kern_clock.c revision 1.30 1 /* $NetBSD: kern_clock.c,v 1.30 1996/03/08 06:27:30 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/dkstat.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <sys/cpu.h>
52 #include <vm/vm.h>
53 #include <sys/sysctl.h>
54 #include <sys/timex.h>
55
56 #include <machine/cpu.h>
57
58 #ifdef GPROF
59 #include <sys/gmon.h>
60 #endif
61
62 /*
63 * Clock handling routines.
64 *
65 * This code is written to operate with two timers that run independently of
66 * each other. The main clock, running hz times per second, is used to keep
67 * track of real time. The second timer handles kernel and user profiling,
68 * and does resource use estimation. If the second timer is programmable,
69 * it is randomized to avoid aliasing between the two clocks. For example,
70 * the randomization prevents an adversary from always giving up the cpu
71 * just before its quantum expires. Otherwise, it would never accumulate
72 * cpu ticks. The mean frequency of the second timer is stathz.
73 *
74 * If no second timer exists, stathz will be zero; in this case we drive
75 * profiling and statistics off the main clock. This WILL NOT be accurate;
76 * do not do it unless absolutely necessary.
77 *
78 * The statistics clock may (or may not) be run at a higher rate while
79 * profiling. This profile clock runs at profhz. We require that profhz
80 * be an integral multiple of stathz.
81 *
82 * If the statistics clock is running fast, it must be divided by the ratio
83 * profhz/stathz for statistics. (For profiling, every tick counts.)
84 */
85
86 /*
87 * TODO:
88 * allocate more timeout table slots when table overflows.
89 */
90
91
92 #ifdef NTP /* NTP phase-locked loop in kernel */
93 /*
94 * Phase/frequency-lock loop (PLL/FLL) definitions
95 *
96 * The following variables are read and set by the ntp_adjtime() system
97 * call.
98 *
99 * time_state shows the state of the system clock, with values defined
100 * in the timex.h header file.
101 *
102 * time_status shows the status of the system clock, with bits defined
103 * in the timex.h header file.
104 *
105 * time_offset is used by the PLL/FLL to adjust the system time in small
106 * increments.
107 *
108 * time_constant determines the bandwidth or "stiffness" of the PLL.
109 *
110 * time_tolerance determines maximum frequency error or tolerance of the
111 * CPU clock oscillator and is a property of the architecture; however,
112 * in principle it could change as result of the presence of external
113 * discipline signals, for instance.
114 *
115 * time_precision is usually equal to the kernel tick variable; however,
116 * in cases where a precision clock counter or external clock is
117 * available, the resolution can be much less than this and depend on
118 * whether the external clock is working or not.
119 *
120 * time_maxerror is initialized by a ntp_adjtime() call and increased by
121 * the kernel once each second to reflect the maximum error bound
122 * growth.
123 *
124 * time_esterror is set and read by the ntp_adjtime() call, but
125 * otherwise not used by the kernel.
126 */
127 int time_state = TIME_OK; /* clock state */
128 int time_status = STA_UNSYNC; /* clock status bits */
129 long time_offset = 0; /* time offset (us) */
130 long time_constant = 0; /* pll time constant */
131 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
132 long time_precision = 1; /* clock precision (us) */
133 long time_maxerror = MAXPHASE; /* maximum error (us) */
134 long time_esterror = MAXPHASE; /* estimated error (us) */
135
136 /*
137 * The following variables establish the state of the PLL/FLL and the
138 * residual time and frequency offset of the local clock. The scale
139 * factors are defined in the timex.h header file.
140 *
141 * time_phase and time_freq are the phase increment and the frequency
142 * increment, respectively, of the kernel time variable.
143 *
144 * time_freq is set via ntp_adjtime() from a value stored in a file when
145 * the synchronization daemon is first started. Its value is retrieved
146 * via ntp_adjtime() and written to the file about once per hour by the
147 * daemon.
148 *
149 * time_adj is the adjustment added to the value of tick at each timer
150 * interrupt and is recomputed from time_phase and time_freq at each
151 * seconds rollover.
152 *
153 * time_reftime is the second's portion of the system time at the last
154 * call to ntp_adjtime(). It is used to adjust the time_freq variable
155 * and to increase the time_maxerror as the time since last update
156 * increases.
157 */
158 long time_phase = 0; /* phase offset (scaled us) */
159 long time_freq = 0; /* frequency offset (scaled ppm) */
160 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
161 long time_reftime = 0; /* time at last adjustment (s) */
162
163 #ifdef PPS_SYNC
164 /*
165 * The following variables are used only if the kernel PPS discipline
166 * code is configured (PPS_SYNC). The scale factors are defined in the
167 * timex.h header file.
168 *
169 * pps_time contains the time at each calibration interval, as read by
170 * microtime(). pps_count counts the seconds of the calibration
171 * interval, the duration of which is nominally pps_shift in powers of
172 * two.
173 *
174 * pps_offset is the time offset produced by the time median filter
175 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
176 * this filter.
177 *
178 * pps_freq is the frequency offset produced by the frequency median
179 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
180 * by this filter.
181 *
182 * pps_usec is latched from a high resolution counter or external clock
183 * at pps_time. Here we want the hardware counter contents only, not the
184 * contents plus the time_tv.usec as usual.
185 *
186 * pps_valid counts the number of seconds since the last PPS update. It
187 * is used as a watchdog timer to disable the PPS discipline should the
188 * PPS signal be lost.
189 *
190 * pps_glitch counts the number of seconds since the beginning of an
191 * offset burst more than tick/2 from current nominal offset. It is used
192 * mainly to suppress error bursts due to priority conflicts between the
193 * PPS interrupt and timer interrupt.
194 *
195 * pps_intcnt counts the calibration intervals for use in the interval-
196 * adaptation algorithm. It's just too complicated for words.
