kern_clock.c revision 1.23 1 /* $NetBSD: kern_clock.c,v 1.23 1995/12/28 19:16:41 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/dkstat.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50
51 #include <machine/cpu.h>
52
53 #ifdef GPROF
54 #include <sys/gmon.h>
55 #endif
56
57 /*
58 * Clock handling routines.
59 *
60 * This code is written to operate with two timers that run independently of
61 * each other. The main clock, running hz times per second, is used to keep
62 * track of real time. The second timer handles kernel and user profiling,
63 * and does resource use estimation. If the second timer is programmable,
64 * it is randomized to avoid aliasing between the two clocks. For example,
65 * the randomization prevents an adversary from always giving up the cpu
66 * just before its quantum expires. Otherwise, it would never accumulate
67 * cpu ticks. The mean frequency of the second timer is stathz.
68 *
69 * If no second timer exists, stathz will be zero; in this case we drive
70 * profiling and statistics off the main clock. This WILL NOT be accurate;
71 * do not do it unless absolutely necessary.
72 *
73 * The statistics clock may (or may not) be run at a higher rate while
74 * profiling. This profile clock runs at profhz. We require that profhz
75 * be an integral multiple of stathz.
76 *
77 * If the statistics clock is running fast, it must be divided by the ratio
78 * profhz/stathz for statistics. (For profiling, every tick counts.)
79 */
80
81 /*
82 * TODO:
83 * allocate more timeout table slots when table overflows.
84 */
85
86 /*
87 * Bump a timeval by a small number of usec's.
88 */
89 #define BUMPTIME(t, usec) { \
90 register volatile struct timeval *tp = (t); \
91 register long us; \
92 \
93 tp->tv_usec = us = tp->tv_usec + (usec); \
94 if (us >= 1000000) { \
95 tp->tv_usec = us - 1000000; \
96 tp->tv_sec++; \
97 } \
98 }
99
100 int stathz;
101 int profhz;
102 int profprocs;
103 int ticks;
104 static int psdiv, pscnt; /* prof => stat divider */
105 int psratio; /* ratio: prof / stat */
106 int tickfix, tickfixinterval; /* used if tick not really integral */
107 static int tickfixcnt; /* number of ticks since last fix */
108
109 volatile struct timeval time;
110 volatile struct timeval mono_time;
111
112 /*
113 * Initialize clock frequencies and start both clocks running.
114 */
115 void
116 initclocks()
117 {
118 register int i;
119
120 /*
121 * Set divisors to 1 (normal case) and let the machine-specific
122 * code do its bit.
123 */
124 psdiv = pscnt = 1;
125 cpu_initclocks();
126
127 /*
128 * Compute profhz/stathz, and fix profhz if needed.
129 */
130 i = stathz ? stathz : hz;
131 if (profhz == 0)
132 profhz = i;
133 psratio = profhz / i;
134 }
135
136 /*
137 * The real-time timer, interrupting hz times per second.
138 */
139 void
140 hardclock(frame)
141 register struct clockframe *frame;
142 {
143 register struct callout *p1;
144 register struct proc *p;
145 register int delta, needsoft;
146 extern int tickdelta;
147 extern long timedelta;
148
149 /*
150 * Update real-time timeout queue.
151 * At front of queue are some number of events which are ``due''.
152 * The time to these is <= 0 and if negative represents the
153 * number of ticks which have passed since it was supposed to happen.
154 * The rest of the q elements (times > 0) are events yet to happen,
155 * where the time for each is given as a delta from the previous.
156 * Decrementing just the first of these serves to decrement the time
157 * to all events.
158 */
159 needsoft = 0;
160 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
161 if (--p1->c_time > 0)
162 break;
163 needsoft = 1;
164 if (p1->c_time == 0)
165 break;
166 }
167
168 p = curproc;
169 if (p) {
170 register struct pstats *pstats;
171
172 /*
173 * Run current process's virtual and profile time, as needed.
