kern_clock.c revision 1.45 1 /* $NetBSD: kern_clock.c,v 1.45 1999/02/23 02:56:04 ross Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include "opt_ntp.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/dkstat.h>
48 #include <sys/callout.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <vm/vm.h>
54 #include <sys/sysctl.h>
55 #include <sys/timex.h>
56 #include <sys/sched.h>
57
58 #include <machine/cpu.h>
59
60 #ifdef GPROF
61 #include <sys/gmon.h>
62 #endif
63
64 /*
65 * Clock handling routines.
66 *
67 * This code is written to operate with two timers that run independently of
68 * each other. The main clock, running hz times per second, is used to keep
69 * track of real time. The second timer handles kernel and user profiling,
70 * and does resource use estimation. If the second timer is programmable,
71 * it is randomized to avoid aliasing between the two clocks. For example,
72 * the randomization prevents an adversary from always giving up the cpu
73 * just before its quantum expires. Otherwise, it would never accumulate
74 * cpu ticks. The mean frequency of the second timer is stathz.
75 *
76 * If no second timer exists, stathz will be zero; in this case we drive
77 * profiling and statistics off the main clock. This WILL NOT be accurate;
78 * do not do it unless absolutely necessary.
79 *
80 * The statistics clock may (or may not) be run at a higher rate while
81 * profiling. This profile clock runs at profhz. We require that profhz
82 * be an integral multiple of stathz.
83 *
84 * If the statistics clock is running fast, it must be divided by the ratio
85 * profhz/stathz for statistics. (For profiling, every tick counts.)
86 */
87
88 /*
89 * TODO:
90 * allocate more timeout table slots when table overflows.
91 */
92
93
94 #ifdef NTP /* NTP phase-locked loop in kernel */
95 /*
96 * Phase/frequency-lock loop (PLL/FLL) definitions
97 *
98 * The following variables are read and set by the ntp_adjtime() system
99 * call.
100 *
101 * time_state shows the state of the system clock, with values defined
102 * in the timex.h header file.
103 *
104 * time_status shows the status of the system clock, with bits defined
105 * in the timex.h header file.
106 *
107 * time_offset is used by the PLL/FLL to adjust the system time in small
108 * increments.
109 *
110 * time_constant determines the bandwidth or "stiffness" of the PLL.
111 *
112 * time_tolerance determines maximum frequency error or tolerance of the
113 * CPU clock oscillator and is a property of the architecture; however,
114 * in principle it could change as result of the presence of external
115 * discipline signals, for instance.
116 *
117 * time_precision is usually equal to the kernel tick variable; however,
118 * in cases where a precision clock counter or external clock is
119 * available, the resolution can be much less than this and depend on
120 * whether the external clock is working or not.
121 *
122 * time_maxerror is initialized by a ntp_adjtime() call and increased by
123 * the kernel once each second to reflect the maximum error bound
124 * growth.
125 *
126 * time_esterror is set and read by the ntp_adjtime() call, but
127 * otherwise not used by the kernel.
128 */
129 int time_state = TIME_OK; /* clock state */
130 int time_status = STA_UNSYNC; /* clock status bits */
131 long time_offset = 0; /* time offset (us) */
132 long time_constant = 0; /* pll time constant */
133 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
134 long time_precision = 1; /* clock precision (us) */
135 long time_maxerror = MAXPHASE; /* maximum error (us) */
136 long time_esterror = MAXPHASE; /* estimated error (us) */
137
138 /*
139 * The following variables establish the state of the PLL/FLL and the
140 * residual time and frequency offset of the local clock. The scale
141 * factors are defined in the timex.h header file.
142 *
143 * time_phase and time_freq are the phase increment and the frequency
144 * increment, respectively, of the kernel time variable.
145 *
146 * time_freq is set via ntp_adjtime() from a value stored in a file when
147 * the synchronization daemon is first started. Its value is retrieved
148 * via ntp_adjtime() and written to the file about once per hour by the
149 * daemon.
150 *
151 * time_adj is the adjustment added to the value of tick at each timer
152 * interrupt and is recomputed from time_phase and time_freq at each
153 * seconds rollover.
154 *
155 * time_reftime is the second's portion of the system time at the last
156 * call to ntp_adjtime(). It is used to adjust the time_freq variable
157 * and to increase the time_maxerror as the time since last update
158 * increases.
159 */
160 long time_phase = 0; /* phase offset (scaled us) */
161 long time_freq = 0; /* frequency offset (scaled ppm) */
162 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
163 long time_reftime = 0; /* time at last adjustment (s) */
164
165 #ifdef PPS_SYNC
166 /*
167 * The following variables are used only if the kernel PPS discipline
168 * code is configured (PPS_SYNC). The scale factors are defined in the
169 * timex.h header file.
170 *
171 * pps_time contains the time at each calibration interval, as read by
172 * microtime(). pps_count counts the seconds of the calibration
173 * interval, the duration of which is nominally pps_shift in powers of
174 * two.
175 *
176 * pps_offset is the time offset produced by the time median filter
177 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
178 * this filter.
179 *
180 * pps_freq is the frequency offset produced by the frequency median
181 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
182 * by this filter.