197 */
198 struct timeval pps_time; /* kernel time at last interval */
199 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
200 long pps_offset = 0; /* pps time offset (us) */
201 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
202 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
203 long pps_freq = 0; /* frequency offset (scaled ppm) */
204 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
205 long pps_usec = 0; /* microsec counter at last interval */
206 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
207 int pps_glitch = 0; /* pps signal glitch counter */
208 int pps_count = 0; /* calibration interval counter (s) */
209 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
210 int pps_intcnt = 0; /* intervals at current duration */
211
212 /*
213 * PPS signal quality monitors
214 *
215 * pps_jitcnt counts the seconds that have been discarded because the
216 * jitter measured by the time median filter exceeds the limit MAXTIME
217 * (100 us).
218 *
219 * pps_calcnt counts the frequency calibration intervals, which are
220 * variable from 4 s to 256 s.
221 *
222 * pps_errcnt counts the calibration intervals which have been discarded
223 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
224 * calibration interval jitter exceeds two ticks.
225 *
226 * pps_stbcnt counts the calibration intervals that have been discarded
227 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
228 */
229 long pps_jitcnt = 0; /* jitter limit exceeded */
230 long pps_calcnt = 0; /* calibration intervals */
231 long pps_errcnt = 0; /* calibration errors */
232 long pps_stbcnt = 0; /* stability limit exceeded */
233 #endif /* PPS_SYNC */
234
235 #ifdef EXT_CLOCK
236 /*
237 * External clock definitions
238 *
239 * The following definitions and declarations are used only if an
240 * external clock is configured on the system.
241 */
242 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
243
244 /*
245 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
246 * interrupt and decremented once each second.
247 */
248 int clock_count = 0; /* CPU clock counter */
249
250 #ifdef HIGHBALL
251 /*
252 * The clock_offset and clock_cpu variables are used by the HIGHBALL
253 * interface. The clock_offset variable defines the offset between
254 * system time and the HIGBALL counters. The clock_cpu variable contains
255 * the offset between the system clock and the HIGHBALL clock for use in
256 * disciplining the kernel time variable.
257 */
258 extern struct timeval clock_offset; /* Highball clock offset */
259 long clock_cpu = 0; /* CPU clock adjust */
260 #endif /* HIGHBALL */
261 #endif /* EXT_CLOCK */
262
263 /*
264 * NetBSD notes:
265 *
266 * SHIFT_HZ is strongly recommended to be a constant, not a variable,
267 * for performance reasons, so we define it appropriately here.
268 * Ataris uses 48, or 96 Hz (as well as 64). Sparcs and Sun-3s use
269 * 100Hz. Non-power-of-two values for HZ are rounded up when
270 * we define SHIFT_HZ, and then special-cased in the kernel
271 * timekeeping code in kern_clock.c.
272 * Alphas use 1024. Decstations use 256, which covers all the powers
273 * of 2 from 64 to 1024, inclusive.
274 * Precision timekeeping does not support 48 Hz, so Ataris at 48Hz are
275 * out of luck.
276 */
277
278 #if HZ == 64 || HZ == 60
279 # define SHIFT_HZ 6 /* log2(64) */
280 #else
281 #if HZ == 128 || HZ == 100 || HZ == 96
282 # define SHIFT_HZ 7 /* log2(128), 100 and 96 are fudged. */
283 #else
284 #if HZ == 256
285 # define SHIFT_HZ 8 /* log2(256) */
286 #else
287 #if HZ == 1024
288 # define SHIFT_HZ 10 /* log2(1024) */
289 #else
290 #error HZ is not a supported value. Please change HZ in your kernel config file
291 #endif /* 1024Hz */
292 #endif /* 256Hz */
293 #endif /* 128HZ or 100Hz (or 96Hz, untested) */
294 #endif /* 64Hz or 60Hz */
295
296 /*
297 * End of SHIFT_HZ computation
298 */
299
300 #endif /* NTP */
301
302
303 /*
304 * Bump a timeval by a small number of usec's.
305 */
306 #define BUMPTIME(t, usec) { \
307 register volatile struct timeval *tp = (t); \
308 register long us; \
309 \
310 tp->tv_usec = us = tp->tv_usec + (usec); \
311 if (us >= 1000000) { \
312 tp->tv_usec = us - 1000000; \
313 tp->tv_sec++; \
314 } \
315 }
316
317 int stathz;
318 int profhz;
319 int profprocs;
320 int ticks;
321 static int psdiv, pscnt; /* prof => stat divider */
322 int psratio; /* ratio: prof / stat */
323 int tickfix, tickfixinterval; /* used if tick not really integral */
324 static int tickfixcnt; /* number of ticks since last fix */
325 int fixtick; /* used by NTP for same */
326
327 volatile struct timeval time;
328 volatile struct timeval mono_time;
329
330 /*
331 * Initialize clock frequencies and start both clocks running.
332 */
333 void
334 initclocks()
335 {
336 register int i;
337
338 /*
339 * Set divisors to 1 (normal case) and let the machine-specific
340 * code do its bit.
341 */
342 psdiv = pscnt = 1;
343 cpu_initclocks();
344
345 /*
346 * Compute profhz/stathz, and fix profhz if needed.
347 */
348 i = stathz ? stathz : hz;
349 if (profhz == 0)
350 profhz = i;
351 psratio = profhz / i;
352 }
353
354 /*
355 * The real-time timer, interrupting hz times per second.
356 */
357 void
358 hardclock(frame)
359 register struct clockframe *frame;
360 {
361 register struct callout *p1;
362 register struct proc *p;
363 register int delta, needsoft;
364 extern int tickdelta;
365 extern long timedelta;
366 #ifdef NTP
367 register int time_update;
368 register int ltemp;
369 #endif
370
371 /*
372 * Update real-time timeout queue.
373 * At front of queue are some number of events which are ``due''.
374 * The time to these is <= 0 and if negative represents the
375 * number of ticks which have passed since it was supposed to happen.
376 * The rest of the q elements (times > 0) are events yet to happen,
377 * where the time for each is given as a delta from the previous.
