Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.26
      1 /*	$NetBSD: kern_clock.c,v 1.26 1996/02/09 18:59:24 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/dkstat.h>
     46 #include <sys/callout.h>
     47 #include <sys/kernel.h>
     48 #include <sys/proc.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/signalvar.h>
     51 #include <sys/cpu.h>
     52 #include <vm/vm.h>
     53 #include <sys/sysctl.h>
     54 
     55 #include <machine/cpu.h>
     56 
     57 #ifdef GPROF
     58 #include <sys/gmon.h>
     59 #endif
     60 
     61 /*
     62  * Clock handling routines.
     63  *
     64  * This code is written to operate with two timers that run independently of
     65  * each other.  The main clock, running hz times per second, is used to keep
     66  * track of real time.  The second timer handles kernel and user profiling,
     67  * and does resource use estimation.  If the second timer is programmable,
     68  * it is randomized to avoid aliasing between the two clocks.  For example,
     69  * the randomization prevents an adversary from always giving up the cpu
     70  * just before its quantum expires.  Otherwise, it would never accumulate
     71  * cpu ticks.  The mean frequency of the second timer is stathz.
     72  *
     73  * If no second timer exists, stathz will be zero; in this case we drive
     74  * profiling and statistics off the main clock.  This WILL NOT be accurate;
     75  * do not do it unless absolutely necessary.
     76  *
     77  * The statistics clock may (or may not) be run at a higher rate while
     78  * profiling.  This profile clock runs at profhz.  We require that profhz
     79  * be an integral multiple of stathz.
     80  *
     81  * If the statistics clock is running fast, it must be divided by the ratio
     82  * profhz/stathz for statistics.  (For profiling, every tick counts.)
     83  */
     84 
     85 /*
     86  * TODO:
     87  *	allocate more timeout table slots when table overflows.
     88  */
     89 
     90 /*
     91  * Bump a timeval by a small number of usec's.
     92  */
     93 #define BUMPTIME(t, usec) { \
     94 	register volatile struct timeval *tp = (t); \
     95 	register long us; \
     96  \
     97 	tp->tv_usec = us = tp->tv_usec + (usec); \
     98 	if (us >= 1000000) { \
     99 		tp->tv_usec = us - 1000000; \
    100 		tp->tv_sec++; \
    101 	} \
    102 }
    103 
    104 int	stathz;
    105 int	profhz;
    106 int	profprocs;
    107 int	ticks;
    108 static int psdiv, pscnt;		/* prof => stat divider */
    109 int	psratio;			/* ratio: prof / stat */
    110 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    111 static int tickfixcnt;			/* number of ticks since last fix */
    112 
    113 volatile struct	timeval time;
    114 volatile struct	timeval mono_time;
    115 
    116 /*
    117  * Initialize clock frequencies and start both clocks running.
    118  */
    119 void
    120 initclocks()
    121 {
    122 	register int i;
    123 
    124 	/*
    125 	 * Set divisors to 1 (normal case) and let the machine-specific
    126 	 * code do its bit.
    127 	 */
    128 	psdiv = pscnt = 1;
    129 	cpu_initclocks();
    130 
    131 	/*
    132 	 * Compute profhz/stathz, and fix profhz if needed.
    133 	 */
    134 	i = stathz ? stathz : hz;
    135 	if (profhz == 0)
    136 		profhz = i;
    137 	psratio = profhz / i;
    138 }
    139 
    140 /*
    141  * The real-time timer, interrupting hz times per second.
    142  */
    143 void
    144 hardclock(frame)
    145 	register struct clockframe *frame;
    146 {
    147 	register struct callout *p1;
    148 	register struct proc *p;
    149 	register int delta, needsoft;
    150 	extern int tickdelta;
    151 	extern long timedelta;
    152 
    153 	/*
    154 	 * Update real-time timeout queue.
    155 	 * At front of queue are some number of events which are ``due''.
    156 	 * The time to these is <= 0 and if negative represents the
    157 	 * number of ticks which have passed since it was supposed to happen.
    158 	 * The rest of the q elements (times > 0) are events yet to happen,
    159 	 * where the time for each is given as a delta from the previous.
    160 	 * Decrementing just the first of these serves to decrement the time
    161 	 * to all events.
    162 	 */
    163 	needsoft = 0;
    164 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
    165 		if (--p1->c_time > 0)
    166 			break;
    167 		needsoft = 1;
    168 		if (p1->c_time == 0)
    169 			break;
    170 	}
    171 
    172 	p = curproc;
    173 	if (p) {
    174 		register struct pstats *pstats;
    175 
    176 		/*
    177 		 * Run current process's virtual and profile time, as needed.