183 *
184 * pps_usec is latched from a high resolution counter or external clock
185 * at pps_time. Here we want the hardware counter contents only, not the
186 * contents plus the time_tv.usec as usual.
187 *
188 * pps_valid counts the number of seconds since the last PPS update. It
189 * is used as a watchdog timer to disable the PPS discipline should the
190 * PPS signal be lost.
191 *
192 * pps_glitch counts the number of seconds since the beginning of an
193 * offset burst more than tick/2 from current nominal offset. It is used
194 * mainly to suppress error bursts due to priority conflicts between the
195 * PPS interrupt and timer interrupt.
196 *
197 * pps_intcnt counts the calibration intervals for use in the interval-
198 * adaptation algorithm. It's just too complicated for words.
199 */
200 struct timeval pps_time; /* kernel time at last interval */
201 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
202 long pps_offset = 0; /* pps time offset (us) */
203 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
204 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
205 long pps_freq = 0; /* frequency offset (scaled ppm) */
206 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
207 long pps_usec = 0; /* microsec counter at last interval */
208 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
209 int pps_glitch = 0; /* pps signal glitch counter */
210 int pps_count = 0; /* calibration interval counter (s) */
211 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
212 int pps_intcnt = 0; /* intervals at current duration */
213
214 /*
215 * PPS signal quality monitors
216 *
217 * pps_jitcnt counts the seconds that have been discarded because the
218 * jitter measured by the time median filter exceeds the limit MAXTIME
219 * (100 us).
220 *
221 * pps_calcnt counts the frequency calibration intervals, which are
222 * variable from 4 s to 256 s.
223 *
224 * pps_errcnt counts the calibration intervals which have been discarded
225 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
226 * calibration interval jitter exceeds two ticks.
227 *
228 * pps_stbcnt counts the calibration intervals that have been discarded
229 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
230 */
231 long pps_jitcnt = 0; /* jitter limit exceeded */
232 long pps_calcnt = 0; /* calibration intervals */
233 long pps_errcnt = 0; /* calibration errors */
234 long pps_stbcnt = 0; /* stability limit exceeded */
235 #endif /* PPS_SYNC */
236
237 #ifdef EXT_CLOCK
238 /*
239 * External clock definitions
240 *
241 * The following definitions and declarations are used only if an
242 * external clock is configured on the system.
243 */
244 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
245
246 /*
247 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
248 * interrupt and decremented once each second.
249 */
250 int clock_count = 0; /* CPU clock counter */
251
252 #ifdef HIGHBALL
253 /*
254 * The clock_offset and clock_cpu variables are used by the HIGHBALL
255 * interface. The clock_offset variable defines the offset between
256 * system time and the HIGBALL counters. The clock_cpu variable contains
257 * the offset between the system clock and the HIGHBALL clock for use in
258 * disciplining the kernel time variable.
259 */
260 extern struct timeval clock_offset; /* Highball clock offset */
261 long clock_cpu = 0; /* CPU clock adjust */
262 #endif /* HIGHBALL */
263 #endif /* EXT_CLOCK */
264 #endif /* NTP */
265
266
267 /*
268 * Bump a timeval by a small number of usec's.
269 */
270 #define BUMPTIME(t, usec) { \
271 register volatile struct timeval *tp = (t); \
272 register long us; \
273 \
274 tp->tv_usec = us = tp->tv_usec + (usec); \
275 if (us >= 1000000) { \
276 tp->tv_usec = us - 1000000; \
277 tp->tv_sec++; \
278 } \
279 }
280
281 int stathz;
282 int profhz;
283 int profprocs;
284 int ticks;
285 static int psdiv, pscnt; /* prof => stat divider */
286 int psratio; /* ratio: prof / stat */
287 int tickfix, tickfixinterval; /* used if tick not really integral */
288 #ifndef NTP
289 static int tickfixcnt; /* accumulated fractional error */
290 #else
291 int fixtick; /* used by NTP for same */
292 int shifthz;
293 #endif
294
295 volatile struct timeval time;
296 volatile struct timeval mono_time;
297
298 /*
299 * Initialize clock frequencies and start both clocks running.
300 */
301 void
302 initclocks()
303 {
304 register int i;
305
306 /*
307 * Set divisors to 1 (normal case) and let the machine-specific
308 * code do its bit.
309 */
310 psdiv = pscnt = 1;
311 cpu_initclocks();
312
313 /*
314 * Compute profhz/stathz, and fix profhz if needed.
315 */
316 i = stathz ? stathz : hz;
317 if (profhz == 0)
318 profhz = i;
319 psratio = profhz / i;
320
321 #ifdef NTP
322 switch (hz) {
323 case 60:
324 case 64:
325 shifthz = SHIFT_SCALE - 6;
326 break;
327 case 96:
328 case 100:
329 case 128:
330 shifthz = SHIFT_SCALE - 7;
331 break;
332 case 256:
333 shifthz = SHIFT_SCALE - 8;
334 break;
335 case 512:
336 shifthz = SHIFT_SCALE - 9;
337 break;
338 case 1000:
339 case 1024:
340 shifthz = SHIFT_SCALE - 10;
341 break;
342 default:
343 panic("weird hz");
344 }
345 #endif
346 }
347
348 /*
349 * The real-time timer, interrupting hz times per second.
