Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.25
      1 /*	$NetBSD: kern_clock.c,v 1.25 1996/02/04 02:15:15 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/dkstat.h>
     46 #include <sys/callout.h>
     47 #include <sys/kernel.h>
     48 #include <sys/proc.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/signalvar.h>
     51 
     52 #include <machine/cpu.h>
     53 
     54 #include <kern/kern_extern.h>
     55 
     56 #ifdef GPROF
     57 #include <sys/gmon.h>
     58 #endif
     59 
     60 /*
     61  * Clock handling routines.
     62  *
     63  * This code is written to operate with two timers that run independently of
     64  * each other.  The main clock, running hz times per second, is used to keep
     65  * track of real time.  The second timer handles kernel and user profiling,
     66  * and does resource use estimation.  If the second timer is programmable,
     67  * it is randomized to avoid aliasing between the two clocks.  For example,
     68  * the randomization prevents an adversary from always giving up the cpu
     69  * just before its quantum expires.  Otherwise, it would never accumulate
     70  * cpu ticks.  The mean frequency of the second timer is stathz.
     71  *
     72  * If no second timer exists, stathz will be zero; in this case we drive
     73  * profiling and statistics off the main clock.  This WILL NOT be accurate;
     74  * do not do it unless absolutely necessary.
     75  *
     76  * The statistics clock may (or may not) be run at a higher rate while
     77  * profiling.  This profile clock runs at profhz.  We require that profhz
     78  * be an integral multiple of stathz.
     79  *
     80  * If the statistics clock is running fast, it must be divided by the ratio
     81  * profhz/stathz for statistics.  (For profiling, every tick counts.)
     82  */
     83 
     84 /*
     85  * TODO:
     86  *	allocate more timeout table slots when table overflows.
     87  */
     88 
     89 /*
     90  * Bump a timeval by a small number of usec's.
     91  */
     92 #define BUMPTIME(t, usec) { \
     93 	register volatile struct timeval *tp = (t); \
     94 	register long us; \
     95  \
     96 	tp->tv_usec = us = tp->tv_usec + (usec); \
     97 	if (us >= 1000000) { \
     98 		tp->tv_usec = us - 1000000; \
     99 		tp->tv_sec++; \
    100 	} \
    101 }
    102 
    103 int	stathz;
    104 int	profhz;
    105 int	profprocs;
    106 int	ticks;
    107 static int psdiv, pscnt;		/* prof => stat divider */
    108 int	psratio;			/* ratio: prof / stat */
    109 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    110 static int tickfixcnt;			/* number of ticks since last fix */
    111 
    112 volatile struct	timeval time;
    113 volatile struct	timeval mono_time;
    114 
    115 /*
    116  * Initialize clock frequencies and start both clocks running.
    117  */
    118 void
    119 initclocks()
    120 {
    121 	register int i;
    122 
    123 	/*
    124 	 * Set divisors to 1 (normal case) and let the machine-specific
    125 	 * code do its bit.
    126 	 */
    127 	psdiv = pscnt = 1;
    128 	cpu_initclocks();
    129 
    130 	/*
    131 	 * Compute profhz/stathz, and fix profhz if needed.
    132 	 */
    133 	i = stathz ? stathz : hz;
    134 	if (profhz == 0)
    135 		profhz = i;
    136 	psratio = profhz / i;
    137 }
    138 
    139 /*
    140  * The real-time timer, interrupting hz times per second.
    141  */
    142 void
    143 hardclock(frame)
    144 	register struct clockframe *frame;
    145 {
    146 	register struct callout *p1;
    147 	register struct proc *p;
    148 	register int delta, needsoft;
    149 	extern int tickdelta;
    150 	extern long timedelta;
    151 
    152 	/*
    153 	 * Update real-time timeout queue.
    154 	 * At front of queue are some number of events which are ``due''.
    155 	 * The time to these is <= 0 and if negative represents the
    156 	 * number of ticks which have passed since it was supposed to happen.
    157 	 * The rest of the q elements (times > 0) are events yet to happen,
    158 	 * where the time for each is given as a delta from the previous.
    159 	 * Decrementing just the first of these serves to decrement the time
    160 	 * to all events.
    161 	 */
    162 	needsoft = 0;
    163 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
    164 		if (--p1->c_time > 0)
    165 			break;
    166 		needsoft = 1;
    167 		if (p1->c_time == 0)
    168 			break;
    169 	}
    170 
    171 	p = curproc;
    172 	if (p) {
    173 		register struct pstats *pstats;
    174 
    175 		/*
    176 		 * Run current process's virtual and profile time, as needed.
