kern_clock.c revision 1.33 1 /* $NetBSD: kern_clock.c,v 1.33 1996/04/22 01:38:19 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/dkstat.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <vm/vm.h>
52 #include <sys/sysctl.h>
53 #include <sys/timex.h>
54
55 #include <machine/cpu.h>
56
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60
61 /*
62 * Clock handling routines.
63 *
64 * This code is written to operate with two timers that run independently of
65 * each other. The main clock, running hz times per second, is used to keep
66 * track of real time. The second timer handles kernel and user profiling,
67 * and does resource use estimation. If the second timer is programmable,
68 * it is randomized to avoid aliasing between the two clocks. For example,
69 * the randomization prevents an adversary from always giving up the cpu
70 * just before its quantum expires. Otherwise, it would never accumulate
71 * cpu ticks. The mean frequency of the second timer is stathz.
72 *
73 * If no second timer exists, stathz will be zero; in this case we drive
74 * profiling and statistics off the main clock. This WILL NOT be accurate;
75 * do not do it unless absolutely necessary.
76 *
77 * The statistics clock may (or may not) be run at a higher rate while
78 * profiling. This profile clock runs at profhz. We require that profhz
79 * be an integral multiple of stathz.
80 *
81 * If the statistics clock is running fast, it must be divided by the ratio
82 * profhz/stathz for statistics. (For profiling, every tick counts.)
83 */
84
85 /*
86 * TODO:
87 * allocate more timeout table slots when table overflows.
88 */
89
90
91 #ifdef NTP /* NTP phase-locked loop in kernel */
92 /*
93 * Phase/frequency-lock loop (PLL/FLL) definitions
94 *
95 * The following variables are read and set by the ntp_adjtime() system
96 * call.
97 *
98 * time_state shows the state of the system clock, with values defined
99 * in the timex.h header file.
100 *
101 * time_status shows the status of the system clock, with bits defined
102 * in the timex.h header file.
103 *
104 * time_offset is used by the PLL/FLL to adjust the system time in small
105 * increments.
106 *
107 * time_constant determines the bandwidth or "stiffness" of the PLL.
108 *
109 * time_tolerance determines maximum frequency error or tolerance of the
110 * CPU clock oscillator and is a property of the architecture; however,
111 * in principle it could change as result of the presence of external
112 * discipline signals, for instance.
113 *
114 * time_precision is usually equal to the kernel tick variable; however,
115 * in cases where a precision clock counter or external clock is
116 * available, the resolution can be much less than this and depend on
117 * whether the external clock is working or not.
118 *
119 * time_maxerror is initialized by a ntp_adjtime() call and increased by
120 * the kernel once each second to reflect the maximum error bound
121 * growth.
122 *
123 * time_esterror is set and read by the ntp_adjtime() call, but
124 * otherwise not used by the kernel.
125 */
126 int time_state = TIME_OK; /* clock state */
127 int time_status = STA_UNSYNC; /* clock status bits */
128 long time_offset = 0; /* time offset (us) */
129 long time_constant = 0; /* pll time constant */
130 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
131 long time_precision = 1; /* clock precision (us) */
132 long time_maxerror = MAXPHASE; /* maximum error (us) */
133 long time_esterror = MAXPHASE; /* estimated error (us) */
134
135 /*
136 * The following variables establish the state of the PLL/FLL and the
137 * residual time and frequency offset of the local clock. The scale
138 * factors are defined in the timex.h header file.
139 *
140 * time_phase and time_freq are the phase increment and the frequency
141 * increment, respectively, of the kernel time variable.
142 *
143 * time_freq is set via ntp_adjtime() from a value stored in a file when
144 * the synchronization daemon is first started. Its value is retrieved
145 * via ntp_adjtime() and written to the file about once per hour by the
146 * daemon.
147 *
148 * time_adj is the adjustment added to the value of tick at each timer
149 * interrupt and is recomputed from time_phase and time_freq at each
150 * seconds rollover.
151 *
152 * time_reftime is the second's portion of the system time at the last
153 * call to ntp_adjtime(). It is used to adjust the time_freq variable
154 * and to increase the time_maxerror as the time since last update
155 * increases.
156 */
157 long time_phase = 0; /* phase offset (scaled us) */
158 long time_freq = 0; /* frequency offset (scaled ppm) */
159 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
160 long time_reftime = 0; /* time at last adjustment (s) */
161
162 #ifdef PPS_SYNC
163 /*
164 * The following variables are used only if the kernel PPS discipline
165 * code is configured (PPS_SYNC). The scale factors are defined in the
166 * timex.h header file.
167 *
168 * pps_time contains the time at each calibration interval, as read by
169 * microtime(). pps_count counts the seconds of the calibration
170 * interval, the duration of which is nominally pps_shift in powers of
171 * two.
172 *
173 * pps_offset is the time offset produced by the time median filter
174 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
175 * this filter.
176 *
177 * pps_freq is the frequency offset produced by the frequency median
178 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
179 * by this filter.
180 *
181 * pps_usec is latched from a high resolution counter or external clock
182 * at pps_time. Here we want the hardware counter contents only, not the
183 * contents plus the time_tv.usec as usual.
184 *
185 * pps_valid counts the number of seconds since the last PPS update. It
186 * is used as a watchdog timer to disable the PPS discipline should the
187 * PPS signal be lost.
188 *
189 * pps_glitch counts the number of seconds since the beginning of an
190 * offset burst more than tick/2 from current nominal offset. It is used
191 * mainly to suppress error bursts due to priority conflicts between the
192 * PPS interrupt and timer interrupt.
193 *
194 * pps_intcnt counts the calibration intervals for use in the interval-
195 * adaptation algorithm. It's just too complicated for words.
