kern_clock.c revision 1.38 1 /* $NetBSD: kern_clock.c,v 1.38 1997/01/15 04:27:35 cgd Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/dkstat.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <vm/vm.h>
52 #include <sys/sysctl.h>
53 #include <sys/timex.h>
54
55 #include <machine/cpu.h>
56
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60
61 /*
62 * Clock handling routines.
63 *
64 * This code is written to operate with two timers that run independently of
65 * each other. The main clock, running hz times per second, is used to keep
66 * track of real time. The second timer handles kernel and user profiling,
67 * and does resource use estimation. If the second timer is programmable,
68 * it is randomized to avoid aliasing between the two clocks. For example,
69 * the randomization prevents an adversary from always giving up the cpu
70 * just before its quantum expires. Otherwise, it would never accumulate
71 * cpu ticks. The mean frequency of the second timer is stathz.
72 *
73 * If no second timer exists, stathz will be zero; in this case we drive
74 * profiling and statistics off the main clock. This WILL NOT be accurate;
75 * do not do it unless absolutely necessary.
76 *
77 * The statistics clock may (or may not) be run at a higher rate while
78 * profiling. This profile clock runs at profhz. We require that profhz
79 * be an integral multiple of stathz.
80 *
81 * If the statistics clock is running fast, it must be divided by the ratio
82 * profhz/stathz for statistics. (For profiling, every tick counts.)
83 */
84
85 /*
86 * TODO:
87 * allocate more timeout table slots when table overflows.
88 */
89
90
91 #ifdef NTP /* NTP phase-locked loop in kernel */
92 /*
93 * Phase/frequency-lock loop (PLL/FLL) definitions
94 *
95 * The following variables are read and set by the ntp_adjtime() system
96 * call.
97 *
98 * time_state shows the state of the system clock, with values defined
99 * in the timex.h header file.
100 *
101 * time_status shows the status of the system clock, with bits defined
102 * in the timex.h header file.
103 *
104 * time_offset is used by the PLL/FLL to adjust the system time in small
105 * increments.
106 *
107 * time_constant determines the bandwidth or "stiffness" of the PLL.
108 *
109 * time_tolerance determines maximum frequency error or tolerance of the
110 * CPU clock oscillator and is a property of the architecture; however,
111 * in principle it could change as result of the presence of external
112 * discipline signals, for instance.
113 *
114 * time_precision is usually equal to the kernel tick variable; however,
115 * in cases where a precision clock counter or external clock is
116 * available, the resolution can be much less than this and depend on
117 * whether the external clock is working or not.
118 *
119 * time_maxerror is initialized by a ntp_adjtime() call and increased by
120 * the kernel once each second to reflect the maximum error bound
121 * growth.
122 *
123 * time_esterror is set and read by the ntp_adjtime() call, but
124 * otherwise not used by the kernel.
125 */
126 int time_state = TIME_OK; /* clock state */
127 int time_status = STA_UNSYNC; /* clock status bits */
128 long time_offset = 0; /* time offset (us) */
129 long time_constant = 0; /* pll time constant */
130 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
131 long time_precision = 1; /* clock precision (us) */
132 long time_maxerror = MAXPHASE; /* maximum error (us) */
133 long time_esterror = MAXPHASE; /* estimated error (us) */
134
135 /*
136 * The following variables establish the state of the PLL/FLL and the
137 * residual time and frequency offset of the local clock. The scale
138 * factors are defined in the timex.h header file.
139 *
140 * time_phase and time_freq are the phase increment and the frequency
141 * increment, respectively, of the kernel time variable.
142 *
143 * time_freq is set via ntp_adjtime() from a value stored in a file when
144 * the synchronization daemon is first started. Its value is retrieved
145 * via ntp_adjtime() and written to the file about once per hour by the
146 * daemon.
147 *
148 * time_adj is the adjustment added to the value of tick at each timer
149 * interrupt and is recomputed from time_phase and time_freq at each
150 * seconds rollover.
151 *
152 * time_reftime is the second's portion of the system time at the last
153 * call to ntp_adjtime(). It is used to adjust the time_freq variable
154 * and to increase the time_maxerror as the time since last update
155 * increases.
156 */
157 long time_phase = 0; /* phase offset (scaled us) */
158 long time_freq = 0; /* frequency offset (scaled ppm) */
159 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
160 long time_reftime = 0; /* time at last adjustment (s) */
161
162 #ifdef PPS_SYNC
163 /*
164 * The following variables are used only if the kernel PPS discipline
165 * code is configured (PPS_SYNC). The scale factors are defined in the
166 * timex.h header file.
167 *
168 * pps_time contains the time at each calibration interval, as read by
169 * microtime(). pps_count counts the seconds of the calibration
170 * interval, the duration of which is nominally pps_shift in powers of
171 * two.
172 *
173 * pps_offset is the time offset produced by the time median filter
174 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
175 * this filter.
176 *
177 * pps_freq is the frequency offset produced by the frequency median
178 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
179 * by this filter.
180 *
181 * pps_usec is latched from a high resolution counter or external clock
182 * at pps_time. Here we want the hardware counter contents only, not the
183 * contents plus the time_tv.usec as usual.
184 *
185 * pps_valid counts the number of seconds since the last PPS update. It
186 * is used as a watchdog timer to disable the PPS discipline should the
187 * PPS signal be lost.
188 *
189 * pps_glitch counts the number of seconds since the beginning of an
190 * offset burst more than tick/2 from current nominal offset. It is used
191 * mainly to suppress error bursts due to priority conflicts between the
192 * PPS interrupt and timer interrupt.
