kern_clock.c revision 1.43 1 /* $NetBSD: kern_clock.c,v 1.43 1998/01/31 10:42:11 ross Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/dkstat.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <vm/vm.h>
52 #include <sys/sysctl.h>
53 #include <sys/timex.h>
54
55 #include <machine/cpu.h>
56
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60
61 /*
62 * Clock handling routines.
63 *
64 * This code is written to operate with two timers that run independently of
65 * each other. The main clock, running hz times per second, is used to keep
66 * track of real time. The second timer handles kernel and user profiling,
67 * and does resource use estimation. If the second timer is programmable,
68 * it is randomized to avoid aliasing between the two clocks. For example,
69 * the randomization prevents an adversary from always giving up the cpu
70 * just before its quantum expires. Otherwise, it would never accumulate
71 * cpu ticks. The mean frequency of the second timer is stathz.
72 *
73 * If no second timer exists, stathz will be zero; in this case we drive
74 * profiling and statistics off the main clock. This WILL NOT be accurate;
75 * do not do it unless absolutely necessary.
76 *
77 * The statistics clock may (or may not) be run at a higher rate while
78 * profiling. This profile clock runs at profhz. We require that profhz
79 * be an integral multiple of stathz.
80 *
81 * If the statistics clock is running fast, it must be divided by the ratio
82 * profhz/stathz for statistics. (For profiling, every tick counts.)
83 */
84
85 /*
86 * TODO:
87 * allocate more timeout table slots when table overflows.
88 */
89
90
91 #ifdef NTP /* NTP phase-locked loop in kernel */
92 /*
93 * Phase/frequency-lock loop (PLL/FLL) definitions
94 *
95 * The following variables are read and set by the ntp_adjtime() system
96 * call.
97 *
98 * time_state shows the state of the system clock, with values defined
99 * in the timex.h header file.
100 *
101 * time_status shows the status of the system clock, with bits defined
102 * in the timex.h header file.
103 *
104 * time_offset is used by the PLL/FLL to adjust the system time in small
105 * increments.
106 *
107 * time_constant determines the bandwidth or "stiffness" of the PLL.
108 *
109 * time_tolerance determines maximum frequency error or tolerance of the
110 * CPU clock oscillator and is a property of the architecture; however,
111 * in principle it could change as result of the presence of external
112 * discipline signals, for instance.
113 *
114 * time_precision is usually equal to the kernel tick variable; however,
115 * in cases where a precision clock counter or external clock is
116 * available, the resolution can be much less than this and depend on
117 * whether the external clock is working or not.
118 *
119 * time_maxerror is initialized by a ntp_adjtime() call and increased by
120 * the kernel once each second to reflect the maximum error bound
121 * growth.
122 *
123 * time_esterror is set and read by the ntp_adjtime() call, but
124 * otherwise not used by the kernel.
125 */
126 int time_state = TIME_OK; /* clock state */
127 int time_status = STA_UNSYNC; /* clock status bits */
128 long time_offset = 0; /* time offset (us) */
129 long time_constant = 0; /* pll time constant */
130 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
131 long time_precision = 1; /* clock precision (us) */
132 long time_maxerror = MAXPHASE; /* maximum error (us) */
133 long time_esterror = MAXPHASE; /* estimated error (us) */
134
135 /*
136 * The following variables establish the state of the PLL/FLL and the
137 * residual time and frequency offset of the local clock. The scale
138 * factors are defined in the timex.h header file.
139 *
140 * time_phase and time_freq are the phase increment and the frequency
141 * increment, respectively, of the kernel time variable.
142 *
143 * time_freq is set via ntp_adjtime() from a value stored in a file when
144 * the synchronization daemon is first started. Its value is retrieved
145 * via ntp_adjtime() and written to the file about once per hour by the
146 * daemon.
147 *
148 * time_adj is the adjustment added to the value of tick at each timer
149 * interrupt and is recomputed from time_phase and time_freq at each
150 * seconds rollover.
151 *
152 * time_reftime is the second's portion of the system time at the last
153 * call to ntp_adjtime(). It is used to adjust the time_freq variable
154 * and to increase the time_maxerror as the time since last update
155 * increases.
156 */
157 long time_phase = 0; /* phase offset (scaled us) */
158 long time_freq = 0; /* frequency offset (scaled ppm) */
159 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
160 long time_reftime = 0; /* time at last adjustment (s) */
161
162 #ifdef PPS_SYNC
163 /*
164 * The following variables are used only if the kernel PPS discipline
165 * code is configured (PPS_SYNC). The scale factors are defined in the
166 * timex.h header file.
167 *
168 * pps_time contains the time at each calibration interval, as read by
169 * microtime(). pps_count counts the seconds of the calibration
170 * interval, the duration of which is nominally pps_shift in powers of
171 * two.
172 *
173 * pps_offset is the time offset produced by the time median filter
174 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
175 * this filter.
176 *
177 * pps_freq is the frequency offset produced by the frequency median
178 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
179 * by this filter.
180 *
181 * pps_usec is latched from a high resolution counter or external clock
182 * at pps_time. Here we want the hardware counter contents only, not the
183 * contents plus the time_tv.usec as usual.
184 *
185 * pps_valid counts the number of seconds since the last PPS update. It
186 * is used as a watchdog timer to disable the PPS discipline should the
187 * PPS signal be lost.
188 *
189 * pps_glitch counts the number of seconds since the beginning of an
190 * offset burst more than tick/2 from current nominal offset. It is used
191 * mainly to suppress error bursts due to priority conflicts between the
192 * PPS interrupt and timer interrupt.