196 */
197 struct timeval pps_time; /* kernel time at last interval */
198 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
199 long pps_offset = 0; /* pps time offset (us) */
200 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
201 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
202 long pps_freq = 0; /* frequency offset (scaled ppm) */
203 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
204 long pps_usec = 0; /* microsec counter at last interval */
205 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
206 int pps_glitch = 0; /* pps signal glitch counter */
207 int pps_count = 0; /* calibration interval counter (s) */
208 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
209 int pps_intcnt = 0; /* intervals at current duration */
210
211 /*
212 * PPS signal quality monitors
213 *
214 * pps_jitcnt counts the seconds that have been discarded because the
215 * jitter measured by the time median filter exceeds the limit MAXTIME
216 * (100 us).
217 *
218 * pps_calcnt counts the frequency calibration intervals, which are
219 * variable from 4 s to 256 s.
220 *
221 * pps_errcnt counts the calibration intervals which have been discarded
222 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
223 * calibration interval jitter exceeds two ticks.
224 *
225 * pps_stbcnt counts the calibration intervals that have been discarded
226 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
227 */
228 long pps_jitcnt = 0; /* jitter limit exceeded */
229 long pps_calcnt = 0; /* calibration intervals */
230 long pps_errcnt = 0; /* calibration errors */
231 long pps_stbcnt = 0; /* stability limit exceeded */
232 #endif /* PPS_SYNC */
233
234 #ifdef EXT_CLOCK
235 /*
236 * External clock definitions
237 *
238 * The following definitions and declarations are used only if an
239 * external clock is configured on the system.
240 */
241 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
242
243 /*
244 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
245 * interrupt and decremented once each second.
246 */
247 int clock_count = 0; /* CPU clock counter */
248
249 #ifdef HIGHBALL
250 /*
251 * The clock_offset and clock_cpu variables are used by the HIGHBALL
252 * interface. The clock_offset variable defines the offset between
253 * system time and the HIGBALL counters. The clock_cpu variable contains
254 * the offset between the system clock and the HIGHBALL clock for use in
255 * disciplining the kernel time variable.
256 */
257 extern struct timeval clock_offset; /* Highball clock offset */
258 long clock_cpu = 0; /* CPU clock adjust */
259 #endif /* HIGHBALL */
260 #endif /* EXT_CLOCK */
261 #endif /* NTP */
262
263
264 /*
265 * Bump a timeval by a small number of usec's.
266 */
267 #define BUMPTIME(t, usec) { \
268 register volatile struct timeval *tp = (t); \
269 register long us; \
270 \
271 tp->tv_usec = us = tp->tv_usec + (usec); \
272 if (us >= 1000000) { \
273 tp->tv_usec = us - 1000000; \
274 tp->tv_sec++; \
275 } \
276 }
277
278 int stathz;
279 int profhz;
280 int profprocs;
281 int ticks;
282 static int psdiv, pscnt; /* prof => stat divider */
283 int psratio; /* ratio: prof / stat */
284 int tickfix, tickfixinterval; /* used if tick not really integral */
285 static int tickfixcnt; /* number of ticks since last fix */
286 #ifdef NTP
287 int fixtick; /* used by NTP for same */
288 int shifthz;
289 #endif
290
291 volatile struct timeval time;
292 volatile struct timeval mono_time;
293
294 /*
295 * Initialize clock frequencies and start both clocks running.
296 */
297 void
298 initclocks()
299 {
300 register int i;
301
302 /*
303 * Set divisors to 1 (normal case) and let the machine-specific
304 * code do its bit.
305 */
306 psdiv = pscnt = 1;
307 cpu_initclocks();
308
309 /*
310 * Compute profhz/stathz, and fix profhz if needed.
311 */
312 i = stathz ? stathz : hz;
313 if (profhz == 0)
314 profhz = i;
315 psratio = profhz / i;
316
317 #ifdef NTP
318 switch (hz) {
319 case 60:
320 case 64:
321 shifthz = SHIFT_SCALE - 6;
322 break;
323 case 96:
324 case 100:
325 case 128:
326 shifthz = SHIFT_SCALE - 7;
327 break;
328 case 256:
329 shifthz = SHIFT_SCALE - 8;
330 break;
331 case 1024:
332 shifthz = SHIFT_SCALE - 10;
333 break;
334 default:
335 panic("weird hz");
336 }
337 #endif
338 }
339
340 /*
341 * The real-time timer, interrupting hz times per second.
342 */
343 void
344 hardclock(frame)
345 register struct clockframe *frame;
346 {
347 register struct callout *p1;
348 register struct proc *p;
349 register int delta, needsoft;
350 extern int tickdelta;
351 extern long timedelta;
352 #ifdef NTP
353 register int time_update;
354 register int ltemp;
355 #endif
356
357 /*
358 * Update real-time timeout queue.
359 * At front of queue are some number of events which are ``due''.
360 * The time to these is <= 0 and if negative represents the
361 * number of ticks which have passed since it was supposed to happen.
362 * The rest of the q elements (times > 0) are events yet to happen,
363 * where the time for each is given as a delta from the previous.
364 * Decrementing just the first of these serves to decrement the time
365 * to all events.
366 */
367 needsoft = 0;
368 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
369 if (--p1->c_time > 0)
370 break;
371 needsoft = 1;
372 if (p1->c_time == 0)
373 break;
374 }
375
376 p = curproc;
377 if (p) {
378 register struct pstats *pstats;
379
380 /*
381 * Run current process's virtual and profile time, as needed.
382 */
383 pstats = p->p_stats;
384 if (CLKF_USERMODE(frame) &&
385 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
386 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
387 psignal(p, SIGVTALRM);
388 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
389 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
390 psignal(p, SIGPROF);
391 }
392
393 /*
394 * If no separate statistics clock is available, run it from here.