    178 		 */
    179 		pstats = p->p_stats;
    180 		if (CLKF_USERMODE(frame) &&
    181 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    182 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    183 			psignal(p, SIGVTALRM);
    184 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    185 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    186 			psignal(p, SIGPROF);
    187 	}
    188 
    189 	/*
    190 	 * If no separate statistics clock is available, run it from here.
    191 	 */
    192 	if (stathz == 0)
    193 		statclock(frame);
    194 
    195 	/*
    196 	 * Increment the time-of-day.  The increment is normally just
    197 	 * ``tick''.  If the machine is one which has a clock frequency
    198 	 * such that ``hz'' would not divide the second evenly into
    199 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    200 	 * if we are still adjusting the time (see adjtime()),
    201 	 * ``tickdelta'' may also be added in.
    202 	 */
    203 	ticks++;
    204 	delta = tick;
    205 	if (tickfix) {
    206 		tickfixcnt++;
    207 		if (tickfixcnt >= tickfixinterval) {
    208 			delta += tickfix;
    209 			tickfixcnt = 0;
    210 		}
    211 	}
    212 	if (timedelta != 0) {
    213 		delta = tick + tickdelta;
    214 		timedelta -= tickdelta;
    215 	}
    216 	BUMPTIME(&time, delta);
    217 	BUMPTIME(&mono_time, delta);
    218 
    219 	/*
    220 	 * Process callouts at a very low cpu priority, so we don't keep the
    221 	 * relatively high clock interrupt priority any longer than necessary.
    222 	 */
    223 	if (needsoft) {
    224 		if (CLKF_BASEPRI(frame)) {
    225 			/*
    226 			 * Save the overhead of a software interrupt;
    227 			 * it will happen as soon as we return, so do it now.
    228 			 */
    229 			(void)splsoftclock();
    230 			softclock();
    231 		} else
    232 			setsoftclock();
    233 	}
    234 }
    235 
    236 /*
    237  * Software (low priority) clock interrupt.
    238  * Run periodic events from timeout queue.
    239  */
    240 /*ARGSUSED*/
    241 void
    242 softclock()
    243 {
    244 	register struct callout *c;
    245 	register void *arg;
    246 	register void (*func) __P((void *));
    247 	register int s;
    248 
    249 	s = splhigh();
    250 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
    251 		func = c->c_func;
    252 		arg = c->c_arg;
    253 		calltodo.c_next = c->c_next;
    254 		c->c_next = callfree;
    255 		callfree = c;
    256 		splx(s);
    257 		(*func)(arg);
    258 		(void) splhigh();
    259 	}
    260 	splx(s);
    261 }
    262 
    263 /*
    264  * timeout --
    265  *	Execute a function after a specified length of time.
    266  *
    267  * untimeout --
    268  *	Cancel previous timeout function call.
    269  *
    270  *	See AT&T BCI Driver Reference Manual for specification.  This
    271  *	implementation differs from that one in that no identification
    272  *	value is returned from timeout, rather, the original arguments
    273  *	to timeout are used to identify entries for untimeout.
    274  */
    275 void
    276 timeout(ftn, arg, ticks)
    277 	void (*ftn) __P((void *));
    278 	void *arg;
    279 	register int ticks;
    280 {
    281 	register struct callout *new, *p, *t;
    282 	register int s;
    283 
    284 	if (ticks <= 0)
    285 		ticks = 1;
    286 
    287 	/* Lock out the clock. */
    288 	s = splhigh();
    289 
    290 	/* Fill in the next free callout structure. */
    291 	if (callfree == NULL)
    292 		panic("timeout table full");
    293 	new = callfree;
    294 	callfree = new->c_next;
    295 	new->c_arg = arg;
    296 	new->c_func = ftn;
    297 
    298 	/*
    299 	 * The time for each event is stored as a difference from the time
    300 	 * of the previous event on the queue.  Walk the queue, correcting
    301 	 * the ticks argument for queue entries passed.  Correct the ticks
    302 	 * value for the queue entry immediately after the insertion point
    303 	 * as well.  Watch out for negative c_time values; these represent
    304 	 * overdue events.