193 *
194 * pps_intcnt counts the calibration intervals for use in the interval-
195 * adaptation algorithm. It's just too complicated for words.
196 */
197 struct timeval pps_time; /* kernel time at last interval */
198 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
199 long pps_offset = 0; /* pps time offset (us) */
200 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
201 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
202 long pps_freq = 0; /* frequency offset (scaled ppm) */
203 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
204 long pps_usec = 0; /* microsec counter at last interval */
205 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
206 int pps_glitch = 0; /* pps signal glitch counter */
207 int pps_count = 0; /* calibration interval counter (s) */
208 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
209 int pps_intcnt = 0; /* intervals at current duration */
210
211 /*
212 * PPS signal quality monitors
213 *
214 * pps_jitcnt counts the seconds that have been discarded because the
215 * jitter measured by the time median filter exceeds the limit MAXTIME
216 * (100 us).
217 *
218 * pps_calcnt counts the frequency calibration intervals, which are
219 * variable from 4 s to 256 s.
220 *
221 * pps_errcnt counts the calibration intervals which have been discarded
222 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
223 * calibration interval jitter exceeds two ticks.
224 *
225 * pps_stbcnt counts the calibration intervals that have been discarded
226 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
227 */
228 long pps_jitcnt = 0; /* jitter limit exceeded */
229 long pps_calcnt = 0; /* calibration intervals */
230 long pps_errcnt = 0; /* calibration errors */
231 long pps_stbcnt = 0; /* stability limit exceeded */
232 #endif /* PPS_SYNC */
233
234 #ifdef EXT_CLOCK
235 /*
236 * External clock definitions
237 *
238 * The following definitions and declarations are used only if an
239 * external clock is configured on the system.
240 */
241 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
242
243 /*
244 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
245 * interrupt and decremented once each second.
246 */
247 int clock_count = 0; /* CPU clock counter */
248
249 #ifdef HIGHBALL
250 /*
251 * The clock_offset and clock_cpu variables are used by the HIGHBALL
252 * interface. The clock_offset variable defines the offset between
253 * system time and the HIGBALL counters. The clock_cpu variable contains
254 * the offset between the system clock and the HIGHBALL clock for use in
255 * disciplining the kernel time variable.
256 */
257 extern struct timeval clock_offset; /* Highball clock offset */
258 long clock_cpu = 0; /* CPU clock adjust */
259 #endif /* HIGHBALL */
260 #endif /* EXT_CLOCK */
261 #endif /* NTP */
262
263
264 /*
265 * Bump a timeval by a small number of usec's.
266 */
267 #define BUMPTIME(t, usec) { \
268 register volatile struct timeval *tp = (t); \
269 register long us; \
270 \
271 tp->tv_usec = us = tp->tv_usec + (usec); \
272 if (us >= 1000000) { \
273 tp->tv_usec = us - 1000000; \
274 tp->tv_sec++; \
275 } \
276 }
277
278 int stathz;
279 int profhz;
280 int profprocs;
281 int ticks;
282 static int psdiv, pscnt; /* prof => stat divider */
283 int psratio; /* ratio: prof / stat */
284 int tickfix, tickfixinterval; /* used if tick not really integral */
285 #ifndef NTP
286 static int tickfixcnt; /* accumulated fractional error */
287 #else
288 int fixtick; /* used by NTP for same */
289 int shifthz;
290 #endif
291
292 volatile struct timeval time;
293 volatile struct timeval mono_time;
294
295 /*
296 * Initialize clock frequencies and start both clocks running.
297 */
298 void
299 initclocks()
300 {
301 register int i;
302
303 /*
304 * Set divisors to 1 (normal case) and let the machine-specific
305 * code do its bit.
306 */
307 psdiv = pscnt = 1;
308 cpu_initclocks();
309
310 /*
311 * Compute profhz/stathz, and fix profhz if needed.
312 */
313 i = stathz ? stathz : hz;
314 if (profhz == 0)
315 profhz = i;
316 psratio = profhz / i;
317
318 #ifdef NTP
319 switch (hz) {
320 case 60:
321 case 64:
322 shifthz = SHIFT_SCALE - 6;
323 break;
324 case 96:
325 case 100:
326 case 128:
327 shifthz = SHIFT_SCALE - 7;
328 break;
329 case 256:
330 shifthz = SHIFT_SCALE - 8;
331 break;
332 case 512:
333 shifthz = SHIFT_SCALE - 9;
334 break;
335 case 1000:
336 case 1024:
337 shifthz = SHIFT_SCALE - 10;
338 break;
339 default:
340 panic("weird hz");
341 }
342 #endif
343 }
344
345 /*
346 * The real-time timer, interrupting hz times per second.
347 */
348 void
349 hardclock(frame)
350 register struct clockframe *frame;
351 {
352 register struct callout *p1;
353 register struct proc *p;
354 register int delta, needsoft;
355 extern int tickdelta;
356 extern long timedelta;
357 #ifdef NTP
358 register int time_update;
359 register int ltemp;
360 #endif
361
362 /*
363 * Update real-time timeout queue.
364 * At front of queue are some number of events which are ``due''.
365 * The time to these is <= 0 and if negative represents the
366 * number of ticks which have passed since it was supposed to happen.
367 * The rest of the q elements (times > 0) are events yet to happen,
368 * where the time for each is given as a delta from the previous.
369 * Decrementing just the first of these serves to decrement the time
370 * to all events.