193 *
194 * pps_intcnt counts the calibration intervals for use in the interval-
195 * adaptation algorithm. It's just too complicated for words.
196 */
197 struct timeval pps_time; /* kernel time at last interval */
198 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
199 long pps_offset = 0; /* pps time offset (us) */
200 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
201 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
202 long pps_freq = 0; /* frequency offset (scaled ppm) */
203 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
204 long pps_usec = 0; /* microsec counter at last interval */
205 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
206 int pps_glitch = 0; /* pps signal glitch counter */
207 int pps_count = 0; /* calibration interval counter (s) */
208 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
209 int pps_intcnt = 0; /* intervals at current duration */
210
211 /*
212 * PPS signal quality monitors
213 *
214 * pps_jitcnt counts the seconds that have been discarded because the
215 * jitter measured by the time median filter exceeds the limit MAXTIME
216 * (100 us).
217 *
218 * pps_calcnt counts the frequency calibration intervals, which are
219 * variable from 4 s to 256 s.
220 *
221 * pps_errcnt counts the calibration intervals which have been discarded
222 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
223 * calibration interval jitter exceeds two ticks.
224 *
225 * pps_stbcnt counts the calibration intervals that have been discarded
226 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
227 */
228 long pps_jitcnt = 0; /* jitter limit exceeded */
229 long pps_calcnt = 0; /* calibration intervals */
230 long pps_errcnt = 0; /* calibration errors */
231 long pps_stbcnt = 0; /* stability limit exceeded */
232 #endif /* PPS_SYNC */
233
234 #ifdef EXT_CLOCK
235 /*
236 * External clock definitions
237 *
238 * The following definitions and declarations are used only if an
239 * external clock is configured on the system.
240 */
241 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
242
243 /*
244 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
245 * interrupt and decremented once each second.
246 */
247 int clock_count = 0; /* CPU clock counter */
248
249 #ifdef HIGHBALL
250 /*
251 * The clock_offset and clock_cpu variables are used by the HIGHBALL
252 * interface. The clock_offset variable defines the offset between
253 * system time and the HIGBALL counters. The clock_cpu variable contains
254 * the offset between the system clock and the HIGHBALL clock for use in
255 * disciplining the kernel time variable.
256 */
257 extern struct timeval clock_offset; /* Highball clock offset */
258 long clock_cpu = 0; /* CPU clock adjust */
259 #endif /* HIGHBALL */
260 #endif /* EXT_CLOCK */
261 #endif /* NTP */
262
263
264 /*
265 * Bump a timeval by a small number of usec's.
266 */
267 #define BUMPTIME(t, usec) { \
268 register volatile struct timeval *tp = (t); \
269 register long us; \
270 \
271 tp->tv_usec = us = tp->tv_usec + (usec); \
272 if (us >= 1000000) { \
273 tp->tv_usec = us - 1000000; \
274 tp->tv_sec++; \
275 } \
276 }
277
278 int stathz;
279 int profhz;
280 int profprocs;
281 int ticks;
282 static int psdiv, pscnt; /* prof => stat divider */
283 int psratio; /* ratio: prof / stat */
284 int tickfix, tickfixinterval; /* used if tick not really integral */
285 #ifndef NTP
286 static int tickfixcnt; /* number of ticks since last fix */
287 #else
288 int fixtick; /* used by NTP for same */
289 int shifthz;
290 #endif
291
292 volatile struct timeval time;
293 volatile struct timeval mono_time;
294
295 /*
296 * Initialize clock frequencies and start both clocks running.
297 */
298 void
299 initclocks()
300 {
301 register int i;
302
303 /*
304 * Set divisors to 1 (normal case) and let the machine-specific
305 * code do its bit.
306 */
307 psdiv = pscnt = 1;
308 cpu_initclocks();
309
310 /*
311 * Compute profhz/stathz, and fix profhz if needed.
312 */
313 i = stathz ? stathz : hz;
314 if (profhz == 0)
315 profhz = i;
316 psratio = profhz / i;
317
318 #ifdef NTP
319 switch (hz) {
320 case 60:
321 case 64:
322 shifthz = SHIFT_SCALE - 6;
323 break;
324 case 96:
325 case 100:
326 case 128:
327 shifthz = SHIFT_SCALE - 7;
328 break;
329 case 256:
330 shifthz = SHIFT_SCALE - 8;
331 break;
332 case 1024:
333 shifthz = SHIFT_SCALE - 10;
334 break;
335 default:
336 panic("weird hz");
337 }
338 #endif
339 }
340
341 /*
342 * The real-time timer, interrupting hz times per second.
343 */
344 void
345 hardclock(frame)
346 register struct clockframe *frame;
347 {
348 register struct callout *p1;
349 register struct proc *p;
350 register int delta, needsoft;
351 extern int tickdelta;
352 extern long timedelta;
353 #ifdef NTP
354 register int time_update;
355 register int ltemp;
356 #endif
357
358 /*
359 * Update real-time timeout queue.
360 * At front of queue are some number of events which are ``due''.
361 * The time to these is <= 0 and if negative represents the
362 * number of ticks which have passed since it was supposed to happen.
363 * The rest of the q elements (times > 0) are events yet to happen,
364 * where the time for each is given as a delta from the previous.
365 * Decrementing just the first of these serves to decrement the time
366 * to all events.
367 */
368 needsoft = 0;
369 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
370 if (--p1->c_time > 0)
371 break;
372 needsoft = 1;
373 if (p1->c_time == 0)
374 break;
375 }
376
377 p = curproc;
378 if (p) {
379 register struct pstats *pstats;
380
381 /*
382 * Run current process's virtual and profile time, as needed.
