Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.33
      1 /*	$NetBSD: kern_clock.c,v 1.33 1996/04/22 01:38:19 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/dkstat.h>
     46 #include <sys/callout.h>
     47 #include <sys/kernel.h>
     48 #include <sys/proc.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/signalvar.h>
     51 #include <vm/vm.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timex.h>
     54 
     55 #include <machine/cpu.h>
     56 
     57 #ifdef GPROF
     58 #include <sys/gmon.h>
     59 #endif
     60 
     61 /*
     62  * Clock handling routines.
     63  *
     64  * This code is written to operate with two timers that run independently of
     65  * each other.  The main clock, running hz times per second, is used to keep
     66  * track of real time.  The second timer handles kernel and user profiling,
     67  * and does resource use estimation.  If the second timer is programmable,
     68  * it is randomized to avoid aliasing between the two clocks.  For example,
     69  * the randomization prevents an adversary from always giving up the cpu
     70  * just before its quantum expires.  Otherwise, it would never accumulate
     71  * cpu ticks.  The mean frequency of the second timer is stathz.
     72  *
     73  * If no second timer exists, stathz will be zero; in this case we drive
     74  * profiling and statistics off the main clock.  This WILL NOT be accurate;
     75  * do not do it unless absolutely necessary.
     76  *
     77  * The statistics clock may (or may not) be run at a higher rate while
     78  * profiling.  This profile clock runs at profhz.  We require that profhz
     79  * be an integral multiple of stathz.
     80  *
     81  * If the statistics clock is running fast, it must be divided by the ratio
     82  * profhz/stathz for statistics.  (For profiling, every tick counts.)
     83  */
     84 
     85 /*
     86  * TODO:
     87  *	allocate more timeout table slots when table overflows.
     88  */
     89 
     90 
     91 #ifdef NTP	/* NTP phase-locked loop in kernel */
     92 /*
     93  * Phase/frequency-lock loop (PLL/FLL) definitions
     94  *
     95  * The following variables are read and set by the ntp_adjtime() system
     96  * call.
     97  *
     98  * time_state shows the state of the system clock, with values defined
     99  * in the timex.h header file.
    100  *
    101  * time_status shows the status of the system clock, with bits defined
    102  * in the timex.h header file.
    103  *
    104  * time_offset is used by the PLL/FLL to adjust the system time in small
    105  * increments.
    106  *
    107  * time_constant determines the bandwidth or "stiffness" of the PLL.
    108  *
    109  * time_tolerance determines maximum frequency error or tolerance of the
    110  * CPU clock oscillator and is a property of the architecture; however,
    111  * in principle it could change as result of the presence of external
    112  * discipline signals, for instance.
    113  *
    114  * time_precision is usually equal to the kernel tick variable; however,
    115  * in cases where a precision clock counter or external clock is
    116  * available, the resolution can be much less than this and depend on
    117  * whether the external clock is working or not.
    118  *
    119  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    120  * the kernel once each second to reflect the maximum error bound
    121  * growth.
    122  *
    123  * time_esterror is set and read by the ntp_adjtime() call, but
    124  * otherwise not used by the kernel.
    125  */
    126 int time_state = TIME_OK;	/* clock state */
    127 int time_status = STA_UNSYNC;	/* clock status bits */
    128 long time_offset = 0;		/* time offset (us) */
    129 long time_constant = 0;		/* pll time constant */
    130 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    131 long time_precision = 1;	/* clock precision (us) */
    132 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    133 long time_esterror = MAXPHASE;	/* estimated error (us) */
    134 
    135 /*
    136  * The following variables establish the state of the PLL/FLL and the
    137  * residual time and frequency offset of the local clock. The scale
    138  * factors are defined in the timex.h header file.
    139  *
    140  * time_phase and time_freq are the phase increment and the frequency
    141  * increment, respectively, of the kernel time variable.
    142  *
    143  * time_freq is set via ntp_adjtime() from a value stored in a file when
    144  * the synchronization daemon is first started. Its value is retrieved
    145  * via ntp_adjtime() and written to the file about once per hour by the
    146  * daemon.
    147  *
    148  * time_adj is the adjustment added to the value of tick at each timer
    149  * interrupt and is recomputed from time_phase and time_freq at each
    150  * seconds rollover.
    151  *
    152  * time_reftime is the second's portion of the system time at the last
    153  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    154  * and to increase the time_maxerror as the time since last update
    155  * increases.
    156  */
    157 long time_phase = 0;		/* phase offset (scaled us) */
    158 long time_freq = 0;		/* frequency offset (scaled ppm) */
    159 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    160 long time_reftime = 0;		/* time at last adjustment (s) */
    161 
    162 #ifdef PPS_SYNC
    163 /*
    164  * The following variables are used only if the kernel PPS discipline
    165  * code is configured (PPS_SYNC). The scale factors are defined in the
    166  * timex.h header file.
    167  *
    168  * pps_time contains the time at each calibration interval, as read by
    169  * microtime(). pps_count counts the seconds of the calibration
    170  * interval, the duration of which is nominally pps_shift in powers of
    171  * two.
    172  *
    173  * pps_offset is the time offset produced by the time median filter
    174  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    175  * this filter.
    176  *
    177  * pps_freq is the frequency offset produced by the frequency median
    178  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    179  * by this filter.
    180  *
    181  * pps_usec is latched from a high resolution counter or external clock
    182  * at pps_time. Here we want the hardware counter contents only, not the
    183  * contents plus the time_tv.usec as usual.
    184  *
    185  * pps_valid counts the number of seconds since the last PPS update. It
    186  * is used as a watchdog timer to disable the PPS discipline should the
    187  * PPS signal be lost.
    188  *
    189  * pps_glitch counts the number of seconds since the beginning of an
    190  * offset burst more than tick/2 from current nominal offset. It is used
    191  * mainly to suppress error bursts due to priority conflicts between the
    192  * PPS interrupt and timer interrupt.
    193  *
    194  * pps_intcnt counts the calibration intervals for use in the interval-
    195  * adaptation algorithm. It's just too complicated for words.