378 * Decrementing just the first of these serves to decrement the time
379 * to all events.
380 */
381 needsoft = 0;
382 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
383 if (--p1->c_time > 0)
384 break;
385 needsoft = 1;
386 if (p1->c_time == 0)
387 break;
388 }
389
390 p = curproc;
391 if (p) {
392 register struct pstats *pstats;
393
394 /*
395 * Run current process's virtual and profile time, as needed.
396 */
397 pstats = p->p_stats;
398 if (CLKF_USERMODE(frame) &&
399 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
400 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
401 psignal(p, SIGVTALRM);
402 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
403 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
404 psignal(p, SIGPROF);
405 }
406
407 /*
408 * If no separate statistics clock is available, run it from here.
409 */
410 if (stathz == 0)
411 statclock(frame);
412
413 /*
414 * Increment the time-of-day. The increment is normally just
415 * ``tick''. If the machine is one which has a clock frequency
416 * such that ``hz'' would not divide the second evenly into
417 * milliseconds, a periodic adjustment must be applied. Finally,
418 * if we are still adjusting the time (see adjtime()),
419 * ``tickdelta'' may also be added in.
420 */
421 ticks++;
422 delta = tick;
423
424 #ifndef NTP
425 if (tickfix) {
426 tickfixcnt++;
427 if (tickfixcnt >= tickfixinterval) {
428 delta += tickfix;
429 tickfixcnt = 0;
430 }
431 }
432 #endif /* !NTP */
433 /* Imprecise 4bsd adjtime() handling */
434 if (timedelta != 0) {
435 delta = tick + tickdelta;
436 timedelta -= tickdelta;
437 }
438
439 #ifdef notyet
440 microset();
441 #endif
442
443 #ifndef NTP
444 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
445 #endif
446 BUMPTIME(&mono_time, delta);
447
448 #ifdef NTP /* XXX Start of David L. Mills' ntp precision-time fragment */
449 time_update = delta;
450
451 /*
452 * Beginning of precision-kernel code fragment
453 *
454 * Compute the phase adjustment. If the low-order bits
455 * (time_phase) of the update overflow, bump the high-order bits
456 * (time_update).
457 */
458 time_phase += time_adj;
459 if (time_phase <= -FINEUSEC) {
460 ltemp = -time_phase >> SHIFT_SCALE;
461 time_phase += ltemp << SHIFT_SCALE;
462 time_update -= ltemp;
463 }
464 else if (time_phase >= FINEUSEC) {
465 ltemp = time_phase >> SHIFT_SCALE;
466 time_phase -= ltemp << SHIFT_SCALE;
467 time_update += ltemp;
468 }
469
470 #ifdef HIGHBALL
471 /*
472 * If the HIGHBALL board is installed, we need to adjust the
473 * external clock offset in order to close the hardware feedback
474 * loop. This will adjust the external clock phase and frequency
475 * in small amounts. The additional phase noise and frequency
476 * wander this causes should be minimal. We also need to
477 * discipline the kernel time variable, since the PLL is used to
478 * discipline the external clock. If the Highball board is not
479 * present, we discipline kernel time with the PLL as usual. We
480 * assume that the external clock phase adjustment (time_update)
481 * and kernel phase adjustment (clock_cpu) are less than the
482 * value of tick.
483 */
484 clock_offset.tv_usec += time_update;
485 if (clock_offset.tv_usec >= 1000000) {
486 clock_offset.tv_sec++;
487 clock_offset.tv_usec -= 1000000;
488 }
489 if (clock_offset.tv_usec < 0) {
490 clock_offset.tv_sec--;
491 clock_offset.tv_usec += 1000000;
492 }
493 time.tv_usec += clock_cpu;
494 clock_cpu = 0;
495 #else
496 time.tv_usec += time_update;
497 #endif /* HIGHBALL */
498
499 /*
500 * On rollover of the second the phase adjustment to be used for
501 * the next second is calculated. Also, the maximum error is
502 * increased by the tolerance. If the PPS frequency discipline
503 * code is present, the phase is increased to compensate for the
504 * CPU clock oscillator frequency error.
505 *
506 * On a 32-bit machine and given parameters in the timex.h
507 * header file, the maximum phase adjustment is +-512 ms and
508 * maximum frequency offset is a tad less than) +-512 ppm. On a
509 * 64-bit machine, you shouldn't need to ask.
510 */
511 if (time.tv_usec >= 1000000) {
512 time.tv_usec -= 1000000;
513 time.tv_sec++;
514 time_maxerror += time_tolerance >> SHIFT_USEC;
515
516 /*
517 * Leap second processing. If in leap-insert state at
518 * the end of the day, the system clock is set back one
519 * second; if in leap-delete state, the system clock is
520 * set ahead one second. The microtime() routine or
521 * external clock driver will insure that reported time
522 * is always monotonic. The ugly divides should be
523 * replaced.
524 */
525 switch (time_state) {
526
527 case TIME_OK:
528 if (time_status & STA_INS)
529 time_state = TIME_INS;
530 else if (time_status & STA_DEL)
531 time_state = TIME_DEL;
532 break;
533
534 case TIME_INS:
535 if (time.tv_sec % 86400 == 0) {
536 time.tv_sec--;
537 time_state = TIME_OOP;
538 }
539 break;
540
541 case TIME_DEL:
542 if ((time.tv_sec + 1) % 86400 == 0) {
543 time.tv_sec++;
544 time_state = TIME_WAIT;
545 }
546 break;
547
548 case TIME_OOP:
549 time_state = TIME_WAIT;
550 break;
551
552 case TIME_WAIT:
553 if (!(time_status & (STA_INS | STA_DEL)))
554 time_state = TIME_OK;
555 }
556
557 /*
558 * Compute the phase adjustment for the next second. In
559 * PLL mode, the offset is reduced by a fixed factor
560 * times the time constant. In FLL mode the offset is
561 * used directly. In either mode, the maximum phase
562 * adjustment for each second is clamped so as to spread
563 * the adjustment over not more than the number of
564 * seconds between updates.