395 */
396 if (stathz == 0)
397 statclock(frame);
398
399 /*
400 * Increment the time-of-day. The increment is normally just
401 * ``tick''. If the machine is one which has a clock frequency
402 * such that ``hz'' would not divide the second evenly into
403 * milliseconds, a periodic adjustment must be applied. Finally,
404 * if we are still adjusting the time (see adjtime()),
405 * ``tickdelta'' may also be added in.
406 */
407 ticks++;
408 delta = tick;
409
410 #ifndef NTP
411 if (tickfix) {
412 tickfixcnt++;
413 if (tickfixcnt >= tickfixinterval) {
414 delta += tickfix;
415 tickfixcnt = 0;
416 }
417 }
418 #endif /* !NTP */
419 /* Imprecise 4bsd adjtime() handling */
420 if (timedelta != 0) {
421 delta = tick + tickdelta;
422 timedelta -= tickdelta;
423 }
424
425 #ifdef notyet
426 microset();
427 #endif
428
429 #ifndef NTP
430 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
431 #endif
432 BUMPTIME(&mono_time, delta);
433
434 #ifdef NTP
435 time_update = delta;
436
437 /*
438 * Compute the phase adjustment. If the low-order bits
439 * (time_phase) of the update overflow, bump the high-order bits
440 * (time_update).
441 */
442 time_phase += time_adj;
443 if (time_phase <= -FINEUSEC) {
444 ltemp = -time_phase >> SHIFT_SCALE;
445 time_phase += ltemp << SHIFT_SCALE;
446 time_update -= ltemp;
447 } else if (time_phase >= FINEUSEC) {
448 ltemp = time_phase >> SHIFT_SCALE;
449 time_phase -= ltemp << SHIFT_SCALE;
450 time_update += ltemp;
451 }
452
453 #ifdef HIGHBALL
454 /*
455 * If the HIGHBALL board is installed, we need to adjust the
456 * external clock offset in order to close the hardware feedback
457 * loop. This will adjust the external clock phase and frequency
458 * in small amounts. The additional phase noise and frequency
459 * wander this causes should be minimal. We also need to
460 * discipline the kernel time variable, since the PLL is used to
461 * discipline the external clock. If the Highball board is not
462 * present, we discipline kernel time with the PLL as usual. We
463 * assume that the external clock phase adjustment (time_update)
464 * and kernel phase adjustment (clock_cpu) are less than the
465 * value of tick.
466 */
467 clock_offset.tv_usec += time_update;
468 if (clock_offset.tv_usec >= 1000000) {
469 clock_offset.tv_sec++;
470 clock_offset.tv_usec -= 1000000;
471 }
472 if (clock_offset.tv_usec < 0) {
473 clock_offset.tv_sec--;
474 clock_offset.tv_usec += 1000000;
475 }
476 time.tv_usec += clock_cpu;
477 clock_cpu = 0;
478 #else
479 time.tv_usec += time_update;
480 #endif /* HIGHBALL */
481
482 /*
483 * On rollover of the second the phase adjustment to be used for
484 * the next second is calculated. Also, the maximum error is
485 * increased by the tolerance. If the PPS frequency discipline
486 * code is present, the phase is increased to compensate for the
487 * CPU clock oscillator frequency error.
488 *
489 * On a 32-bit machine and given parameters in the timex.h
490 * header file, the maximum phase adjustment is +-512 ms and
491 * maximum frequency offset is a tad less than) +-512 ppm. On a
492 * 64-bit machine, you shouldn't need to ask.
493 */
494 if (time.tv_usec >= 1000000) {
495 time.tv_usec -= 1000000;
496 time.tv_sec++;
497 time_maxerror += time_tolerance >> SHIFT_USEC;
498
499 /*
500 * Leap second processing. If in leap-insert state at
501 * the end of the day, the system clock is set back one
502 * second; if in leap-delete state, the system clock is
503 * set ahead one second. The microtime() routine or
504 * external clock driver will insure that reported time
505 * is always monotonic. The ugly divides should be
506 * replaced.
507 */
508 switch (time_state) {
509 case TIME_OK:
510 if (time_status & STA_INS)
511 time_state = TIME_INS;
512 else if (time_status & STA_DEL)
513 time_state = TIME_DEL;
514 break;
515
516 case TIME_INS:
517 if (time.tv_sec % 86400 == 0) {
518 time.tv_sec--;
519 time_state = TIME_OOP;
520 }
521 break;
522
523 case TIME_DEL:
524 if ((time.tv_sec + 1) % 86400 == 0) {
525 time.tv_sec++;
526 time_state = TIME_WAIT;
527 }
528 break;
529
530 case TIME_OOP:
531 time_state = TIME_WAIT;
532 break;
533
534 case TIME_WAIT:
535 if (!(time_status & (STA_INS | STA_DEL)))
536 time_state = TIME_OK;
537 break;
538 }
539
540 /*
541 * Compute the phase adjustment for the next second. In
542 * PLL mode, the offset is reduced by a fixed factor
543 * times the time constant. In FLL mode the offset is
544 * used directly. In either mode, the maximum phase
545 * adjustment for each second is clamped so as to spread
546 * the adjustment over not more than the number of
547 * seconds between updates.