350 */
351 void
352 hardclock(frame)
353 register struct clockframe *frame;
354 {
355 register struct callout *p1;
356 register struct proc *p;
357 register int delta, needsoft;
358 extern int tickdelta;
359 extern long timedelta;
360 #ifdef NTP
361 register int time_update;
362 register int ltemp;
363 #endif
364
365 /*
366 * Update real-time timeout queue.
367 * At front of queue are some number of events which are ``due''.
368 * The time to these is <= 0 and if negative represents the
369 * number of ticks which have passed since it was supposed to happen.
370 * The rest of the q elements (times > 0) are events yet to happen,
371 * where the time for each is given as a delta from the previous.
372 * Decrementing just the first of these serves to decrement the time
373 * to all events.
374 */
375 needsoft = 0;
376 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
377 if (--p1->c_time > 0)
378 break;
379 needsoft = 1;
380 if (p1->c_time == 0)
381 break;
382 }
383
384 p = curproc;
385 if (p) {
386 register struct pstats *pstats;
387
388 /*
389 * Run current process's virtual and profile time, as needed.
390 */
391 pstats = p->p_stats;
392 if (CLKF_USERMODE(frame) &&
393 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
394 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
395 psignal(p, SIGVTALRM);
396 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
397 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
398 psignal(p, SIGPROF);
399 }
400
401 /*
402 * If no separate statistics clock is available, run it from here.
403 */
404 if (stathz == 0)
405 statclock(frame);
406
407 /*
408 * Increment the time-of-day. The increment is normally just
409 * ``tick''. If the machine is one which has a clock frequency
410 * such that ``hz'' would not divide the second evenly into
411 * milliseconds, a periodic adjustment must be applied. Finally,
412 * if we are still adjusting the time (see adjtime()),
413 * ``tickdelta'' may also be added in.
414 */
415 ticks++;
416 delta = tick;
417
418 #ifndef NTP
419 if (tickfix) {
420 tickfixcnt += tickfix;
421 if (tickfixcnt >= tickfixinterval) {
422 delta++;
423 tickfixcnt -= tickfixinterval;
424 }
425 }
426 #endif /* !NTP */
427 /* Imprecise 4bsd adjtime() handling */
428 if (timedelta != 0) {
429 delta += tickdelta;
430 timedelta -= tickdelta;
431 }
432
433 #ifdef notyet
434 microset();
435 #endif
436
437 #ifndef NTP
438 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
439 #endif
440 BUMPTIME(&mono_time, delta);
441
442 #ifdef NTP
443 time_update = delta;
444
445 /*
446 * Compute the phase adjustment. If the low-order bits
447 * (time_phase) of the update overflow, bump the high-order bits
448 * (time_update).
449 */
450 time_phase += time_adj;
451 if (time_phase <= -FINEUSEC) {
452 ltemp = -time_phase >> SHIFT_SCALE;
453 time_phase += ltemp << SHIFT_SCALE;
454 time_update -= ltemp;
455 } else if (time_phase >= FINEUSEC) {
456 ltemp = time_phase >> SHIFT_SCALE;
457 time_phase -= ltemp << SHIFT_SCALE;
458 time_update += ltemp;
459 }
460
461 #ifdef HIGHBALL
462 /*
463 * If the HIGHBALL board is installed, we need to adjust the
464 * external clock offset in order to close the hardware feedback
465 * loop. This will adjust the external clock phase and frequency
466 * in small amounts. The additional phase noise and frequency
467 * wander this causes should be minimal. We also need to
468 * discipline the kernel time variable, since the PLL is used to
469 * discipline the external clock. If the Highball board is not
470 * present, we discipline kernel time with the PLL as usual. We
471 * assume that the external clock phase adjustment (time_update)
472 * and kernel phase adjustment (clock_cpu) are less than the
473 * value of tick.
474 */
475 clock_offset.tv_usec += time_update;
476 if (clock_offset.tv_usec >= 1000000) {
477 clock_offset.tv_sec++;
478 clock_offset.tv_usec -= 1000000;
479 }
480 if (clock_offset.tv_usec < 0) {
481 clock_offset.tv_sec--;
482 clock_offset.tv_usec += 1000000;
483 }
484 time.tv_usec += clock_cpu;
485 clock_cpu = 0;
486 #else
487 time.tv_usec += time_update;
488 #endif /* HIGHBALL */
489
490 /*
491 * On rollover of the second the phase adjustment to be used for
492 * the next second is calculated. Also, the maximum error is
493 * increased by the tolerance. If the PPS frequency discipline
494 * code is present, the phase is increased to compensate for the
495 * CPU clock oscillator frequency error.
496 *
497 * On a 32-bit machine and given parameters in the timex.h
498 * header file, the maximum phase adjustment is +-512 ms and
499 * maximum frequency offset is a tad less than) +-512 ppm. On a
500 * 64-bit machine, you shouldn't need to ask.
501 */
502 if (time.tv_usec >= 1000000) {
503 time.tv_usec -= 1000000;
504 time.tv_sec++;
505 time_maxerror += time_tolerance >> SHIFT_USEC;
506
507 /*
508 * Leap second processing. If in leap-insert state at
509 * the end of the day, the system clock is set back one
510 * second; if in leap-delete state, the system clock is
511 * set ahead one second. The microtime() routine or
512 * external clock driver will insure that reported time
513 * is always monotonic. The ugly divides should be
514 * replaced.