    177 		 */
    178 		pstats = p->p_stats;
    179 		if (CLKF_USERMODE(frame) &&
    180 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    181 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    182 			psignal(p, SIGVTALRM);
    183 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    184 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    185 			psignal(p, SIGPROF);
    186 	}
    187 
    188 	/*
    189 	 * If no separate statistics clock is available, run it from here.
    190 	 */
    191 	if (stathz == 0)
    192 		statclock(frame);
    193 
    194 	/*
    195 	 * Increment the time-of-day.  The increment is normally just
    196 	 * ``tick''.  If the machine is one which has a clock frequency
    197 	 * such that ``hz'' would not divide the second evenly into
    198 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    199 	 * if we are still adjusting the time (see adjtime()),
    200 	 * ``tickdelta'' may also be added in.
    201 	 */
    202 	ticks++;
    203 	delta = tick;
    204 	if (tickfix) {
    205 		tickfixcnt++;
    206 		if (tickfixcnt >= tickfixinterval) {
    207 			delta += tickfix;
    208 			tickfixcnt = 0;
    209 		}
    210 	}
    211 	if (timedelta != 0) {
    212 		delta = tick + tickdelta;
    213 		timedelta -= tickdelta;
    214 	}
    215 	BUMPTIME(&time, delta);
    216 	BUMPTIME(&mono_time, delta);
    217 
    218 	/*
    219 	 * Process callouts at a very low cpu priority, so we don't keep the
    220 	 * relatively high clock interrupt priority any longer than necessary.
    221 	 */
    222 	if (needsoft) {
    223 		if (CLKF_BASEPRI(frame)) {
    224 			/*
    225 			 * Save the overhead of a software interrupt;
    226 			 * it will happen as soon as we return, so do it now.
    227 			 */
    228 			(void)splsoftclock();
    229 			softclock();
    230 		} else
    231 			setsoftclock();
    232 	}
    233 }
    234 
    235 /*
    236  * Software (low priority) clock interrupt.
    237  * Run periodic events from timeout queue.
    238  */
    239 /*ARGSUSED*/
    240 void
    241 softclock()
    242 {
    243 	register struct callout *c;
    244 	register void *arg;
    245 	register void (*func) __P((void *));
    246 	register int s;
    247 
    248 	s = splhigh();
    249 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
    250 		func = c->c_func;
    251 		arg = c->c_arg;
    252 		calltodo.c_next = c->c_next;
    253 		c->c_next = callfree;
    254 		callfree = c;
    255 		splx(s);
    256 		(*func)(arg);
    257 		(void) splhigh();
    258 	}
    259 	splx(s);
    260 }
    261 
    262 /*
    263  * timeout --
    264  *	Execute a function after a specified length of time.
    265  *
    266  * untimeout --
    267  *	Cancel previous timeout function call.
    268  *
    269  *	See AT&T BCI Driver Reference Manual for specification.  This
    270  *	implementation differs from that one in that no identification
    271  *	value is returned from timeout, rather, the original arguments
    272  *	to timeout are used to identify entries for untimeout.
    273  */
    274 void
    275 timeout(ftn, arg, ticks)
    276 	void (*ftn) __P((void *));
    277 	void *arg;
    278 	register int ticks;
    279 {
    280 	register struct callout *new, *p, *t;
    281 	register int s;
    282 
    283 	if (ticks <= 0)
    284 		ticks = 1;
    285 
    286 	/* Lock out the clock. */
    287 	s = splhigh();
    288 
    289 	/* Fill in the next free callout structure. */
    290 	if (callfree == NULL)
    291 		panic("timeout table full");
    292 	new = callfree;
    293 	callfree = new->c_next;
    294 	new->c_arg = arg;
    295 	new->c_func = ftn;
    296 
    297 	/*
    298 	 * The time for each event is stored as a difference from the time
    299 	 * of the previous event on the queue.  Walk the queue, correcting
    300 	 * the ticks argument for queue entries passed.  Correct the ticks
    301 	 * value for the queue entry immediately after the insertion point
    302 	 * as well.  Watch out for negative c_time values; these represent
    303 	 * overdue events.