383 */
384 pstats = p->p_stats;
385 if (CLKF_USERMODE(frame) &&
386 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
387 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
388 psignal(p, SIGVTALRM);
389 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
390 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
391 psignal(p, SIGPROF);
392 }
393
394 /*
395 * If no separate statistics clock is available, run it from here.
396 */
397 if (stathz == 0)
398 statclock(frame);
399
400 /*
401 * Increment the time-of-day. The increment is normally just
402 * ``tick''. If the machine is one which has a clock frequency
403 * such that ``hz'' would not divide the second evenly into
404 * milliseconds, a periodic adjustment must be applied. Finally,
405 * if we are still adjusting the time (see adjtime()),
406 * ``tickdelta'' may also be added in.
407 */
408 ticks++;
409 delta = tick;
410
411 #ifndef NTP
412 if (tickfix) {
413 tickfixcnt++;
414 if (tickfixcnt >= tickfixinterval) {
415 delta += tickfix;
416 tickfixcnt = 0;
417 }
418 }
419 #endif /* !NTP */
420 /* Imprecise 4bsd adjtime() handling */
421 if (timedelta != 0) {
422 delta += tickdelta;
423 timedelta -= tickdelta;
424 }
425
426 #ifdef notyet
427 microset();
428 #endif
429
430 #ifndef NTP
431 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
432 #endif
433 BUMPTIME(&mono_time, delta);
434
435 #ifdef NTP
436 time_update = delta;
437
438 /*
439 * Compute the phase adjustment. If the low-order bits
440 * (time_phase) of the update overflow, bump the high-order bits
441 * (time_update).
442 */
443 time_phase += time_adj;
444 if (time_phase <= -FINEUSEC) {
445 ltemp = -time_phase >> SHIFT_SCALE;
446 time_phase += ltemp << SHIFT_SCALE;
447 time_update -= ltemp;
448 } else if (time_phase >= FINEUSEC) {
449 ltemp = time_phase >> SHIFT_SCALE;
450 time_phase -= ltemp << SHIFT_SCALE;
451 time_update += ltemp;
452 }
453
454 #ifdef HIGHBALL
455 /*
456 * If the HIGHBALL board is installed, we need to adjust the
457 * external clock offset in order to close the hardware feedback
458 * loop. This will adjust the external clock phase and frequency
459 * in small amounts. The additional phase noise and frequency
460 * wander this causes should be minimal. We also need to
461 * discipline the kernel time variable, since the PLL is used to
462 * discipline the external clock. If the Highball board is not
463 * present, we discipline kernel time with the PLL as usual. We
464 * assume that the external clock phase adjustment (time_update)
465 * and kernel phase adjustment (clock_cpu) are less than the
466 * value of tick.
467 */
468 clock_offset.tv_usec += time_update;
469 if (clock_offset.tv_usec >= 1000000) {
470 clock_offset.tv_sec++;
471 clock_offset.tv_usec -= 1000000;
472 }
473 if (clock_offset.tv_usec < 0) {
474 clock_offset.tv_sec--;
475 clock_offset.tv_usec += 1000000;
476 }
477 time.tv_usec += clock_cpu;
478 clock_cpu = 0;
479 #else
480 time.tv_usec += time_update;
481 #endif /* HIGHBALL */
482
483 /*
484 * On rollover of the second the phase adjustment to be used for
485 * the next second is calculated. Also, the maximum error is
486 * increased by the tolerance. If the PPS frequency discipline
487 * code is present, the phase is increased to compensate for the
488 * CPU clock oscillator frequency error.
489 *
490 * On a 32-bit machine and given parameters in the timex.h
491 * header file, the maximum phase adjustment is +-512 ms and
492 * maximum frequency offset is a tad less than) +-512 ppm. On a
493 * 64-bit machine, you shouldn't need to ask.
494 */
495 if (time.tv_usec >= 1000000) {
496 time.tv_usec -= 1000000;
497 time.tv_sec++;
498 time_maxerror += time_tolerance >> SHIFT_USEC;
499
500 /*
501 * Leap second processing. If in leap-insert state at
502 * the end of the day, the system clock is set back one
503 * second; if in leap-delete state, the system clock is
504 * set ahead one second. The microtime() routine or
505 * external clock driver will insure that reported time
506 * is always monotonic. The ugly divides should be
507 * replaced.
508 */
509 switch (time_state) {
510 case TIME_OK:
511 if (time_status & STA_INS)
512 time_state = TIME_INS;
513 else if (time_status & STA_DEL)
514 time_state = TIME_DEL;
515 break;
516
517 case TIME_INS:
518 if (time.tv_sec % 86400 == 0) {
519 time.tv_sec--;
520 time_state = TIME_OOP;
521 }
522 break;
523
524 case TIME_DEL:
525 if ((time.tv_sec + 1) % 86400 == 0) {
526 time.tv_sec++;
527 time_state = TIME_WAIT;
528 }
529 break;
530
531 case TIME_OOP:
532 time_state = TIME_WAIT;
533 break;
534
535 case TIME_WAIT:
536 if (!(time_status & (STA_INS | STA_DEL)))
537 time_state = TIME_OK;
538 break;
539 }
540
541 /*
542 * Compute the phase adjustment for the next second. In
543 * PLL mode, the offset is reduced by a fixed factor
544 * times the time constant. In FLL mode the offset is
545 * used directly. In either mode, the maximum phase
546 * adjustment for each second is clamped so as to spread
547 * the adjustment over not more than the number of
548 * seconds between updates.