548 */
549 if (time_offset < 0) {
550 ltemp = -time_offset;
551 if (!(time_status & STA_FLL))
552 ltemp >>= SHIFT_KG + time_constant;
553 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
554 ltemp = (MAXPHASE / MINSEC) <<
555 SHIFT_UPDATE;
556 time_offset += ltemp;
557 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
558 } else if (time_offset > 0) {
559 ltemp = time_offset;
560 if (!(time_status & STA_FLL))
561 ltemp >>= SHIFT_KG + time_constant;
562 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
563 ltemp = (MAXPHASE / MINSEC) <<
564 SHIFT_UPDATE;
565 time_offset -= ltemp;
566 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
567 } else
568 time_adj = 0;
569
570 /*
571 * Compute the frequency estimate and additional phase
572 * adjustment due to frequency error for the next
573 * second. When the PPS signal is engaged, gnaw on the
574 * watchdog counter and update the frequency computed by
575 * the pll and the PPS signal.
576 */
577 #ifdef PPS_SYNC
578 pps_valid++;
579 if (pps_valid == PPS_VALID) {
580 pps_jitter = MAXTIME;
581 pps_stabil = MAXFREQ;
582 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
583 STA_PPSWANDER | STA_PPSERROR);
584 }
585 ltemp = time_freq + pps_freq;
586 #else
587 ltemp = time_freq;
588 #endif /* PPS_SYNC */
589
590 if (ltemp < 0)
591 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
592 else
593 time_adj += ltemp >> (SHIFT_USEC - shifthz);
594 time_adj += (long)fixtick << shifthz;
595
596 /*
597 * When the CPU clock oscillator frequency is not a
598 * power of 2 in Hz, shifthz is only an approximate
599 * scale factor.
600 */
601 switch (hz) {
602 case 96:
603 case 100:
604 /*
605 * In the following code the overall gain is increased
606 * by a factor of 1.25, which results in a residual
607 * error less than 3 percent.
608 */
609 if (time_adj < 0)
610 time_adj -= -time_adj >> 2;
611 else
612 time_adj += time_adj >> 2;
613 break;
614 case 60:
615 /*
616 * 60 Hz m68k and vaxes have a PLL gain factor of of
617 * 60/64 (15/16) of what it should be. In the following code
618 * the overall gain is increased by a factor of 1.0625,
619 * (17/16) which results in a residual error of just less
620 * than 0.4 percent.
621 */
622 if (time_adj < 0)
623 time_adj -= -time_adj >> 4;
624 else
625 time_adj += time_adj >> 4;
626 break;
627 }
628
629 #ifdef EXT_CLOCK
630 /*
631 * If an external clock is present, it is necessary to
632 * discipline the kernel time variable anyway, since not
633 * all system components use the microtime() interface.
634 * Here, the time offset between the external clock and
635 * kernel time variable is computed every so often.
636 */
637 clock_count++;
638 if (clock_count > CLOCK_INTERVAL) {
639 clock_count = 0;
640 microtime(&clock_ext);
641 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
642 delta.tv_usec = clock_ext.tv_usec -
643 time.tv_usec;
644 if (delta.tv_usec < 0)
645 delta.tv_sec--;
646 if (delta.tv_usec >= 500000) {
647 delta.tv_usec -= 1000000;
648 delta.tv_sec++;
649 }
650 if (delta.tv_usec < -500000) {
651 delta.tv_usec += 1000000;
652 delta.tv_sec--;
653 }
654 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
655 delta.tv_usec > MAXPHASE) ||
656 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
657 delta.tv_usec < -MAXPHASE)) {
658 time = clock_ext;
659 delta.tv_sec = 0;
660 delta.tv_usec = 0;
661 }
662 #ifdef HIGHBALL
663 clock_cpu = delta.tv_usec;
664 #else /* HIGHBALL */
665 hardupdate(delta.tv_usec);
666 #endif /* HIGHBALL */
667 }
668 #endif /* EXT_CLOCK */
669 }
670
671 #endif /* NTP */
672
673 /*
674 * Process callouts at a very low cpu priority, so we don't keep the
675 * relatively high clock interrupt priority any longer than necessary.
676 */
677 if (needsoft) {
678 if (CLKF_BASEPRI(frame)) {
679 /*
680 * Save the overhead of a software interrupt;
681 * it will happen as soon as we return, so do it now.
682 */
683 (void)splsoftclock();
684 softclock();
685 } else
686 setsoftclock();
687 }
688 }
689
690 /*
691 * Software (low priority) clock interrupt.
692 * Run periodic events from timeout queue.
693 */
694 /*ARGSUSED*/
695 void
696 softclock()
697 {
698 register struct callout *c;
699 register void *arg;
700 register void (*func) __P((void *));
701 register int s;
702
703 s = splhigh();
704 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
705 func = c->c_func;
706 arg = c->c_arg;
707 calltodo.c_next = c->c_next;
708 c->c_next = callfree;
709 callfree = c;
710 splx(s);
711 (*func)(arg);
712 (void) splhigh();
713 }
714 splx(s);
715 }
716
717 /*
718 * timeout --
719 * Execute a function after a specified length of time.
720 *
721 * untimeout --
722 * Cancel previous timeout function call.
723 *
724 * See AT&T BCI Driver Reference Manual for specification. This
725 * implementation differs from that one in that no identification
726 * value is returned from timeout, rather, the original arguments
727 * to timeout are used to identify entries for untimeout.
728 */
729 void
730 timeout(ftn, arg, ticks)
731 void (*ftn) __P((void *));
732 void *arg;
733 register int ticks;
734 {
735 register struct callout *new, *p, *t;
736 register int s;
737
738 if (ticks <= 0)
739 ticks = 1;
740
741 /* Lock out the clock. */
742 s = splhigh();
743
744 /* Fill in the next free callout structure. */
745 if (callfree == NULL)
746 panic("timeout table full");
747 new = callfree;
748 callfree = new->c_next;
749 new->c_arg = arg;
750 new->c_func = ftn;
751
752 /*
753 * The time for each event is stored as a difference from the time
754 * of the previous event on the queue. Walk the queue, correcting
755 * the ticks argument for queue entries passed. Correct the ticks
756 * value for the queue entry immediately after the insertion point
757 * as well. Watch out for negative c_time values; these represent
758 * overdue events.