    304 	 */
    305 	for (p = &calltodo;
    306 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
    307 		if (t->c_time > 0)
    308 			ticks -= t->c_time;
    309 	new->c_time = ticks;
    310 	if (t != NULL)
    311 		t->c_time -= ticks;
    312 
    313 	/* Insert the new entry into the queue. */
    314 	p->c_next = new;
    315 	new->c_next = t;
    316 	splx(s);
    317 }
    318 
    319 void
    320 untimeout(ftn, arg)
    321 	void (*ftn) __P((void *));
    322 	void *arg;
    323 {
    324 	register struct callout *p, *t;
    325 	register int s;
    326 
    327 	s = splhigh();
    328 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
    329 		if (t->c_func == ftn && t->c_arg == arg) {
    330 			/* Increment next entry's tick count. */
    331 			if (t->c_next && t->c_time > 0)
    332 				t->c_next->c_time += t->c_time;
    333 
    334 			/* Move entry from callout queue to callfree queue. */
    335 			p->c_next = t->c_next;
    336 			t->c_next = callfree;
    337 			callfree = t;
    338 			break;
    339 		}
    340 	splx(s);
    341 }
    342 
    343 /*
    344  * Compute number of hz until specified time.  Used to
    345  * compute third argument to timeout() from an absolute time.
    346  */
    347 int
    348 hzto(tv)
    349 	struct timeval *tv;
    350 {
    351 	register long ticks, sec;
    352 	int s;
    353 
    354 	/*
    355 	 * If number of microseconds will fit in 32 bit arithmetic,
    356 	 * then compute number of microseconds to time and scale to
    357 	 * ticks.  Otherwise just compute number of hz in time, rounding
    358 	 * times greater than representible to maximum value.  (We must
    359 	 * compute in microseconds, because hz can be greater than 1000,
    360 	 * and thus tick can be less than one millisecond).
    361 	 *
    362 	 * Delta times less than 14 hours can be computed ``exactly''.
    363 	 * (Note that if hz would yeild a non-integral number of us per
    364 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
    365 	 * than they should be.)  Maximum value for any timeout in 10ms
    366 	 * ticks is 250 days.
    367 	 */
    368 	s = splhigh();
    369 	sec = tv->tv_sec - time.tv_sec;
    370 	if (sec <= 0x7fffffff / 1000000 - 1)
    371 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
    372 			(tv->tv_usec - time.tv_usec)) / tick;
    373 	else if (sec <= 0x7fffffff / hz)
    374 		ticks = sec * hz;
    375 	else
    376 		ticks = 0x7fffffff;
    377 	splx(s);
    378 	return (ticks);
    379 }
    380 
    381 /*
    382  * Start profiling on a process.
    383  *
    384  * Kernel profiling passes proc0 which never exits and hence
    385  * keeps the profile clock running constantly.
    386  */
    387 void
    388 startprofclock(p)
    389 	register struct proc *p;
    390 {
    391 	int s;
    392 
    393 	if ((p->p_flag & P_PROFIL) == 0) {
    394 		p->p_flag |= P_PROFIL;
    395 		if (++profprocs == 1 && stathz != 0) {
    396 			s = splstatclock();
    397 			psdiv = pscnt = psratio;
    398 			setstatclockrate(profhz);
    399 			splx(s);
    400 		}
    401 	}
    402 }
    403 
    404 /*
    405  * Stop profiling on a process.
    406  */
    407 void
    408 stopprofclock(p)
    409 	register struct proc *p;
    410 {
    411 	int s;
    412 
    413 	if (p->p_flag & P_PROFIL) {
    414 		p->p_flag &= ~P_PROFIL;
    415 		if (--profprocs == 0 && stathz != 0) {
    416 			s = splstatclock();
    417 			psdiv = pscnt = 1;
    418 			setstatclockrate(stathz);
    419 			splx(s);
    420 		}
    421 	}
    422 }
    423 
    424 /*
    425  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    426  * do process and kernel statistics.
    427  */
    428 void
    429 statclock(frame)
    430 	register struct clockframe *frame;
    431 {
    432 #ifdef GPROF
    433 	register struct gmonparam *g;
    434 #endif
    435 	register struct proc *p;
    436 	register int i;
    437 
    438 	if (CLKF_USERMODE(frame)) {
    439 		p = curproc;
    440 		if (p->p_flag & P_PROFIL)
    441 			addupc_intr(p, CLKF_PC(frame), 1);
    442 		if (--pscnt > 0)
    443 			return;
    444 		/*
    445 		 * Came from user mode; CPU was in user state.
    446 		 * If this process is being profiled record the tick.
    447 		 */
    448 		p->p_uticks++;
    449 		if (p->p_nice > NZERO)
    450 			cp_time[CP_NICE]++;
    451 		else
    452 			cp_time[CP_USER]++;
    453 	} else {
    454 #ifdef GPROF
    455 		/*
    456 		 * Kernel statistics are just like addupc_intr, only easier.