    196  */
    197 struct timeval pps_time;	/* kernel time at last interval */
    198 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    199 long pps_offset = 0;		/* pps time offset (us) */
    200 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    201 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    202 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    203 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    204 long pps_usec = 0;		/* microsec counter at last interval */
    205 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    206 int pps_glitch = 0;		/* pps signal glitch counter */
    207 int pps_count = 0;		/* calibration interval counter (s) */
    208 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    209 int pps_intcnt = 0;		/* intervals at current duration */
    210 
    211 /*
    212  * PPS signal quality monitors
    213  *
    214  * pps_jitcnt counts the seconds that have been discarded because the
    215  * jitter measured by the time median filter exceeds the limit MAXTIME
    216  * (100 us).
    217  *
    218  * pps_calcnt counts the frequency calibration intervals, which are
    219  * variable from 4 s to 256 s.
    220  *
    221  * pps_errcnt counts the calibration intervals which have been discarded
    222  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    223  * calibration interval jitter exceeds two ticks.
    224  *
    225  * pps_stbcnt counts the calibration intervals that have been discarded
    226  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    227  */
    228 long pps_jitcnt = 0;		/* jitter limit exceeded */
    229 long pps_calcnt = 0;		/* calibration intervals */
    230 long pps_errcnt = 0;		/* calibration errors */
    231 long pps_stbcnt = 0;		/* stability limit exceeded */
    232 #endif /* PPS_SYNC */
    233 
    234 #ifdef EXT_CLOCK
    235 /*
    236  * External clock definitions
    237  *
    238  * The following definitions and declarations are used only if an
    239  * external clock is configured on the system.
    240  */
    241 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    242 
    243 /*
    244  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    245  * interrupt and decremented once each second.
    246  */
    247 int clock_count = 0;		/* CPU clock counter */
    248 
    249 #ifdef HIGHBALL
    250 /*
    251  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    252  * interface. The clock_offset variable defines the offset between
    253  * system time and the HIGBALL counters. The clock_cpu variable contains
    254  * the offset between the system clock and the HIGHBALL clock for use in
    255  * disciplining the kernel time variable.
    256  */
    257 extern struct timeval clock_offset; /* Highball clock offset */
    258 long clock_cpu = 0;		/* CPU clock adjust */
    259 #endif /* HIGHBALL */
    260 #endif /* EXT_CLOCK */
    261 #endif /* NTP */
    262 
    263 
    264 /*
    265  * Bump a timeval by a small number of usec's.
    266  */
    267 #define BUMPTIME(t, usec) { \
    268 	register volatile struct timeval *tp = (t); \
    269 	register long us; \
    270  \
    271 	tp->tv_usec = us = tp->tv_usec + (usec); \
    272 	if (us >= 1000000) { \
    273 		tp->tv_usec = us - 1000000; \
    274 		tp->tv_sec++; \
    275 	} \
    276 }
    277 
    278 int	stathz;
    279 int	profhz;
    280 int	profprocs;
    281 int	ticks;
    282 static int psdiv, pscnt;		/* prof => stat divider */
    283 int	psratio;			/* ratio: prof / stat */
    284 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    285 static int tickfixcnt;			/* number of ticks since last fix */
    286 #ifdef NTP
    287 int	fixtick;			/* used by NTP for same */
    288 int	shifthz;
    289 #endif
    290 
    291 volatile struct	timeval time;
    292 volatile struct	timeval mono_time;
    293 
    294 /*
    295  * Initialize clock frequencies and start both clocks running.
    296  */
    297 void
    298 initclocks()
    299 {
    300 	register int i;
    301 
    302 	/*
    303 	 * Set divisors to 1 (normal case) and let the machine-specific
    304 	 * code do its bit.
    305 	 */
    306 	psdiv = pscnt = 1;
    307 	cpu_initclocks();
    308 
    309 	/*
    310 	 * Compute profhz/stathz, and fix profhz if needed.
    311 	 */
    312 	i = stathz ? stathz : hz;
    313 	if (profhz == 0)
    314 		profhz = i;
    315 	psratio = profhz / i;
    316 
    317 #ifdef NTP
    318 	switch (hz) {
    319 	case 60:
    320 	case 64:
    321 		shifthz = SHIFT_SCALE - 6;
    322 		break;
    323 	case 96:
    324 	case 100:
    325 	case 128:
    326 		shifthz = SHIFT_SCALE - 7;
    327 		break;
    328 	case 256:
    329 		shifthz = SHIFT_SCALE - 8;
    330 		break;
    331 	case 1024:
    332 		shifthz = SHIFT_SCALE - 10;
    333 		break;
    334 	default:
    335 		panic("weird hz");
    336 	}
    337 #endif
    338 }
    339 
    340 /*
    341  * The real-time timer, interrupting hz times per second.
    342  */
    343 void
    344 hardclock(frame)
    345 	register struct clockframe *frame;
    346 {
    347 	register struct callout *p1;
    348 	register struct proc *p;
    349 	register int delta, needsoft;
    350 	extern int tickdelta;
    351 	extern long timedelta;
    352 #ifdef NTP
    353 	register int time_update;
    354 	register int ltemp;
    355 #endif
    356 
    357 	/*
    358 	 * Update real-time timeout queue.
    359 	 * At front of queue are some number of events which are ``due''.
    360 	 * The time to these is <= 0 and if negative represents the
    361 	 * number of ticks which have passed since it was supposed to happen.
    362 	 * The rest of the q elements (times > 0) are events yet to happen,
    363 	 * where the time for each is given as a delta from the previous.
    364 	 * Decrementing just the first of these serves to decrement the time
    365 	 * to all events.
    366 	 */
    367 	needsoft = 0;
    368 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
    369 		if (--p1->c_time > 0)
    370 			break;
    371 		needsoft = 1;
    372 		if (p1->c_time == 0)
    373 			break;
    374 	}
    375 
    376 	p = curproc;
    377 	if (p) {
    378 		register struct pstats *pstats;
    379 
    380 		/*
    381 		 * Run current process's virtual and profile time, as needed.
    382 		 */
    383 		pstats = p->p_stats;
    384 		if (CLKF_USERMODE(frame) &&
    385 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    386 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    387 			psignal(p, SIGVTALRM);
    388 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    389 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    390 			psignal(p, SIGPROF);
    391 	}
    392 
    393 	/*
    394 	 * If no separate statistics clock is available, run it from here.