371 */
372 needsoft = 0;
373 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
374 if (--p1->c_time > 0)
375 break;
376 needsoft = 1;
377 if (p1->c_time == 0)
378 break;
379 }
380
381 p = curproc;
382 if (p) {
383 register struct pstats *pstats;
384
385 /*
386 * Run current process's virtual and profile time, as needed.
387 */
388 pstats = p->p_stats;
389 if (CLKF_USERMODE(frame) &&
390 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
391 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
392 psignal(p, SIGVTALRM);
393 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
394 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
395 psignal(p, SIGPROF);
396 }
397
398 /*
399 * If no separate statistics clock is available, run it from here.
400 */
401 if (stathz == 0)
402 statclock(frame);
403
404 /*
405 * Increment the time-of-day. The increment is normally just
406 * ``tick''. If the machine is one which has a clock frequency
407 * such that ``hz'' would not divide the second evenly into
408 * milliseconds, a periodic adjustment must be applied. Finally,
409 * if we are still adjusting the time (see adjtime()),
410 * ``tickdelta'' may also be added in.
411 */
412 ticks++;
413 delta = tick;
414
415 #ifndef NTP
416 if (tickfix) {
417 tickfixcnt += tickfix;
418 if (tickfixcnt >= tickfixinterval) {
419 delta++;
420 tickfixcnt -= tickfixinterval;
421 }
422 }
423 #endif /* !NTP */
424 /* Imprecise 4bsd adjtime() handling */
425 if (timedelta != 0) {
426 delta += tickdelta;
427 timedelta -= tickdelta;
428 }
429
430 #ifdef notyet
431 microset();
432 #endif
433
434 #ifndef NTP
435 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
436 #endif
437 BUMPTIME(&mono_time, delta);
438
439 #ifdef NTP
440 time_update = delta;
441
442 /*
443 * Compute the phase adjustment. If the low-order bits
444 * (time_phase) of the update overflow, bump the high-order bits
445 * (time_update).
446 */
447 time_phase += time_adj;
448 if (time_phase <= -FINEUSEC) {
449 ltemp = -time_phase >> SHIFT_SCALE;
450 time_phase += ltemp << SHIFT_SCALE;
451 time_update -= ltemp;
452 } else if (time_phase >= FINEUSEC) {
453 ltemp = time_phase >> SHIFT_SCALE;
454 time_phase -= ltemp << SHIFT_SCALE;
455 time_update += ltemp;
456 }
457
458 #ifdef HIGHBALL
459 /*
460 * If the HIGHBALL board is installed, we need to adjust the
461 * external clock offset in order to close the hardware feedback
462 * loop. This will adjust the external clock phase and frequency
463 * in small amounts. The additional phase noise and frequency
464 * wander this causes should be minimal. We also need to
465 * discipline the kernel time variable, since the PLL is used to
466 * discipline the external clock. If the Highball board is not
467 * present, we discipline kernel time with the PLL as usual. We
468 * assume that the external clock phase adjustment (time_update)
469 * and kernel phase adjustment (clock_cpu) are less than the
470 * value of tick.
471 */
472 clock_offset.tv_usec += time_update;
473 if (clock_offset.tv_usec >= 1000000) {
474 clock_offset.tv_sec++;
475 clock_offset.tv_usec -= 1000000;
476 }
477 if (clock_offset.tv_usec < 0) {
478 clock_offset.tv_sec--;
479 clock_offset.tv_usec += 1000000;
480 }
481 time.tv_usec += clock_cpu;
482 clock_cpu = 0;
483 #else
484 time.tv_usec += time_update;
485 #endif /* HIGHBALL */
486
487 /*
488 * On rollover of the second the phase adjustment to be used for
489 * the next second is calculated. Also, the maximum error is
490 * increased by the tolerance. If the PPS frequency discipline
491 * code is present, the phase is increased to compensate for the
492 * CPU clock oscillator frequency error.
493 *
494 * On a 32-bit machine and given parameters in the timex.h
495 * header file, the maximum phase adjustment is +-512 ms and
496 * maximum frequency offset is a tad less than) +-512 ppm. On a
497 * 64-bit machine, you shouldn't need to ask.
498 */
499 if (time.tv_usec >= 1000000) {
500 time.tv_usec -= 1000000;
501 time.tv_sec++;
502 time_maxerror += time_tolerance >> SHIFT_USEC;
503
504 /*
505 * Leap second processing. If in leap-insert state at
506 * the end of the day, the system clock is set back one
507 * second; if in leap-delete state, the system clock is
508 * set ahead one second. The microtime() routine or
509 * external clock driver will insure that reported time
510 * is always monotonic. The ugly divides should be
511 * replaced.
512 */
513 switch (time_state) {
514 case TIME_OK:
515 if (time_status & STA_INS)
516 time_state = TIME_INS;
517 else if (time_status & STA_DEL)
518 time_state = TIME_DEL;
519 break;
520
521 case TIME_INS:
522 if (time.tv_sec % 86400 == 0) {
523 time.tv_sec--;
524 time_state = TIME_OOP;
525 }
526 break;
527
528 case TIME_DEL:
529 if ((time.tv_sec + 1) % 86400 == 0) {
530 time.tv_sec++;
531 time_state = TIME_WAIT;
532 }
533 break;
534
535 case TIME_OOP:
536 time_state = TIME_WAIT;
537 break;
538
539 case TIME_WAIT:
540 if (!(time_status & (STA_INS | STA_DEL)))
541 time_state = TIME_OK;
542 break;
543 }
544
545 /*
546 * Compute the phase adjustment for the next second. In
547 * PLL mode, the offset is reduced by a fixed factor
548 * times the time constant. In FLL mode the offset is
549 * used directly. In either mode, the maximum phase
550 * adjustment for each second is clamped so as to spread
551 * the adjustment over not more than the number of
552 * seconds between updates.