    457 		 */
    458 		g = &_gmonparam;
    459 		if (g->state == GMON_PROF_ON) {
    460 			i = CLKF_PC(frame) - g->lowpc;
    461 			if (i < g->textsize) {
    462 				i /= HISTFRACTION * sizeof(*g->kcount);
    463 				g->kcount[i]++;
    464 			}
    465 		}
    466 #endif
    467 		if (--pscnt > 0)
    468 			return;
    469 		/*
    470 		 * Came from kernel mode, so we were:
    471 		 * - handling an interrupt,
    472 		 * - doing syscall or trap work on behalf of the current
    473 		 *   user process, or
    474 		 * - spinning in the idle loop.
    475 		 * Whichever it is, charge the time as appropriate.
    476 		 * Note that we charge interrupts to the current process,
    477 		 * regardless of whether they are ``for'' that process,
    478 		 * so that we know how much of its real time was spent
    479 		 * in ``non-process'' (i.e., interrupt) work.
    480 		 */
    481 		p = curproc;
    482 		if (CLKF_INTR(frame)) {
    483 			if (p != NULL)
    484 				p->p_iticks++;
    485 			cp_time[CP_INTR]++;
    486 		} else if (p != NULL) {
    487 			p->p_sticks++;
    488 			cp_time[CP_SYS]++;
    489 		} else
    490 			cp_time[CP_IDLE]++;
    491 	}
    492 	pscnt = psdiv;
    493 
    494 	/*
    495 	 * XXX Support old-style instrumentation for now.
    496 	 *
    497 	 * We maintain statistics shown by user-level statistics
    498 	 * programs:  the amount of time in each cpu state, and
    499 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
    500 	 *
    501 	 * XXX	should either run linked list of drives, or (better)
    502 	 *	grab timestamps in the start & done code.
    503 	 */
    504 	for (i = 0; i < DK_NDRIVE; i++)
    505 		if (dk_busy & (1 << i))
    506 			dk_time[i]++;
    507 
    508 	/*
    509 	 * We adjust the priority of the current process.  The priority of
    510 	 * a process gets worse as it accumulates CPU time.  The cpu usage
    511 	 * estimator (p_estcpu) is increased here.  The formula for computing
    512 	 * priorities (in kern_synch.c) will compute a different value each
    513 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
    514 	 * quite quickly when the process is running (linearly), and decays
    515 	 * away exponentially, at a rate which is proportionally slower when
    516 	 * the system is busy.  The basic principal is that the system will
    517 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
    518 	 * seconds.  This causes the system to favor processes which haven't
    519 	 * run much recently, and to round-robin among other processes.
    520 	 */
    521 	if (p != NULL) {
    522 		p->p_cpticks++;
    523 		if (++p->p_estcpu == 0)
    524 			p->p_estcpu--;
    525 		if ((p->p_estcpu & 3) == 0) {
    526 			resetpriority(p);
    527 			if (p->p_priority >= PUSER)
    528 				p->p_priority = p->p_usrpri;
    529 		}
    530 	}
    531 }
    532 
    533 /*
    534  * Return information about system clocks.
    535  */
    536 int
    537 sysctl_clockrate(where, sizep)
    538 	register char *where;
    539 	size_t *sizep;
    540 {
    541 	struct clockinfo clkinfo;
    542 
    543 	/*
    544 	 * Construct clockinfo structure.
    545 	 */
    546 	clkinfo.tick = tick;
    547 	clkinfo.tickadj = tickadj;
    548 	clkinfo.hz = hz;
    549 	clkinfo.profhz = profhz;
    550 	clkinfo.stathz = stathz ? stathz : hz;
    551 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
    552 }
    553 
    554 #ifdef DDB
    555 #include <machine/db_machdep.h>
    556 
    557 #include <ddb/db_interface.h>
    558 #include <ddb/db_access.h>
    559 #include <ddb/db_sym.h>
    560 #include <ddb/db_output.h>
    561 
    562 void db_show_callout(addr, haddr, count, modif)
    563 	db_expr_t addr;
    564 	int haddr;
    565 	db_expr_t count;
    566 	char *modif;
    567 {
    568 	register struct callout *p1;
    569 	register int	cum;
    570 	register int	s;
    571 	db_expr_t	offset;
    572 	char		*name;
    573 
    574         db_printf("      cum     ticks      arg  func\n");
    575 	s = splhigh();
    576 	for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
    577 		register int t = p1->c_time;
    578 
    579 		if (t > 0)
    580 			cum += t;
    581 
    582 		db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
    583 		if (name == NULL)
    584 			name = "?";
    585 
    586                 db_printf("%9d %9d %8x  %s (%x)\n",
    587 			  cum, t, p1->c_arg, name, p1->c_func);
    588 	}
    589 	splx(s);
    590 }
    591 #endif
    592