174 */
175 pstats = p->p_stats;
176 if (CLKF_USERMODE(frame) &&
177 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
178 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
179 psignal(p, SIGVTALRM);
180 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
181 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
182 psignal(p, SIGPROF);
183 }
184
185 /*
186 * If no separate statistics clock is available, run it from here.
187 */
188 if (stathz == 0)
189 statclock(frame);
190
191 /*
192 * Increment the time-of-day. The increment is normally just
193 * ``tick''. If the machine is one which has a clock frequency
194 * such that ``hz'' would not divide the second evenly into
195 * milliseconds, a periodic adjustment must be applied. Finally,
196 * if we are still adjusting the time (see adjtime()),
197 * ``tickdelta'' may also be added in.
198 */
199 ticks++;
200 delta = tick;
201 if (tickfix) {
202 tickfixcnt++;
203 if (tickfixcnt > tickfixinterval) {
204 delta += tickfix;
205 tickfixcnt = 0;
206 }
207 }
208 if (timedelta != 0) {
209 delta = tick + tickdelta;
210 timedelta -= tickdelta;
211 }
212 BUMPTIME(&time, delta);
213 BUMPTIME(&mono_time, delta);
214
215 /*
216 * Process callouts at a very low cpu priority, so we don't keep the
217 * relatively high clock interrupt priority any longer than necessary.
218 */
219 if (needsoft) {
220 if (CLKF_BASEPRI(frame)) {
221 /*
222 * Save the overhead of a software interrupt;
223 * it will happen as soon as we return, so do it now.
224 */
225 (void)splsoftclock();
226 softclock();
227 } else
228 setsoftclock();
229 }
230 }
231
232 /*
233 * Software (low priority) clock interrupt.
234 * Run periodic events from timeout queue.
235 */
236 /*ARGSUSED*/
237 void
238 softclock()
239 {
240 register struct callout *c;
241 register void *arg;
242 register void (*func) __P((void *));
243 register int s;
244
245 s = splhigh();
246 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
247 func = c->c_func;
248 arg = c->c_arg;
249 calltodo.c_next = c->c_next;
250 c->c_next = callfree;
251 callfree = c;
252 splx(s);
253 (*func)(arg);
254 (void) splhigh();
255 }
256 splx(s);
257 }
258
259 /*
260 * timeout --
261 * Execute a function after a specified length of time.
262 *
263 * untimeout --
264 * Cancel previous timeout function call.
265 *
266 * See AT&T BCI Driver Reference Manual for specification. This
267 * implementation differs from that one in that no identification
268 * value is returned from timeout, rather, the original arguments
269 * to timeout are used to identify entries for untimeout.
270 */
271 void
272 timeout(ftn, arg, ticks)
273 void (*ftn) __P((void *));
274 void *arg;
275 register int ticks;
276 {
277 register struct callout *new, *p, *t;
278 register int s;
279
280 if (ticks <= 0)
281 ticks = 1;
282
283 /* Lock out the clock. */
284 s = splhigh();
285
286 /* Fill in the next free callout structure. */
287 if (callfree == NULL)
288 panic("timeout table full");
289 new = callfree;
290 callfree = new->c_next;
291 new->c_arg = arg;
292 new->c_func = ftn;
293
294 /*
295 * The time for each event is stored as a difference from the time
296 * of the previous event on the queue. Walk the queue, correcting
297 * the ticks argument for queue entries passed. Correct the ticks
298 * value for the queue entry immediately after the insertion point
299 * as well. Watch out for negative c_time values; these represent
300 * overdue events.
