Home | History | Annotate | Line # | Download | only in kern
kern_clock.c revision 1.42
      1 /*	$NetBSD: kern_clock.c,v 1.42 1997/05/21 19:55:45 gwr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1982, 1986, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  * (c) UNIX System Laboratories, Inc.
      7  * All or some portions of this file are derived from material licensed
      8  * to the University of California by American Telephone and Telegraph
      9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     10  * the permission of UNIX System Laboratories, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the University of
     23  *	California, Berkeley and its contributors.
     24  * 4. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/dkstat.h>
     46 #include <sys/callout.h>
     47 #include <sys/kernel.h>
     48 #include <sys/proc.h>
     49 #include <sys/resourcevar.h>
     50 #include <sys/signalvar.h>
     51 #include <vm/vm.h>
     52 #include <sys/sysctl.h>
     53 #include <sys/timex.h>
     54 
     55 #include <machine/cpu.h>
     56 
     57 #ifdef GPROF
     58 #include <sys/gmon.h>
     59 #endif
     60 
     61 /*
     62  * Clock handling routines.
     63  *
     64  * This code is written to operate with two timers that run independently of
     65  * each other.  The main clock, running hz times per second, is used to keep
     66  * track of real time.  The second timer handles kernel and user profiling,
     67  * and does resource use estimation.  If the second timer is programmable,
     68  * it is randomized to avoid aliasing between the two clocks.  For example,
     69  * the randomization prevents an adversary from always giving up the cpu
     70  * just before its quantum expires.  Otherwise, it would never accumulate
     71  * cpu ticks.  The mean frequency of the second timer is stathz.
     72  *
     73  * If no second timer exists, stathz will be zero; in this case we drive
     74  * profiling and statistics off the main clock.  This WILL NOT be accurate;
     75  * do not do it unless absolutely necessary.
     76  *
     77  * The statistics clock may (or may not) be run at a higher rate while
     78  * profiling.  This profile clock runs at profhz.  We require that profhz
     79  * be an integral multiple of stathz.
     80  *
     81  * If the statistics clock is running fast, it must be divided by the ratio
     82  * profhz/stathz for statistics.  (For profiling, every tick counts.)
     83  */
     84 
     85 /*
     86  * TODO:
     87  *	allocate more timeout table slots when table overflows.
     88  */
     89 
     90 
     91 #ifdef NTP	/* NTP phase-locked loop in kernel */
     92 /*
     93  * Phase/frequency-lock loop (PLL/FLL) definitions
     94  *
     95  * The following variables are read and set by the ntp_adjtime() system
     96  * call.
     97  *
     98  * time_state shows the state of the system clock, with values defined
     99  * in the timex.h header file.
    100  *
    101  * time_status shows the status of the system clock, with bits defined
    102  * in the timex.h header file.
    103  *
    104  * time_offset is used by the PLL/FLL to adjust the system time in small
    105  * increments.
    106  *
    107  * time_constant determines the bandwidth or "stiffness" of the PLL.
    108  *
    109  * time_tolerance determines maximum frequency error or tolerance of the
    110  * CPU clock oscillator and is a property of the architecture; however,
    111  * in principle it could change as result of the presence of external
    112  * discipline signals, for instance.
    113  *
    114  * time_precision is usually equal to the kernel tick variable; however,
    115  * in cases where a precision clock counter or external clock is
    116  * available, the resolution can be much less than this and depend on
    117  * whether the external clock is working or not.
    118  *
    119  * time_maxerror is initialized by a ntp_adjtime() call and increased by
    120  * the kernel once each second to reflect the maximum error bound
    121  * growth.
    122  *
    123  * time_esterror is set and read by the ntp_adjtime() call, but
    124  * otherwise not used by the kernel.
    125  */
    126 int time_state = TIME_OK;	/* clock state */
    127 int time_status = STA_UNSYNC;	/* clock status bits */
    128 long time_offset = 0;		/* time offset (us) */
    129 long time_constant = 0;		/* pll time constant */
    130 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
    131 long time_precision = 1;	/* clock precision (us) */
    132 long time_maxerror = MAXPHASE;	/* maximum error (us) */
    133 long time_esterror = MAXPHASE;	/* estimated error (us) */
    134 
    135 /*
    136  * The following variables establish the state of the PLL/FLL and the
    137  * residual time and frequency offset of the local clock. The scale
    138  * factors are defined in the timex.h header file.
    139  *
    140  * time_phase and time_freq are the phase increment and the frequency
    141  * increment, respectively, of the kernel time variable.
    142  *
    143  * time_freq is set via ntp_adjtime() from a value stored in a file when
    144  * the synchronization daemon is first started. Its value is retrieved
    145  * via ntp_adjtime() and written to the file about once per hour by the
    146  * daemon.
    147  *
    148  * time_adj is the adjustment added to the value of tick at each timer
    149  * interrupt and is recomputed from time_phase and time_freq at each
    150  * seconds rollover.
    151  *
    152  * time_reftime is the second's portion of the system time at the last
    153  * call to ntp_adjtime(). It is used to adjust the time_freq variable
    154  * and to increase the time_maxerror as the time since last update
    155  * increases.
    156  */
    157 long time_phase = 0;		/* phase offset (scaled us) */
    158 long time_freq = 0;		/* frequency offset (scaled ppm) */
    159 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
    160 long time_reftime = 0;		/* time at last adjustment (s) */
    161 
    162 #ifdef PPS_SYNC
    163 /*
    164  * The following variables are used only if the kernel PPS discipline
    165  * code is configured (PPS_SYNC). The scale factors are defined in the
    166  * timex.h header file.
    167  *
    168  * pps_time contains the time at each calibration interval, as read by
    169  * microtime(). pps_count counts the seconds of the calibration
    170  * interval, the duration of which is nominally pps_shift in powers of
    171  * two.
    172  *
    173  * pps_offset is the time offset produced by the time median filter
    174  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
    175  * this filter.
    176  *
    177  * pps_freq is the frequency offset produced by the frequency median
    178  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
    179  * by this filter.
    180  *
    181  * pps_usec is latched from a high resolution counter or external clock
    182  * at pps_time. Here we want the hardware counter contents only, not the
    183  * contents plus the time_tv.usec as usual.