759 */
760 for (p = &calltodo;
761 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
762 if (t->c_time > 0)
763 ticks -= t->c_time;
764 new->c_time = ticks;
765 if (t != NULL)
766 t->c_time -= ticks;
767
768 /* Insert the new entry into the queue. */
769 p->c_next = new;
770 new->c_next = t;
771 splx(s);
772 }
773
774 void
775 untimeout(ftn, arg)
776 void (*ftn) __P((void *));
777 void *arg;
778 {
779 register struct callout *p, *t;
780 register int s;
781
782 s = splhigh();
783 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
784 if (t->c_func == ftn && t->c_arg == arg) {
785 /* Increment next entry's tick count. */
786 if (t->c_next && t->c_time > 0)
787 t->c_next->c_time += t->c_time;
788
789 /* Move entry from callout queue to callfree queue. */
790 p->c_next = t->c_next;
791 t->c_next = callfree;
792 callfree = t;
793 break;
794 }
795 splx(s);
796 }
797
798 /*
799 * Compute number of hz until specified time. Used to
800 * compute third argument to timeout() from an absolute time.
801 */
802 int
803 hzto(tv)
804 struct timeval *tv;
805 {
806 register long ticks, sec;
807 int s;
808
809 /*
810 * If number of microseconds will fit in 32 bit arithmetic,
811 * then compute number of microseconds to time and scale to
812 * ticks. Otherwise just compute number of hz in time, rounding
813 * times greater than representible to maximum value. (We must
814 * compute in microseconds, because hz can be greater than 1000,
815 * and thus tick can be less than one millisecond).
816 *
817 * Delta times less than 14 hours can be computed ``exactly''.
818 * (Note that if hz would yeild a non-integral number of us per
819 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
820 * than they should be.) Maximum value for any timeout in 10ms
821 * ticks is 250 days.
822 */
823 s = splhigh();
824 sec = tv->tv_sec - time.tv_sec;
825 if (sec <= 0x7fffffff / 1000000 - 1)
826 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
827 (tv->tv_usec - time.tv_usec)) / tick;
828 else if (sec <= 0x7fffffff / hz)
829 ticks = sec * hz;
830 else
831 ticks = 0x7fffffff;
832 splx(s);
833 return (ticks);
834 }
835
836 /*
837 * Start profiling on a process.
838 *
839 * Kernel profiling passes proc0 which never exits and hence
840 * keeps the profile clock running constantly.
841 */
842 void
843 startprofclock(p)
844 register struct proc *p;
845 {
846 int s;
847
848 if ((p->p_flag & P_PROFIL) == 0) {
849 p->p_flag |= P_PROFIL;
850 if (++profprocs == 1 && stathz != 0) {
851 s = splstatclock();
852 psdiv = pscnt = psratio;
853 setstatclockrate(profhz);
854 splx(s);
855 }
856 }
857 }
858
859 /*
860 * Stop profiling on a process.
861 */
862 void
863 stopprofclock(p)
864 register struct proc *p;
865 {
866 int s;
867
868 if (p->p_flag & P_PROFIL) {
869 p->p_flag &= ~P_PROFIL;
870 if (--profprocs == 0 && stathz != 0) {
871 s = splstatclock();
872 psdiv = pscnt = 1;
873 setstatclockrate(stathz);
874 splx(s);
875 }
876 }
877 }
878
879 /*
880 * Statistics clock. Grab profile sample, and if divider reaches 0,
881 * do process and kernel statistics.
882 */
883 void
884 statclock(frame)
885 register struct clockframe *frame;
886 {
887 #ifdef GPROF
888 register struct gmonparam *g;
889 #endif
890 register struct proc *p;
891 register int i;
892
893 if (CLKF_USERMODE(frame)) {
894 p = curproc;
895 if (p->p_flag & P_PROFIL)
896 addupc_intr(p, CLKF_PC(frame), 1);
897 if (--pscnt > 0)
898 return;
899 /*
900 * Came from user mode; CPU was in user state.
901 * If this process is being profiled record the tick.
902 */
903 p->p_uticks++;
904 if (p->p_nice > NZERO)
905 cp_time[CP_NICE]++;
906 else
907 cp_time[CP_USER]++;
908 } else {
909 #ifdef GPROF
910 /*
911 * Kernel statistics are just like addupc_intr, only easier.
912 */
913 g = &_gmonparam;
914 if (g->state == GMON_PROF_ON) {
915 i = CLKF_PC(frame) - g->lowpc;
916 if (i < g->textsize) {
917 i /= HISTFRACTION * sizeof(*g->kcount);
918 g->kcount[i]++;
919 }
920 }
921 #endif
922 if (--pscnt > 0)
923 return;
924 /*
925 * Came from kernel mode, so we were:
926 * - handling an interrupt,
927 * - doing syscall or trap work on behalf of the current
928 * user process, or
929 * - spinning in the idle loop.
930 * Whichever it is, charge the time as appropriate.
931 * Note that we charge interrupts to the current process,
932 * regardless of whether they are ``for'' that process,
933 * so that we know how much of its real time was spent
934 * in ``non-process'' (i.e., interrupt) work.
935 */
936 p = curproc;
937 if (CLKF_INTR(frame)) {
938 if (p != NULL)
939 p->p_iticks++;
940 cp_time[CP_INTR]++;
941 } else if (p != NULL) {
942 p->p_sticks++;
943 cp_time[CP_SYS]++;
944 } else
945 cp_time[CP_IDLE]++;
946 }
947 pscnt = psdiv;
948
949 /*
950 * XXX Support old-style instrumentation for now.