515 */
516 switch (time_state) {
517 case TIME_OK:
518 if (time_status & STA_INS)
519 time_state = TIME_INS;
520 else if (time_status & STA_DEL)
521 time_state = TIME_DEL;
522 break;
523
524 case TIME_INS:
525 if (time.tv_sec % 86400 == 0) {
526 time.tv_sec--;
527 time_state = TIME_OOP;
528 }
529 break;
530
531 case TIME_DEL:
532 if ((time.tv_sec + 1) % 86400 == 0) {
533 time.tv_sec++;
534 time_state = TIME_WAIT;
535 }
536 break;
537
538 case TIME_OOP:
539 time_state = TIME_WAIT;
540 break;
541
542 case TIME_WAIT:
543 if (!(time_status & (STA_INS | STA_DEL)))
544 time_state = TIME_OK;
545 break;
546 }
547
548 /*
549 * Compute the phase adjustment for the next second. In
550 * PLL mode, the offset is reduced by a fixed factor
551 * times the time constant. In FLL mode the offset is
552 * used directly. In either mode, the maximum phase
553 * adjustment for each second is clamped so as to spread
554 * the adjustment over not more than the number of
555 * seconds between updates.
556 */
557 if (time_offset < 0) {
558 ltemp = -time_offset;
559 if (!(time_status & STA_FLL))
560 ltemp >>= SHIFT_KG + time_constant;
561 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
562 ltemp = (MAXPHASE / MINSEC) <<
563 SHIFT_UPDATE;
564 time_offset += ltemp;
565 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
566 } else if (time_offset > 0) {
567 ltemp = time_offset;
568 if (!(time_status & STA_FLL))
569 ltemp >>= SHIFT_KG + time_constant;
570 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
571 ltemp = (MAXPHASE / MINSEC) <<
572 SHIFT_UPDATE;
573 time_offset -= ltemp;
574 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
575 } else
576 time_adj = 0;
577
578 /*
579 * Compute the frequency estimate and additional phase
580 * adjustment due to frequency error for the next
581 * second. When the PPS signal is engaged, gnaw on the
582 * watchdog counter and update the frequency computed by
583 * the pll and the PPS signal.
584 */
585 #ifdef PPS_SYNC
586 pps_valid++;
587 if (pps_valid == PPS_VALID) {
588 pps_jitter = MAXTIME;
589 pps_stabil = MAXFREQ;
590 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
591 STA_PPSWANDER | STA_PPSERROR);
592 }
593 ltemp = time_freq + pps_freq;
594 #else
595 ltemp = time_freq;
596 #endif /* PPS_SYNC */
597
598 if (ltemp < 0)
599 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
600 else
601 time_adj += ltemp >> (SHIFT_USEC - shifthz);
602 time_adj += (long)fixtick << shifthz;
603
604 /*
605 * When the CPU clock oscillator frequency is not a
606 * power of 2 in Hz, shifthz is only an approximate
607 * scale factor.
608 */
609 switch (hz) {
610 case 96:
611 case 100:
612 /*
613 * In the following code the overall gain is increased
614 * by a factor of 1.25, which results in a residual
615 * error less than 3 percent.
616 */
617 if (time_adj < 0)
618 time_adj -= -time_adj >> 2;
619 else
620 time_adj += time_adj >> 2;
621 break;
622 case 60:
623 /*
624 * 60 Hz m68k and vaxes have a PLL gain factor of of
625 * 60/64 (15/16) of what it should be. In the following code
626 * the overall gain is increased by a factor of 1.0625,
627 * (17/16) which results in a residual error of just less
628 * than 0.4 percent.
629 */
630 if (time_adj < 0)
631 time_adj -= -time_adj >> 4;
632 else
633 time_adj += time_adj >> 4;
634 break;
635 case 1000:
636 /*
637 * Do this the simple way; we're on an alpha, are
638 * the shift police going to come and get us? We
639 * would get a residual error of only .82% with
640 * a 5 bit right shift, but we also have 64 bits
641 * in time_adj to work with for fixed point scaling.
642 */
643 time_adj = (time_adj * 1024) / 1000;
644 break;
645 }
646
647 #ifdef EXT_CLOCK
648 /*
649 * If an external clock is present, it is necessary to
650 * discipline the kernel time variable anyway, since not
651 * all system components use the microtime() interface.
652 * Here, the time offset between the external clock and
653 * kernel time variable is computed every so often.