549 */
550 if (time_offset < 0) {
551 ltemp = -time_offset;
552 if (!(time_status & STA_FLL))
553 ltemp >>= SHIFT_KG + time_constant;
554 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
555 ltemp = (MAXPHASE / MINSEC) <<
556 SHIFT_UPDATE;
557 time_offset += ltemp;
558 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
559 } else if (time_offset > 0) {
560 ltemp = time_offset;
561 if (!(time_status & STA_FLL))
562 ltemp >>= SHIFT_KG + time_constant;
563 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
564 ltemp = (MAXPHASE / MINSEC) <<
565 SHIFT_UPDATE;
566 time_offset -= ltemp;
567 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
568 } else
569 time_adj = 0;
570
571 /*
572 * Compute the frequency estimate and additional phase
573 * adjustment due to frequency error for the next
574 * second. When the PPS signal is engaged, gnaw on the
575 * watchdog counter and update the frequency computed by
576 * the pll and the PPS signal.
577 */
578 #ifdef PPS_SYNC
579 pps_valid++;
580 if (pps_valid == PPS_VALID) {
581 pps_jitter = MAXTIME;
582 pps_stabil = MAXFREQ;
583 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
584 STA_PPSWANDER | STA_PPSERROR);
585 }
586 ltemp = time_freq + pps_freq;
587 #else
588 ltemp = time_freq;
589 #endif /* PPS_SYNC */
590
591 if (ltemp < 0)
592 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
593 else
594 time_adj += ltemp >> (SHIFT_USEC - shifthz);
595 time_adj += (long)fixtick << shifthz;
596
597 /*
598 * When the CPU clock oscillator frequency is not a
599 * power of 2 in Hz, shifthz is only an approximate
600 * scale factor.
601 */
602 switch (hz) {
603 case 96:
604 case 100:
605 /*
606 * In the following code the overall gain is increased
607 * by a factor of 1.25, which results in a residual
608 * error less than 3 percent.
609 */
610 if (time_adj < 0)
611 time_adj -= -time_adj >> 2;
612 else
613 time_adj += time_adj >> 2;
614 break;
615 case 60:
616 /*
617 * 60 Hz m68k and vaxes have a PLL gain factor of of
618 * 60/64 (15/16) of what it should be. In the following code
619 * the overall gain is increased by a factor of 1.0625,
620 * (17/16) which results in a residual error of just less
621 * than 0.4 percent.
622 */
623 if (time_adj < 0)
624 time_adj -= -time_adj >> 4;
625 else
626 time_adj += time_adj >> 4;
627 break;
628 }
629
630 #ifdef EXT_CLOCK
631 /*
632 * If an external clock is present, it is necessary to
633 * discipline the kernel time variable anyway, since not
634 * all system components use the microtime() interface.
635 * Here, the time offset between the external clock and
636 * kernel time variable is computed every so often.
637 */
638 clock_count++;
639 if (clock_count > CLOCK_INTERVAL) {
640 clock_count = 0;
641 microtime(&clock_ext);
642 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
643 delta.tv_usec = clock_ext.tv_usec -
644 time.tv_usec;
645 if (delta.tv_usec < 0)
646 delta.tv_sec--;
647 if (delta.tv_usec >= 500000) {
648 delta.tv_usec -= 1000000;
649 delta.tv_sec++;
650 }
651 if (delta.tv_usec < -500000) {
652 delta.tv_usec += 1000000;
653 delta.tv_sec--;
654 }
655 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
656 delta.tv_usec > MAXPHASE) ||
657 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
658 delta.tv_usec < -MAXPHASE)) {
659 time = clock_ext;
660 delta.tv_sec = 0;
661 delta.tv_usec = 0;
662 }
663 #ifdef HIGHBALL
664 clock_cpu = delta.tv_usec;
665 #else /* HIGHBALL */
666 hardupdate(delta.tv_usec);
667 #endif /* HIGHBALL */
668 }
669 #endif /* EXT_CLOCK */
670 }
671
672 #endif /* NTP */
673
674 /*
675 * Process callouts at a very low cpu priority, so we don't keep the
676 * relatively high clock interrupt priority any longer than necessary.
677 */
678 if (needsoft) {
679 if (CLKF_BASEPRI(frame)) {
680 /*
681 * Save the overhead of a software interrupt;
682 * it will happen as soon as we return, so do it now.
683 */
684 (void)splsoftclock();
685 softclock();
686 } else
687 setsoftclock();
688 }
689 }
690
691 /*
692 * Software (low priority) clock interrupt.
693 * Run periodic events from timeout queue.
694 */
695 /*ARGSUSED*/
696 void
697 softclock()
698 {
699 register struct callout *c;
700 register void *arg;
701 register void (*func) __P((void *));
702 register int s;
703
704 s = splhigh();
705 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
706 func = c->c_func;
707 arg = c->c_arg;
708 calltodo.c_next = c->c_next;
709 c->c_next = callfree;
710 callfree = c;
711 splx(s);
712 (*func)(arg);
713 (void) splhigh();
714 }
715 splx(s);
716 }
717
718 /*
719 * timeout --
720 * Execute a function after a specified length of time.
721 *
722 * untimeout --
723 * Cancel previous timeout function call.
724 *
725 * See AT&T BCI Driver Reference Manual for specification. This
726 * implementation differs from that one in that no identification
727 * value is returned from timeout, rather, the original arguments
728 * to timeout are used to identify entries for untimeout.