565 */
566 if (time_offset < 0) {
567 ltemp = -time_offset;
568 if (!(time_status & STA_FLL))
569 ltemp >>= SHIFT_KG + time_constant;
570 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
571 ltemp = (MAXPHASE / MINSEC) <<
572 SHIFT_UPDATE;
573 time_offset += ltemp;
574 time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ -
575 SHIFT_UPDATE);
576 } else {
577 ltemp = time_offset;
578 if (!(time_status & STA_FLL))
579 ltemp >>= SHIFT_KG + time_constant;
580 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
581 ltemp = (MAXPHASE / MINSEC) <<
582 SHIFT_UPDATE;
583 time_offset -= ltemp;
584 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ -
585 SHIFT_UPDATE);
586 }
587
588 /*
589 * Compute the frequency estimate and additional phase
590 * adjustment due to frequency error for the next
591 * second. When the PPS signal is engaged, gnaw on the
592 * watchdog counter and update the frequency computed by
593 * the pll and the PPS signal.
594 */
595 #ifdef PPS_SYNC
596 pps_valid++;
597 if (pps_valid == PPS_VALID) {
598 pps_jitter = MAXTIME;
599 pps_stabil = MAXFREQ;
600 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
601 STA_PPSWANDER | STA_PPSERROR);
602 }
603 ltemp = time_freq + pps_freq;
604 #else
605 ltemp = time_freq;
606 #endif /* PPS_SYNC */
607
608 if (ltemp < 0)
609 time_adj -= -ltemp >>
610 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
611 else
612 time_adj += ltemp >>
613 (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
614 time_adj += (long)fixtick << (SHIFT_SCALE - SHIFT_HZ);
615
616
617 #if SHIFT_HZ == 7
618 /*
619 * When the CPU clock oscillator frequency is not a
620 * power of 2 in Hz, the SHIFT_HZ is only an approximate
621 * scale factor. In the SunOS kernel, this results in a
622 * PLL gain factor of 1/1.28 = 0.78 what it should be.
623 * In the following code the overall gain is increased
624 * by a factor of 1.25, which results in a residual
625 * error less than 3 percent.
626 */
627 if (hz == 100) {
628 if (time_adj < 0)
629 time_adj -= -time_adj >> 2;
630 else
631 time_adj += time_adj >> 2;
632 }
633 else
634 if (hz == 96) {
635 if (time_adj < 0)
636 time_adj -= -time_adj >> 2;
637 else
638 time_adj += time_adj >> 2;
639 }
640
641 #endif /* SHIFT_HZ */
642 #if SHIFT_HZ == 6
643 /*
644 * 60 Hz m68k and vaxes have a PLL gain factor of of
645 * 60/64 (15/16) of what it should be. In the following code
646 * the overall gain is increased by a factor of 1.0625,
647 * (17/16) which results in a residual error of just less
648 * than 0.4 percent.
649 */
650 if (hz == 60) {
651 if (time_adj < 0)
652 time_adj -= -time_adj >> 4;
653 else
654 time_adj += time_adj >> 4;
655 }
656 #endif /* SHIFT_HZ */
657
658 #ifdef EXT_CLOCK
659 /*
660 * If an external clock is present, it is necessary to
661 * discipline the kernel time variable anyway, since not
662 * all system components use the microtime() interface.
663 * Here, the time offset between the external clock and
664 * kernel time variable is computed every so often.
665 */
666 clock_count++;
667 if (clock_count > CLOCK_INTERVAL) {
668 clock_count = 0;
669 microtime(&clock_ext);
670 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
671 delta.tv_usec = clock_ext.tv_usec -
672 time.tv_usec;
673 if (delta.tv_usec < 0)
674 delta.tv_sec--;
675 if (delta.tv_usec >= 500000) {
676 delta.tv_usec -= 1000000;
677 delta.tv_sec++;
678 }
679 if (delta.tv_usec < -500000) {
680 delta.tv_usec += 1000000;
681 delta.tv_sec--;
682 }
683 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
684 delta.tv_usec > MAXPHASE) ||
685 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
686 delta.tv_usec < -MAXPHASE)) {
687 time = clock_ext;
688 delta.tv_sec = 0;
689 delta.tv_usec = 0;
690 }
691 #ifdef HIGHBALL
692 clock_cpu = delta.tv_usec;
693 #else /* HIGHBALL */
694 hardupdate(delta.tv_usec);
695 #endif /* HIGHBALL */
696 }
697 #endif /* EXT_CLOCK */
698 }
699
700 /*
701 * End of precision-kernel code fragment
702 */
703 #endif /*NTP*/ /* XXX End of David L. Mills' ntp precision-time fragment */
704
705 /*
706 * Process callouts at a very low cpu priority, so we don't keep the
707 * relatively high clock interrupt priority any longer than necessary.
708 */
709 if (needsoft) {
710 if (CLKF_BASEPRI(frame)) {
711 /*
712 * Save the overhead of a software interrupt;
713 * it will happen as soon as we return, so do it now.
714 */
715 (void)splsoftclock();
716 softclock();
717 } else
718 setsoftclock();
719 }
720 }
721
722 /*
723 * Software (low priority) clock interrupt.
724 * Run periodic events from timeout queue.
725 */
726 /*ARGSUSED*/
727 void
728 softclock()
729 {
730 register struct callout *c;
731 register void *arg;
732 register void (*func) __P((void *));
733 register int s;
734
735 s = splhigh();
736 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
737 func = c->c_func;
738 arg = c->c_arg;
739 calltodo.c_next = c->c_next;
740 c->c_next = callfree;
741 callfree = c;
742 splx(s);
743 (*func)(arg);
744 (void) splhigh();
745 }
746 splx(s);
747 }
748
749 /*
750 * timeout --
751 * Execute a function after a specified length of time.