654 */
655 clock_count++;
656 if (clock_count > CLOCK_INTERVAL) {
657 clock_count = 0;
658 microtime(&clock_ext);
659 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
660 delta.tv_usec = clock_ext.tv_usec -
661 time.tv_usec;
662 if (delta.tv_usec < 0)
663 delta.tv_sec--;
664 if (delta.tv_usec >= 500000) {
665 delta.tv_usec -= 1000000;
666 delta.tv_sec++;
667 }
668 if (delta.tv_usec < -500000) {
669 delta.tv_usec += 1000000;
670 delta.tv_sec--;
671 }
672 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
673 delta.tv_usec > MAXPHASE) ||
674 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
675 delta.tv_usec < -MAXPHASE)) {
676 time = clock_ext;
677 delta.tv_sec = 0;
678 delta.tv_usec = 0;
679 }
680 #ifdef HIGHBALL
681 clock_cpu = delta.tv_usec;
682 #else /* HIGHBALL */
683 hardupdate(delta.tv_usec);
684 #endif /* HIGHBALL */
685 }
686 #endif /* EXT_CLOCK */
687 }
688
689 #endif /* NTP */
690
691 /*
692 * Process callouts at a very low cpu priority, so we don't keep the
693 * relatively high clock interrupt priority any longer than necessary.
694 */
695 if (needsoft) {
696 if (CLKF_BASEPRI(frame)) {
697 /*
698 * Save the overhead of a software interrupt;
699 * it will happen as soon as we return, so do it now.
700 */
701 (void)splsoftclock();
702 softclock();
703 } else
704 setsoftclock();
705 }
706 }
707
708 /*
709 * Software (low priority) clock interrupt.
710 * Run periodic events from timeout queue.
711 */
712 /*ARGSUSED*/
713 void
714 softclock()
715 {
716 register struct callout *c;
717 register void *arg;
718 register void (*func) __P((void *));
719 register int s;
720
721 s = splhigh();
722 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
723 func = c->c_func;
724 arg = c->c_arg;
725 calltodo.c_next = c->c_next;
726 c->c_next = callfree;
727 callfree = c;
728 splx(s);
729 (*func)(arg);
730 (void) splhigh();
731 }
732 splx(s);
733 }
734
735 /*
736 * timeout --
737 * Execute a function after a specified length of time.
738 *
739 * untimeout --
740 * Cancel previous timeout function call.
741 *
742 * See AT&T BCI Driver Reference Manual for specification. This
743 * implementation differs from that one in that no identification
744 * value is returned from timeout, rather, the original arguments
745 * to timeout are used to identify entries for untimeout.
746 */
747 void
748 timeout(ftn, arg, ticks)
749 void (*ftn) __P((void *));
750 void *arg;
751 register int ticks;
752 {
753 register struct callout *new, *p, *t;
754 register int s;
755
756 if (ticks <= 0)
757 ticks = 1;
758
759 /* Lock out the clock. */
760 s = splhigh();
761
762 /* Fill in the next free callout structure. */
763 if (callfree == NULL)
764 panic("timeout table full");
765 new = callfree;
766 callfree = new->c_next;
767 new->c_arg = arg;
768 new->c_func = ftn;
769
770 /*
771 * The time for each event is stored as a difference from the time
772 * of the previous event on the queue. Walk the queue, correcting
773 * the ticks argument for queue entries passed. Correct the ticks
774 * value for the queue entry immediately after the insertion point
775 * as well. Watch out for negative c_time values; these represent
776 * overdue events.
777 */
778 for (p = &calltodo;
779 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
780 if (t->c_time > 0)
781 ticks -= t->c_time;
782 new->c_time = ticks;
783 if (t != NULL)
784 t->c_time -= ticks;
785
786 /* Insert the new entry into the queue. */
787 p->c_next = new;
788 new->c_next = t;
789 splx(s);
790 }
791
792 void
793 untimeout(ftn, arg)
794 void (*ftn) __P((void *));
795 void *arg;
796 {
797 register struct callout *p, *t;
798 register int s;
799
800 s = splhigh();
801 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
802 if (t->c_func == ftn && t->c_arg == arg) {
803 /* Increment next entry's tick count. */
804 if (t->c_next && t->c_time > 0)
805 t->c_next->c_time += t->c_time;
806
807 /* Move entry from callout queue to callfree queue. */
808 p->c_next = t->c_next;
809 t->c_next = callfree;
810 callfree = t;
811 break;
812 }
813 splx(s);
814 }
815
816 /*
817 * Compute number of hz until specified time. Used to
818 * compute third argument to timeout() from an absolute time.
819 */
820 int
821 hzto(tv)
822 struct timeval *tv;
823 {
824 register long ticks, sec;
825 int s;
826
827 /*
828 * If number of microseconds will fit in 32 bit arithmetic,
829 * then compute number of microseconds to time and scale to
830 * ticks. Otherwise just compute number of hz in time, rounding
831 * times greater than representible to maximum value. (We must
832 * compute in microseconds, because hz can be greater than 1000,
833 * and thus tick can be less than one millisecond).
834 *
835 * Delta times less than 14 hours can be computed ``exactly''.
836 * (Note that if hz would yeild a non-integral number of us per
837 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
838 * than they should be.) Maximum value for any timeout in 10ms
839 * ticks is 250 days.
840 */
841 s = splclock();
842 sec = tv->tv_sec - time.tv_sec;
843 if (sec <= 0x7fffffff / 1000000 - 1)
844 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
845 (tv->tv_usec - time.tv_usec)) / tick;
846 else if (sec <= 0x7fffffff / hz)
847 ticks = sec * hz;
848 else
849 ticks = 0x7fffffff;
850 splx(s);
851 return (ticks);
852 }
853
854 /*
855 * Start profiling on a process.