    395 	 */
    396 	if (stathz == 0)
    397 		statclock(frame);
    398 
    399 	/*
    400 	 * Increment the time-of-day.  The increment is normally just
    401 	 * ``tick''.  If the machine is one which has a clock frequency
    402 	 * such that ``hz'' would not divide the second evenly into
    403 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    404 	 * if we are still adjusting the time (see adjtime()),
    405 	 * ``tickdelta'' may also be added in.
    406 	 */
    407 	ticks++;
    408 	delta = tick;
    409 
    410 #ifndef NTP
    411 	if (tickfix) {
    412 		tickfixcnt++;
    413 		if (tickfixcnt >= tickfixinterval) {
    414 			delta += tickfix;
    415 			tickfixcnt = 0;
    416 		}
    417 	}
    418 #endif /* !NTP */
    419 	/* Imprecise 4bsd adjtime() handling */
    420 	if (timedelta != 0) {
    421 		delta = tick + tickdelta;
    422 		timedelta -= tickdelta;
    423 	}
    424 
    425 #ifdef notyet
    426 	microset();
    427 #endif
    428 
    429 #ifndef NTP
    430 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    431 #endif
    432 	BUMPTIME(&mono_time, delta);
    433 
    434 #ifdef NTP
    435 	time_update = delta;
    436 
    437 	/*
    438 	 * Compute the phase adjustment. If the low-order bits
    439 	 * (time_phase) of the update overflow, bump the high-order bits
    440 	 * (time_update).
    441 	 */
    442 	time_phase += time_adj;
    443 	if (time_phase <= -FINEUSEC) {
    444 		ltemp = -time_phase >> SHIFT_SCALE;
    445 		time_phase += ltemp << SHIFT_SCALE;
    446 		time_update -= ltemp;
    447 	} else if (time_phase >= FINEUSEC) {
    448 		ltemp = time_phase >> SHIFT_SCALE;
    449 		time_phase -= ltemp << SHIFT_SCALE;
    450 		time_update += ltemp;
    451 	}
    452 
    453 #ifdef HIGHBALL
    454 	/*
    455 	 * If the HIGHBALL board is installed, we need to adjust the
    456 	 * external clock offset in order to close the hardware feedback
    457 	 * loop. This will adjust the external clock phase and frequency
    458 	 * in small amounts. The additional phase noise and frequency
    459 	 * wander this causes should be minimal. We also need to
    460 	 * discipline the kernel time variable, since the PLL is used to
    461 	 * discipline the external clock. If the Highball board is not
    462 	 * present, we discipline kernel time with the PLL as usual. We
    463 	 * assume that the external clock phase adjustment (time_update)
    464 	 * and kernel phase adjustment (clock_cpu) are less than the
    465 	 * value of tick.
    466 	 */
    467 	clock_offset.tv_usec += time_update;
    468 	if (clock_offset.tv_usec >= 1000000) {
    469 		clock_offset.tv_sec++;
    470 		clock_offset.tv_usec -= 1000000;
    471 	}
    472 	if (clock_offset.tv_usec < 0) {
    473 		clock_offset.tv_sec--;
    474 		clock_offset.tv_usec += 1000000;
    475 	}
    476 	time.tv_usec += clock_cpu;
    477 	clock_cpu = 0;
    478 #else
    479 	time.tv_usec += time_update;
    480 #endif /* HIGHBALL */
    481 
    482 	/*
    483 	 * On rollover of the second the phase adjustment to be used for
    484 	 * the next second is calculated. Also, the maximum error is
    485 	 * increased by the tolerance. If the PPS frequency discipline
    486 	 * code is present, the phase is increased to compensate for the
    487 	 * CPU clock oscillator frequency error.
    488 	 *
    489  	 * On a 32-bit machine and given parameters in the timex.h
    490 	 * header file, the maximum phase adjustment is +-512 ms and
    491 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    492 	 * 64-bit machine, you shouldn't need to ask.
    493 	 */
    494 	if (time.tv_usec >= 1000000) {
    495 		time.tv_usec -= 1000000;
    496 		time.tv_sec++;
    497 		time_maxerror += time_tolerance >> SHIFT_USEC;
    498 
    499 		/*
    500 		 * Leap second processing. If in leap-insert state at
    501 		 * the end of the day, the system clock is set back one
    502 		 * second; if in leap-delete state, the system clock is
    503 		 * set ahead one second. The microtime() routine or
    504 		 * external clock driver will insure that reported time
    505 		 * is always monotonic. The ugly divides should be
    506 		 * replaced.
    507 		 */
    508 		switch (time_state) {
    509 		case TIME_OK:
    510 			if (time_status & STA_INS)
    511 				time_state = TIME_INS;
    512 			else if (time_status & STA_DEL)
    513 				time_state = TIME_DEL;
    514 			break;
    515 
    516 		case TIME_INS:
    517 			if (time.tv_sec % 86400 == 0) {
    518 				time.tv_sec--;
    519 				time_state = TIME_OOP;
    520 			}
    521 			break;
    522 
    523 		case TIME_DEL:
    524 			if ((time.tv_sec + 1) % 86400 == 0) {
    525 				time.tv_sec++;
    526 				time_state = TIME_WAIT;
    527 			}
    528 			break;
    529 
    530 		case TIME_OOP:
    531 			time_state = TIME_WAIT;
    532 			break;
    533 
    534 		case TIME_WAIT:
    535 			if (!(time_status & (STA_INS | STA_DEL)))
    536 				time_state = TIME_OK;
    537 			break;
    538 		}
    539 
    540 		/*
    541 		 * Compute the phase adjustment for the next second. In
    542 		 * PLL mode, the offset is reduced by a fixed factor
    543 		 * times the time constant. In FLL mode the offset is
    544 		 * used directly. In either mode, the maximum phase
    545 		 * adjustment for each second is clamped so as to spread
    546 		 * the adjustment over not more than the number of
    547 		 * seconds between updates.