553 */
554 if (time_offset < 0) {
555 ltemp = -time_offset;
556 if (!(time_status & STA_FLL))
557 ltemp >>= SHIFT_KG + time_constant;
558 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
559 ltemp = (MAXPHASE / MINSEC) <<
560 SHIFT_UPDATE;
561 time_offset += ltemp;
562 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
563 } else if (time_offset > 0) {
564 ltemp = time_offset;
565 if (!(time_status & STA_FLL))
566 ltemp >>= SHIFT_KG + time_constant;
567 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
568 ltemp = (MAXPHASE / MINSEC) <<
569 SHIFT_UPDATE;
570 time_offset -= ltemp;
571 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
572 } else
573 time_adj = 0;
574
575 /*
576 * Compute the frequency estimate and additional phase
577 * adjustment due to frequency error for the next
578 * second. When the PPS signal is engaged, gnaw on the
579 * watchdog counter and update the frequency computed by
580 * the pll and the PPS signal.
581 */
582 #ifdef PPS_SYNC
583 pps_valid++;
584 if (pps_valid == PPS_VALID) {
585 pps_jitter = MAXTIME;
586 pps_stabil = MAXFREQ;
587 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
588 STA_PPSWANDER | STA_PPSERROR);
589 }
590 ltemp = time_freq + pps_freq;
591 #else
592 ltemp = time_freq;
593 #endif /* PPS_SYNC */
594
595 if (ltemp < 0)
596 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
597 else
598 time_adj += ltemp >> (SHIFT_USEC - shifthz);
599 time_adj += (long)fixtick << shifthz;
600
601 /*
602 * When the CPU clock oscillator frequency is not a
603 * power of 2 in Hz, shifthz is only an approximate
604 * scale factor.
605 */
606 switch (hz) {
607 case 96:
608 case 100:
609 /*
610 * In the following code the overall gain is increased
611 * by a factor of 1.25, which results in a residual
612 * error less than 3 percent.
613 */
614 if (time_adj < 0)
615 time_adj -= -time_adj >> 2;
616 else
617 time_adj += time_adj >> 2;
618 break;
619 case 60:
620 /*
621 * 60 Hz m68k and vaxes have a PLL gain factor of of
622 * 60/64 (15/16) of what it should be. In the following code
623 * the overall gain is increased by a factor of 1.0625,
624 * (17/16) which results in a residual error of just less
625 * than 0.4 percent.
626 */
627 if (time_adj < 0)
628 time_adj -= -time_adj >> 4;
629 else
630 time_adj += time_adj >> 4;
631 break;
632 case 1000:
633 /*
634 * Do this the simple way; we're on an alpha, are
635 * the shift police going to come and get us? We
636 * would get a residual error of only .82% with
637 * a 5 bit right shift, but we also have 64 bits
638 * in time_adj to work with for fixed point scaling.
639 */
640 time_adj = (time_adj * 1024) / 1000;
641 break;
642 }
643
644 #ifdef EXT_CLOCK
645 /*
646 * If an external clock is present, it is necessary to
647 * discipline the kernel time variable anyway, since not
648 * all system components use the microtime() interface.
649 * Here, the time offset between the external clock and
650 * kernel time variable is computed every so often.
651 */
652 clock_count++;
653 if (clock_count > CLOCK_INTERVAL) {
654 clock_count = 0;
655 microtime(&clock_ext);
656 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
657 delta.tv_usec = clock_ext.tv_usec -
658 time.tv_usec;
659 if (delta.tv_usec < 0)
660 delta.tv_sec--;
661 if (delta.tv_usec >= 500000) {
662 delta.tv_usec -= 1000000;
663 delta.tv_sec++;
664 }
665 if (delta.tv_usec < -500000) {
666 delta.tv_usec += 1000000;
667 delta.tv_sec--;
668 }
669 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
670 delta.tv_usec > MAXPHASE) ||
671 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
672 delta.tv_usec < -MAXPHASE)) {
673 time = clock_ext;
674 delta.tv_sec = 0;
675 delta.tv_usec = 0;
676 }
677 #ifdef HIGHBALL
678 clock_cpu = delta.tv_usec;
679 #else /* HIGHBALL */
680 hardupdate(delta.tv_usec);
681 #endif /* HIGHBALL */
682 }
683 #endif /* EXT_CLOCK */
684 }
685
686 #endif /* NTP */
687
688 /*
689 * Process callouts at a very low cpu priority, so we don't keep the
690 * relatively high clock interrupt priority any longer than necessary.
691 */
692 if (needsoft) {
693 if (CLKF_BASEPRI(frame)) {
694 /*
695 * Save the overhead of a software interrupt;
696 * it will happen as soon as we return, so do it now.
697 */
698 (void)splsoftclock();
699 softclock();
700 } else
701 setsoftclock();
702 }
703 }
704
705 /*
706 * Software (low priority) clock interrupt.
707 * Run periodic events from timeout queue.
708 */
709 /*ARGSUSED*/
710 void
711 softclock()
712 {
713 register struct callout *c;
714 register void *arg;
715 register void (*func) __P((void *));
716 register int s;
717
718 s = splhigh();
719 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
720 func = c->c_func;
721 arg = c->c_arg;
722 calltodo.c_next = c->c_next;
723 c->c_next = callfree;
724 callfree = c;
725 splx(s);
726 (*func)(arg);
727 (void) splhigh();
728 }
729 splx(s);
730 }
731
732 /*
733 * timeout --
734 * Execute a function after a specified length of time.