729 */
730 void
731 timeout(ftn, arg, ticks)
732 void (*ftn) __P((void *));
733 void *arg;
734 register int ticks;
735 {
736 register struct callout *new, *p, *t;
737 register int s;
738
739 if (ticks <= 0)
740 ticks = 1;
741
742 /* Lock out the clock. */
743 s = splhigh();
744
745 /* Fill in the next free callout structure. */
746 if (callfree == NULL)
747 panic("timeout table full");
748 new = callfree;
749 callfree = new->c_next;
750 new->c_arg = arg;
751 new->c_func = ftn;
752
753 /*
754 * The time for each event is stored as a difference from the time
755 * of the previous event on the queue. Walk the queue, correcting
756 * the ticks argument for queue entries passed. Correct the ticks
757 * value for the queue entry immediately after the insertion point
758 * as well. Watch out for negative c_time values; these represent
759 * overdue events.
760 */
761 for (p = &calltodo;
762 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
763 if (t->c_time > 0)
764 ticks -= t->c_time;
765 new->c_time = ticks;
766 if (t != NULL)
767 t->c_time -= ticks;
768
769 /* Insert the new entry into the queue. */
770 p->c_next = new;
771 new->c_next = t;
772 splx(s);
773 }
774
775 void
776 untimeout(ftn, arg)
777 void (*ftn) __P((void *));
778 void *arg;
779 {
780 register struct callout *p, *t;
781 register int s;
782
783 s = splhigh();
784 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
785 if (t->c_func == ftn && t->c_arg == arg) {
786 /* Increment next entry's tick count. */
787 if (t->c_next && t->c_time > 0)
788 t->c_next->c_time += t->c_time;
789
790 /* Move entry from callout queue to callfree queue. */
791 p->c_next = t->c_next;
792 t->c_next = callfree;
793 callfree = t;
794 break;
795 }
796 splx(s);
797 }
798
799 /*
800 * Compute number of hz until specified time. Used to
801 * compute third argument to timeout() from an absolute time.
802 */
803 int
804 hzto(tv)
805 struct timeval *tv;
806 {
807 register long ticks, sec;
808 int s;
809
810 /*
811 * If number of microseconds will fit in 32 bit arithmetic,
812 * then compute number of microseconds to time and scale to
813 * ticks. Otherwise just compute number of hz in time, rounding
814 * times greater than representible to maximum value. (We must
815 * compute in microseconds, because hz can be greater than 1000,
816 * and thus tick can be less than one millisecond).
817 *
818 * Delta times less than 14 hours can be computed ``exactly''.
819 * (Note that if hz would yeild a non-integral number of us per
820 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
821 * than they should be.) Maximum value for any timeout in 10ms
822 * ticks is 250 days.
823 */
824 s = splhigh();
825 sec = tv->tv_sec - time.tv_sec;
826 if (sec <= 0x7fffffff / 1000000 - 1)
827 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
828 (tv->tv_usec - time.tv_usec)) / tick;
829 else if (sec <= 0x7fffffff / hz)
830 ticks = sec * hz;
831 else
832 ticks = 0x7fffffff;
833 splx(s);
834 return (ticks);
835 }
836
837 /*
838 * Start profiling on a process.
839 *
840 * Kernel profiling passes proc0 which never exits and hence
841 * keeps the profile clock running constantly.
842 */
843 void
844 startprofclock(p)
845 register struct proc *p;
846 {
847 int s;
848
849 if ((p->p_flag & P_PROFIL) == 0) {
850 p->p_flag |= P_PROFIL;
851 if (++profprocs == 1 && stathz != 0) {
852 s = splstatclock();
853 psdiv = pscnt = psratio;
854 setstatclockrate(profhz);
855 splx(s);
856 }
857 }
858 }
859
860 /*
861 * Stop profiling on a process.
862 */
863 void
864 stopprofclock(p)
865 register struct proc *p;
866 {
867 int s;
868
869 if (p->p_flag & P_PROFIL) {
870 p->p_flag &= ~P_PROFIL;
871 if (--profprocs == 0 && stathz != 0) {
872 s = splstatclock();
873 psdiv = pscnt = 1;
874 setstatclockrate(stathz);
875 splx(s);
876 }
877 }
878 }
879
880 /*
881 * Statistics clock. Grab profile sample, and if divider reaches 0,
882 * do process and kernel statistics.
883 */
884 void
885 statclock(frame)
886 register struct clockframe *frame;
887 {
888 #ifdef GPROF
889 register struct gmonparam *g;
890 register int i;
891 #endif
892 register struct proc *p;
893
894 if (CLKF_USERMODE(frame)) {
895 p = curproc;
896 if (p->p_flag & P_PROFIL)
897 addupc_intr(p, CLKF_PC(frame), 1);
898 if (--pscnt > 0)
899 return;
900 /*
901 * Came from user mode; CPU was in user state.
902 * If this process is being profiled record the tick.
903 */
904 p->p_uticks++;
905 if (p->p_nice > NZERO)
906 cp_time[CP_NICE]++;
907 else
908 cp_time[CP_USER]++;
909 } else {
910 #ifdef GPROF
911 /*
912 * Kernel statistics are just like addupc_intr, only easier.
913 */
914 g = &_gmonparam;
915 if (g->state == GMON_PROF_ON) {
916 i = CLKF_PC(frame) - g->lowpc;
917 if (i < g->textsize) {
918 i /= HISTFRACTION * sizeof(*g->kcount);
919 g->kcount[i]++;
920 }
921 }
922 #endif
923 if (--pscnt > 0)
924 return;
925 /*
926 * Came from kernel mode, so we were:
927 * - handling an interrupt,
928 * - doing syscall or trap work on behalf of the current
929 * user process, or
930 * - spinning in the idle loop.
931 * Whichever it is, charge the time as appropriate.
932 * Note that we charge interrupts to the current process,
933 * regardless of whether they are ``for'' that process,
934 * so that we know how much of its real time was spent
935 * in ``non-process'' (i.e., interrupt) work.