752 *
753 * untimeout --
754 * Cancel previous timeout function call.
755 *
756 * See AT&T BCI Driver Reference Manual for specification. This
757 * implementation differs from that one in that no identification
758 * value is returned from timeout, rather, the original arguments
759 * to timeout are used to identify entries for untimeout.
760 */
761 void
762 timeout(ftn, arg, ticks)
763 void (*ftn) __P((void *));
764 void *arg;
765 register int ticks;
766 {
767 register struct callout *new, *p, *t;
768 register int s;
769
770 if (ticks <= 0)
771 ticks = 1;
772
773 /* Lock out the clock. */
774 s = splhigh();
775
776 /* Fill in the next free callout structure. */
777 if (callfree == NULL)
778 panic("timeout table full");
779 new = callfree;
780 callfree = new->c_next;
781 new->c_arg = arg;
782 new->c_func = ftn;
783
784 /*
785 * The time for each event is stored as a difference from the time
786 * of the previous event on the queue. Walk the queue, correcting
787 * the ticks argument for queue entries passed. Correct the ticks
788 * value for the queue entry immediately after the insertion point
789 * as well. Watch out for negative c_time values; these represent
790 * overdue events.
791 */
792 for (p = &calltodo;
793 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
794 if (t->c_time > 0)
795 ticks -= t->c_time;
796 new->c_time = ticks;
797 if (t != NULL)
798 t->c_time -= ticks;
799
800 /* Insert the new entry into the queue. */
801 p->c_next = new;
802 new->c_next = t;
803 splx(s);
804 }
805
806 void
807 untimeout(ftn, arg)
808 void (*ftn) __P((void *));
809 void *arg;
810 {
811 register struct callout *p, *t;
812 register int s;
813
814 s = splhigh();
815 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
816 if (t->c_func == ftn && t->c_arg == arg) {
817 /* Increment next entry's tick count. */
818 if (t->c_next && t->c_time > 0)
819 t->c_next->c_time += t->c_time;
820
821 /* Move entry from callout queue to callfree queue. */
822 p->c_next = t->c_next;
823 t->c_next = callfree;
824 callfree = t;
825 break;
826 }
827 splx(s);
828 }
829
830 /*
831 * Compute number of hz until specified time. Used to
832 * compute third argument to timeout() from an absolute time.
833 */
834 int
835 hzto(tv)
836 struct timeval *tv;
837 {
838 register long ticks, sec;
839 int s;
840
841 /*
842 * If number of microseconds will fit in 32 bit arithmetic,
843 * then compute number of microseconds to time and scale to
844 * ticks. Otherwise just compute number of hz in time, rounding
845 * times greater than representible to maximum value. (We must
846 * compute in microseconds, because hz can be greater than 1000,
847 * and thus tick can be less than one millisecond).
848 *
849 * Delta times less than 14 hours can be computed ``exactly''.
850 * (Note that if hz would yeild a non-integral number of us per
851 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
852 * than they should be.) Maximum value for any timeout in 10ms
853 * ticks is 250 days.
854 */
855 s = splhigh();
856 sec = tv->tv_sec - time.tv_sec;
857 if (sec <= 0x7fffffff / 1000000 - 1)
858 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
859 (tv->tv_usec - time.tv_usec)) / tick;
860 else if (sec <= 0x7fffffff / hz)
861 ticks = sec * hz;
862 else
863 ticks = 0x7fffffff;
864 splx(s);
865 return (ticks);
866 }
867
868 /*
869 * Start profiling on a process.
870 *
871 * Kernel profiling passes proc0 which never exits and hence
872 * keeps the profile clock running constantly.
873 */
874 void
875 startprofclock(p)
876 register struct proc *p;
877 {
878 int s;
879
880 if ((p->p_flag & P_PROFIL) == 0) {
881 p->p_flag |= P_PROFIL;
882 if (++profprocs == 1 && stathz != 0) {
883 s = splstatclock();
884 psdiv = pscnt = psratio;
885 setstatclockrate(profhz);
886 splx(s);
887 }
888 }
889 }
890
891 /*
892 * Stop profiling on a process.
893 */
894 void
895 stopprofclock(p)
896 register struct proc *p;
897 {
898 int s;
899
900 if (p->p_flag & P_PROFIL) {
901 p->p_flag &= ~P_PROFIL;
902 if (--profprocs == 0 && stathz != 0) {
903 s = splstatclock();
904 psdiv = pscnt = 1;
905 setstatclockrate(stathz);
906 splx(s);
907 }
908 }
909 }
910
911 /*
912 * Statistics clock. Grab profile sample, and if divider reaches 0,
913 * do process and kernel statistics.
914 */
915 void
916 statclock(frame)
917 register struct clockframe *frame;
918 {
919 #ifdef GPROF
920 register struct gmonparam *g;
921 #endif
922 register struct proc *p;
923 register int i;
924
925 if (CLKF_USERMODE(frame)) {
926 p = curproc;
927 if (p->p_flag & P_PROFIL)
928 addupc_intr(p, CLKF_PC(frame), 1);
929 if (--pscnt > 0)
930 return;
931 /*
932 * Came from user mode; CPU was in user state.
933 * If this process is being profiled record the tick.
934 */
935 p->p_uticks++;
936 if (p->p_nice > NZERO)
937 cp_time[CP_NICE]++;
938 else
939 cp_time[CP_USER]++;
940 } else {
941 #ifdef GPROF
942 /*
943 * Kernel statistics are just like addupc_intr, only easier.
944 */
945 g = &_gmonparam;
946 if (g->state == GMON_PROF_ON) {
947 i = CLKF_PC(frame) - g->lowpc;
948 if (i < g->textsize) {
949 i /= HISTFRACTION * sizeof(*g->kcount);
950 g->kcount[i]++;
951 }
952 }
953 #endif
954 if (--pscnt > 0)
955 return;
956 /*
957 * Came from kernel mode, so we were:
958 * - handling an interrupt,
959 * - doing syscall or trap work on behalf of the current
960 * user process, or
961 * - spinning in the idle loop.