735 *
736 * untimeout --
737 * Cancel previous timeout function call.
738 *
739 * See AT&T BCI Driver Reference Manual for specification. This
740 * implementation differs from that one in that no identification
741 * value is returned from timeout, rather, the original arguments
742 * to timeout are used to identify entries for untimeout.
743 */
744 void
745 timeout(ftn, arg, ticks)
746 void (*ftn) __P((void *));
747 void *arg;
748 register int ticks;
749 {
750 register struct callout *new, *p, *t;
751 register int s;
752
753 if (ticks <= 0)
754 ticks = 1;
755
756 /* Lock out the clock. */
757 s = splhigh();
758
759 /* Fill in the next free callout structure. */
760 if (callfree == NULL)
761 panic("timeout table full");
762 new = callfree;
763 callfree = new->c_next;
764 new->c_arg = arg;
765 new->c_func = ftn;
766
767 /*
768 * The time for each event is stored as a difference from the time
769 * of the previous event on the queue. Walk the queue, correcting
770 * the ticks argument for queue entries passed. Correct the ticks
771 * value for the queue entry immediately after the insertion point
772 * as well. Watch out for negative c_time values; these represent
773 * overdue events.
774 */
775 for (p = &calltodo;
776 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
777 if (t->c_time > 0)
778 ticks -= t->c_time;
779 new->c_time = ticks;
780 if (t != NULL)
781 t->c_time -= ticks;
782
783 /* Insert the new entry into the queue. */
784 p->c_next = new;
785 new->c_next = t;
786 splx(s);
787 }
788
789 void
790 untimeout(ftn, arg)
791 void (*ftn) __P((void *));
792 void *arg;
793 {
794 register struct callout *p, *t;
795 register int s;
796
797 s = splhigh();
798 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
799 if (t->c_func == ftn && t->c_arg == arg) {
800 /* Increment next entry's tick count. */
801 if (t->c_next && t->c_time > 0)
802 t->c_next->c_time += t->c_time;
803
804 /* Move entry from callout queue to callfree queue. */
805 p->c_next = t->c_next;
806 t->c_next = callfree;
807 callfree = t;
808 break;
809 }
810 splx(s);
811 }
812
813 /*
814 * Compute number of hz until specified time. Used to
815 * compute third argument to timeout() from an absolute time.
816 */
817 int
818 hzto(tv)
819 struct timeval *tv;
820 {
821 register long ticks, sec;
822 int s;
823
824 /*
825 * If number of microseconds will fit in 32 bit arithmetic,
826 * then compute number of microseconds to time and scale to
827 * ticks. Otherwise just compute number of hz in time, rounding
828 * times greater than representible to maximum value. (We must
829 * compute in microseconds, because hz can be greater than 1000,
830 * and thus tick can be less than one millisecond).
831 *
832 * Delta times less than 14 hours can be computed ``exactly''.
833 * (Note that if hz would yeild a non-integral number of us per
834 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
835 * than they should be.) Maximum value for any timeout in 10ms
836 * ticks is 250 days.
837 */
838 s = splclock();
839 sec = tv->tv_sec - time.tv_sec;
840 if (sec <= 0x7fffffff / 1000000 - 1)
841 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
842 (tv->tv_usec - time.tv_usec)) / tick;
843 else if (sec <= 0x7fffffff / hz)
844 ticks = sec * hz;
845 else
846 ticks = 0x7fffffff;
847 splx(s);
848 return (ticks);
849 }
850
851 /*
852 * Start profiling on a process.
853 *
854 * Kernel profiling passes proc0 which never exits and hence
855 * keeps the profile clock running constantly.
856 */
857 void
858 startprofclock(p)
859 register struct proc *p;
860 {
861 int s;
862
863 if ((p->p_flag & P_PROFIL) == 0) {
864 p->p_flag |= P_PROFIL;
865 if (++profprocs == 1 && stathz != 0) {
866 s = splstatclock();
867 psdiv = pscnt = psratio;
868 setstatclockrate(profhz);
869 splx(s);
870 }
871 }
872 }
873
874 /*
875 * Stop profiling on a process.
876 */
877 void
878 stopprofclock(p)
879 register struct proc *p;
880 {
881 int s;
882
883 if (p->p_flag & P_PROFIL) {
884 p->p_flag &= ~P_PROFIL;
885 if (--profprocs == 0 && stathz != 0) {
886 s = splstatclock();
887 psdiv = pscnt = 1;
888 setstatclockrate(stathz);
889 splx(s);
890 }
891 }
892 }
893
894 /*
895 * Statistics clock. Grab profile sample, and if divider reaches 0,
896 * do process and kernel statistics.
897 */
898 void
899 statclock(frame)
900 register struct clockframe *frame;
901 {
902 #ifdef GPROF
903 register struct gmonparam *g;
904 register int i;
905 #endif
906 register struct proc *p;
907
908 if (CLKF_USERMODE(frame)) {
909 p = curproc;
910 if (p->p_flag & P_PROFIL)
911 addupc_intr(p, CLKF_PC(frame), 1);
912 if (--pscnt > 0)
913 return;
914 /*
915 * Came from user mode; CPU was in user state.
916 * If this process is being profiled record the tick.
917 */
918 p->p_uticks++;
919 if (p->p_nice > NZERO)
920 cp_time[CP_NICE]++;
921 else
922 cp_time[CP_USER]++;
923 } else {
924 #ifdef GPROF
925 /*
926 * Kernel statistics are just like addupc_intr, only easier.