    184  *
    185  * pps_valid counts the number of seconds since the last PPS update. It
    186  * is used as a watchdog timer to disable the PPS discipline should the
    187  * PPS signal be lost.
    188  *
    189  * pps_glitch counts the number of seconds since the beginning of an
    190  * offset burst more than tick/2 from current nominal offset. It is used
    191  * mainly to suppress error bursts due to priority conflicts between the
    192  * PPS interrupt and timer interrupt.
    193  *
    194  * pps_intcnt counts the calibration intervals for use in the interval-
    195  * adaptation algorithm. It's just too complicated for words.
    196  */
    197 struct timeval pps_time;	/* kernel time at last interval */
    198 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
    199 long pps_offset = 0;		/* pps time offset (us) */
    200 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
    201 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
    202 long pps_freq = 0;		/* frequency offset (scaled ppm) */
    203 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
    204 long pps_usec = 0;		/* microsec counter at last interval */
    205 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
    206 int pps_glitch = 0;		/* pps signal glitch counter */
    207 int pps_count = 0;		/* calibration interval counter (s) */
    208 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
    209 int pps_intcnt = 0;		/* intervals at current duration */
    210 
    211 /*
    212  * PPS signal quality monitors
    213  *
    214  * pps_jitcnt counts the seconds that have been discarded because the
    215  * jitter measured by the time median filter exceeds the limit MAXTIME
    216  * (100 us).
    217  *
    218  * pps_calcnt counts the frequency calibration intervals, which are
    219  * variable from 4 s to 256 s.
    220  *
    221  * pps_errcnt counts the calibration intervals which have been discarded
    222  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
    223  * calibration interval jitter exceeds two ticks.
    224  *
    225  * pps_stbcnt counts the calibration intervals that have been discarded
    226  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
    227  */
    228 long pps_jitcnt = 0;		/* jitter limit exceeded */
    229 long pps_calcnt = 0;		/* calibration intervals */
    230 long pps_errcnt = 0;		/* calibration errors */
    231 long pps_stbcnt = 0;		/* stability limit exceeded */
    232 #endif /* PPS_SYNC */
    233 
    234 #ifdef EXT_CLOCK
    235 /*
    236  * External clock definitions
    237  *
    238  * The following definitions and declarations are used only if an
    239  * external clock is configured on the system.
    240  */
    241 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
    242 
    243 /*
    244  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
    245  * interrupt and decremented once each second.
    246  */
    247 int clock_count = 0;		/* CPU clock counter */
    248 
    249 #ifdef HIGHBALL
    250 /*
    251  * The clock_offset and clock_cpu variables are used by the HIGHBALL
    252  * interface. The clock_offset variable defines the offset between
    253  * system time and the HIGBALL counters. The clock_cpu variable contains
    254  * the offset between the system clock and the HIGHBALL clock for use in
    255  * disciplining the kernel time variable.
    256  */
    257 extern struct timeval clock_offset; /* Highball clock offset */
    258 long clock_cpu = 0;		/* CPU clock adjust */
    259 #endif /* HIGHBALL */
    260 #endif /* EXT_CLOCK */
    261 #endif /* NTP */
    262 
    263 
    264 /*
    265  * Bump a timeval by a small number of usec's.
    266  */
    267 #define BUMPTIME(t, usec) { \
    268 	register volatile struct timeval *tp = (t); \
    269 	register long us; \
    270  \
    271 	tp->tv_usec = us = tp->tv_usec + (usec); \
    272 	if (us >= 1000000) { \
    273 		tp->tv_usec = us - 1000000; \
    274 		tp->tv_sec++; \
    275 	} \
    276 }
    277 
    278 int	stathz;
    279 int	profhz;
    280 int	profprocs;
    281 int	ticks;
    282 static int psdiv, pscnt;		/* prof => stat divider */
    283 int	psratio;			/* ratio: prof / stat */
    284 int	tickfix, tickfixinterval;	/* used if tick not really integral */
    285 #ifndef NTP
    286 static int tickfixcnt;			/* accumulated fractional error */
    287 #else
    288 int	fixtick;			/* used by NTP for same */
    289 int	shifthz;
    290 #endif
    291 
    292 volatile struct	timeval time;
    293 volatile struct	timeval mono_time;
    294 
    295 /*
    296  * Initialize clock frequencies and start both clocks running.
    297  */
    298 void
    299 initclocks()
    300 {
    301 	register int i;
    302 
    303 	/*
    304 	 * Set divisors to 1 (normal case) and let the machine-specific
    305 	 * code do its bit.
    306 	 */
    307 	psdiv = pscnt = 1;
    308 	cpu_initclocks();
    309 
    310 	/*
    311 	 * Compute profhz/stathz, and fix profhz if needed.
    312 	 */
    313 	i = stathz ? stathz : hz;
    314 	if (profhz == 0)
    315 		profhz = i;
    316 	psratio = profhz / i;
    317 
    318 #ifdef NTP
    319 	switch (hz) {
    320 	case 60:
    321 	case 64:
    322 		shifthz = SHIFT_SCALE - 6;
    323 		break;
    324 	case 96:
    325 	case 100:
    326 	case 128:
    327 		shifthz = SHIFT_SCALE - 7;
    328 		break;
    329 	case 256:
    330 		shifthz = SHIFT_SCALE - 8;
    331 		break;
    332 	case 512:
    333 		shifthz = SHIFT_SCALE - 9;
    334 		break;
    335 	case 1024:
    336 		shifthz = SHIFT_SCALE - 10;
    337 		break;
    338 	default:
    339 		panic("weird hz");
    340 	}
    341 #endif
    342 }
    343 
    344 /*
    345  * The real-time timer, interrupting hz times per second.
    346  */
    347 void
    348 hardclock(frame)
    349 	register struct clockframe *frame;
    350 {
    351 	register struct callout *p1;
    352 	register struct proc *p;
    353 	register int delta, needsoft;
    354 	extern int tickdelta;
    355 	extern long timedelta;
    356 #ifdef NTP
    357 	register int time_update;
    358 	register int ltemp;
    359 #endif
    360 
    361 	/*
    362 	 * Update real-time timeout queue.
    363 	 * At front of queue are some number of events which are ``due''.
    364 	 * The time to these is <= 0 and if negative represents the
    365 	 * number of ticks which have passed since it was supposed to happen.
