;
    270 
    271 	/* Lock out the clock. */
    272 	s = splhigh();
    273 
    274 	/* Fill in the next free callout structure. */
    275 	if (callfree == NULL)
    276 		panic("timeout table full");
    277 	new = callfree;
    278 	callfree = new->c_next;
    279 	new->c_arg = arg;
    280 	new->c_func = ftn;
    281 
    282 	/*
    283 	 * The time for each event is stored as a difference from the time
    284 	 * of the previous event on the queue.  Walk the queue, correcting
    285 	 * the ticks argument for queue entries passed.  Correct the ticks
    286 	 * value for the queue entry immediately after the insertion point
    287 	 * as well.  Watch out for negative c_time values; these represent
    288 	 * overdue events.
    289 	 */
    290 	for (p = &calltodo;
    291 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
    292 		if (t->c_time > 0)
    293 			ticks -= t->c_time;
    294 	new->c_time = ticks;
    295 	if (t != NULL)
    296 		t->c_time -= ticks;
    297 
    298 	/* Insert the new entry into the queue. */
    299 	p->c_next = new;
    300 	new->c_next = t;
    301 	splx(s);
    302 }
    303 
    304 void
    305 untimeout(ftn, arg)
    306 	void (*ftn) __P((void *));
    307 	void *arg;
    308 {
    309 	register struct callout *p, *t;
    310 	register int s;
    311 
    312 	s = splhigh();
    313 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
    314 		if (t->c_func == ftn && t->c_arg == arg) {
    315 			/* Increment next entry's tick count. */
    316 			if (t->c_next && t->c_time > 0)
    317 				t->c_next->c_time += t->c_time;
    318 
    319 			/* Move entry from callout queue to callfree queue. */
    320 			p->c_next = t->c_next;
    321 			t->c_next = callfree;
    322 			callfree = t;
    323 			break;
    324 		}
    325 	splx(s);
    326 }
    327 
    328 /*
    329  * Compute number of hz until specified time.  Used to
    330  * compute third argument to timeout() from an absolute time.
    331  */
    332 int
    333 hzto(tv)
    334 	struct timeval *tv;
    335 {
    336 	register long ticks, sec;
    337 	int s;
    338 
    339 	/*
    340 	 * If number of milliseconds will fit in 32 bit arithmetic,
    341 	 * then compute number of milliseconds to time and scale to
    342 	 * ticks.  Otherwise just compute number of hz in time, rounding
    343 	 * times greater than representible to maximum value.
    344 	 *
    345 	 * Delta times less than 25 days can be computed ``exactly''.
    346 	 * Maximum value for any timeout in 10ms ticks is 250 days.
    347 	 */
    348 	s = splhigh();
    349 	sec = tv->tv_sec - time.tv_sec;
    350 	if (sec <= 0x7fffffff / 1000 - 1000)
    351 		ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
    352 			(tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
    353 	else if (sec <= 0x7fffffff / hz)
    354 		ticks = sec * hz;
    355 	else
    356 		ticks = 0x7fffffff;
    357 	splx(s);
    358 	return (ticks);
    359 }
    360 
    361 /*
    362  * Start profiling on a process.
    363  *
    364  * Kernel profiling passes proc0 which never exits and hence
    365  * keeps the profile clock running constantly.
    366  */
    367 void
    368 startprofclock(p)
    369 	register struct proc *p;
    370 {
    371 	int s;
    372 
    373 	if ((p->p_flag & P_PROFIL) == 0) {
    374 		p->p_flag |= P_PROFIL;
    375 		if (++profprocs == 1 && stathz != 0) {
    376 			s = splstatclock();
    377 			psdiv = pscnt = psratio;
    378 			setstatclockrate(profhz);
    379 			splx(s);
    380 		}
    381 	}
    382 }
    383 
    384 /*
    385  * Stop profiling on a process.
    386  */
    387 void
    388 stopprofclock(p)
    389 	register struct proc *p;
    390 {
    391 	int s;
    392 
    393 	if (p->p_flag & P_PROFIL) {
    394 		p->p_flag &= ~P_PROFIL;
    395 		if (--profprocs == 0 && stathz != 0) {
    396 			s = splstatclock();
    397 			psdiv = pscnt = 1;
    398 			setstatclockrate(stathz);
    399 			splx(s);
    400 		}
    401 	}
    402 }
    403 
    404 int	dk_ndrive = DK_NDRIVE;
    405 
    406 /*
    407  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    408  * do process and kernel statistics.
    409  */
    410 void
    411 statclock(frame)
    412 	register struct clockframe *frame;
    413 {
    414 #ifdef GPROF
    415 	register struct gmonparam *g;
    416 #endif
    417 	register struct proc *p;
    418 	register int i;
    419 
    420 	if (CLKF_USERMODE(frame)) {
    421 		p = curproc;
    422 		if (p->p_flag & P_PROFIL)
    423 			addupc_intr(p, CLKF_PC(frame), 1);
    424 		if (--pscnt > 0)
    425 			return;
    426 		/*
    427 		 * Came from user mode; CPU was in user state.