301 */
302 for (p = &calltodo;
303 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
304 if (t->c_time > 0)
305 ticks -= t->c_time;
306 new->c_time = ticks;
307 if (t != NULL)
308 t->c_time -= ticks;
309
310 /* Insert the new entry into the queue. */
311 p->c_next = new;
312 new->c_next = t;
313 splx(s);
314 }
315
316 void
317 untimeout(ftn, arg)
318 void (*ftn) __P((void *));
319 void *arg;
320 {
321 register struct callout *p, *t;
322 register int s;
323
324 s = splhigh();
325 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
326 if (t->c_func == ftn && t->c_arg == arg) {
327 /* Increment next entry's tick count. */
328 if (t->c_next && t->c_time > 0)
329 t->c_next->c_time += t->c_time;
330
331 /* Move entry from callout queue to callfree queue. */
332 p->c_next = t->c_next;
333 t->c_next = callfree;
334 callfree = t;
335 break;
336 }
337 splx(s);
338 }
339
340 /*
341 * Compute number of hz until specified time. Used to
342 * compute third argument to timeout() from an absolute time.
343 */
344 int
345 hzto(tv)
346 struct timeval *tv;
347 {
348 register long ticks, sec;
349 int s;
350
351 /*
352 * If number of microseconds will fit in 32 bit arithmetic,
353 * then compute number of microseconds to time and scale to
354 * ticks. Otherwise just compute number of hz in time, rounding
355 * times greater than representible to maximum value. (We must
356 * compute in microseconds, because hz can be greater than 1000,
357 * and thus tick can be less than one millisecond).
358 *
359 * Delta times less than 14 hours can be computed ``exactly''.
360 * (Note that if hz would yeild a non-integral number of us per
361 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
362 * than they should be.) Maximum value for any timeout in 10ms
363 * ticks is 250 days.
364 */
365 s = splhigh();
366 sec = tv->tv_sec - time.tv_sec;
367 if (sec <= 0x7fffffff / 1000000 - 1)
368 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
369 (tv->tv_usec - time.tv_usec)) / tick;
370 else if (sec <= 0x7fffffff / hz)
371 ticks = sec * hz;
372 else
373 ticks = 0x7fffffff;
374 splx(s);
375 return (ticks);
376 }
377
378 /*
379 * Start profiling on a process.
380 *
381 * Kernel profiling passes proc0 which never exits and hence
382 * keeps the profile clock running constantly.
383 */
384 void
385 startprofclock(p)
386 register struct proc *p;
387 {
388 int s;
389
390 if ((p->p_flag & P_PROFIL) == 0) {
391 p->p_flag |= P_PROFIL;
392 if (++profprocs == 1 && stathz != 0) {
393 s = splstatclock();
394 psdiv = pscnt = psratio;
395 setstatclockrate(profhz);
396 splx(s);
397 }
398 }
399 }
400
401 /*
402 * Stop profiling on a process.
403 */
404 void
405 stopprofclock(p)
406 register struct proc *p;
407 {
408 int s;
409
410 if (p->p_flag & P_PROFIL) {
411 p->p_flag &= ~P_PROFIL;
412 if (--profprocs == 0 && stathz != 0) {
413 s = splstatclock();
414 psdiv = pscnt = 1;
415 setstatclockrate(stathz);
416 splx(s);
417 }
418 }
419 }
420
421 /*
422 * Statistics clock. Grab profile sample, and if divider reaches 0,
423 * do process and kernel statistics.
424 */
425 void
426 statclock(frame)
427 register struct clockframe *frame;
428 {
429 #ifdef GPROF
430 register struct gmonparam *g;
431 #endif
432 register struct proc *p;
433 register int i;
434
435 if (CLKF_USERMODE(frame)) {
436 p = curproc;
437 if (p->p_flag & P_PROFIL)
438 addupc_intr(p, CLKF_PC(frame), 1);
439 if (--pscnt > 0)
440 return;
441 /*
442 * Came from user mode; CPU was in user state.
443 * If this process is being profiled record the tick.
444 */
445 p->p_uticks++;
446 if (p->p_nice > NZERO)
447 cp_time[CP_NICE]++;
448 else
449 cp_time[CP_USER]++;
450 } else {
451 #ifdef GPROF
452 /*
453 * Kernel statistics are just like addupc_intr, only easier.