951 *
952 * We maintain statistics shown by user-level statistics
953 * programs: the amount of time in each cpu state, and
954 * the amount of time each of DK_NDRIVE ``drives'' is busy.
955 *
956 * XXX should either run linked list of drives, or (better)
957 * grab timestamps in the start & done code.
958 */
959 for (i = 0; i < DK_NDRIVE; i++)
960 if (dk_busy & (1 << i))
961 dk_time[i]++;
962
963 /*
964 * We adjust the priority of the current process. The priority of
965 * a process gets worse as it accumulates CPU time. The cpu usage
966 * estimator (p_estcpu) is increased here. The formula for computing
967 * priorities (in kern_synch.c) will compute a different value each
968 * time p_estcpu increases by 4. The cpu usage estimator ramps up
969 * quite quickly when the process is running (linearly), and decays
970 * away exponentially, at a rate which is proportionally slower when
971 * the system is busy. The basic principal is that the system will
972 * 90% forget that the process used a lot of CPU time in 5 * loadav
973 * seconds. This causes the system to favor processes which haven't
974 * run much recently, and to round-robin among other processes.
975 */
976 if (p != NULL) {
977 p->p_cpticks++;
978 if (++p->p_estcpu == 0)
979 p->p_estcpu--;
980 if ((p->p_estcpu & 3) == 0) {
981 resetpriority(p);
982 if (p->p_priority >= PUSER)
983 p->p_priority = p->p_usrpri;
984 }
985 }
986 }
987
988
989 #ifdef NTP /* NTP phase-locked loop in kernel */
990
991 /*
992 * hardupdate() - local clock update
993 *
994 * This routine is called by ntp_adjtime() to update the local clock
995 * phase and frequency. The implementation is of an adaptive-parameter,
996 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
997 * time and frequency offset estimates for each call. If the kernel PPS
998 * discipline code is configured (PPS_SYNC), the PPS signal itself
999 * determines the new time offset, instead of the calling argument.
1000 * Presumably, calls to ntp_adjtime() occur only when the caller
1001 * believes the local clock is valid within some bound (+-128 ms with
1002 * NTP). If the caller's time is far different than the PPS time, an
1003 * argument will ensue, and it's not clear who will lose.
1004 *
1005 * For uncompensated quartz crystal oscillatores and nominal update
1006 * intervals less than 1024 s, operation should be in phase-lock mode
1007 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1008 * intervals greater than thiss, operation should be in frequency-lock
1009 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1010 *
1011 * Note: splclock() is in effect.
1012 */
1013 void
1014 hardupdate(offset)
1015 long offset;
1016 {
1017 long ltemp, mtemp;
1018
1019 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1020 return;
1021 ltemp = offset;
1022 #ifdef PPS_SYNC
1023 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1024 ltemp = pps_offset;
1025 #endif /* PPS_SYNC */
1026
1027 /*
1028 * Scale the phase adjustment and clamp to the operating range.
1029 */
1030 if (ltemp > MAXPHASE)
1031 time_offset = MAXPHASE << SHIFT_UPDATE;
1032 else if (ltemp < -MAXPHASE)
1033 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1034 else
1035 time_offset = ltemp << SHIFT_UPDATE;
1036
1037 /*
1038 * Select whether the frequency is to be controlled and in which
1039 * mode (PLL or FLL). Clamp to the operating range. Ugly
1040 * multiply/divide should be replaced someday.
1041 */
1042 if (time_status & STA_FREQHOLD || time_reftime == 0)
1043 time_reftime = time.tv_sec;
1044 mtemp = time.tv_sec - time_reftime;
1045 time_reftime = time.tv_sec;
1046 if (time_status & STA_FLL) {
1047 if (mtemp >= MINSEC) {
1048 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1049 SHIFT_UPDATE));
1050 if (ltemp < 0)
1051 time_freq -= -ltemp >> SHIFT_KH;
1052 else
1053 time_freq += ltemp >> SHIFT_KH;
1054 }
1055 } else {
1056 if (mtemp < MAXSEC) {
1057 ltemp *= mtemp;
1058 if (ltemp < 0)
1059 time_freq -= -ltemp >> (time_constant +
1060 time_constant + SHIFT_KF -
1061 SHIFT_USEC);
1062 else
1063 time_freq += ltemp >> (time_constant +
1064 time_constant + SHIFT_KF -
1065 SHIFT_USEC);
1066 }
1067 }
1068 if (time_freq > time_tolerance)
1069 time_freq = time_tolerance;
1070 else if (time_freq < -time_tolerance)
1071 time_freq = -time_tolerance;
1072 }
1073
1074 #ifdef PPS_SYNC
1075 /*
1076 * hardpps() - discipline CPU clock oscillator to external PPS signal
1077 *
1078 * This routine is called at each PPS interrupt in order to discipline
1079 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1080 * and leaves it in a handy spot for the hardclock() routine. It
1081 * integrates successive PPS phase differences and calculates the
1082 * frequency offset. This is used in hardclock() to discipline the CPU
1083 * clock oscillator so that intrinsic frequency error is cancelled out.
1084 * The code requires the caller to capture the time and hardware counter
1085 * value at the on-time PPS signal transition.
1086 *
1087 * Note that, on some Unix systems, this routine runs at an interrupt
1088 * priority level higher than the timer interrupt routine hardclock().