    366 	 * The rest of the q elements (times > 0) are events yet to happen,
    367 	 * where the time for each is given as a delta from the previous.
    368 	 * Decrementing just the first of these serves to decrement the time
    369 	 * to all events.
    370 	 */
    371 	needsoft = 0;
    372 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
    373 		if (--p1->c_time > 0)
    374 			break;
    375 		needsoft = 1;
    376 		if (p1->c_time == 0)
    377 			break;
    378 	}
    379 
    380 	p = curproc;
    381 	if (p) {
    382 		register struct pstats *pstats;
    383 
    384 		/*
    385 		 * Run current process's virtual and profile time, as needed.
    386 		 */
    387 		pstats = p->p_stats;
    388 		if (CLKF_USERMODE(frame) &&
    389 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
    390 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
    391 			psignal(p, SIGVTALRM);
    392 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
    393 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
    394 			psignal(p, SIGPROF);
    395 	}
    396 
    397 	/*
    398 	 * If no separate statistics clock is available, run it from here.
    399 	 */
    400 	if (stathz == 0)
    401 		statclock(frame);
    402 
    403 	/*
    404 	 * Increment the time-of-day.  The increment is normally just
    405 	 * ``tick''.  If the machine is one which has a clock frequency
    406 	 * such that ``hz'' would not divide the second evenly into
    407 	 * milliseconds, a periodic adjustment must be applied.  Finally,
    408 	 * if we are still adjusting the time (see adjtime()),
    409 	 * ``tickdelta'' may also be added in.
    410 	 */
    411 	ticks++;
    412 	delta = tick;
    413 
    414 #ifndef NTP
    415 	if (tickfix) {
    416 		tickfixcnt += tickfix;
    417 		if (tickfixcnt >= tickfixinterval) {
    418 			delta++;
    419 			tickfixcnt -= tickfixinterval;
    420 		}
    421 	}
    422 #endif /* !NTP */
    423 	/* Imprecise 4bsd adjtime() handling */
    424 	if (timedelta != 0) {
    425 		delta += tickdelta;
    426 		timedelta -= tickdelta;
    427 	}
    428 
    429 #ifdef notyet
    430 	microset();
    431 #endif
    432 
    433 #ifndef NTP
    434 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
    435 #endif
    436 	BUMPTIME(&mono_time, delta);
    437 
    438 #ifdef NTP
    439 	time_update = delta;
    440 
    441 	/*
    442 	 * Compute the phase adjustment. If the low-order bits
    443 	 * (time_phase) of the update overflow, bump the high-order bits
    444 	 * (time_update).
    445 	 */
    446 	time_phase += time_adj;
    447 	if (time_phase <= -FINEUSEC) {
    448 		ltemp = -time_phase >> SHIFT_SCALE;
    449 		time_phase += ltemp << SHIFT_SCALE;
    450 		time_update -= ltemp;
    451 	} else if (time_phase >= FINEUSEC) {
    452 		ltemp = time_phase >> SHIFT_SCALE;
    453 		time_phase -= ltemp << SHIFT_SCALE;
    454 		time_update += ltemp;
    455 	}
    456 
    457 #ifdef HIGHBALL
    458 	/*
    459 	 * If the HIGHBALL board is installed, we need to adjust the
    460 	 * external clock offset in order to close the hardware feedback
    461 	 * loop. This will adjust the external clock phase and frequency
    462 	 * in small amounts. The additional phase noise and frequency
    463 	 * wander this causes should be minimal. We also need to
    464 	 * discipline the kernel time variable, since the PLL is used to
    465 	 * discipline the external clock. If the Highball board is not
    466 	 * present, we discipline kernel time with the PLL as usual. We
    467 	 * assume that the external clock phase adjustment (time_update)
    468 	 * and kernel phase adjustment (clock_cpu) are less than the
    469 	 * value of tick.
    470 	 */
    471 	clock_offset.tv_usec += time_update;
    472 	if (clock_offset.tv_usec >= 1000000) {
    473 		clock_offset.tv_sec++;
    474 		clock_offset.tv_usec -= 1000000;
    475 	}
    476 	if (clock_offset.tv_usec < 0) {
    477 		clock_offset.tv_sec--;
    478 		clock_offset.tv_usec += 1000000;
    479 	}
    480 	time.tv_usec += clock_cpu;
    481 	clock_cpu = 0;
    482 #else
    483 	time.tv_usec += time_update;
    484 #endif /* HIGHBALL */
    485 
    486 	/*
    487 	 * On rollover of the second the phase adjustment to be used for
    488 	 * the next second is calculated. Also, the maximum error is
    489 	 * increased by the tolerance. If the PPS frequency discipline
    490 	 * code is present, the phase is increased to compensate for the
    491 	 * CPU clock oscillator frequency error.
    492 	 *
    493  	 * On a 32-bit machine and given parameters in the timex.h
    494 	 * header file, the maximum phase adjustment is +-512 ms and
    495 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
    496 	 * 64-bit machine, you shouldn't need to ask.
    497 	 */
    498 	if (time.tv_usec >= 1000000) {
    499 		time.tv_usec -= 1000000;
    500 		time.tv_sec++;
    501 		time_maxerror += time_tolerance >> SHIFT_USEC;
    502 
    503 		/*
    504 		 * Leap second processing. If in leap-insert state at
    505 		 * the end of the day, the system clock is set back one
    506 		 * second; if in leap-delete state, the system clock is
    507 		 * set ahead one second. The microtime() routine or
    508 		 * external clock driver will insure that reported time
    509 		 * is always monotonic. The ugly divides should be
    510 		 * replaced.
    511 		 */
    512 		switch (time_state) {
    513 		case TIME_OK:
    514 			if (time_status & STA_INS)
    515 				time_state = TIME_INS;
    516 			else if (time_status & STA_DEL)
    517 				time_state = TIME_DEL;
    518 			break;
    519 
    520 		case TIME_INS:
    521 			if (time.tv_sec % 86400 == 0) {
    522 				time.tv_sec--;
    523 				time_state = TIME_OOP;
    524 			}
    525 			break;
    526 
    527 		case TIME_DEL:
    528 			if ((time.tv_sec + 1) % 86400 == 0) {
    529 				time.tv_sec++;
    530 				time_state = TIME_WAIT;
    531 			}
    532 			break;
    533 
    534 		case TIME_OOP:
    535 			time_state = TIME_WAIT;
    536 			break;
    537 
    538 		case TIME_WAIT:
    539 			if (!(time_status & (STA_INS | STA_DEL)))
    540 				time_state = TIME_OK;
    541 			break;
    542 		}
    543 
    544 		/*
    545 		 * Compute the phase adjustment for the next second. In
    546 		 * PLL mode, the offset is reduced by a fixed factor
    547 		 * times the time constant. In FLL mode the offset is
    548 		 * used directly. In either mode, the maximum phase
    549 		 * adjustment for each second is clamped so as to spread
    550 		 * the adjustment over not more than the number of
    551 		 * seconds between updates.