454 */
455 g = &_gmonparam;
456 if (g->state == GMON_PROF_ON) {
457 i = CLKF_PC(frame) - g->lowpc;
458 if (i < g->textsize) {
459 i /= HISTFRACTION * sizeof(*g->kcount);
460 g->kcount[i]++;
461 }
462 }
463 #endif
464 if (--pscnt > 0)
465 return;
466 /*
467 * Came from kernel mode, so we were:
468 * - handling an interrupt,
469 * - doing syscall or trap work on behalf of the current
470 * user process, or
471 * - spinning in the idle loop.
472 * Whichever it is, charge the time as appropriate.
473 * Note that we charge interrupts to the current process,
474 * regardless of whether they are ``for'' that process,
475 * so that we know how much of its real time was spent
476 * in ``non-process'' (i.e., interrupt) work.
477 */
478 p = curproc;
479 if (CLKF_INTR(frame)) {
480 if (p != NULL)
481 p->p_iticks++;
482 cp_time[CP_INTR]++;
483 } else if (p != NULL) {
484 p->p_sticks++;
485 cp_time[CP_SYS]++;
486 } else
487 cp_time[CP_IDLE]++;
488 }
489 pscnt = psdiv;
490
491 /*
492 * XXX Support old-style instrumentation for now.
493 *
494 * We maintain statistics shown by user-level statistics
495 * programs: the amount of time in each cpu state, and
496 * the amount of time each of DK_NDRIVE ``drives'' is busy.
497 *
498 * XXX should either run linked list of drives, or (better)
499 * grab timestamps in the start & done code.
500 */
501 for (i = 0; i < DK_NDRIVE; i++)
502 if (dk_busy & (1 << i))
503 dk_time[i]++;
504
505 /*
506 * We adjust the priority of the current process. The priority of
507 * a process gets worse as it accumulates CPU time. The cpu usage
508 * estimator (p_estcpu) is increased here. The formula for computing
509 * priorities (in kern_synch.c) will compute a different value each
510 * time p_estcpu increases by 4. The cpu usage estimator ramps up
511 * quite quickly when the process is running (linearly), and decays
512 * away exponentially, at a rate which is proportionally slower when
513 * the system is busy. The basic principal is that the system will
514 * 90% forget that the process used a lot of CPU time in 5 * loadav
515 * seconds. This causes the system to favor processes which haven't
516 * run much recently, and to round-robin among other processes.
517 */
518 if (p != NULL) {
519 p->p_cpticks++;
520 if (++p->p_estcpu == 0)
521 p->p_estcpu--;
522 if ((p->p_estcpu & 3) == 0) {
523 resetpriority(p);
524 if (p->p_priority >= PUSER)
525 p->p_priority = p->p_usrpri;
526 }
527 }
528 }
529
530 /*
531 * Return information about system clocks.
532 */
533 sysctl_clockrate(where, sizep)
534 register char *where;
535 size_t *sizep;
536 {
537 struct clockinfo clkinfo;
538
539 /*
540 * Construct clockinfo structure.
541 */
542 clkinfo.tick = tick;
543 clkinfo.tickadj = tickadj;
544 clkinfo.hz = hz;
545 clkinfo.profhz = profhz;
546 clkinfo.stathz = stathz ? stathz : hz;
547 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
548 }
549
550 #ifdef DDB
551 #include <machine/db_machdep.h>
552
553 #include <ddb/db_access.h>
554 #include <ddb/db_sym.h>
555
556 void db_show_callout(long addr, int haddr, int count, char *modif)
557 {
558 register struct callout *p1;
559 register int cum;
560 register int s;
561 db_expr_t offset;
562 char *name;
563
564 db_printf(" cum ticks arg func\n");
565 s = splhigh();
566 for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
567 register int t = p1->c_time;
568
569 if (t > 0)
570 cum += t;
571
572 db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
573 if (name == NULL)
574 name = "?";
575
576 db_printf("%9d %9d %8x %s (%x)\n",
577 cum, t, p1->c_arg, name, p1->c_func);
578 }
579 splx(s);
580 }
581 #endif
582