962 * Whichever it is, charge the time as appropriate.
963 * Note that we charge interrupts to the current process,
964 * regardless of whether they are ``for'' that process,
965 * so that we know how much of its real time was spent
966 * in ``non-process'' (i.e., interrupt) work.
967 */
968 p = curproc;
969 if (CLKF_INTR(frame)) {
970 if (p != NULL)
971 p->p_iticks++;
972 cp_time[CP_INTR]++;
973 } else if (p != NULL) {
974 p->p_sticks++;
975 cp_time[CP_SYS]++;
976 } else
977 cp_time[CP_IDLE]++;
978 }
979 pscnt = psdiv;
980
981 /*
982 * XXX Support old-style instrumentation for now.
983 *
984 * We maintain statistics shown by user-level statistics
985 * programs: the amount of time in each cpu state, and
986 * the amount of time each of DK_NDRIVE ``drives'' is busy.
987 *
988 * XXX should either run linked list of drives, or (better)
989 * grab timestamps in the start & done code.
990 */
991 for (i = 0; i < DK_NDRIVE; i++)
992 if (dk_busy & (1 << i))
993 dk_time[i]++;
994
995 /*
996 * We adjust the priority of the current process. The priority of
997 * a process gets worse as it accumulates CPU time. The cpu usage
998 * estimator (p_estcpu) is increased here. The formula for computing
999 * priorities (in kern_synch.c) will compute a different value each
1000 * time p_estcpu increases by 4. The cpu usage estimator ramps up
1001 * quite quickly when the process is running (linearly), and decays
1002 * away exponentially, at a rate which is proportionally slower when
1003 * the system is busy. The basic principal is that the system will
1004 * 90% forget that the process used a lot of CPU time in 5 * loadav
1005 * seconds. This causes the system to favor processes which haven't
1006 * run much recently, and to round-robin among other processes.
1007 */
1008 if (p != NULL) {
1009 p->p_cpticks++;
1010 if (++p->p_estcpu == 0)
1011 p->p_estcpu--;
1012 if ((p->p_estcpu & 3) == 0) {
1013 resetpriority(p);
1014 if (p->p_priority >= PUSER)
1015 p->p_priority = p->p_usrpri;
1016 }
1017 }
1018 }
1019
1020
1021 #ifdef NTP /* NTP phase-locked loop in kernel */
1022
1023 /*
1024 * hardupdate() - local clock update
1025 *
1026 * This routine is called by ntp_adjtime() to update the local clock
1027 * phase and frequency. The implementation is of an adaptive-parameter,
1028 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1029 * time and frequency offset estimates for each call. If the kernel PPS
1030 * discipline code is configured (PPS_SYNC), the PPS signal itself
1031 * determines the new time offset, instead of the calling argument.
1032 * Presumably, calls to ntp_adjtime() occur only when the caller
1033 * believes the local clock is valid within some bound (+-128 ms with
1034 * NTP). If the caller's time is far different than the PPS time, an
1035 * argument will ensue, and it's not clear who will lose.
1036 *
1037 * For uncompensated quartz crystal oscillatores and nominal update
1038 * intervals less than 1024 s, operation should be in phase-lock mode
1039 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1040 * intervals greater than thiss, operation should be in frequency-lock
1041 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1042 *
1043 * Note: splclock() is in effect.
1044 */
1045 void
1046 hardupdate(offset)
1047 long offset;
1048 {
1049 long ltemp, mtemp;
1050
1051 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1052 return;
1053 ltemp = offset;
1054 #ifdef PPS_SYNC
1055 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1056 ltemp = pps_offset;
1057 #endif /* PPS_SYNC */
1058
1059 /*
1060 * Scale the phase adjustment and clamp to the operating range.
1061 */
1062 if (ltemp > MAXPHASE)
1063 time_offset = MAXPHASE << SHIFT_UPDATE;
1064 else if (ltemp < -MAXPHASE)
1065 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1066 else
1067 time_offset = ltemp << SHIFT_UPDATE;
1068
1069 /*
1070 * Select whether the frequency is to be controlled and in which
1071 * mode (PLL or FLL). Clamp to the operating range. Ugly
1072 * multiply/divide should be replaced someday.
1073 */
1074 if (time_status & STA_FREQHOLD || time_reftime == 0)
1075 time_reftime = time.tv_sec;
1076 mtemp = time.tv_sec - time_reftime;
1077 time_reftime = time.tv_sec;
1078 if (time_status & STA_FLL) {
1079 if (mtemp >= MINSEC) {
1080 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1081 SHIFT_UPDATE));
1082 if (ltemp < 0)
1083 time_freq -= -ltemp >> SHIFT_KH;
1084 else
1085 time_freq += ltemp >> SHIFT_KH;
1086 }
1087 } else {
1088 if (mtemp < MAXSEC) {
1089 ltemp *= mtemp;
1090 if (ltemp < 0)
1091 time_freq -= -ltemp >> (time_constant +
1092 time_constant + SHIFT_KF -
1093 SHIFT_USEC);
1094 else
1095 time_freq += ltemp >> (time_constant +
1096 time_constant + SHIFT_KF -
1097 SHIFT_USEC);
1098 }
1099 }
1100 if (time_freq > time_tolerance)
1101 time_freq = time_tolerance;
1102 else if (time_freq < -time_tolerance)
1103 time_freq = -time_tolerance;
1104 }
1105
1106 #ifdef PPS_SYNC
1107 /*
1108 * hardpps() - discipline CPU clock oscillator to external PPS signal
1109 *
1110 * This routine is called at each PPS interrupt in order to discipline
1111 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1112 * and leaves it in a handy spot for the hardclock() routine. It
1113 * integrates successive PPS phase differences and calculates the
1114 * frequency offset. This is used in hardclock() to discipline the CPU
1115 * clock oscillator so that intrinsic frequency error is cancelled out.