927 */
928 g = &_gmonparam;
929 if (g->state == GMON_PROF_ON) {
930 i = CLKF_PC(frame) - g->lowpc;
931 if (i < g->textsize) {
932 i /= HISTFRACTION * sizeof(*g->kcount);
933 g->kcount[i]++;
934 }
935 }
936 #endif
937 if (--pscnt > 0)
938 return;
939 /*
940 * Came from kernel mode, so we were:
941 * - handling an interrupt,
942 * - doing syscall or trap work on behalf of the current
943 * user process, or
944 * - spinning in the idle loop.
945 * Whichever it is, charge the time as appropriate.
946 * Note that we charge interrupts to the current process,
947 * regardless of whether they are ``for'' that process,
948 * so that we know how much of its real time was spent
949 * in ``non-process'' (i.e., interrupt) work.
950 */
951 p = curproc;
952 if (CLKF_INTR(frame)) {
953 if (p != NULL)
954 p->p_iticks++;
955 cp_time[CP_INTR]++;
956 } else if (p != NULL) {
957 p->p_sticks++;
958 cp_time[CP_SYS]++;
959 } else
960 cp_time[CP_IDLE]++;
961 }
962 pscnt = psdiv;
963
964 /*
965 * We adjust the priority of the current process. The priority of
966 * a process gets worse as it accumulates CPU time. The cpu usage
967 * estimator (p_estcpu) is increased here. The formula for computing
968 * priorities (in kern_synch.c) will compute a different value each
969 * time p_estcpu increases by 4. The cpu usage estimator ramps up
970 * quite quickly when the process is running (linearly), and decays
971 * away exponentially, at a rate which is proportionally slower when
972 * the system is busy. The basic principal is that the system will
973 * 90% forget that the process used a lot of CPU time in 5 * loadav
974 * seconds. This causes the system to favor processes which haven't
975 * run much recently, and to round-robin among other processes.
976 */
977 if (p != NULL) {
978 p->p_cpticks++;
979 if (++p->p_estcpu == 0)
980 p->p_estcpu--;
981 if ((p->p_estcpu & 3) == 0) {
982 resetpriority(p);
983 if (p->p_priority >= PUSER)
984 p->p_priority = p->p_usrpri;
985 }
986 }
987 }
988
989
990 #ifdef NTP /* NTP phase-locked loop in kernel */
991
992 /*
993 * hardupdate() - local clock update
994 *
995 * This routine is called by ntp_adjtime() to update the local clock
996 * phase and frequency. The implementation is of an adaptive-parameter,
997 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
998 * time and frequency offset estimates for each call. If the kernel PPS
999 * discipline code is configured (PPS_SYNC), the PPS signal itself
1000 * determines the new time offset, instead of the calling argument.
1001 * Presumably, calls to ntp_adjtime() occur only when the caller
1002 * believes the local clock is valid within some bound (+-128 ms with
1003 * NTP). If the caller's time is far different than the PPS time, an
1004 * argument will ensue, and it's not clear who will lose.
1005 *
1006 * For uncompensated quartz crystal oscillatores and nominal update
1007 * intervals less than 1024 s, operation should be in phase-lock mode
1008 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1009 * intervals greater than thiss, operation should be in frequency-lock
1010 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1011 *
1012 * Note: splclock() is in effect.
1013 */
1014 void
1015 hardupdate(offset)
1016 long offset;
1017 {
1018 long ltemp, mtemp;
1019
1020 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1021 return;
1022 ltemp = offset;
1023 #ifdef PPS_SYNC
1024 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1025 ltemp = pps_offset;
1026 #endif /* PPS_SYNC */
1027
1028 /*
1029 * Scale the phase adjustment and clamp to the operating range.
1030 */
1031 if (ltemp > MAXPHASE)
1032 time_offset = MAXPHASE << SHIFT_UPDATE;
1033 else if (ltemp < -MAXPHASE)
1034 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1035 else
1036 time_offset = ltemp << SHIFT_UPDATE;
1037
1038 /*
1039 * Select whether the frequency is to be controlled and in which
1040 * mode (PLL or FLL). Clamp to the operating range. Ugly
1041 * multiply/divide should be replaced someday.
1042 */
1043 if (time_status & STA_FREQHOLD || time_reftime == 0)
1044 time_reftime = time.tv_sec;
1045 mtemp = time.tv_sec - time_reftime;
1046 time_reftime = time.tv_sec;
1047 if (time_status & STA_FLL) {
1048 if (mtemp >= MINSEC) {
1049 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1050 SHIFT_UPDATE));
1051 if (ltemp < 0)
1052 time_freq -= -ltemp >> SHIFT_KH;
1053 else
1054 time_freq += ltemp >> SHIFT_KH;
1055 }
1056 } else {
1057 if (mtemp < MAXSEC) {
1058 ltemp *= mtemp;
1059 if (ltemp < 0)
1060 time_freq -= -ltemp >> (time_constant +
1061 time_constant + SHIFT_KF -
1062 SHIFT_USEC);
1063 else
1064 time_freq += ltemp >> (time_constant +
1065 time_constant + SHIFT_KF -
1066 SHIFT_USEC);
1067 }
1068 }
1069 if (time_freq > time_tolerance)
1070 time_freq = time_tolerance;
1071 else if (time_freq < -time_tolerance)
1072 time_freq = -time_tolerance;
1073 }
1074
1075 #ifdef PPS_SYNC
1076 /*
1077 * hardpps() - discipline CPU clock oscillator to external PPS signal
1078 *
1079 * This routine is called at each PPS interrupt in order to discipline
1080 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1081 * and leaves it in a handy spot for the hardclock() routine. It
1082 * integrates successive PPS phase differences and calculates the
1083 * frequency offset. This is used in hardclock() to discipline the CPU
1084 * clock oscillator so that intrinsic frequency error is cancelled out.