    548 		 */
    549 		if (time_offset < 0) {
    550 			ltemp = -time_offset;
    551 			if (!(time_status & STA_FLL))
    552 				ltemp >>= SHIFT_KG + time_constant;
    553 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    554 				ltemp = (MAXPHASE / MINSEC) <<
    555 				    SHIFT_UPDATE;
    556 			time_offset += ltemp;
    557 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    558 		} else if (time_offset > 0) {
    559 			ltemp = time_offset;
    560 			if (!(time_status & STA_FLL))
    561 				ltemp >>= SHIFT_KG + time_constant;
    562 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    563 				ltemp = (MAXPHASE / MINSEC) <<
    564 				    SHIFT_UPDATE;
    565 			time_offset -= ltemp;
    566 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    567 		} else
    568 			time_adj = 0;
    569 
    570 		/*
    571 		 * Compute the frequency estimate and additional phase
    572 		 * adjustment due to frequency error for the next
    573 		 * second. When the PPS signal is engaged, gnaw on the
    574 		 * watchdog counter and update the frequency computed by
    575 		 * the pll and the PPS signal.
    576 		 */
    577 #ifdef PPS_SYNC
    578 		pps_valid++;
    579 		if (pps_valid == PPS_VALID) {
    580 			pps_jitter = MAXTIME;
    581 			pps_stabil = MAXFREQ;
    582 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    583 			    STA_PPSWANDER | STA_PPSERROR);
    584 		}
    585 		ltemp = time_freq + pps_freq;
    586 #else
    587 		ltemp = time_freq;
    588 #endif /* PPS_SYNC */
    589 
    590 		if (ltemp < 0)
    591 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    592 		else
    593 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    594 		time_adj += (long)fixtick << shifthz;
    595 
    596 		/*
    597 		 * When the CPU clock oscillator frequency is not a
    598 		 * power of 2 in Hz, shifthz is only an approximate
    599 		 * scale factor.
    600 		 */
    601 		switch (hz) {
    602 		case 96:
    603 		case 100:
    604 			/*
    605 			 * In the following code the overall gain is increased
    606 			 * by a factor of 1.25, which results in a residual
    607 			 * error less than 3 percent.
    608 			 */
    609 			if (time_adj < 0)
    610 				time_adj -= -time_adj >> 2;
    611 			else
    612 				time_adj += time_adj >> 2;
    613 			break;
    614 		case 60:
    615 			/*
    616 			 * 60 Hz m68k and vaxes have a PLL gain factor of of
    617 			 * 60/64 (15/16) of what it should be.  In the following code
    618 			 * the overall gain is increased by a factor of 1.0625,
    619 			 * (17/16) which results in a residual error of just less
    620 			 * than 0.4 percent.
    621 			 */
    622 			if (time_adj < 0)
    623 				time_adj -= -time_adj >> 4;
    624 			else
    625 				time_adj += time_adj >> 4;
    626 			break;
    627 		}
    628 
    629 #ifdef EXT_CLOCK
    630 		/*
    631 		 * If an external clock is present, it is necessary to
    632 		 * discipline the kernel time variable anyway, since not
    633 		 * all system components use the microtime() interface.
    634 		 * Here, the time offset between the external clock and
    635 		 * kernel time variable is computed every so often.
    636 		 */
    637 		clock_count++;
    638 		if (clock_count > CLOCK_INTERVAL) {
    639 			clock_count = 0;
    640 			microtime(&clock_ext);
    641 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    642 			delta.tv_usec = clock_ext.tv_usec -
    643 			    time.tv_usec;
    644 			if (delta.tv_usec < 0)
    645 				delta.tv_sec--;
    646 			if (delta.tv_usec >= 500000) {
    647 				delta.tv_usec -= 1000000;
    648 				delta.tv_sec++;
    649 			}
    650 			if (delta.tv_usec < -500000) {
    651 				delta.tv_usec += 1000000;
    652 				delta.tv_sec--;
    653 			}
    654 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    655 			    delta.tv_usec > MAXPHASE) ||
    656 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    657 			    delta.tv_usec < -MAXPHASE)) {
    658 				time = clock_ext;
    659 				delta.tv_sec = 0;
    660 				delta.tv_usec = 0;
    661 			}
    662 #ifdef HIGHBALL
    663 			clock_cpu = delta.tv_usec;
    664 #else /* HIGHBALL */
    665 			hardupdate(delta.tv_usec);
    666 #endif /* HIGHBALL */
    667 		}
    668 #endif /* EXT_CLOCK */
    669 	}
    670 
    671 #endif /* NTP */
    672 
    673 	/*
    674 	 * Process callouts at a very low cpu priority, so we don't keep the
    675 	 * relatively high clock interrupt priority any longer than necessary.
    676 	 */
    677 	if (needsoft) {
    678 		if (CLKF_BASEPRI(frame)) {
    679 			/*
    680 			 * Save the overhead of a software interrupt;
    681 			 * it will happen as soon as we return, so do it now.
    682 			 */
    683 			(void)splsoftclock();
    684 			softclock();
    685 		} else
    686 			setsoftclock();
    687 	}
    688 }
    689 
    690 /*
    691  * Software (low priority) clock interrupt.
    692  * Run periodic events from timeout queue.
    693  */
    694 /*ARGSUSED*/
    695 void
    696 softclock()
    697 {
    698 	register struct callout *c;
    699 	register void *arg;
    700 	register void (*func) __P((void *));
    701 	register int s;
    702 
    703 	s = splhigh();
    704 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
    705 		func = c->c_func;
    706 		arg = c->c_arg;
    707 		calltodo.c_next = c->c_next;
    708 		c->c_next = callfree;
    709 		callfree = c;
    710 		splx(s);
    711 		(*func)(arg);
    712 		(void) splhigh();
    713 	}
    714 	splx(s);
    715 }
    716 
    717 /*
    718  * timeout --
    719  *	Execute a function after a specified length of time.
    720  *
    721  * untimeout --
    722  *	Cancel previous timeout function call.
    723  *
    724  *	See AT&T BCI Driver Reference Manual for specification.  This
    725  *	implementation differs from that one in that no identification
    726  *	value is returned from timeout, rather, the original arguments
    727  *	to timeout are used to identify entries for untimeout.