    552 		 */
    553 		if (time_offset < 0) {
    554 			ltemp = -time_offset;
    555 			if (!(time_status & STA_FLL))
    556 				ltemp >>= SHIFT_KG + time_constant;
    557 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    558 				ltemp = (MAXPHASE / MINSEC) <<
    559 				    SHIFT_UPDATE;
    560 			time_offset += ltemp;
    561 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
    562 		} else if (time_offset > 0) {
    563 			ltemp = time_offset;
    564 			if (!(time_status & STA_FLL))
    565 				ltemp >>= SHIFT_KG + time_constant;
    566 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
    567 				ltemp = (MAXPHASE / MINSEC) <<
    568 				    SHIFT_UPDATE;
    569 			time_offset -= ltemp;
    570 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
    571 		} else
    572 			time_adj = 0;
    573 
    574 		/*
    575 		 * Compute the frequency estimate and additional phase
    576 		 * adjustment due to frequency error for the next
    577 		 * second. When the PPS signal is engaged, gnaw on the
    578 		 * watchdog counter and update the frequency computed by
    579 		 * the pll and the PPS signal.
    580 		 */
    581 #ifdef PPS_SYNC
    582 		pps_valid++;
    583 		if (pps_valid == PPS_VALID) {
    584 			pps_jitter = MAXTIME;
    585 			pps_stabil = MAXFREQ;
    586 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
    587 			    STA_PPSWANDER | STA_PPSERROR);
    588 		}
    589 		ltemp = time_freq + pps_freq;
    590 #else
    591 		ltemp = time_freq;
    592 #endif /* PPS_SYNC */
    593 
    594 		if (ltemp < 0)
    595 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
    596 		else
    597 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
    598 		time_adj += (long)fixtick << shifthz;
    599 
    600 		/*
    601 		 * When the CPU clock oscillator frequency is not a
    602 		 * power of 2 in Hz, shifthz is only an approximate
    603 		 * scale factor.
    604 		 */
    605 		switch (hz) {
    606 		case 96:
    607 		case 100:
    608 			/*
    609 			 * In the following code the overall gain is increased
    610 			 * by a factor of 1.25, which results in a residual
    611 			 * error less than 3 percent.
    612 			 */
    613 			if (time_adj < 0)
    614 				time_adj -= -time_adj >> 2;
    615 			else
    616 				time_adj += time_adj >> 2;
    617 			break;
    618 		case 60:
    619 			/*
    620 			 * 60 Hz m68k and vaxes have a PLL gain factor of of
    621 			 * 60/64 (15/16) of what it should be.  In the following code
    622 			 * the overall gain is increased by a factor of 1.0625,
    623 			 * (17/16) which results in a residual error of just less
    624 			 * than 0.4 percent.
    625 			 */
    626 			if (time_adj < 0)
    627 				time_adj -= -time_adj >> 4;
    628 			else
    629 				time_adj += time_adj >> 4;
    630 			break;
    631 		}
    632 
    633 #ifdef EXT_CLOCK
    634 		/*
    635 		 * If an external clock is present, it is necessary to
    636 		 * discipline the kernel time variable anyway, since not
    637 		 * all system components use the microtime() interface.
    638 		 * Here, the time offset between the external clock and
    639 		 * kernel time variable is computed every so often.
    640 		 */
    641 		clock_count++;
    642 		if (clock_count > CLOCK_INTERVAL) {
    643 			clock_count = 0;
    644 			microtime(&clock_ext);
    645 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
    646 			delta.tv_usec = clock_ext.tv_usec -
    647 			    time.tv_usec;
    648 			if (delta.tv_usec < 0)
    649 				delta.tv_sec--;
    650 			if (delta.tv_usec >= 500000) {
    651 				delta.tv_usec -= 1000000;
    652 				delta.tv_sec++;
    653 			}
    654 			if (delta.tv_usec < -500000) {
    655 				delta.tv_usec += 1000000;
    656 				delta.tv_sec--;
    657 			}
    658 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
    659 			    delta.tv_usec > MAXPHASE) ||
    660 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
    661 			    delta.tv_usec < -MAXPHASE)) {
    662 				time = clock_ext;
    663 				delta.tv_sec = 0;
    664 				delta.tv_usec = 0;
    665 			}
    666 #ifdef HIGHBALL
    667 			clock_cpu = delta.tv_usec;
    668 #else /* HIGHBALL */
    669 			hardupdate(delta.tv_usec);
    670 #endif /* HIGHBALL */
    671 		}
    672 #endif /* EXT_CLOCK */
    673 	}
    674 
    675 #endif /* NTP */
    676 
    677 	/*
    678 	 * Process callouts at a very low cpu priority, so we don't keep the
    679 	 * relatively high clock interrupt priority any longer than necessary.
    680 	 */
    681 	if (needsoft) {
    682 		if (CLKF_BASEPRI(frame)) {
    683 			/*
    684 			 * Save the overhead of a software interrupt;
    685 			 * it will happen as soon as we return, so do it now.
    686 			 */
    687 			(void)splsoftclock();
    688 			softclock();
    689 		} else
    690 			setsoftclock();
    691 	}
    692 }
    693 
    694 /*
    695  * Software (low priority) clock interrupt.
    696  * Run periodic events from timeout queue.
    697  */
    698 /*ARGSUSED*/
    699 void
    700 softclock()
    701 {
    702 	register struct callout *c;
    703 	register void *arg;
    704 	register void (*func) __P((void *));
    705 	register int s;
    706 
    707 	s = splhigh();
    708 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
    709 		func = c->c_func;
    710 		arg = c->c_arg;
    711 		calltodo.c_next = c->c_next;
    712 		c->c_next = callfree;
    713 		callfree = c;
    714 		splx(s);
    715 		(*func)(arg);
    716 		(void) splhigh();
    717 	}
    718 	splx(s);
    719 }
    720 
    721 /*
    722  * timeout --
    723  *	Execute a function after a specified length of time.