936 */
937 p = curproc;
938 if (CLKF_INTR(frame)) {
939 if (p != NULL)
940 p->p_iticks++;
941 cp_time[CP_INTR]++;
942 } else if (p != NULL) {
943 p->p_sticks++;
944 cp_time[CP_SYS]++;
945 } else
946 cp_time[CP_IDLE]++;
947 }
948 pscnt = psdiv;
949
950 /*
951 * We adjust the priority of the current process. The priority of
952 * a process gets worse as it accumulates CPU time. The cpu usage
953 * estimator (p_estcpu) is increased here. The formula for computing
954 * priorities (in kern_synch.c) will compute a different value each
955 * time p_estcpu increases by 4. The cpu usage estimator ramps up
956 * quite quickly when the process is running (linearly), and decays
957 * away exponentially, at a rate which is proportionally slower when
958 * the system is busy. The basic principal is that the system will
959 * 90% forget that the process used a lot of CPU time in 5 * loadav
960 * seconds. This causes the system to favor processes which haven't
961 * run much recently, and to round-robin among other processes.
962 */
963 if (p != NULL) {
964 p->p_cpticks++;
965 if (++p->p_estcpu == 0)
966 p->p_estcpu--;
967 if ((p->p_estcpu & 3) == 0) {
968 resetpriority(p);
969 if (p->p_priority >= PUSER)
970 p->p_priority = p->p_usrpri;
971 }
972 }
973 }
974
975
976 #ifdef NTP /* NTP phase-locked loop in kernel */
977
978 /*
979 * hardupdate() - local clock update
980 *
981 * This routine is called by ntp_adjtime() to update the local clock
982 * phase and frequency. The implementation is of an adaptive-parameter,
983 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
984 * time and frequency offset estimates for each call. If the kernel PPS
985 * discipline code is configured (PPS_SYNC), the PPS signal itself
986 * determines the new time offset, instead of the calling argument.
987 * Presumably, calls to ntp_adjtime() occur only when the caller
988 * believes the local clock is valid within some bound (+-128 ms with
989 * NTP). If the caller's time is far different than the PPS time, an
990 * argument will ensue, and it's not clear who will lose.
991 *
992 * For uncompensated quartz crystal oscillatores and nominal update
993 * intervals less than 1024 s, operation should be in phase-lock mode
994 * (STA_FLL = 0), where the loop is disciplined to phase. For update
995 * intervals greater than thiss, operation should be in frequency-lock
996 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
997 *
998 * Note: splclock() is in effect.
999 */
1000 void
1001 hardupdate(offset)
1002 long offset;
1003 {
1004 long ltemp, mtemp;
1005
1006 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1007 return;
1008 ltemp = offset;
1009 #ifdef PPS_SYNC
1010 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1011 ltemp = pps_offset;
1012 #endif /* PPS_SYNC */
1013
1014 /*
1015 * Scale the phase adjustment and clamp to the operating range.
1016 */
1017 if (ltemp > MAXPHASE)
1018 time_offset = MAXPHASE << SHIFT_UPDATE;
1019 else if (ltemp < -MAXPHASE)
1020 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1021 else
1022 time_offset = ltemp << SHIFT_UPDATE;
1023
1024 /*
1025 * Select whether the frequency is to be controlled and in which
1026 * mode (PLL or FLL). Clamp to the operating range. Ugly
1027 * multiply/divide should be replaced someday.
1028 */
1029 if (time_status & STA_FREQHOLD || time_reftime == 0)
1030 time_reftime = time.tv_sec;
1031 mtemp = time.tv_sec - time_reftime;
1032 time_reftime = time.tv_sec;
1033 if (time_status & STA_FLL) {
1034 if (mtemp >= MINSEC) {
1035 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1036 SHIFT_UPDATE));
1037 if (ltemp < 0)
1038 time_freq -= -ltemp >> SHIFT_KH;
1039 else
1040 time_freq += ltemp >> SHIFT_KH;
1041 }
1042 } else {
1043 if (mtemp < MAXSEC) {
1044 ltemp *= mtemp;
1045 if (ltemp < 0)
1046 time_freq -= -ltemp >> (time_constant +
1047 time_constant + SHIFT_KF -
1048 SHIFT_USEC);
1049 else
1050 time_freq += ltemp >> (time_constant +
1051 time_constant + SHIFT_KF -
1052 SHIFT_USEC);
1053 }
1054 }
1055 if (time_freq > time_tolerance)
1056 time_freq = time_tolerance;
1057 else if (time_freq < -time_tolerance)
1058 time_freq = -time_tolerance;
1059 }
1060
1061 #ifdef PPS_SYNC
1062 /*
1063 * hardpps() - discipline CPU clock oscillator to external PPS signal
1064 *
1065 * This routine is called at each PPS interrupt in order to discipline
1066 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1067 * and leaves it in a handy spot for the hardclock() routine. It
1068 * integrates successive PPS phase differences and calculates the
1069 * frequency offset. This is used in hardclock() to discipline the CPU
1070 * clock oscillator so that intrinsic frequency error is cancelled out.
1071 * The code requires the caller to capture the time and hardware counter
1072 * value at the on-time PPS signal transition.
1073 *
1074 * Note that, on some Unix systems, this routine runs at an interrupt
1075 * priority level higher than the timer interrupt routine hardclock().
1076 * Therefore, the variables used are distinct from the hardclock()
1077 * variables, except for certain exceptions: The PPS frequency pps_freq
1078 * and phase pps_offset variables are determined by this routine and
1079 * updated atomically. The time_tolerance variable can be considered a
1080 * constant, since it is infrequently changed, and then only when the
1081 * PPS signal is disabled. The watchdog counter pps_valid is updated
1082 * once per second by hardclock() and is atomically cleared in this
1083 * routine.