    728  */
    729 void
    730 timeout(ftn, arg, ticks)
    731 	void (*ftn) __P((void *));
    732 	void *arg;
    733 	register int ticks;
    734 {
    735 	register struct callout *new, *p, *t;
    736 	register int s;
    737 
    738 	if (ticks <= 0)
    739 		ticks = 1;
    740 
    741 	/* Lock out the clock. */
    742 	s = splhigh();
    743 
    744 	/* Fill in the next free callout structure. */
    745 	if (callfree == NULL)
    746 		panic("timeout table full");
    747 	new = callfree;
    748 	callfree = new->c_next;
    749 	new->c_arg = arg;
    750 	new->c_func = ftn;
    751 
    752 	/*
    753 	 * The time for each event is stored as a difference from the time
    754 	 * of the previous event on the queue.  Walk the queue, correcting
    755 	 * the ticks argument for queue entries passed.  Correct the ticks
    756 	 * value for the queue entry immediately after the insertion point
    757 	 * as well.  Watch out for negative c_time values; these represent
    758 	 * overdue events.
    759 	 */
    760 	for (p = &calltodo;
    761 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
    762 		if (t->c_time > 0)
    763 			ticks -= t->c_time;
    764 	new->c_time = ticks;
    765 	if (t != NULL)
    766 		t->c_time -= ticks;
    767 
    768 	/* Insert the new entry into the queue. */
    769 	p->c_next = new;
    770 	new->c_next = t;
    771 	splx(s);
    772 }
    773 
    774 void
    775 untimeout(ftn, arg)
    776 	void (*ftn) __P((void *));
    777 	void *arg;
    778 {
    779 	register struct callout *p, *t;
    780 	register int s;
    781 
    782 	s = splhigh();
    783 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
    784 		if (t->c_func == ftn && t->c_arg == arg) {
    785 			/* Increment next entry's tick count. */
    786 			if (t->c_next && t->c_time > 0)
    787 				t->c_next->c_time += t->c_time;
    788 
    789 			/* Move entry from callout queue to callfree queue. */
    790 			p->c_next = t->c_next;
    791 			t->c_next = callfree;
    792 			callfree = t;
    793 			break;
    794 		}
    795 	splx(s);
    796 }
    797 
    798 /*
    799  * Compute number of hz until specified time.  Used to
    800  * compute third argument to timeout() from an absolute time.
    801  */
    802 int
    803 hzto(tv)
    804 	struct timeval *tv;
    805 {
    806 	register long ticks, sec;
    807 	int s;
    808 
    809 	/*
    810 	 * If number of microseconds will fit in 32 bit arithmetic,
    811 	 * then compute number of microseconds to time and scale to
    812 	 * ticks.  Otherwise just compute number of hz in time, rounding
    813 	 * times greater than representible to maximum value.  (We must
    814 	 * compute in microseconds, because hz can be greater than 1000,
    815 	 * and thus tick can be less than one millisecond).
    816 	 *
    817 	 * Delta times less than 14 hours can be computed ``exactly''.
    818 	 * (Note that if hz would yeild a non-integral number of us per
    819 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
    820 	 * than they should be.)  Maximum value for any timeout in 10ms
    821 	 * ticks is 250 days.
    822 	 */
    823 	s = splhigh();
    824 	sec = tv->tv_sec - time.tv_sec;
    825 	if (sec <= 0x7fffffff / 1000000 - 1)
    826 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
    827 			(tv->tv_usec - time.tv_usec)) / tick;
    828 	else if (sec <= 0x7fffffff / hz)
    829 		ticks = sec * hz;
    830 	else
    831 		ticks = 0x7fffffff;
    832 	splx(s);
    833 	return (ticks);
    834 }
    835 
    836 /*
    837  * Start profiling on a process.
    838  *
    839  * Kernel profiling passes proc0 which never exits and hence
    840  * keeps the profile clock running constantly.
    841  */
    842 void
    843 startprofclock(p)
    844 	register struct proc *p;
    845 {
    846 	int s;
    847 
    848 	if ((p->p_flag & P_PROFIL) == 0) {
    849 		p->p_flag |= P_PROFIL;
    850 		if (++profprocs == 1 && stathz != 0) {
    851 			s = splstatclock();
    852 			psdiv = pscnt = psratio;
    853 			setstatclockrate(profhz);
    854 			splx(s);
    855 		}
    856 	}
    857 }
    858 
    859 /*
    860  * Stop profiling on a process.
    861  */
    862 void
    863 stopprofclock(p)
    864 	register struct proc *p;
    865 {
    866 	int s;
    867 
    868 	if (p->p_flag & P_PROFIL) {
    869 		p->p_flag &= ~P_PROFIL;
    870 		if (--profprocs == 0 && stathz != 0) {
    871 			s = splstatclock();
    872 			psdiv = pscnt = 1;
    873 			setstatclockrate(stathz);
    874 			splx(s);
    875 		}
    876 	}
    877 }
    878 
    879 /*
    880  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    881  * do process and kernel statistics.
    882  */
    883 void
    884 statclock(frame)
    885 	register struct clockframe *frame;
    886 {
    887 #ifdef GPROF
    888 	register struct gmonparam *g;
    889 #endif
    890 	register struct proc *p;
    891 	register int i;
    892 
    893 	if (CLKF_USERMODE(frame)) {
    894 		p = curproc;
    895 		if (p->p_flag & P_PROFIL)
    896 			addupc_intr(p, CLKF_PC(frame), 1);
    897 		if (--pscnt > 0)
    898 			return;
    899 		/*
    900 		 * Came from user mode; CPU was in user state.
    901 		 * If this process is being profiled record the tick.
    902 		 */
    903 		p->p_uticks++;
    904 		if (p->p_nice > NZERO)
    905 			cp_time[CP_NICE]++;
    906 		else
    907 			cp_time[CP_USER]++;
    908 	} else {
    909 #ifdef GPROF
    910 		/*
    911 		 * Kernel statistics are just like addupc_intr, only easier.
    912 		 */
    913 		g = &_gmonparam;
    914 		if (g->state == GMON_PROF_ON) {
    915 			i = CLKF_PC(frame) - g->lowpc;
    916 			if (i < g->textsize) {
    917 				i /= HISTFRACTION * sizeof(*g->kcount);
    918 				g->kcount[i]++;
    919 			}
    920 		}
    921 #endif
    922 		if (--pscnt > 0)
    923 			return;
    924 		/*
    925 		 * Came from kernel mode, so we were:
    926 		 * - handling an interrupt,
    927 		 * - doing syscall or trap work on behalf of the current
    928 		 *   user process, or
    929 		 * - spinning in the idle loop.
    930 		 * Whichever it is, charge the time as appropriate.