    428 		 * If this process is being profiled record the tick.
    429 		 */
    430 		p->p_uticks++;
    431 		if (p->p_nice > NZERO)
    432 			cp_time[CP_NICE]++;
    433 		else
    434 			cp_time[CP_USER]++;
    435 	} else {
    436 #ifdef GPROF
    437 		/*
    438 		 * Kernel statistics are just like addupc_intr, only easier.
    439 		 */
    440 		g = &_gmonparam;
    441 		if (g->state == GMON_PROF_ON) {
    442 			i = CLKF_PC(frame) - g->lowpc;
    443 			if (i < g->textsize) {
    444 				i /= HISTFRACTION * sizeof(*g->kcount);
    445 				g->kcount[i]++;
    446 			}
    447 		}
    448 #endif
    449 		if (--pscnt > 0)
    450 			return;
    451 		/*
    452 		 * Came from kernel mode, so we were:
    453 		 * - handling an interrupt,
    454 		 * - doing syscall or trap work on behalf of the current
    455 		 *   user process, or
    456 		 * - spinning in the idle loop.
    457 		 * Whichever it is, charge the time as appropriate.
    458 		 * Note that we charge interrupts to the current process,
    459 		 * regardless of whether they are ``for'' that process,
    460 		 * so that we know how much of its real time was spent
    461 		 * in ``non-process'' (i.e., interrupt) work.
    462 		 */
    463 		p = curproc;
    464 		if (CLKF_INTR(frame)) {
    465 			if (p != NULL)
    466 				p->p_iticks++;
    467 			cp_time[CP_INTR]++;
    468 		} else if (p != NULL) {
    469 			p->p_sticks++;
    470 			cp_time[CP_SYS]++;
    471 		} else
    472 			cp_time[CP_IDLE]++;
    473 	}
    474 	pscnt = psdiv;
    475 
    476 	/*
    477 	 * We maintain statistics shown by user-level statistics
    478 	 * programs:  the amount of time in each cpu state, and
    479 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
    480 	 *
    481 	 * XXX	should either run linked list of drives, or (better)
    482 	 *	grab timestamps in the start & done code.
    483 	 */
    484 	for (i = 0; i < DK_NDRIVE; i++)
    485 		if (dk_busy & (1 << i))
    486 			dk_time[i]++;
    487 
    488 	/*
    489 	 * We adjust the priority of the current process.  The priority of
    490 	 * a process gets worse as it accumulates CPU time.  The cpu usage
    491 	 * estimator (p_estcpu) is increased here.  The formula for computing
    492 	 * priorities (in kern_synch.c) will compute a different value each
    493 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
    494 	 * quite quickly when the process is running (linearly), and decays
    495 	 * away exponentially, at a rate which is proportionally slower when
    496 	 * the system is busy.  The basic principal is that the system will
    497 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
    498 	 * seconds.  This causes the system to favor processes which haven't
    499 	 * run much recently, and to round-robin among other processes.
    500 	 */
    501 	if (p != NULL) {
    502 		p->p_cpticks++;
    503 		if (++p->p_estcpu == 0)
    504 			p->p_estcpu--;
    505 		if ((p->p_estcpu & 3) == 0) {
    506 			resetpriority(p);
    507 			if (p->p_priority >= PUSER)
    508 				p->p_priority = p->p_usrpri;
    509 		}
    510 	}
    511 }
    512 
    513 /*
    514  * Return information about system clocks.
    515  */
    516 sysctl_clockrate(where, sizep)
    517 	register char *where;
    518 	size_t *sizep;
    519 {
    520 	struct clockinfo clkinfo;
    521 
    522 	/*
    523 	 * Construct clockinfo structure.
    524 	 */
    525 	clkinfo.hz = hz;
    526 	clkinfo.tick = tick;
    527 	clkinfo.profhz = profhz;
    528 	clkinfo.stathz = stathz ? stathz : hz;
    529 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
    530 }
    531 
    532 #ifdef DDB
    533 #include <ddb/db_access.h>
    534 #include <ddb/db_sym.h>
    535 
    536 void db_show_callout(long addr, int haddr, int count, char *modif)
    537 {
    538 	register struct callout *p1;
    539 	register int	cum;
    540 	register int	s;
    541 	db_expr_t	offset;
    542 	char		*name;
    543 
    544         db_printf("      cum     ticks      arg  func\n");
    545 	s = splhigh();
    546 	for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
    547 		register int t = p1->c_time;
    548 
    549 		if (t > 0)
    550 			cum += t;
    551 
    552 		db_find_sym_and_offset(p1->c_func, &name, &offset);
    553 		if (name == NULL)
    554 			name = "?";
    555 
    556                 db_printf("%9d %9d %8x  %s (%x)\n",
    557 			  cum, t, p1->c_arg, name, p1->c_func);
    558 	}
    559 	splx(s);
    560 }
    561 #endif
    562