1084 */
1085 void
1086 hardpps(tvp, usec)
1087 struct timeval *tvp; /* time at PPS */
1088 long usec; /* hardware counter at PPS */
1089 {
1090 long u_usec, v_usec, bigtick;
1091 long cal_sec, cal_usec;
1092
1093 /*
1094 * An occasional glitch can be produced when the PPS interrupt
1095 * occurs in the hardclock() routine before the time variable is
1096 * updated. Here the offset is discarded when the difference
1097 * between it and the last one is greater than tick/2, but not
1098 * if the interval since the first discard exceeds 30 s.
1099 */
1100 time_status |= STA_PPSSIGNAL;
1101 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1102 pps_valid = 0;
1103 u_usec = -tvp->tv_usec;
1104 if (u_usec < -500000)
1105 u_usec += 1000000;
1106 v_usec = pps_offset - u_usec;
1107 if (v_usec < 0)
1108 v_usec = -v_usec;
1109 if (v_usec > (tick >> 1)) {
1110 if (pps_glitch > MAXGLITCH) {
1111 pps_glitch = 0;
1112 pps_tf[2] = u_usec;
1113 pps_tf[1] = u_usec;
1114 } else {
1115 pps_glitch++;
1116 u_usec = pps_offset;
1117 }
1118 } else
1119 pps_glitch = 0;
1120
1121 /*
1122 * A three-stage median filter is used to help deglitch the pps
1123 * time. The median sample becomes the time offset estimate; the
1124 * difference between the other two samples becomes the time
1125 * dispersion (jitter) estimate.
1126 */
1127 pps_tf[2] = pps_tf[1];
1128 pps_tf[1] = pps_tf[0];
1129 pps_tf[0] = u_usec;
1130 if (pps_tf[0] > pps_tf[1]) {
1131 if (pps_tf[1] > pps_tf[2]) {
1132 pps_offset = pps_tf[1]; /* 0 1 2 */
1133 v_usec = pps_tf[0] - pps_tf[2];
1134 } else if (pps_tf[2] > pps_tf[0]) {
1135 pps_offset = pps_tf[0]; /* 2 0 1 */
1136 v_usec = pps_tf[2] - pps_tf[1];
1137 } else {
1138 pps_offset = pps_tf[2]; /* 0 2 1 */
1139 v_usec = pps_tf[0] - pps_tf[1];
1140 }
1141 } else {
1142 if (pps_tf[1] < pps_tf[2]) {
1143 pps_offset = pps_tf[1]; /* 2 1 0 */
1144 v_usec = pps_tf[2] - pps_tf[0];
1145 } else if (pps_tf[2] < pps_tf[0]) {
1146 pps_offset = pps_tf[0]; /* 1 0 2 */
1147 v_usec = pps_tf[1] - pps_tf[2];
1148 } else {
1149 pps_offset = pps_tf[2]; /* 1 2 0 */
1150 v_usec = pps_tf[1] - pps_tf[0];
1151 }
1152 }
1153 if (v_usec > MAXTIME)
1154 pps_jitcnt++;
1155 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1156 if (v_usec < 0)
1157 pps_jitter -= -v_usec >> PPS_AVG;
1158 else
1159 pps_jitter += v_usec >> PPS_AVG;
1160 if (pps_jitter > (MAXTIME >> 1))
1161 time_status |= STA_PPSJITTER;
1162
1163 /*
1164 * During the calibration interval adjust the starting time when
1165 * the tick overflows. At the end of the interval compute the
1166 * duration of the interval and the difference of the hardware
1167 * counters at the beginning and end of the interval. This code
1168 * is deliciously complicated by the fact valid differences may
1169 * exceed the value of tick when using long calibration
1170 * intervals and small ticks. Note that the counter can be
1171 * greater than tick if caught at just the wrong instant, but
1172 * the values returned and used here are correct.
1173 */
1174 bigtick = (long)tick << SHIFT_USEC;
1175 pps_usec -= pps_freq;
1176 if (pps_usec >= bigtick)
1177 pps_usec -= bigtick;
1178 if (pps_usec < 0)
1179 pps_usec += bigtick;
1180 pps_time.tv_sec++;
1181 pps_count++;
1182 if (pps_count < (1 << pps_shift))
1183 return;
1184 pps_count = 0;
1185 pps_calcnt++;
1186 u_usec = usec << SHIFT_USEC;
1187 v_usec = pps_usec - u_usec;
1188 if (v_usec >= bigtick >> 1)
1189 v_usec -= bigtick;
1190 if (v_usec < -(bigtick >> 1))
1191 v_usec += bigtick;
1192 if (v_usec < 0)
1193 v_usec = -(-v_usec >> pps_shift);
1194 else
1195 v_usec = v_usec >> pps_shift;
1196 pps_usec = u_usec;
1197 cal_sec = tvp->tv_sec;
1198 cal_usec = tvp->tv_usec;
1199 cal_sec -= pps_time.tv_sec;
1200 cal_usec -= pps_time.tv_usec;
1201 if (cal_usec < 0) {
1202 cal_usec += 1000000;
1203 cal_sec--;
1204 }
1205 pps_time = *tvp;
1206
1207 /*
1208 * Check for lost interrupts, noise, excessive jitter and
1209 * excessive frequency error. The number of timer ticks during
1210 * the interval may vary +-1 tick. Add to this a margin of one
1211 * tick for the PPS signal jitter and maximum frequency
1212 * deviation. If the limits are exceeded, the calibration
1213 * interval is reset to the minimum and we start over.