    931 		 * Note that we charge interrupts to the current process,
    932 		 * regardless of whether they are ``for'' that process,
    933 		 * so that we know how much of its real time was spent
    934 		 * in ``non-process'' (i.e., interrupt) work.
    935 		 */
    936 		p = curproc;
    937 		if (CLKF_INTR(frame)) {
    938 			if (p != NULL)
    939 				p->p_iticks++;
    940 			cp_time[CP_INTR]++;
    941 		} else if (p != NULL) {
    942 			p->p_sticks++;
    943 			cp_time[CP_SYS]++;
    944 		} else
    945 			cp_time[CP_IDLE]++;
    946 	}
    947 	pscnt = psdiv;
    948 
    949 	/*
    950 	 * XXX Support old-style instrumentation for now.
    951 	 *
    952 	 * We maintain statistics shown by user-level statistics
    953 	 * programs:  the amount of time in each cpu state, and
    954 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
    955 	 *
    956 	 * XXX	should either run linked list of drives, or (better)
    957 	 *	grab timestamps in the start & done code.
    958 	 */
    959 	for (i = 0; i < DK_NDRIVE; i++)
    960 		if (dk_busy & (1 << i))
    961 			dk_time[i]++;
    962 
    963 	/*
    964 	 * We adjust the priority of the current process.  The priority of
    965 	 * a process gets worse as it accumulates CPU time.  The cpu usage
    966 	 * estimator (p_estcpu) is increased here.  The formula for computing
    967 	 * priorities (in kern_synch.c) will compute a different value each
    968 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
    969 	 * quite quickly when the process is running (linearly), and decays
    970 	 * away exponentially, at a rate which is proportionally slower when
    971 	 * the system is busy.  The basic principal is that the system will
    972 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
    973 	 * seconds.  This causes the system to favor processes which haven't
    974 	 * run much recently, and to round-robin among other processes.
    975 	 */
    976 	if (p != NULL) {
    977 		p->p_cpticks++;
    978 		if (++p->p_estcpu == 0)
    979 			p->p_estcpu--;
    980 		if ((p->p_estcpu & 3) == 0) {
    981 			resetpriority(p);
    982 			if (p->p_priority >= PUSER)
    983 				p->p_priority = p->p_usrpri;
    984 		}
    985 	}
    986 }
    987 
    988 
    989 #ifdef NTP	/* NTP phase-locked loop in kernel */
    990 
    991 /*
    992  * hardupdate() - local clock update
    993  *
    994  * This routine is called by ntp_adjtime() to update the local clock
    995  * phase and frequency. The implementation is of an adaptive-parameter,
    996  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    997  * time and frequency offset estimates for each call. If the kernel PPS
    998  * discipline code is configured (PPS_SYNC), the PPS signal itself
    999  * determines the new time offset, instead of the calling argument.
   1000  * Presumably, calls to ntp_adjtime() occur only when the caller
   1001  * believes the local clock is valid within some bound (+-128 ms with
   1002  * NTP). If the caller's time is far different than the PPS time, an
   1003  * argument will ensue, and it's not clear who will lose.
   1004  *
   1005  * For uncompensated quartz crystal oscillatores and nominal update
   1006  * intervals less than 1024 s, operation should be in phase-lock mode
   1007  * (STA_FLL = 0), where the loop is disciplined to phase. For update
   1008  * intervals greater than thiss, operation should be in frequency-lock
   1009  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1010  *
   1011  * Note: splclock() is in effect.
   1012  */
   1013 void
   1014 hardupdate(offset)
   1015 	long offset;
   1016 {
   1017 	long ltemp, mtemp;
   1018 
   1019 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1020 		return;
   1021 	ltemp = offset;
   1022 #ifdef PPS_SYNC
   1023 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1024 		ltemp = pps_offset;
   1025 #endif /* PPS_SYNC */
   1026 
   1027 	/*
   1028 	 * Scale the phase adjustment and clamp to the operating range.
   1029 	 */
   1030 	if (ltemp > MAXPHASE)
   1031 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1032 	else if (ltemp < -MAXPHASE)
   1033 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1034 	else
   1035 		time_offset = ltemp << SHIFT_UPDATE;
   1036 
   1037 	/*
   1038 	 * Select whether the frequency is to be controlled and in which
   1039 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1040 	 * multiply/divide should be replaced someday.
   1041 	 */
   1042 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1043 		time_reftime = time.tv_sec;
   1044 	mtemp = time.tv_sec - time_reftime;
   1045 	time_reftime = time.tv_sec;
   1046 	if (time_status & STA_FLL) {
   1047 		if (mtemp >= MINSEC) {
   1048 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1049 			    SHIFT_UPDATE));
   1050 			if (ltemp < 0)
   1051 				time_freq -= -ltemp >> SHIFT_KH;
   1052 			else
   1053 				time_freq += ltemp >> SHIFT_KH;
   1054 		}
   1055 	} else {
   1056 		if (mtemp < MAXSEC) {
   1057 			ltemp *= mtemp;
   1058 			if (ltemp < 0)
   1059 				time_freq -= -ltemp >> (time_constant +
   1060 				    time_constant + SHIFT_KF -
   1061 				    SHIFT_USEC);
   1062 			else
   1063 				time_freq += ltemp >> (time_constant +
   1064 				    time_constant + SHIFT_KF -
   1065 				    SHIFT_USEC);
   1066 		}
   1067 	}
   1068 	if (time_freq > time_tolerance)
   1069 		time_freq = time_tolerance;
   1070 	else if (time_freq < -time_tolerance)
   1071 		time_freq = -time_tolerance;
   1072 }
   1073 
   1074 #ifdef PPS_SYNC
   1075 /*
   1076  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1077  *
   1078  * This routine is called at each PPS interrupt in order to discipline
   1079  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1080  * and leaves it in a handy spot for the hardclock() routine. It
   1081  * integrates successive PPS phase differences and calculates the
   1082  * frequency offset. This is used in hardclock() to discipline the CPU
   1083  * clock oscillator so that intrinsic frequency error is cancelled out.
   1084  * The code requires the caller to capture the time and hardware counter
   1085  * value at the on-time PPS signal transition.
   1086  *
   1087  * Note that, on some Unix systems, this routine runs at an interrupt
   1088  * priority level higher than the timer interrupt routine hardclock().