1116 * The code requires the caller to capture the time and hardware counter
1117 * value at the on-time PPS signal transition.
1118 *
1119 * Note that, on some Unix systems, this routine runs at an interrupt
1120 * priority level higher than the timer interrupt routine hardclock().
1121 * Therefore, the variables used are distinct from the hardclock()
1122 * variables, except for certain exceptions: The PPS frequency pps_freq
1123 * and phase pps_offset variables are determined by this routine and
1124 * updated atomically. The time_tolerance variable can be considered a
1125 * constant, since it is infrequently changed, and then only when the
1126 * PPS signal is disabled. The watchdog counter pps_valid is updated
1127 * once per second by hardclock() and is atomically cleared in this
1128 * routine.
1129 */
1130 void
1131 hardpps(tvp, usec)
1132 struct timeval *tvp; /* time at PPS */
1133 long usec; /* hardware counter at PPS */
1134 {
1135 long u_usec, v_usec, bigtick;
1136 long cal_sec, cal_usec;
1137
1138 /*
1139 * An occasional glitch can be produced when the PPS interrupt
1140 * occurs in the hardclock() routine before the time variable is
1141 * updated. Here the offset is discarded when the difference
1142 * between it and the last one is greater than tick/2, but not
1143 * if the interval since the first discard exceeds 30 s.
1144 */
1145 time_status |= STA_PPSSIGNAL;
1146 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1147 pps_valid = 0;
1148 u_usec = -tvp->tv_usec;
1149 if (u_usec < -500000)
1150 u_usec += 1000000;
1151 v_usec = pps_offset - u_usec;
1152 if (v_usec < 0)
1153 v_usec = -v_usec;
1154 if (v_usec > (tick >> 1)) {
1155 if (pps_glitch > MAXGLITCH) {
1156 pps_glitch = 0;
1157 pps_tf[2] = u_usec;
1158 pps_tf[1] = u_usec;
1159 } else {
1160 pps_glitch++;
1161 u_usec = pps_offset;
1162 }
1163 } else
1164 pps_glitch = 0;
1165
1166 /*
1167 * A three-stage median filter is used to help deglitch the pps
1168 * time. The median sample becomes the time offset estimate; the
1169 * difference between the other two samples becomes the time
1170 * dispersion (jitter) estimate.
1171 */
1172 pps_tf[2] = pps_tf[1];
1173 pps_tf[1] = pps_tf[0];
1174 pps_tf[0] = u_usec;
1175 if (pps_tf[0] > pps_tf[1]) {
1176 if (pps_tf[1] > pps_tf[2]) {
1177 pps_offset = pps_tf[1]; /* 0 1 2 */
1178 v_usec = pps_tf[0] - pps_tf[2];
1179 } else if (pps_tf[2] > pps_tf[0]) {
1180 pps_offset = pps_tf[0]; /* 2 0 1 */
1181 v_usec = pps_tf[2] - pps_tf[1];
1182 } else {
1183 pps_offset = pps_tf[2]; /* 0 2 1 */
1184 v_usec = pps_tf[0] - pps_tf[1];
1185 }
1186 } else {
1187 if (pps_tf[1] < pps_tf[2]) {
1188 pps_offset = pps_tf[1]; /* 2 1 0 */
1189 v_usec = pps_tf[2] - pps_tf[0];
1190 } else if (pps_tf[2] < pps_tf[0]) {
1191 pps_offset = pps_tf[0]; /* 1 0 2 */
1192 v_usec = pps_tf[1] - pps_tf[2];
1193 } else {
1194 pps_offset = pps_tf[2]; /* 1 2 0 */
1195 v_usec = pps_tf[1] - pps_tf[0];
1196 }
1197 }
1198 if (v_usec > MAXTIME)
1199 pps_jitcnt++;
1200 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1201 if (v_usec < 0)
1202 pps_jitter -= -v_usec >> PPS_AVG;
1203 else
1204 pps_jitter += v_usec >> PPS_AVG;
1205 if (pps_jitter > (MAXTIME >> 1))
1206 time_status |= STA_PPSJITTER;
1207
1208 /*
1209 * During the calibration interval adjust the starting time when
1210 * the tick overflows. At the end of the interval compute the
1211 * duration of the interval and the difference of the hardware
1212 * counters at the beginning and end of the interval. This code
1213 * is deliciously complicated by the fact valid differences may
1214 * exceed the value of tick when using long calibration
1215 * intervals and small ticks. Note that the counter can be
1216 * greater than tick if caught at just the wrong instant, but
1217 * the values returned and used here are correct.
1218 */
1219 bigtick = (long)tick << SHIFT_USEC;
1220 pps_usec -= pps_freq;
1221 if (pps_usec >= bigtick)
1222 pps_usec -= bigtick;
1223 if (pps_usec < 0)
1224 pps_usec += bigtick;
1225 pps_time.tv_sec++;
1226 pps_count++;
1227 if (pps_count < (1 << pps_shift))
1228 return;
1229 pps_count = 0;
1230 pps_calcnt++;
1231 u_usec = usec << SHIFT_USEC;
1232 v_usec = pps_usec - u_usec;
1233 if (v_usec >= bigtick >> 1)
1234 v_usec -= bigtick;
1235 if (v_usec < -(bigtick >> 1))
1236 v_usec += bigtick;
1237 if (v_usec < 0)
1238 v_usec = -(-v_usec >> pps_shift);
1239 else
1240 v_usec = v_usec >> pps_shift;
1241 pps_usec = u_usec;
1242 cal_sec = tvp->tv_sec;
1243 cal_usec = tvp->tv_usec;
1244 cal_sec -= pps_time.tv_sec;
1245 cal_usec -= pps_time.tv_usec;
1246 if (cal_usec < 0) {
1247 cal_usec += 1000000;
1248 cal_sec--;
1249 }
1250 pps_time = *tvp;
1251
1252 /*
1253 * Check for lost interrupts, noise, excessive jitter and
1254 * excessive frequency error. The number of timer ticks during
1255 * the interval may vary +-1 tick. Add to this a margin of one
1256 * tick for the PPS signal jitter and maximum frequency
1257 * deviation. If the limits are exceeded, the calibration
1258 * interval is reset to the minimum and we start over.