856 *
857 * Kernel profiling passes proc0 which never exits and hence
858 * keeps the profile clock running constantly.
859 */
860 void
861 startprofclock(p)
862 register struct proc *p;
863 {
864 int s;
865
866 if ((p->p_flag & P_PROFIL) == 0) {
867 p->p_flag |= P_PROFIL;
868 if (++profprocs == 1 && stathz != 0) {
869 s = splstatclock();
870 psdiv = pscnt = psratio;
871 setstatclockrate(profhz);
872 splx(s);
873 }
874 }
875 }
876
877 /*
878 * Stop profiling on a process.
879 */
880 void
881 stopprofclock(p)
882 register struct proc *p;
883 {
884 int s;
885
886 if (p->p_flag & P_PROFIL) {
887 p->p_flag &= ~P_PROFIL;
888 if (--profprocs == 0 && stathz != 0) {
889 s = splstatclock();
890 psdiv = pscnt = 1;
891 setstatclockrate(stathz);
892 splx(s);
893 }
894 }
895 }
896
897 /*
898 * Statistics clock. Grab profile sample, and if divider reaches 0,
899 * do process and kernel statistics.
900 */
901 void
902 statclock(frame)
903 register struct clockframe *frame;
904 {
905 #ifdef GPROF
906 register struct gmonparam *g;
907 register int i;
908 #endif
909 static int schedclk2;
910 register struct proc *p;
911
912 if (CLKF_USERMODE(frame)) {
913 p = curproc;
914 if (p->p_flag & P_PROFIL)
915 addupc_intr(p, CLKF_PC(frame), 1);
916 if (--pscnt > 0)
917 return;
918 /*
919 * Came from user mode; CPU was in user state.
920 * If this process is being profiled record the tick.
921 */
922 p->p_uticks++;
923 if (p->p_nice > NZERO)
924 cp_time[CP_NICE]++;
925 else
926 cp_time[CP_USER]++;
927 } else {
928 #ifdef GPROF
929 /*
930 * Kernel statistics are just like addupc_intr, only easier.
931 */
932 g = &_gmonparam;
933 if (g->state == GMON_PROF_ON) {
934 i = CLKF_PC(frame) - g->lowpc;
935 if (i < g->textsize) {
936 i /= HISTFRACTION * sizeof(*g->kcount);
937 g->kcount[i]++;
938 }
939 }
940 #endif
941 if (--pscnt > 0)
942 return;
943 /*
944 * Came from kernel mode, so we were:
945 * - handling an interrupt,
946 * - doing syscall or trap work on behalf of the current
947 * user process, or
948 * - spinning in the idle loop.
949 * Whichever it is, charge the time as appropriate.
950 * Note that we charge interrupts to the current process,
951 * regardless of whether they are ``for'' that process,
952 * so that we know how much of its real time was spent
953 * in ``non-process'' (i.e., interrupt) work.
954 */
955 p = curproc;
956 if (CLKF_INTR(frame)) {
957 if (p != NULL)
958 p->p_iticks++;
959 cp_time[CP_INTR]++;
960 } else if (p != NULL) {
961 p->p_sticks++;
962 cp_time[CP_SYS]++;
963 } else
964 cp_time[CP_IDLE]++;
965 }
966 pscnt = psdiv;
967
968 if (p != NULL) {
969 ++p->p_cpticks;
970 /*
971 * If no schedclk is provided, call it here at ~~12-25 Hz,
972 * ~~16 Hz is best
973 */
974 if(schedhz == 0)
975 if ((++schedclk2 & 3) == 0)
976 schedclk(p);
977 }
978 }
979
980
981 #ifdef NTP /* NTP phase-locked loop in kernel */
982
983 /*
984 * hardupdate() - local clock update
985 *
986 * This routine is called by ntp_adjtime() to update the local clock
987 * phase and frequency. The implementation is of an adaptive-parameter,
988 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
989 * time and frequency offset estimates for each call. If the kernel PPS
990 * discipline code is configured (PPS_SYNC), the PPS signal itself
991 * determines the new time offset, instead of the calling argument.
992 * Presumably, calls to ntp_adjtime() occur only when the caller
993 * believes the local clock is valid within some bound (+-128 ms with
994 * NTP). If the caller's time is far different than the PPS time, an
995 * argument will ensue, and it's not clear who will lose.
996 *
997 * For uncompensated quartz crystal oscillatores and nominal update
998 * intervals less than 1024 s, operation should be in phase-lock mode
999 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1000 * intervals greater than thiss, operation should be in frequency-lock
1001 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1002 *
1003 * Note: splclock() is in effect.
1004 */
1005 void
1006 hardupdate(offset)
1007 long offset;
1008 {
1009 long ltemp, mtemp;
1010
1011 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1012 return;
1013 ltemp = offset;
1014 #ifdef PPS_SYNC
1015 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1016 ltemp = pps_offset;
1017 #endif /* PPS_SYNC */
1018
1019 /*
1020 * Scale the phase adjustment and clamp to the operating range.