   1089  * Therefore, the variables used are distinct from the hardclock()
   1090  * variables, except for certain exceptions: The PPS frequency pps_freq
   1091  * and phase pps_offset variables are determined by this routine and
   1092  * updated atomically. The time_tolerance variable can be considered a
   1093  * constant, since it is infrequently changed, and then only when the
   1094  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1095  * once per second by hardclock() and is atomically cleared in this
   1096  * routine.
   1097  */
   1098 void
   1099 hardpps(tvp, usec)
   1100 	struct timeval *tvp;		/* time at PPS */
   1101 	long usec;			/* hardware counter at PPS */
   1102 {
   1103 	long u_usec, v_usec, bigtick;
   1104 	long cal_sec, cal_usec;
   1105 
   1106 	/*
   1107 	 * An occasional glitch can be produced when the PPS interrupt
   1108 	 * occurs in the hardclock() routine before the time variable is
   1109 	 * updated. Here the offset is discarded when the difference
   1110 	 * between it and the last one is greater than tick/2, but not
   1111 	 * if the interval since the first discard exceeds 30 s.
   1112 	 */
   1113 	time_status |= STA_PPSSIGNAL;
   1114 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1115 	pps_valid = 0;
   1116 	u_usec = -tvp->tv_usec;
   1117 	if (u_usec < -500000)
   1118 		u_usec += 1000000;
   1119 	v_usec = pps_offset - u_usec;
   1120 	if (v_usec < 0)
   1121 		v_usec = -v_usec;
   1122 	if (v_usec > (tick >> 1)) {
   1123 		if (pps_glitch > MAXGLITCH) {
   1124 			pps_glitch = 0;
   1125 			pps_tf[2] = u_usec;
   1126 			pps_tf[1] = u_usec;
   1127 		} else {
   1128 			pps_glitch++;
   1129 			u_usec = pps_offset;
   1130 		}
   1131 	} else
   1132 		pps_glitch = 0;
   1133 
   1134 	/*
   1135 	 * A three-stage median filter is used to help deglitch the pps
   1136 	 * time. The median sample becomes the time offset estimate; the
   1137 	 * difference between the other two samples becomes the time
   1138 	 * dispersion (jitter) estimate.
   1139 	 */
   1140 	pps_tf[2] = pps_tf[1];
   1141 	pps_tf[1] = pps_tf[0];
   1142 	pps_tf[0] = u_usec;
   1143 	if (pps_tf[0] > pps_tf[1]) {
   1144 		if (pps_tf[1] > pps_tf[2]) {
   1145 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1146 			v_usec = pps_tf[0] - pps_tf[2];
   1147 		} else if (pps_tf[2] > pps_tf[0]) {
   1148 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1149 			v_usec = pps_tf[2] - pps_tf[1];
   1150 		} else {
   1151 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1152 			v_usec = pps_tf[0] - pps_tf[1];
   1153 		}
   1154 	} else {
   1155 		if (pps_tf[1] < pps_tf[2]) {
   1156 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1157 			v_usec = pps_tf[2] - pps_tf[0];
   1158 		} else  if (pps_tf[2] < pps_tf[0]) {
   1159 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1160 			v_usec = pps_tf[1] - pps_tf[2];
   1161 		} else {
   1162 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1163 			v_usec = pps_tf[1] - pps_tf[0];
   1164 		}
   1165 	}
   1166 	if (v_usec > MAXTIME)
   1167 		pps_jitcnt++;
   1168 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1169 	if (v_usec < 0)
   1170 		pps_jitter -= -v_usec >> PPS_AVG;
   1171 	else
   1172 		pps_jitter += v_usec >> PPS_AVG;
   1173 	if (pps_jitter > (MAXTIME >> 1))
   1174 		time_status |= STA_PPSJITTER;
   1175 
   1176 	/*
   1177 	 * During the calibration interval adjust the starting time when
   1178 	 * the tick overflows. At the end of the interval compute the
   1179 	 * duration of the interval and the difference of the hardware
   1180 	 * counters at the beginning and end of the interval. This code
   1181 	 * is deliciously complicated by the fact valid differences may
   1182 	 * exceed the value of tick when using long calibration
   1183 	 * intervals and small ticks. Note that the counter can be
   1184 	 * greater than tick if caught at just the wrong instant, but
   1185 	 * the values returned and used here are correct.
   1186 	 */
   1187 	bigtick = (long)tick << SHIFT_USEC;
   1188 	pps_usec -= pps_freq;
   1189 	if (pps_usec >= bigtick)
   1190 		pps_usec -= bigtick;
   1191 	if (pps_usec < 0)
   1192 		pps_usec += bigtick;
   1193 	pps_time.tv_sec++;
   1194 	pps_count++;
   1195 	if (pps_count < (1 << pps_shift))
   1196 		return;
   1197 	pps_count = 0;
   1198 	pps_calcnt++;
   1199 	u_usec = usec << SHIFT_USEC;
   1200 	v_usec = pps_usec - u_usec;
   1201 	if (v_usec >= bigtick >> 1)
   1202 		v_usec -= bigtick;
   1203 	if (v_usec < -(bigtick >> 1))
   1204 		v_usec += bigtick;
   1205 	if (v_usec < 0)
   1206 		v_usec = -(-v_usec >> pps_shift);
   1207 	else
   1208 		v_usec = v_usec >> pps_shift;
   1209 	pps_usec = u_usec;
   1210 	cal_sec = tvp->tv_sec;
   1211 	cal_usec = tvp->tv_usec;
   1212 	cal_sec -= pps_time.tv_sec;
   1213 	cal_usec -= pps_time.tv_usec;
   1214 	if (cal_usec < 0) {
   1215 		cal_usec += 1000000;
   1216 		cal_sec--;
   1217 	}
   1218 	pps_time = *tvp;
   1219 
   1220 	/*
   1221 	 * Check for lost interrupts, noise, excessive jitter and
   1222 	 * excessive frequency error. The number of timer ticks during
   1223 	 * the interval may vary +-1 tick. Add to this a margin of one
   1224 	 * tick for the PPS signal jitter and maximum frequency
   1225 	 * deviation. If the limits are exceeded, the calibration
   1226 	 * interval is reset to the minimum and we start over.