    305 	 */
    306 	for (p = &calltodo;
    307 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
    308 		if (t->c_time > 0)
    309 			ticks -= t->c_time;
    310 	new->c_time = ticks;
    311 	if (t != NULL)
    312 		t->c_time -= ticks;
    313 
    314 	/* Insert the new entry into the queue. */
    315 	p->c_next = new;
    316 	new->c_next = t;
    317 	splx(s);
    318 }
    319 
    320 void
    321 untimeout(ftn, arg)
    322 	void (*ftn) __P((void *));
    323 	void *arg;
    324 {
    325 	register struct callout *p, *t;
    326 	register int s;
    327 
    328 	s = splhigh();
    329 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
    330 		if (t->c_func == ftn && t->c_arg == arg) {
    331 			/* Increment next entry's tick count. */
    332 			if (t->c_next && t->c_time > 0)
    333 				t->c_next->c_time += t->c_time;
    334 
    335 			/* Move entry from callout queue to callfree queue. */
    336 			p->c_next = t->c_next;
    337 			t->c_next = callfree;
    338 			callfree = t;
    339 			break;
    340 		}
    341 	splx(s);
    342 }
    343 
    344 /*
    345  * Compute number of hz until specified time.  Used to
    346  * compute third argument to timeout() from an absolute time.
    347  */
    348 int
    349 hzto(tv)
    350 	struct timeval *tv;
    351 {
    352 	register long ticks, sec;
    353 	int s;
    354 
    355 	/*
    356 	 * If number of microseconds will fit in 32 bit arithmetic,
    357 	 * then compute number of microseconds to time and scale to
    358 	 * ticks.  Otherwise just compute number of hz in time, rounding
    359 	 * times greater than representible to maximum value.  (We must
    360 	 * compute in microseconds, because hz can be greater than 1000,
    361 	 * and thus tick can be less than one millisecond).
    362 	 *
    363 	 * Delta times less than 14 hours can be computed ``exactly''.
    364 	 * (Note that if hz would yeild a non-integral number of us per
    365 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
    366 	 * than they should be.)  Maximum value for any timeout in 10ms
    367 	 * ticks is 250 days.
    368 	 */
    369 	s = splhigh();
    370 	sec = tv->tv_sec - time.tv_sec;
    371 	if (sec <= 0x7fffffff / 1000000 - 1)
    372 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
    373 			(tv->tv_usec - time.tv_usec)) / tick;
    374 	else if (sec <= 0x7fffffff / hz)
    375 		ticks = sec * hz;
    376 	else
    377 		ticks = 0x7fffffff;
    378 	splx(s);
    379 	return (ticks);
    380 }
    381 
    382 /*
    383  * Start profiling on a process.
    384  *
    385  * Kernel profiling passes proc0 which never exits and hence
    386  * keeps the profile clock running constantly.
    387  */
    388 void
    389 startprofclock(p)
    390 	register struct proc *p;
    391 {
    392 	int s;
    393 
    394 	if ((p->p_flag & P_PROFIL) == 0) {
    395 		p->p_flag |= P_PROFIL;
    396 		if (++profprocs == 1 && stathz != 0) {
    397 			s = splstatclock();
    398 			psdiv = pscnt = psratio;
    399 			setstatclockrate(profhz);
    400 			splx(s);
    401 		}
    402 	}
    403 }
    404 
    405 /*
    406  * Stop profiling on a process.
    407  */
    408 void
    409 stopprofclock(p)
    410 	register struct proc *p;
    411 {
    412 	int s;
    413 
    414 	if (p->p_flag & P_PROFIL) {
    415 		p->p_flag &= ~P_PROFIL;
    416 		if (--profprocs == 0 && stathz != 0) {
    417 			s = splstatclock();
    418 			psdiv = pscnt = 1;
    419 			setstatclockrate(stathz);
    420 			splx(s);
    421 		}
    422 	}
    423 }
    424 
    425 /*
    426  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    427  * do process and kernel statistics.
    428  */
    429 void
    430 statclock(frame)
    431 	register struct clockframe *frame;
    432 {
    433 #ifdef GPROF
    434 	register struct gmonparam *g;
    435 #endif
    436 	register struct proc *p;
    437 	register int i;
    438 
    439 	if (CLKF_USERMODE(frame)) {
    440 		p = curproc;
    441 		if (p->p_flag & P_PROFIL)
    442 			addupc_intr(p, CLKF_PC(frame), 1);
    443 		if (--pscnt > 0)
    444 			return;
    445 		/*
    446 		 * Came from user mode; CPU was in user state.
    447 		 * If this process is being profiled record the tick.
    448 		 */
    449 		p->p_uticks++;
    450 		if (p->p_nice > NZERO)
    451 			cp_time[CP_NICE]++;
    452 		else
    453 			cp_time[CP_USER]++;
    454 	} else {
    455 #ifdef GPROF
    456 		/*
    457 		 * Kernel statistics are just like addupc_intr, only easier.