1021 */
1022 if (ltemp > MAXPHASE)
1023 time_offset = MAXPHASE << SHIFT_UPDATE;
1024 else if (ltemp < -MAXPHASE)
1025 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1026 else
1027 time_offset = ltemp << SHIFT_UPDATE;
1028
1029 /*
1030 * Select whether the frequency is to be controlled and in which
1031 * mode (PLL or FLL). Clamp to the operating range. Ugly
1032 * multiply/divide should be replaced someday.
1033 */
1034 if (time_status & STA_FREQHOLD || time_reftime == 0)
1035 time_reftime = time.tv_sec;
1036 mtemp = time.tv_sec - time_reftime;
1037 time_reftime = time.tv_sec;
1038 if (time_status & STA_FLL) {
1039 if (mtemp >= MINSEC) {
1040 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1041 SHIFT_UPDATE));
1042 if (ltemp < 0)
1043 time_freq -= -ltemp >> SHIFT_KH;
1044 else
1045 time_freq += ltemp >> SHIFT_KH;
1046 }
1047 } else {
1048 if (mtemp < MAXSEC) {
1049 ltemp *= mtemp;
1050 if (ltemp < 0)
1051 time_freq -= -ltemp >> (time_constant +
1052 time_constant + SHIFT_KF -
1053 SHIFT_USEC);
1054 else
1055 time_freq += ltemp >> (time_constant +
1056 time_constant + SHIFT_KF -
1057 SHIFT_USEC);
1058 }
1059 }
1060 if (time_freq > time_tolerance)
1061 time_freq = time_tolerance;
1062 else if (time_freq < -time_tolerance)
1063 time_freq = -time_tolerance;
1064 }
1065
1066 #ifdef PPS_SYNC
1067 /*
1068 * hardpps() - discipline CPU clock oscillator to external PPS signal
1069 *
1070 * This routine is called at each PPS interrupt in order to discipline
1071 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1072 * and leaves it in a handy spot for the hardclock() routine. It
1073 * integrates successive PPS phase differences and calculates the
1074 * frequency offset. This is used in hardclock() to discipline the CPU
1075 * clock oscillator so that intrinsic frequency error is cancelled out.
1076 * The code requires the caller to capture the time and hardware counter
1077 * value at the on-time PPS signal transition.
1078 *
1079 * Note that, on some Unix systems, this routine runs at an interrupt
1080 * priority level higher than the timer interrupt routine hardclock().
1081 * Therefore, the variables used are distinct from the hardclock()
1082 * variables, except for certain exceptions: The PPS frequency pps_freq
1083 * and phase pps_offset variables are determined by this routine and
1084 * updated atomically. The time_tolerance variable can be considered a
1085 * constant, since it is infrequently changed, and then only when the
1086 * PPS signal is disabled. The watchdog counter pps_valid is updated
1087 * once per second by hardclock() and is atomically cleared in this
1088 * routine.
1089 */
1090 void
1091 hardpps(tvp, usec)
1092 struct timeval *tvp; /* time at PPS */
1093 long usec; /* hardware counter at PPS */
1094 {
1095 long u_usec, v_usec, bigtick;
1096 long cal_sec, cal_usec;
1097
1098 /*
1099 * An occasional glitch can be produced when the PPS interrupt
1100 * occurs in the hardclock() routine before the time variable is
1101 * updated. Here the offset is discarded when the difference
1102 * between it and the last one is greater than tick/2, but not
1103 * if the interval since the first discard exceeds 30 s.
1104 */
1105 time_status |= STA_PPSSIGNAL;
1106 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1107 pps_valid = 0;
1108 u_usec = -tvp->tv_usec;
1109 if (u_usec < -500000)
1110 u_usec += 1000000;
1111 v_usec = pps_offset - u_usec;
1112 if (v_usec < 0)
1113 v_usec = -v_usec;
1114 if (v_usec > (tick >> 1)) {
1115 if (pps_glitch > MAXGLITCH) {
1116 pps_glitch = 0;
1117 pps_tf[2] = u_usec;
1118 pps_tf[1] = u_usec;
1119 } else {
1120 pps_glitch++;
1121 u_usec = pps_offset;
1122 }
1123 } else
1124 pps_glitch = 0;
1125
1126 /*
1127 * A three-stage median filter is used to help deglitch the pps
1128 * time. The median sample becomes the time offset estimate; the
1129 * difference between the other two samples becomes the time
1130 * dispersion (jitter) estimate.