   1227 	 */
   1228 	u_usec = (long)tick << 1;
   1229 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1230 	    || (cal_sec == 0 && cal_usec < u_usec))
   1231 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1232 		pps_errcnt++;
   1233 		pps_shift = PPS_SHIFT;
   1234 		pps_intcnt = 0;
   1235 		time_status |= STA_PPSERROR;
   1236 		return;
   1237 	}
   1238 
   1239 	/*
   1240 	 * A three-stage median filter is used to help deglitch the pps
   1241 	 * frequency. The median sample becomes the frequency offset
   1242 	 * estimate; the difference between the other two samples
   1243 	 * becomes the frequency dispersion (stability) estimate.
   1244 	 */
   1245 	pps_ff[2] = pps_ff[1];
   1246 	pps_ff[1] = pps_ff[0];
   1247 	pps_ff[0] = v_usec;
   1248 	if (pps_ff[0] > pps_ff[1]) {
   1249 		if (pps_ff[1] > pps_ff[2]) {
   1250 			u_usec = pps_ff[1];		/* 0 1 2 */
   1251 			v_usec = pps_ff[0] - pps_ff[2];
   1252 		} else if (pps_ff[2] > pps_ff[0]) {
   1253 			u_usec = pps_ff[0];		/* 2 0 1 */
   1254 			v_usec = pps_ff[2] - pps_ff[1];
   1255 		} else {
   1256 			u_usec = pps_ff[2];		/* 0 2 1 */
   1257 			v_usec = pps_ff[0] - pps_ff[1];
   1258 		}
   1259 	} else {
   1260 		if (pps_ff[1] < pps_ff[2]) {
   1261 			u_usec = pps_ff[1];		/* 2 1 0 */
   1262 			v_usec = pps_ff[2] - pps_ff[0];
   1263 		} else  if (pps_ff[2] < pps_ff[0]) {
   1264 			u_usec = pps_ff[0];		/* 1 0 2 */
   1265 			v_usec = pps_ff[1] - pps_ff[2];
   1266 		} else {
   1267 			u_usec = pps_ff[2];		/* 1 2 0 */
   1268 			v_usec = pps_ff[1] - pps_ff[0];
   1269 		}
   1270 	}
   1271 
   1272 	/*
   1273 	 * Here the frequency dispersion (stability) is updated. If it
   1274 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1275 	 * offset is updated as well, but clamped to the tolerance. It
   1276 	 * will be processed later by the hardclock() routine.
   1277 	 */
   1278 	v_usec = (v_usec >> 1) - pps_stabil;
   1279 	if (v_usec < 0)
   1280 		pps_stabil -= -v_usec >> PPS_AVG;
   1281 	else
   1282 		pps_stabil += v_usec >> PPS_AVG;
   1283 	if (pps_stabil > MAXFREQ >> 2) {
   1284 		pps_stbcnt++;
   1285 		time_status |= STA_PPSWANDER;
   1286 		return;
   1287 	}
   1288 	if (time_status & STA_PPSFREQ) {
   1289 		if (u_usec < 0) {
   1290 			pps_freq -= -u_usec >> PPS_AVG;
   1291 			if (pps_freq < -time_tolerance)
   1292 				pps_freq = -time_tolerance;
   1293 			u_usec = -u_usec;
   1294 		} else {
   1295 			pps_freq += u_usec >> PPS_AVG;
   1296 			if (pps_freq > time_tolerance)
   1297 				pps_freq = time_tolerance;
   1298 		}
   1299 	}
   1300 
   1301 	/*
   1302 	 * Here the calibration interval is adjusted. If the maximum
   1303 	 * time difference is greater than tick / 4, reduce the interval
   1304 	 * by half. If this is not the case for four consecutive
   1305 	 * intervals, double the interval.
   1306 	 */
   1307 	if (u_usec << pps_shift > bigtick >> 2) {
   1308 		pps_intcnt = 0;
   1309 		if (pps_shift > PPS_SHIFT)
   1310 			pps_shift--;
   1311 	} else if (pps_intcnt >= 4) {
   1312 		pps_intcnt = 0;
   1313 		if (pps_shift < PPS_SHIFTMAX)
   1314 			pps_shift++;
   1315 	} else
   1316 		pps_intcnt++;
   1317 }
   1318 #endif /* PPS_SYNC */
   1319 #endif /* NTP  */
   1320 
   1321 
   1322 /*
   1323  * Return information about system clocks.
   1324  */
   1325 int
   1326 sysctl_clockrate(where, sizep)
   1327 	register char *where;
   1328 	size_t *sizep;
   1329 {
   1330 	struct clockinfo clkinfo;
   1331 
   1332 	/*
   1333 	 * Construct clockinfo structure.
   1334 	 */
   1335 	clkinfo.tick = tick;
   1336 	clkinfo.tickadj = tickadj;
   1337 	clkinfo.hz = hz;
   1338 	clkinfo.profhz = profhz;
   1339 	clkinfo.stathz = stathz ? stathz : hz;
   1340 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1341 }
   1342 
   1343 #ifdef DDB
   1344 #include <machine/db_machdep.h>
   1345 
   1346 #include <ddb/db_interface.h>
   1347 #include <ddb/db_access.h>
   1348 #include <ddb/db_sym.h>
   1349 #include <ddb/db_output.h>
   1350 
   1351 void db_show_callout(addr, haddr, count, modif)
   1352 	db_expr_t addr;
   1353 	int haddr;
   1354 	db_expr_t count;
   1355 	char *modif;
   1356 {
   1357 	register struct callout *p1;
   1358 	register int	cum;
   1359 	register int	s;
   1360 	db_expr_t	offset;
   1361 	char		*name;
   1362 
   1363         db_printf("      cum     ticks      arg  func\n");
   1364 	s = splhigh();
   1365 	for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
   1366 		register int t = p1->c_time;
   1367 
   1368 		if (t > 0)
   1369 			cum += t;
   1370 
   1371 		db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
   1372 		if (name == NULL)
   1373 			name = "?";
   1374 
   1375                 db_printf("%9d %9d %p  %s (%p)\n",
   1376 			  cum, t, p1->c_arg, name, p1->c_func);
   1377 	}
   1378 	splx(s);
   1379 }
   1380 #endif
   1381