    724  *
    725  * untimeout --
    726  *	Cancel previous timeout function call.
    727  *
    728  *	See AT&T BCI Driver Reference Manual for specification.  This
    729  *	implementation differs from that one in that no identification
    730  *	value is returned from timeout, rather, the original arguments
    731  *	to timeout are used to identify entries for untimeout.
    732  */
    733 void
    734 timeout(ftn, arg, ticks)
    735 	void (*ftn) __P((void *));
    736 	void *arg;
    737 	register int ticks;
    738 {
    739 	register struct callout *new, *p, *t;
    740 	register int s;
    741 
    742 	if (ticks <= 0)
    743 		ticks = 1;
    744 
    745 	/* Lock out the clock. */
    746 	s = splhigh();
    747 
    748 	/* Fill in the next free callout structure. */
    749 	if (callfree == NULL)
    750 		panic("timeout table full");
    751 	new = callfree;
    752 	callfree = new->c_next;
    753 	new->c_arg = arg;
    754 	new->c_func = ftn;
    755 
    756 	/*
    757 	 * The time for each event is stored as a difference from the time
    758 	 * of the previous event on the queue.  Walk the queue, correcting
    759 	 * the ticks argument for queue entries passed.  Correct the ticks
    760 	 * value for the queue entry immediately after the insertion point
    761 	 * as well.  Watch out for negative c_time values; these represent
    762 	 * overdue events.
    763 	 */
    764 	for (p = &calltodo;
    765 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
    766 		if (t->c_time > 0)
    767 			ticks -= t->c_time;
    768 	new->c_time = ticks;
    769 	if (t != NULL)
    770 		t->c_time -= ticks;
    771 
    772 	/* Insert the new entry into the queue. */
    773 	p->c_next = new;
    774 	new->c_next = t;
    775 	splx(s);
    776 }
    777 
    778 void
    779 untimeout(ftn, arg)
    780 	void (*ftn) __P((void *));
    781 	void *arg;
    782 {
    783 	register struct callout *p, *t;
    784 	register int s;
    785 
    786 	s = splhigh();
    787 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
    788 		if (t->c_func == ftn && t->c_arg == arg) {
    789 			/* Increment next entry's tick count. */
    790 			if (t->c_next && t->c_time > 0)
    791 				t->c_next->c_time += t->c_time;
    792 
    793 			/* Move entry from callout queue to callfree queue. */
    794 			p->c_next = t->c_next;
    795 			t->c_next = callfree;
    796 			callfree = t;
    797 			break;
    798 		}
    799 	splx(s);
    800 }
    801 
    802 /*
    803  * Compute number of hz until specified time.  Used to
    804  * compute third argument to timeout() from an absolute time.
    805  */
    806 int
    807 hzto(tv)
    808 	struct timeval *tv;
    809 {
    810 	register long ticks, sec;
    811 	int s;
    812 
    813 	/*
    814 	 * If number of microseconds will fit in 32 bit arithmetic,
    815 	 * then compute number of microseconds to time and scale to
    816 	 * ticks.  Otherwise just compute number of hz in time, rounding
    817 	 * times greater than representible to maximum value.  (We must
    818 	 * compute in microseconds, because hz can be greater than 1000,
    819 	 * and thus tick can be less than one millisecond).
    820 	 *
    821 	 * Delta times less than 14 hours can be computed ``exactly''.
    822 	 * (Note that if hz would yeild a non-integral number of us per
    823 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
    824 	 * than they should be.)  Maximum value for any timeout in 10ms
    825 	 * ticks is 250 days.
    826 	 */
    827 	s = splclock();
    828 	sec = tv->tv_sec - time.tv_sec;
    829 	if (sec <= 0x7fffffff / 1000000 - 1)
    830 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
    831 			(tv->tv_usec - time.tv_usec)) / tick;
    832 	else if (sec <= 0x7fffffff / hz)
    833 		ticks = sec * hz;
    834 	else
    835 		ticks = 0x7fffffff;
    836 	splx(s);
    837 	return (ticks);
    838 }
    839 
    840 /*
    841  * Start profiling on a process.
    842  *
    843  * Kernel profiling passes proc0 which never exits and hence
    844  * keeps the profile clock running constantly.
    845  */
    846 void
    847 startprofclock(p)
    848 	register struct proc *p;
    849 {
    850 	int s;
    851 
    852 	if ((p->p_flag & P_PROFIL) == 0) {
    853 		p->p_flag |= P_PROFIL;
    854 		if (++profprocs == 1 && stathz != 0) {
    855 			s = splstatclock();
    856 			psdiv = pscnt = psratio;
    857 			setstatclockrate(profhz);
    858 			splx(s);
    859 		}
    860 	}
    861 }
    862 
    863 /*
    864  * Stop profiling on a process.
    865  */
    866 void
    867 stopprofclock(p)
    868 	register struct proc *p;
    869 {
    870 	int s;
    871 
    872 	if (p->p_flag & P_PROFIL) {
    873 		p->p_flag &= ~P_PROFIL;
    874 		if (--profprocs == 0 && stathz != 0) {
    875 			s = splstatclock();
    876 			psdiv = pscnt = 1;
    877 			setstatclockrate(stathz);
    878 			splx(s);
    879 		}
    880 	}
    881 }
    882 
    883 /*
    884  * Statistics clock.  Grab profile sample, and if divider reaches 0,
    885  * do process and kernel statistics.
    886  */
    887 void
    888 statclock(frame)
    889 	register struct clockframe *frame;
    890 {
    891 #ifdef GPROF
    892 	register struct gmonparam *g;
    893 	register int i;
    894 #endif
    895 	register struct proc *p;
    896 
    897 	if (CLKF_USERMODE(frame)) {
    898 		p = curproc;
    899 		if (p->p_flag & P_PROFIL)
    900 			addupc_intr(p, CLKF_PC(frame), 1);
    901 		if (--pscnt > 0)
    902 			return;
    903 		/*
    904 		 * Came from user mode; CPU was in user state.