1259 */
1260 u_usec = (long)tick << 1;
1261 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1262 || (cal_sec == 0 && cal_usec < u_usec))
1263 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1264 pps_errcnt++;
1265 pps_shift = PPS_SHIFT;
1266 pps_intcnt = 0;
1267 time_status |= STA_PPSERROR;
1268 return;
1269 }
1270
1271 /*
1272 * A three-stage median filter is used to help deglitch the pps
1273 * frequency. The median sample becomes the frequency offset
1274 * estimate; the difference between the other two samples
1275 * becomes the frequency dispersion (stability) estimate.
1276 */
1277 pps_ff[2] = pps_ff[1];
1278 pps_ff[1] = pps_ff[0];
1279 pps_ff[0] = v_usec;
1280 if (pps_ff[0] > pps_ff[1]) {
1281 if (pps_ff[1] > pps_ff[2]) {
1282 u_usec = pps_ff[1]; /* 0 1 2 */
1283 v_usec = pps_ff[0] - pps_ff[2];
1284 } else if (pps_ff[2] > pps_ff[0]) {
1285 u_usec = pps_ff[0]; /* 2 0 1 */
1286 v_usec = pps_ff[2] - pps_ff[1];
1287 } else {
1288 u_usec = pps_ff[2]; /* 0 2 1 */
1289 v_usec = pps_ff[0] - pps_ff[1];
1290 }
1291 } else {
1292 if (pps_ff[1] < pps_ff[2]) {
1293 u_usec = pps_ff[1]; /* 2 1 0 */
1294 v_usec = pps_ff[2] - pps_ff[0];
1295 } else if (pps_ff[2] < pps_ff[0]) {
1296 u_usec = pps_ff[0]; /* 1 0 2 */
1297 v_usec = pps_ff[1] - pps_ff[2];
1298 } else {
1299 u_usec = pps_ff[2]; /* 1 2 0 */
1300 v_usec = pps_ff[1] - pps_ff[0];
1301 }
1302 }
1303
1304 /*
1305 * Here the frequency dispersion (stability) is updated. If it
1306 * is less than one-fourth the maximum (MAXFREQ), the frequency
1307 * offset is updated as well, but clamped to the tolerance. It
1308 * will be processed later by the hardclock() routine.
1309 */
1310 v_usec = (v_usec >> 1) - pps_stabil;
1311 if (v_usec < 0)
1312 pps_stabil -= -v_usec >> PPS_AVG;
1313 else
1314 pps_stabil += v_usec >> PPS_AVG;
1315 if (pps_stabil > MAXFREQ >> 2) {
1316 pps_stbcnt++;
1317 time_status |= STA_PPSWANDER;
1318 return;
1319 }
1320 if (time_status & STA_PPSFREQ) {
1321 if (u_usec < 0) {
1322 pps_freq -= -u_usec >> PPS_AVG;
1323 if (pps_freq < -time_tolerance)
1324 pps_freq = -time_tolerance;
1325 u_usec = -u_usec;
1326 } else {
1327 pps_freq += u_usec >> PPS_AVG;
1328 if (pps_freq > time_tolerance)
1329 pps_freq = time_tolerance;
1330 }
1331 }
1332
1333 /*
1334 * Here the calibration interval is adjusted. If the maximum
1335 * time difference is greater than tick / 4, reduce the interval
1336 * by half. If this is not the case for four consecutive
1337 * intervals, double the interval.
1338 */
1339 if (u_usec << pps_shift > bigtick >> 2) {
1340 pps_intcnt = 0;
1341 if (pps_shift > PPS_SHIFT)
1342 pps_shift--;
1343 } else if (pps_intcnt >= 4) {
1344 pps_intcnt = 0;
1345 if (pps_shift < PPS_SHIFTMAX)
1346 pps_shift++;
1347 } else
1348 pps_intcnt++;
1349 }
1350 #endif /* PPS_SYNC */
1351 #endif /* NTP */
1352
1353
1354 /*
1355 * Return information about system clocks.
1356 */
1357 int
1358 sysctl_clockrate(where, sizep)
1359 register char *where;
1360 size_t *sizep;
1361 {
1362 struct clockinfo clkinfo;
1363
1364 /*
1365 * Construct clockinfo structure.
1366 */
1367 clkinfo.tick = tick;
1368 clkinfo.tickadj = tickadj;
1369 clkinfo.hz = hz;
1370 clkinfo.profhz = profhz;
1371 clkinfo.stathz = stathz ? stathz : hz;
1372 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1373 }
1374
1375 #ifdef DDB
1376 #include <machine/db_machdep.h>
1377
1378 #include <ddb/db_interface.h>
1379 #include <ddb/db_access.h>
1380 #include <ddb/db_sym.h>
1381 #include <ddb/db_output.h>
1382
1383 void db_show_callout(addr, haddr, count, modif)
1384 db_expr_t addr;
1385 int haddr;
1386 db_expr_t count;
1387 char *modif;
1388 {
1389 register struct callout *p1;
1390 register int cum;
1391 register int s;
1392 db_expr_t offset;
1393 char *name;
1394
1395 db_printf(" cum ticks arg func\n");
1396 s = splhigh();
1397 for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
1398 register int t = p1->c_time;
1399
1400 if (t > 0)
1401 cum += t;
1402
1403 db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
1404 if (name == NULL)
1405 name = "?";
1406
1407 db_printf("%9d %9d %8x %s (%x)\n",
1408 cum, t, p1->c_arg, name, p1->c_func);
1409 }
1410 splx(s);
1411 }
1412 #endif
1413