    458 		 */
    459 		g = &_gmonparam;
    460 		if (g->state == GMON_PROF_ON) {
    461 			i = CLKF_PC(frame) - g->lowpc;
    462 			if (i < g->textsize) {
    463 				i /= HISTFRACTION * sizeof(*g->kcount);
    464 				g->kcount[i]++;
    465 			}
    466 		}
    467 #endif
    468 		if (--pscnt > 0)
    469 			return;
    470 		/*
    471 		 * Came from kernel mode, so we were:
    472 		 * - handling an interrupt,
    473 		 * - doing syscall or trap work on behalf of the current
    474 		 *   user process, or
    475 		 * - spinning in the idle loop.
    476 		 * Whichever it is, charge the time as appropriate.
    477 		 * Note that we charge interrupts to the current process,
    478 		 * regardless of whether they are ``for'' that process,
    479 		 * so that we know how much of its real time was spent
    480 		 * in ``non-process'' (i.e., interrupt) work.
    481 		 */
    482 		p = curproc;
    483 		if (CLKF_INTR(frame)) {
    484 			if (p != NULL)
    485 				p->p_iticks++;
    486 			cp_time[CP_INTR]++;
    487 		} else if (p != NULL) {
    488 			p->p_sticks++;
    489 			cp_time[CP_SYS]++;
    490 		} else
    491 			cp_time[CP_IDLE]++;
    492 	}
    493 	pscnt = psdiv;
    494 
    495 	/*
    496 	 * XXX Support old-style instrumentation for now.
    497 	 *
    498 	 * We maintain statistics shown by user-level statistics
    499 	 * programs:  the amount of time in each cpu state, and
    500 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
    501 	 *
    502 	 * XXX	should either run linked list of drives, or (better)
    503 	 *	grab timestamps in the start & done code.
    504 	 */
    505 	for (i = 0; i < DK_NDRIVE; i++)
    506 		if (dk_busy & (1 << i))
    507 			dk_time[i]++;
    508 
    509 	/*
    510 	 * We adjust the priority of the current process.  The priority of
    511 	 * a process gets worse as it accumulates CPU time.  The cpu usage
    512 	 * estimator (p_estcpu) is increased here.  The formula for computing
    513 	 * priorities (in kern_synch.c) will compute a different value each
    514 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
    515 	 * quite quickly when the process is running (linearly), and decays
    516 	 * away exponentially, at a rate which is proportionally slower when
    517 	 * the system is busy.  The basic principal is that the system will
    518 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
    519 	 * seconds.  This causes the system to favor processes which haven't
    520 	 * run much recently, and to round-robin among other processes.
    521 	 */
    522 	if (p != NULL) {
    523 		p->p_cpticks++;
    524 		if (++p->p_estcpu == 0)
    525 			p->p_estcpu--;
    526 		if ((p->p_estcpu & 3) == 0) {
    527 			resetpriority(p);
    528 			if (p->p_priority >= PUSER)
    529 				p->p_priority = p->p_usrpri;
    530 		}
    531 	}
    532 }
    533 
    534 /*
    535  * Return information about system clocks.
    536  */
    537 int
    538 sysctl_clockrate(where, sizep)
    539 	register char *where;
    540 	size_t *sizep;
    541 {
    542 	struct clockinfo clkinfo;
    543 
    544 	/*
    545 	 * Construct clockinfo structure.
    546 	 */
    547 	clkinfo.tick = tick;
    548 	clkinfo.tickadj = tickadj;
    549 	clkinfo.hz = hz;
    550 	clkinfo.profhz = profhz;
    551 	clkinfo.stathz = stathz ? stathz : hz;
    552 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
    553 }
    554 
    555 #ifdef DDB
    556 #include <machine/db_machdep.h>
    557 
    558 #include <ddb/db_interface.h>
    559 #include <ddb/db_access.h>
    560 #include <ddb/db_sym.h>
    561 #include <ddb/db_output.h>
    562 
    563 void db_show_callout(addr, haddr, count, modif)
    564 	db_expr_t addr;
    565 	int haddr;
    566 	db_expr_t count;
    567 	char *modif;
    568 {
    569 	register struct callout *p1;
    570 	register int	cum;
    571 	register int	s;
    572 	db_expr_t	offset;
    573 	char		*name;
    574 
    575         db_printf("      cum     ticks      arg  func\n");
    576 	s = splhigh();
    577 	for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
    578 		register int t = p1->c_time;
    579 
    580 		if (t > 0)
    581 			cum += t;
    582 
    583 		db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
    584 		if (name == NULL)
    585 			name = "?";
    586 
    587                 db_printf("%9d %9d %8x  %s (%x)\n",
    588 			  cum, t, p1->c_arg, name, p1->c_func);
    589 	}
    590 	splx(s);
    591 }
    592 #endif
    593