    905 		 * If this process is being profiled record the tick.
    906 		 */
    907 		p->p_uticks++;
    908 		if (p->p_nice > NZERO)
    909 			cp_time[CP_NICE]++;
    910 		else
    911 			cp_time[CP_USER]++;
    912 	} else {
    913 #ifdef GPROF
    914 		/*
    915 		 * Kernel statistics are just like addupc_intr, only easier.
    916 		 */
    917 		g = &_gmonparam;
    918 		if (g->state == GMON_PROF_ON) {
    919 			i = CLKF_PC(frame) - g->lowpc;
    920 			if (i < g->textsize) {
    921 				i /= HISTFRACTION * sizeof(*g->kcount);
    922 				g->kcount[i]++;
    923 			}
    924 		}
    925 #endif
    926 		if (--pscnt > 0)
    927 			return;
    928 		/*
    929 		 * Came from kernel mode, so we were:
    930 		 * - handling an interrupt,
    931 		 * - doing syscall or trap work on behalf of the current
    932 		 *   user process, or
    933 		 * - spinning in the idle loop.
    934 		 * Whichever it is, charge the time as appropriate.
    935 		 * Note that we charge interrupts to the current process,
    936 		 * regardless of whether they are ``for'' that process,
    937 		 * so that we know how much of its real time was spent
    938 		 * in ``non-process'' (i.e., interrupt) work.
    939 		 */
    940 		p = curproc;
    941 		if (CLKF_INTR(frame)) {
    942 			if (p != NULL)
    943 				p->p_iticks++;
    944 			cp_time[CP_INTR]++;
    945 		} else if (p != NULL) {
    946 			p->p_sticks++;
    947 			cp_time[CP_SYS]++;
    948 		} else
    949 			cp_time[CP_IDLE]++;
    950 	}
    951 	pscnt = psdiv;
    952 
    953 	/*
    954 	 * We adjust the priority of the current process.  The priority of
    955 	 * a process gets worse as it accumulates CPU time.  The cpu usage
    956 	 * estimator (p_estcpu) is increased here.  The formula for computing
    957 	 * priorities (in kern_synch.c) will compute a different value each
    958 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
    959 	 * quite quickly when the process is running (linearly), and decays
    960 	 * away exponentially, at a rate which is proportionally slower when
    961 	 * the system is busy.  The basic principal is that the system will
    962 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
    963 	 * seconds.  This causes the system to favor processes which haven't
    964 	 * run much recently, and to round-robin among other processes.
    965 	 */
    966 	if (p != NULL) {
    967 		p->p_cpticks++;
    968 		if (++p->p_estcpu == 0)
    969 			p->p_estcpu--;
    970 		if ((p->p_estcpu & 3) == 0) {
    971 			resetpriority(p);
    972 			if (p->p_priority >= PUSER)
    973 				p->p_priority = p->p_usrpri;
    974 		}
    975 	}
    976 }
    977 
    978 
    979 #ifdef NTP	/* NTP phase-locked loop in kernel */
    980 
    981 /*
    982  * hardupdate() - local clock update
    983  *
    984  * This routine is called by ntp_adjtime() to update the local clock
    985  * phase and frequency. The implementation is of an adaptive-parameter,
    986  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    987  * time and frequency offset estimates for each call. If the kernel PPS
    988  * discipline code is configured (PPS_SYNC), the PPS signal itself
    989  * determines the new time offset, instead of the calling argument.
    990  * Presumably, calls to ntp_adjtime() occur only when the caller
    991  * believes the local clock is valid within some bound (+-128 ms with
    992  * NTP). If the caller's time is far different than the PPS time, an
    993  * argument will ensue, and it's not clear who will lose.
    994  *
    995  * For uncompensated quartz crystal oscillatores and nominal update
    996  * intervals less than 1024 s, operation should be in phase-lock mode
    997  * (STA_FLL = 0), where the loop is disciplined to phase. For update
    998  * intervals greater than thiss, operation should be in frequency-lock
    999  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
   1000  *
   1001  * Note: splclock() is in effect.
   1002  */
   1003 void
   1004 hardupdate(offset)
   1005 	long offset;
   1006 {
   1007 	long ltemp, mtemp;
   1008 
   1009 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
   1010 		return;
   1011 	ltemp = offset;
   1012 #ifdef PPS_SYNC
   1013 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
   1014 		ltemp = pps_offset;
   1015 #endif /* PPS_SYNC */
   1016 
   1017 	/*
   1018 	 * Scale the phase adjustment and clamp to the operating range.
   1019 	 */
   1020 	if (ltemp > MAXPHASE)
   1021 		time_offset = MAXPHASE << SHIFT_UPDATE;
   1022 	else if (ltemp < -MAXPHASE)
   1023 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
   1024 	else
   1025 		time_offset = ltemp << SHIFT_UPDATE;
   1026 
   1027 	/*
   1028 	 * Select whether the frequency is to be controlled and in which
   1029 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
   1030 	 * multiply/divide should be replaced someday.
   1031 	 */
   1032 	if (time_status & STA_FREQHOLD || time_reftime == 0)
   1033 		time_reftime = time.tv_sec;
   1034 	mtemp = time.tv_sec - time_reftime;
   1035 	time_reftime = time.tv_sec;
   1036 	if (time_status & STA_FLL) {
   1037 		if (mtemp >= MINSEC) {
   1038 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
   1039 			    SHIFT_UPDATE));
   1040 			if (ltemp < 0)
   1041 				time_freq -= -ltemp >> SHIFT_KH;
   1042 			else
   1043 				time_freq += ltemp >> SHIFT_KH;
   1044 		}
   1045 	} else {
   1046 		if (mtemp < MAXSEC) {
   1047 			ltemp *= mtemp;
   1048 			if (ltemp < 0)
   1049 				time_freq -= -ltemp >> (time_constant +
   1050 				    time_constant + SHIFT_KF -
   1051 				    SHIFT_USEC);
   1052 			else
   1053 				time_freq += ltemp >> (time_constant +
   1054 				    time_constant + SHIFT_KF -
   1055 				    SHIFT_USEC);
   1056 		}
   1057 	}
   1058 	if (time_freq > time_tolerance)
   1059 		time_freq = time_tolerance;
   1060 	else if (time_freq < -time_tolerance)
   1061 		time_freq = -time_tolerance;
   1062 }
   1063 
   1064 #ifdef PPS_SYNC
   1065 /*
   1066  * hardpps() - discipline CPU clock oscillator to external PPS signal
   1067  *
   1068  * This routine is called at each PPS interrupt in order to discipline
   1069  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
   1070  * and leaves it in a handy spot for the hardclock() routine. It
   1071  * integrates successive PPS phase differences and calculates the
   1072  * frequency offset. This is used in hardclock() to discipline the CPU
   1073  * clock oscillator so that intrinsic frequency error is cancelled out.