1089 * Therefore, the variables used are distinct from the hardclock()
1090 * variables, except for certain exceptions: The PPS frequency pps_freq
1091 * and phase pps_offset variables are determined by this routine and
1092 * updated atomically. The time_tolerance variable can be considered a
1093 * constant, since it is infrequently changed, and then only when the
1094 * PPS signal is disabled. The watchdog counter pps_valid is updated
1095 * once per second by hardclock() and is atomically cleared in this
1096 * routine.
1097 */
1098 void
1099 hardpps(tvp, usec)
1100 struct timeval *tvp; /* time at PPS */
1101 long usec; /* hardware counter at PPS */
1102 {
1103 long u_usec, v_usec, bigtick;
1104 long cal_sec, cal_usec;
1105
1106 /*
1107 * An occasional glitch can be produced when the PPS interrupt
1108 * occurs in the hardclock() routine before the time variable is
1109 * updated. Here the offset is discarded when the difference
1110 * between it and the last one is greater than tick/2, but not
1111 * if the interval since the first discard exceeds 30 s.
1112 */
1113 time_status |= STA_PPSSIGNAL;
1114 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1115 pps_valid = 0;
1116 u_usec = -tvp->tv_usec;
1117 if (u_usec < -500000)
1118 u_usec += 1000000;
1119 v_usec = pps_offset - u_usec;
1120 if (v_usec < 0)
1121 v_usec = -v_usec;
1122 if (v_usec > (tick >> 1)) {
1123 if (pps_glitch > MAXGLITCH) {
1124 pps_glitch = 0;
1125 pps_tf[2] = u_usec;
1126 pps_tf[1] = u_usec;
1127 } else {
1128 pps_glitch++;
1129 u_usec = pps_offset;
1130 }
1131 } else
1132 pps_glitch = 0;
1133
1134 /*
1135 * A three-stage median filter is used to help deglitch the pps
1136 * time. The median sample becomes the time offset estimate; the
1137 * difference between the other two samples becomes the time
1138 * dispersion (jitter) estimate.
1139 */
1140 pps_tf[2] = pps_tf[1];
1141 pps_tf[1] = pps_tf[0];
1142 pps_tf[0] = u_usec;
1143 if (pps_tf[0] > pps_tf[1]) {
1144 if (pps_tf[1] > pps_tf[2]) {
1145 pps_offset = pps_tf[1]; /* 0 1 2 */
1146 v_usec = pps_tf[0] - pps_tf[2];
1147 } else if (pps_tf[2] > pps_tf[0]) {
1148 pps_offset = pps_tf[0]; /* 2 0 1 */
1149 v_usec = pps_tf[2] - pps_tf[1];
1150 } else {
1151 pps_offset = pps_tf[2]; /* 0 2 1 */
1152 v_usec = pps_tf[0] - pps_tf[1];
1153 }
1154 } else {
1155 if (pps_tf[1] < pps_tf[2]) {
1156 pps_offset = pps_tf[1]; /* 2 1 0 */
1157 v_usec = pps_tf[2] - pps_tf[0];
1158 } else if (pps_tf[2] < pps_tf[0]) {
1159 pps_offset = pps_tf[0]; /* 1 0 2 */
1160 v_usec = pps_tf[1] - pps_tf[2];
1161 } else {
1162 pps_offset = pps_tf[2]; /* 1 2 0 */
1163 v_usec = pps_tf[1] - pps_tf[0];
1164 }
1165 }
1166 if (v_usec > MAXTIME)
1167 pps_jitcnt++;
1168 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1169 if (v_usec < 0)
1170 pps_jitter -= -v_usec >> PPS_AVG;
1171 else
1172 pps_jitter += v_usec >> PPS_AVG;
1173 if (pps_jitter > (MAXTIME >> 1))
1174 time_status |= STA_PPSJITTER;
1175
1176 /*
1177 * During the calibration interval adjust the starting time when
1178 * the tick overflows. At the end of the interval compute the
1179 * duration of the interval and the difference of the hardware
1180 * counters at the beginning and end of the interval. This code
1181 * is deliciously complicated by the fact valid differences may
1182 * exceed the value of tick when using long calibration
1183 * intervals and small ticks. Note that the counter can be
1184 * greater than tick if caught at just the wrong instant, but
1185 * the values returned and used here are correct.
1186 */
1187 bigtick = (long)tick << SHIFT_USEC;
1188 pps_usec -= pps_freq;
1189 if (pps_usec >= bigtick)
1190 pps_usec -= bigtick;
1191 if (pps_usec < 0)
1192 pps_usec += bigtick;
1193 pps_time.tv_sec++;
1194 pps_count++;
1195 if (pps_count < (1 << pps_shift))
1196 return;
1197 pps_count = 0;
1198 pps_calcnt++;
1199 u_usec = usec << SHIFT_USEC;
1200 v_usec = pps_usec - u_usec;
1201 if (v_usec >= bigtick >> 1)
1202 v_usec -= bigtick;
1203 if (v_usec < -(bigtick >> 1))
1204 v_usec += bigtick;
1205 if (v_usec < 0)
1206 v_usec = -(-v_usec >> pps_shift);
1207 else
1208 v_usec = v_usec >> pps_shift;
1209 pps_usec = u_usec;
1210 cal_sec = tvp->tv_sec;
1211 cal_usec = tvp->tv_usec;
1212 cal_sec -= pps_time.tv_sec;
1213 cal_usec -= pps_time.tv_usec;
1214 if (cal_usec < 0) {
1215 cal_usec += 1000000;
1216 cal_sec--;
1217 }
1218 pps_time = *tvp;
1219
1220 /*
1221 * Check for lost interrupts, noise, excessive jitter and
1222 * excessive frequency error. The number of timer ticks during
1223 * the interval may vary +-1 tick. Add to this a margin of one
1224 * tick for the PPS signal jitter and maximum frequency
1225 * deviation. If the limits are exceeded, the calibration
1226 * interval is reset to the minimum and we start over.