1085 * The code requires the caller to capture the time and hardware counter
1086 * value at the on-time PPS signal transition.
1087 *
1088 * Note that, on some Unix systems, this routine runs at an interrupt
1089 * priority level higher than the timer interrupt routine hardclock().
1090 * Therefore, the variables used are distinct from the hardclock()
1091 * variables, except for certain exceptions: The PPS frequency pps_freq
1092 * and phase pps_offset variables are determined by this routine and
1093 * updated atomically. The time_tolerance variable can be considered a
1094 * constant, since it is infrequently changed, and then only when the
1095 * PPS signal is disabled. The watchdog counter pps_valid is updated
1096 * once per second by hardclock() and is atomically cleared in this
1097 * routine.
1098 */
1099 void
1100 hardpps(tvp, usec)
1101 struct timeval *tvp; /* time at PPS */
1102 long usec; /* hardware counter at PPS */
1103 {
1104 long u_usec, v_usec, bigtick;
1105 long cal_sec, cal_usec;
1106
1107 /*
1108 * An occasional glitch can be produced when the PPS interrupt
1109 * occurs in the hardclock() routine before the time variable is
1110 * updated. Here the offset is discarded when the difference
1111 * between it and the last one is greater than tick/2, but not
1112 * if the interval since the first discard exceeds 30 s.
1113 */
1114 time_status |= STA_PPSSIGNAL;
1115 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1116 pps_valid = 0;
1117 u_usec = -tvp->tv_usec;
1118 if (u_usec < -500000)
1119 u_usec += 1000000;
1120 v_usec = pps_offset - u_usec;
1121 if (v_usec < 0)
1122 v_usec = -v_usec;
1123 if (v_usec > (tick >> 1)) {
1124 if (pps_glitch > MAXGLITCH) {
1125 pps_glitch = 0;
1126 pps_tf[2] = u_usec;
1127 pps_tf[1] = u_usec;
1128 } else {
1129 pps_glitch++;
1130 u_usec = pps_offset;
1131 }
1132 } else
1133 pps_glitch = 0;
1134
1135 /*
1136 * A three-stage median filter is used to help deglitch the pps
1137 * time. The median sample becomes the time offset estimate; the
1138 * difference between the other two samples becomes the time
1139 * dispersion (jitter) estimate.
1140 */
1141 pps_tf[2] = pps_tf[1];
1142 pps_tf[1] = pps_tf[0];
1143 pps_tf[0] = u_usec;
1144 if (pps_tf[0] > pps_tf[1]) {
1145 if (pps_tf[1] > pps_tf[2]) {
1146 pps_offset = pps_tf[1]; /* 0 1 2 */
1147 v_usec = pps_tf[0] - pps_tf[2];
1148 } else if (pps_tf[2] > pps_tf[0]) {
1149 pps_offset = pps_tf[0]; /* 2 0 1 */
1150 v_usec = pps_tf[2] - pps_tf[1];
1151 } else {
1152 pps_offset = pps_tf[2]; /* 0 2 1 */
1153 v_usec = pps_tf[0] - pps_tf[1];
1154 }
1155 } else {
1156 if (pps_tf[1] < pps_tf[2]) {
1157 pps_offset = pps_tf[1]; /* 2 1 0 */
1158 v_usec = pps_tf[2] - pps_tf[0];
1159 } else if (pps_tf[2] < pps_tf[0]) {
1160 pps_offset = pps_tf[0]; /* 1 0 2 */
1161 v_usec = pps_tf[1] - pps_tf[2];
1162 } else {
1163 pps_offset = pps_tf[2]; /* 1 2 0 */
1164 v_usec = pps_tf[1] - pps_tf[0];
1165 }
1166 }
1167 if (v_usec > MAXTIME)
1168 pps_jitcnt++;
1169 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1170 if (v_usec < 0)
1171 pps_jitter -= -v_usec >> PPS_AVG;
1172 else
1173 pps_jitter += v_usec >> PPS_AVG;
1174 if (pps_jitter > (MAXTIME >> 1))
1175 time_status |= STA_PPSJITTER;
1176
1177 /*
1178 * During the calibration interval adjust the starting time when
1179 * the tick overflows. At the end of the interval compute the
1180 * duration of the interval and the difference of the hardware
1181 * counters at the beginning and end of the interval. This code
1182 * is deliciously complicated by the fact valid differences may
1183 * exceed the value of tick when using long calibration
1184 * intervals and small ticks. Note that the counter can be
1185 * greater than tick if caught at just the wrong instant, but
1186 * the values returned and used here are correct.