   1074  * The code requires the caller to capture the time and hardware counter
   1075  * value at the on-time PPS signal transition.
   1076  *
   1077  * Note that, on some Unix systems, this routine runs at an interrupt
   1078  * priority level higher than the timer interrupt routine hardclock().
   1079  * Therefore, the variables used are distinct from the hardclock()
   1080  * variables, except for certain exceptions: The PPS frequency pps_freq
   1081  * and phase pps_offset variables are determined by this routine and
   1082  * updated atomically. The time_tolerance variable can be considered a
   1083  * constant, since it is infrequently changed, and then only when the
   1084  * PPS signal is disabled. The watchdog counter pps_valid is updated
   1085  * once per second by hardclock() and is atomically cleared in this
   1086  * routine.
   1087  */
   1088 void
   1089 hardpps(tvp, usec)
   1090 	struct timeval *tvp;		/* time at PPS */
   1091 	long usec;			/* hardware counter at PPS */
   1092 {
   1093 	long u_usec, v_usec, bigtick;
   1094 	long cal_sec, cal_usec;
   1095 
   1096 	/*
   1097 	 * An occasional glitch can be produced when the PPS interrupt
   1098 	 * occurs in the hardclock() routine before the time variable is
   1099 	 * updated. Here the offset is discarded when the difference
   1100 	 * between it and the last one is greater than tick/2, but not
   1101 	 * if the interval since the first discard exceeds 30 s.
   1102 	 */
   1103 	time_status |= STA_PPSSIGNAL;
   1104 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
   1105 	pps_valid = 0;
   1106 	u_usec = -tvp->tv_usec;
   1107 	if (u_usec < -500000)
   1108 		u_usec += 1000000;
   1109 	v_usec = pps_offset - u_usec;
   1110 	if (v_usec < 0)
   1111 		v_usec = -v_usec;
   1112 	if (v_usec > (tick >> 1)) {
   1113 		if (pps_glitch > MAXGLITCH) {
   1114 			pps_glitch = 0;
   1115 			pps_tf[2] = u_usec;
   1116 			pps_tf[1] = u_usec;
   1117 		} else {
   1118 			pps_glitch++;
   1119 			u_usec = pps_offset;
   1120 		}
   1121 	} else
   1122 		pps_glitch = 0;
   1123 
   1124 	/*
   1125 	 * A three-stage median filter is used to help deglitch the pps
   1126 	 * time. The median sample becomes the time offset estimate; the
   1127 	 * difference between the other two samples becomes the time
   1128 	 * dispersion (jitter) estimate.
   1129 	 */
   1130 	pps_tf[2] = pps_tf[1];
   1131 	pps_tf[1] = pps_tf[0];
   1132 	pps_tf[0] = u_usec;
   1133 	if (pps_tf[0] > pps_tf[1]) {
   1134 		if (pps_tf[1] > pps_tf[2]) {
   1135 			pps_offset = pps_tf[1];		/* 0 1 2 */
   1136 			v_usec = pps_tf[0] - pps_tf[2];
   1137 		} else if (pps_tf[2] > pps_tf[0]) {
   1138 			pps_offset = pps_tf[0];		/* 2 0 1 */
   1139 			v_usec = pps_tf[2] - pps_tf[1];
   1140 		} else {
   1141 			pps_offset = pps_tf[2];		/* 0 2 1 */
   1142 			v_usec = pps_tf[0] - pps_tf[1];
   1143 		}
   1144 	} else {
   1145 		if (pps_tf[1] < pps_tf[2]) {
   1146 			pps_offset = pps_tf[1];		/* 2 1 0 */
   1147 			v_usec = pps_tf[2] - pps_tf[0];
   1148 		} else  if (pps_tf[2] < pps_tf[0]) {
   1149 			pps_offset = pps_tf[0];		/* 1 0 2 */
   1150 			v_usec = pps_tf[1] - pps_tf[2];
   1151 		} else {
   1152 			pps_offset = pps_tf[2];		/* 1 2 0 */
   1153 			v_usec = pps_tf[1] - pps_tf[0];
   1154 		}
   1155 	}
   1156 	if (v_usec > MAXTIME)
   1157 		pps_jitcnt++;
   1158 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
   1159 	if (v_usec < 0)
   1160 		pps_jitter -= -v_usec >> PPS_AVG;
   1161 	else
   1162 		pps_jitter += v_usec >> PPS_AVG;
   1163 	if (pps_jitter > (MAXTIME >> 1))
   1164 		time_status |= STA_PPSJITTER;
   1165 
   1166 	/*
   1167 	 * During the calibration interval adjust the starting time when
   1168 	 * the tick overflows. At the end of the interval compute the
   1169 	 * duration of the interval and the difference of the hardware
   1170 	 * counters at the beginning and end of the interval. This code
   1171 	 * is deliciously complicated by the fact valid differences may
   1172 	 * exceed the value of tick when using long calibration
   1173 	 * intervals and small ticks. Note that the counter can be
   1174 	 * greater than tick if caught at just the wrong instant, but
   1175 	 * the values returned and used here are correct.