1227 */
1228 u_usec = (long)tick << 1;
1229 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1230 || (cal_sec == 0 && cal_usec < u_usec))
1231 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1232 pps_errcnt++;
1233 pps_shift = PPS_SHIFT;
1234 pps_intcnt = 0;
1235 time_status |= STA_PPSERROR;
1236 return;
1237 }
1238
1239 /*
1240 * A three-stage median filter is used to help deglitch the pps
1241 * frequency. The median sample becomes the frequency offset
1242 * estimate; the difference between the other two samples
1243 * becomes the frequency dispersion (stability) estimate.
1244 */
1245 pps_ff[2] = pps_ff[1];
1246 pps_ff[1] = pps_ff[0];
1247 pps_ff[0] = v_usec;
1248 if (pps_ff[0] > pps_ff[1]) {
1249 if (pps_ff[1] > pps_ff[2]) {
1250 u_usec = pps_ff[1]; /* 0 1 2 */
1251 v_usec = pps_ff[0] - pps_ff[2];
1252 } else if (pps_ff[2] > pps_ff[0]) {
1253 u_usec = pps_ff[0]; /* 2 0 1 */
1254 v_usec = pps_ff[2] - pps_ff[1];
1255 } else {
1256 u_usec = pps_ff[2]; /* 0 2 1 */
1257 v_usec = pps_ff[0] - pps_ff[1];
1258 }
1259 } else {
1260 if (pps_ff[1] < pps_ff[2]) {
1261 u_usec = pps_ff[1]; /* 2 1 0 */
1262 v_usec = pps_ff[2] - pps_ff[0];
1263 } else if (pps_ff[2] < pps_ff[0]) {
1264 u_usec = pps_ff[0]; /* 1 0 2 */
1265 v_usec = pps_ff[1] - pps_ff[2];
1266 } else {
1267 u_usec = pps_ff[2]; /* 1 2 0 */
1268 v_usec = pps_ff[1] - pps_ff[0];
1269 }
1270 }
1271
1272 /*
1273 * Here the frequency dispersion (stability) is updated. If it
1274 * is less than one-fourth the maximum (MAXFREQ), the frequency
1275 * offset is updated as well, but clamped to the tolerance. It
1276 * will be processed later by the hardclock() routine.
1277 */
1278 v_usec = (v_usec >> 1) - pps_stabil;
1279 if (v_usec < 0)
1280 pps_stabil -= -v_usec >> PPS_AVG;
1281 else
1282 pps_stabil += v_usec >> PPS_AVG;
1283 if (pps_stabil > MAXFREQ >> 2) {
1284 pps_stbcnt++;
1285 time_status |= STA_PPSWANDER;
1286 return;
1287 }
1288 if (time_status & STA_PPSFREQ) {
1289 if (u_usec < 0) {
1290 pps_freq -= -u_usec >> PPS_AVG;
1291 if (pps_freq < -time_tolerance)
1292 pps_freq = -time_tolerance;
1293 u_usec = -u_usec;
1294 } else {
1295 pps_freq += u_usec >> PPS_AVG;
1296 if (pps_freq > time_tolerance)
1297 pps_freq = time_tolerance;
1298 }
1299 }
1300
1301 /*
1302 * Here the calibration interval is adjusted. If the maximum
1303 * time difference is greater than tick / 4, reduce the interval
1304 * by half. If this is not the case for four consecutive
1305 * intervals, double the interval.
1306 */
1307 if (u_usec << pps_shift > bigtick >> 2) {
1308 pps_intcnt = 0;
1309 if (pps_shift > PPS_SHIFT)
1310 pps_shift--;
1311 } else if (pps_intcnt >= 4) {
1312 pps_intcnt = 0;
1313 if (pps_shift < PPS_SHIFTMAX)
1314 pps_shift++;
1315 } else
1316 pps_intcnt++;
1317 }
1318 #endif /* PPS_SYNC */
1319 #endif /* NTP */
1320
1321
1322 /*
1323 * Return information about system clocks.
1324 */
1325 int
1326 sysctl_clockrate(where, sizep)
1327 register char *where;
1328 size_t *sizep;
1329 {
1330 struct clockinfo clkinfo;
1331
1332 /*
1333 * Construct clockinfo structure.
1334 */
1335 clkinfo.tick = tick;
1336 clkinfo.tickadj = tickadj;
1337 clkinfo.hz = hz;
1338 clkinfo.profhz = profhz;
1339 clkinfo.stathz = stathz ? stathz : hz;
1340 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1341 }
1342
1343 #ifdef DDB
1344 #include <machine/db_machdep.h>
1345
1346 #include <ddb/db_interface.h>
1347 #include <ddb/db_access.h>
1348 #include <ddb/db_sym.h>
1349 #include <ddb/db_output.h>
1350
1351 void db_show_callout(addr, haddr, count, modif)
1352 db_expr_t addr;
1353 int haddr;
1354 db_expr_t count;
1355 char *modif;
1356 {
1357 register struct callout *p1;
1358 register int cum;
1359 register int s;
1360 db_expr_t offset;
1361 char *name;
1362
1363 db_printf(" cum ticks arg func\n");
1364 s = splhigh();
1365 for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
1366 register int t = p1->c_time;
1367
1368 if (t > 0)
1369 cum += t;
1370
1371 db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
1372 if (name == NULL)
1373 name = "?";
1374
1375 db_printf("%9d %9d %p %s (%p)\n",
1376 cum, t, p1->c_arg, name, p1->c_func);
1377 }
1378 splx(s);
1379 }
1380 #endif
1381