1214 */
1215 u_usec = (long)tick << 1;
1216 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1217 || (cal_sec == 0 && cal_usec < u_usec))
1218 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1219 pps_errcnt++;
1220 pps_shift = PPS_SHIFT;
1221 pps_intcnt = 0;
1222 time_status |= STA_PPSERROR;
1223 return;
1224 }
1225
1226 /*
1227 * A three-stage median filter is used to help deglitch the pps
1228 * frequency. The median sample becomes the frequency offset
1229 * estimate; the difference between the other two samples
1230 * becomes the frequency dispersion (stability) estimate.
1231 */
1232 pps_ff[2] = pps_ff[1];
1233 pps_ff[1] = pps_ff[0];
1234 pps_ff[0] = v_usec;
1235 if (pps_ff[0] > pps_ff[1]) {
1236 if (pps_ff[1] > pps_ff[2]) {
1237 u_usec = pps_ff[1]; /* 0 1 2 */
1238 v_usec = pps_ff[0] - pps_ff[2];
1239 } else if (pps_ff[2] > pps_ff[0]) {
1240 u_usec = pps_ff[0]; /* 2 0 1 */
1241 v_usec = pps_ff[2] - pps_ff[1];
1242 } else {
1243 u_usec = pps_ff[2]; /* 0 2 1 */
1244 v_usec = pps_ff[0] - pps_ff[1];
1245 }
1246 } else {
1247 if (pps_ff[1] < pps_ff[2]) {
1248 u_usec = pps_ff[1]; /* 2 1 0 */
1249 v_usec = pps_ff[2] - pps_ff[0];
1250 } else if (pps_ff[2] < pps_ff[0]) {
1251 u_usec = pps_ff[0]; /* 1 0 2 */
1252 v_usec = pps_ff[1] - pps_ff[2];
1253 } else {
1254 u_usec = pps_ff[2]; /* 1 2 0 */
1255 v_usec = pps_ff[1] - pps_ff[0];
1256 }
1257 }
1258
1259 /*
1260 * Here the frequency dispersion (stability) is updated. If it
1261 * is less than one-fourth the maximum (MAXFREQ), the frequency
1262 * offset is updated as well, but clamped to the tolerance. It
1263 * will be processed later by the hardclock() routine.
1264 */
1265 v_usec = (v_usec >> 1) - pps_stabil;
1266 if (v_usec < 0)
1267 pps_stabil -= -v_usec >> PPS_AVG;
1268 else
1269 pps_stabil += v_usec >> PPS_AVG;
1270 if (pps_stabil > MAXFREQ >> 2) {
1271 pps_stbcnt++;
1272 time_status |= STA_PPSWANDER;
1273 return;
1274 }
1275 if (time_status & STA_PPSFREQ) {
1276 if (u_usec < 0) {
1277 pps_freq -= -u_usec >> PPS_AVG;
1278 if (pps_freq < -time_tolerance)
1279 pps_freq = -time_tolerance;
1280 u_usec = -u_usec;
1281 } else {
1282 pps_freq += u_usec >> PPS_AVG;
1283 if (pps_freq > time_tolerance)
1284 pps_freq = time_tolerance;
1285 }
1286 }
1287
1288 /*
1289 * Here the calibration interval is adjusted. If the maximum
1290 * time difference is greater than tick / 4, reduce the interval
1291 * by half. If this is not the case for four consecutive
1292 * intervals, double the interval.
1293 */
1294 if (u_usec << pps_shift > bigtick >> 2) {
1295 pps_intcnt = 0;
1296 if (pps_shift > PPS_SHIFT)
1297 pps_shift--;
1298 } else if (pps_intcnt >= 4) {
1299 pps_intcnt = 0;
1300 if (pps_shift < PPS_SHIFTMAX)
1301 pps_shift++;
1302 } else
1303 pps_intcnt++;
1304 }
1305 #endif /* PPS_SYNC */
1306 #endif /* NTP */
1307
1308
1309 /*
1310 * Return information about system clocks.
1311 */
1312 int
1313 sysctl_clockrate(where, sizep)
1314 register char *where;
1315 size_t *sizep;
1316 {
1317 struct clockinfo clkinfo;
1318
1319 /*
1320 * Construct clockinfo structure.
1321 */
1322 clkinfo.tick = tick;
1323 clkinfo.tickadj = tickadj;
1324 clkinfo.hz = hz;
1325 clkinfo.profhz = profhz;
1326 clkinfo.stathz = stathz ? stathz : hz;
1327 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1328 }
1329
1330 #ifdef DDB
1331 #include <machine/db_machdep.h>
1332
1333 #include <ddb/db_interface.h>
1334 #include <ddb/db_access.h>
1335 #include <ddb/db_sym.h>
1336 #include <ddb/db_output.h>
1337
1338 void db_show_callout(addr, haddr, count, modif)
1339 db_expr_t addr;
1340 int haddr;
1341 db_expr_t count;
1342 char *modif;
1343 {
1344 register struct callout *p1;
1345 register int cum;
1346 register int s;
1347 db_expr_t offset;
1348 char *name;
1349
1350 db_printf(" cum ticks arg func\n");
1351 s = splhigh();
1352 for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
1353 register int t = p1->c_time;
1354
1355 if (t > 0)
1356 cum += t;
1357
1358 db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
1359 if (name == NULL)
1360 name = "?";
1361
1362 db_printf("%9d %9d %p %s (%p)\n",
1363 cum, t, p1->c_arg, name, p1->c_func);
1364 }
1365 splx(s);
1366 }
1367 #endif
1368