   1176 	 */
   1177 	bigtick = (long)tick << SHIFT_USEC;
   1178 	pps_usec -= pps_freq;
   1179 	if (pps_usec >= bigtick)
   1180 		pps_usec -= bigtick;
   1181 	if (pps_usec < 0)
   1182 		pps_usec += bigtick;
   1183 	pps_time.tv_sec++;
   1184 	pps_count++;
   1185 	if (pps_count < (1 << pps_shift))
   1186 		return;
   1187 	pps_count = 0;
   1188 	pps_calcnt++;
   1189 	u_usec = usec << SHIFT_USEC;
   1190 	v_usec = pps_usec - u_usec;
   1191 	if (v_usec >= bigtick >> 1)
   1192 		v_usec -= bigtick;
   1193 	if (v_usec < -(bigtick >> 1))
   1194 		v_usec += bigtick;
   1195 	if (v_usec < 0)
   1196 		v_usec = -(-v_usec >> pps_shift);
   1197 	else
   1198 		v_usec = v_usec >> pps_shift;
   1199 	pps_usec = u_usec;
   1200 	cal_sec = tvp->tv_sec;
   1201 	cal_usec = tvp->tv_usec;
   1202 	cal_sec -= pps_time.tv_sec;
   1203 	cal_usec -= pps_time.tv_usec;
   1204 	if (cal_usec < 0) {
   1205 		cal_usec += 1000000;
   1206 		cal_sec--;
   1207 	}
   1208 	pps_time = *tvp;
   1209 
   1210 	/*
   1211 	 * Check for lost interrupts, noise, excessive jitter and
   1212 	 * excessive frequency error. The number of timer ticks during
   1213 	 * the interval may vary +-1 tick. Add to this a margin of one
   1214 	 * tick for the PPS signal jitter and maximum frequency
   1215 	 * deviation. If the limits are exceeded, the calibration
   1216 	 * interval is reset to the minimum and we start over.
   1217 	 */
   1218 	u_usec = (long)tick << 1;
   1219 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
   1220 	    || (cal_sec == 0 && cal_usec < u_usec))
   1221 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
   1222 		pps_errcnt++;
   1223 		pps_shift = PPS_SHIFT;
   1224 		pps_intcnt = 0;
   1225 		time_status |= STA_PPSERROR;
   1226 		return;
   1227 	}
   1228 
   1229 	/*
   1230 	 * A three-stage median filter is used to help deglitch the pps
   1231 	 * frequency. The median sample becomes the frequency offset
   1232 	 * estimate; the difference between the other two samples
   1233 	 * becomes the frequency dispersion (stability) estimate.
   1234 	 */
   1235 	pps_ff[2] = pps_ff[1];
   1236 	pps_ff[1] = pps_ff[0];
   1237 	pps_ff[0] = v_usec;
   1238 	if (pps_ff[0] > pps_ff[1]) {
   1239 		if (pps_ff[1] > pps_ff[2]) {
   1240 			u_usec = pps_ff[1];		/* 0 1 2 */
   1241 			v_usec = pps_ff[0] - pps_ff[2];
   1242 		} else if (pps_ff[2] > pps_ff[0]) {
   1243 			u_usec = pps_ff[0];		/* 2 0 1 */
   1244 			v_usec = pps_ff[2] - pps_ff[1];
   1245 		} else {
   1246 			u_usec = pps_ff[2];		/* 0 2 1 */
   1247 			v_usec = pps_ff[0] - pps_ff[1];
   1248 		}
   1249 	} else {
   1250 		if (pps_ff[1] < pps_ff[2]) {
   1251 			u_usec = pps_ff[1];		/* 2 1 0 */
   1252 			v_usec = pps_ff[2] - pps_ff[0];
   1253 		} else  if (pps_ff[2] < pps_ff[0]) {
   1254 			u_usec = pps_ff[0];		/* 1 0 2 */
   1255 			v_usec = pps_ff[1] - pps_ff[2];
   1256 		} else {
   1257 			u_usec = pps_ff[2];		/* 1 2 0 */
   1258 			v_usec = pps_ff[1] - pps_ff[0];
   1259 		}
   1260 	}
   1261 
   1262 	/*
   1263 	 * Here the frequency dispersion (stability) is updated. If it
   1264 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
   1265 	 * offset is updated as well, but clamped to the tolerance. It
   1266 	 * will be processed later by the hardclock() routine.
   1267 	 */
   1268 	v_usec = (v_usec >> 1) - pps_stabil;
   1269 	if (v_usec < 0)
   1270 		pps_stabil -= -v_usec >> PPS_AVG;
   1271 	else
   1272 		pps_stabil += v_usec >> PPS_AVG;
   1273 	if (pps_stabil > MAXFREQ >> 2) {
   1274 		pps_stbcnt++;
   1275 		time_status |= STA_PPSWANDER;
   1276 		return;
   1277 	}
   1278 	if (time_status & STA_PPSFREQ) {
   1279 		if (u_usec < 0) {
   1280 			pps_freq -= -u_usec >> PPS_AVG;
   1281 			if (pps_freq < -time_tolerance)
   1282 				pps_freq = -time_tolerance;
   1283 			u_usec = -u_usec;
   1284 		} else {
   1285 			pps_freq += u_usec >> PPS_AVG;
   1286 			if (pps_freq > time_tolerance)
   1287 				pps_freq = time_tolerance;
   1288 		}
   1289 	}
   1290 
   1291 	/*
   1292 	 * Here the calibration interval is adjusted. If the maximum
   1293 	 * time difference is greater than tick / 4, reduce the interval
   1294 	 * by half. If this is not the case for four consecutive
   1295 	 * intervals, double the interval.
   1296 	 */
   1297 	if (u_usec << pps_shift > bigtick >> 2) {
   1298 		pps_intcnt = 0;
   1299 		if (pps_shift > PPS_SHIFT)
   1300 			pps_shift--;
   1301 	} else if (pps_intcnt >= 4) {
   1302 		pps_intcnt = 0;
   1303 		if (pps_shift < PPS_SHIFTMAX)
   1304 			pps_shift++;
   1305 	} else
   1306 		pps_intcnt++;
   1307 }
   1308 #endif /* PPS_SYNC */
   1309 #endif /* NTP  */
   1310 
   1311 
   1312 /*
   1313  * Return information about system clocks.
   1314  */
   1315 int
   1316 sysctl_clockrate(where, sizep)
   1317 	register char *where;
   1318 	size_t *sizep;
   1319 {
   1320 	struct clockinfo clkinfo;
   1321 
   1322 	/*
   1323 	 * Construct clockinfo structure.
   1324 	 */
   1325 	clkinfo.tick = tick;
   1326 	clkinfo.tickadj = tickadj;
   1327 	clkinfo.hz = hz;
   1328 	clkinfo.profhz = profhz;
   1329 	clkinfo.stathz = stathz ? stathz : hz;
   1330 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
   1331 }
   1332 
   1333