1187 */
1188 bigtick = (long)tick << SHIFT_USEC;
1189 pps_usec -= pps_freq;
1190 if (pps_usec >= bigtick)
1191 pps_usec -= bigtick;
1192 if (pps_usec < 0)
1193 pps_usec += bigtick;
1194 pps_time.tv_sec++;
1195 pps_count++;
1196 if (pps_count < (1 << pps_shift))
1197 return;
1198 pps_count = 0;
1199 pps_calcnt++;
1200 u_usec = usec << SHIFT_USEC;
1201 v_usec = pps_usec - u_usec;
1202 if (v_usec >= bigtick >> 1)
1203 v_usec -= bigtick;
1204 if (v_usec < -(bigtick >> 1))
1205 v_usec += bigtick;
1206 if (v_usec < 0)
1207 v_usec = -(-v_usec >> pps_shift);
1208 else
1209 v_usec = v_usec >> pps_shift;
1210 pps_usec = u_usec;
1211 cal_sec = tvp->tv_sec;
1212 cal_usec = tvp->tv_usec;
1213 cal_sec -= pps_time.tv_sec;
1214 cal_usec -= pps_time.tv_usec;
1215 if (cal_usec < 0) {
1216 cal_usec += 1000000;
1217 cal_sec--;
1218 }
1219 pps_time = *tvp;
1220
1221 /*
1222 * Check for lost interrupts, noise, excessive jitter and
1223 * excessive frequency error. The number of timer ticks during
1224 * the interval may vary +-1 tick. Add to this a margin of one
1225 * tick for the PPS signal jitter and maximum frequency
1226 * deviation. If the limits are exceeded, the calibration
1227 * interval is reset to the minimum and we start over.
1228 */
1229 u_usec = (long)tick << 1;
1230 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1231 || (cal_sec == 0 && cal_usec < u_usec))
1232 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1233 pps_errcnt++;
1234 pps_shift = PPS_SHIFT;
1235 pps_intcnt = 0;
1236 time_status |= STA_PPSERROR;
1237 return;
1238 }
1239
1240 /*
1241 * A three-stage median filter is used to help deglitch the pps
1242 * frequency. The median sample becomes the frequency offset
1243 * estimate; the difference between the other two samples
1244 * becomes the frequency dispersion (stability) estimate.
1245 */
1246 pps_ff[2] = pps_ff[1];
1247 pps_ff[1] = pps_ff[0];
1248 pps_ff[0] = v_usec;
1249 if (pps_ff[0] > pps_ff[1]) {
1250 if (pps_ff[1] > pps_ff[2]) {
1251 u_usec = pps_ff[1]; /* 0 1 2 */
1252 v_usec = pps_ff[0] - pps_ff[2];
1253 } else if (pps_ff[2] > pps_ff[0]) {
1254 u_usec = pps_ff[0]; /* 2 0 1 */
1255 v_usec = pps_ff[2] - pps_ff[1];
1256 } else {
1257 u_usec = pps_ff[2]; /* 0 2 1 */
1258 v_usec = pps_ff[0] - pps_ff[1];
1259 }
1260 } else {
1261 if (pps_ff[1] < pps_ff[2]) {
1262 u_usec = pps_ff[1]; /* 2 1 0 */
1263 v_usec = pps_ff[2] - pps_ff[0];
1264 } else if (pps_ff[2] < pps_ff[0]) {
1265 u_usec = pps_ff[0]; /* 1 0 2 */
1266 v_usec = pps_ff[1] - pps_ff[2];
1267 } else {
1268 u_usec = pps_ff[2]; /* 1 2 0 */
1269 v_usec = pps_ff[1] - pps_ff[0];
1270 }
1271 }
1272
1273 /*
1274 * Here the frequency dispersion (stability) is updated. If it
1275 * is less than one-fourth the maximum (MAXFREQ), the frequency
1276 * offset is updated as well, but clamped to the tolerance. It
1277 * will be processed later by the hardclock() routine.
1278 */
1279 v_usec = (v_usec >> 1) - pps_stabil;
1280 if (v_usec < 0)
1281 pps_stabil -= -v_usec >> PPS_AVG;
1282 else
1283 pps_stabil += v_usec >> PPS_AVG;
1284 if (pps_stabil > MAXFREQ >> 2) {
1285 pps_stbcnt++;
1286 time_status |= STA_PPSWANDER;
1287 return;
1288 }
1289 if (time_status & STA_PPSFREQ) {
1290 if (u_usec < 0) {
1291 pps_freq -= -u_usec >> PPS_AVG;
1292 if (pps_freq < -time_tolerance)
1293 pps_freq = -time_tolerance;
1294 u_usec = -u_usec;
1295 } else {
1296 pps_freq += u_usec >> PPS_AVG;
1297 if (pps_freq > time_tolerance)
1298 pps_freq = time_tolerance;
1299 }
1300 }
1301
1302 /*
1303 * Here the calibration interval is adjusted. If the maximum
1304 * time difference is greater than tick / 4, reduce the interval
1305 * by half. If this is not the case for four consecutive
1306 * intervals, double the interval.
1307 */
1308 if (u_usec << pps_shift > bigtick >> 2) {
1309 pps_intcnt = 0;
1310 if (pps_shift > PPS_SHIFT)
1311 pps_shift--;
1312 } else if (pps_intcnt >= 4) {
1313 pps_intcnt = 0;
1314 if (pps_shift < PPS_SHIFTMAX)
1315 pps_shift++;
1316 } else
1317 pps_intcnt++;
1318 }
1319 #endif /* PPS_SYNC */
1320 #endif /* NTP */
1321
1322
1323 /*
1324 * Return information about system clocks.
1325 */
1326 int
1327 sysctl_clockrate(where, sizep)
1328 register char *where;
1329 size_t *sizep;
1330 {
1331 struct clockinfo clkinfo;
1332
1333 /*
1334 * Construct clockinfo structure.
1335 */
1336 clkinfo.tick = tick;
1337 clkinfo.tickadj = tickadj;
1338 clkinfo.hz = hz;
1339 clkinfo.profhz = profhz;
1340 clkinfo.stathz = stathz ? stathz : hz;
1341 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1342 }
1343
1344