1131 */
1132 pps_tf[2] = pps_tf[1];
1133 pps_tf[1] = pps_tf[0];
1134 pps_tf[0] = u_usec;
1135 if (pps_tf[0] > pps_tf[1]) {
1136 if (pps_tf[1] > pps_tf[2]) {
1137 pps_offset = pps_tf[1]; /* 0 1 2 */
1138 v_usec = pps_tf[0] - pps_tf[2];
1139 } else if (pps_tf[2] > pps_tf[0]) {
1140 pps_offset = pps_tf[0]; /* 2 0 1 */
1141 v_usec = pps_tf[2] - pps_tf[1];
1142 } else {
1143 pps_offset = pps_tf[2]; /* 0 2 1 */
1144 v_usec = pps_tf[0] - pps_tf[1];
1145 }
1146 } else {
1147 if (pps_tf[1] < pps_tf[2]) {
1148 pps_offset = pps_tf[1]; /* 2 1 0 */
1149 v_usec = pps_tf[2] - pps_tf[0];
1150 } else if (pps_tf[2] < pps_tf[0]) {
1151 pps_offset = pps_tf[0]; /* 1 0 2 */
1152 v_usec = pps_tf[1] - pps_tf[2];
1153 } else {
1154 pps_offset = pps_tf[2]; /* 1 2 0 */
1155 v_usec = pps_tf[1] - pps_tf[0];
1156 }
1157 }
1158 if (v_usec > MAXTIME)
1159 pps_jitcnt++;
1160 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1161 if (v_usec < 0)
1162 pps_jitter -= -v_usec >> PPS_AVG;
1163 else
1164 pps_jitter += v_usec >> PPS_AVG;
1165 if (pps_jitter > (MAXTIME >> 1))
1166 time_status |= STA_PPSJITTER;
1167
1168 /*
1169 * During the calibration interval adjust the starting time when
1170 * the tick overflows. At the end of the interval compute the
1171 * duration of the interval and the difference of the hardware
1172 * counters at the beginning and end of the interval. This code
1173 * is deliciously complicated by the fact valid differences may
1174 * exceed the value of tick when using long calibration
1175 * intervals and small ticks. Note that the counter can be
1176 * greater than tick if caught at just the wrong instant, but
1177 * the values returned and used here are correct.
1178 */
1179 bigtick = (long)tick << SHIFT_USEC;
1180 pps_usec -= pps_freq;
1181 if (pps_usec >= bigtick)
1182 pps_usec -= bigtick;
1183 if (pps_usec < 0)
1184 pps_usec += bigtick;
1185 pps_time.tv_sec++;
1186 pps_count++;
1187 if (pps_count < (1 << pps_shift))
1188 return;
1189 pps_count = 0;
1190 pps_calcnt++;
1191 u_usec = usec << SHIFT_USEC;
1192 v_usec = pps_usec - u_usec;
1193 if (v_usec >= bigtick >> 1)
1194 v_usec -= bigtick;
1195 if (v_usec < -(bigtick >> 1))
1196 v_usec += bigtick;
1197 if (v_usec < 0)
1198 v_usec = -(-v_usec >> pps_shift);
1199 else
1200 v_usec = v_usec >> pps_shift;
1201 pps_usec = u_usec;
1202 cal_sec = tvp->tv_sec;
1203 cal_usec = tvp->tv_usec;
1204 cal_sec -= pps_time.tv_sec;
1205 cal_usec -= pps_time.tv_usec;
1206 if (cal_usec < 0) {
1207 cal_usec += 1000000;
1208 cal_sec--;
1209 }
1210 pps_time = *tvp;
1211
1212 /*
1213 * Check for lost interrupts, noise, excessive jitter and
1214 * excessive frequency error. The number of timer ticks during
1215 * the interval may vary +-1 tick. Add to this a margin of one
1216 * tick for the PPS signal jitter and maximum frequency
1217 * deviation. If the limits are exceeded, the calibration
1218 * interval is reset to the minimum and we start over.
1219 */
1220 u_usec = (long)tick << 1;
1221 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1222 || (cal_sec == 0 && cal_usec < u_usec))
1223 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1224 pps_errcnt++;
1225 pps_shift = PPS_SHIFT;
1226 pps_intcnt = 0;
1227 time_status |= STA_PPSERROR;
1228 return;
1229 }
1230
1231 /*
1232 * A three-stage median filter is used to help deglitch the pps
1233 * frequency. The median sample becomes the frequency offset
1234 * estimate; the difference between the other two samples
1235 * becomes the frequency dispersion (stability) estimate.
1236 */
1237 pps_ff[2] = pps_ff[1];
1238 pps_ff[1] = pps_ff[0];
1239 pps_ff[0] = v_usec;
1240 if (pps_ff[0] > pps_ff[1]) {
1241 if (pps_ff[1] > pps_ff[2]) {
1242 u_usec = pps_ff[1]; /* 0 1 2 */
1243 v_usec = pps_ff[0] - pps_ff[2];
1244 } else if (pps_ff[2] > pps_ff[0]) {
1245 u_usec = pps_ff[0]; /* 2 0 1 */
1246 v_usec = pps_ff[2] - pps_ff[1];
1247 } else {
1248 u_usec = pps_ff[2]; /* 0 2 1 */
1249 v_usec = pps_ff[0] - pps_ff[1];
1250 }
1251 } else {
1252 if (pps_ff[1] < pps_ff[2]) {
1253 u_usec = pps_ff[1]; /* 2 1 0 */
1254 v_usec = pps_ff[2] - pps_ff[0];
1255 } else if (pps_ff[2] < pps_ff[0]) {
1256 u_usec = pps_ff[0]; /* 1 0 2 */
1257 v_usec = pps_ff[1] - pps_ff[2];
1258 } else {
1259 u_usec = pps_ff[2]; /* 1 2 0 */
1260 v_usec = pps_ff[1] - pps_ff[0];
1261 }
1262 }
1263
1264 /*
1265 * Here the frequency dispersion (stability) is updated. If it
1266 * is less than one-fourth the maximum (MAXFREQ), the frequency
1267 * offset is updated as well, but clamped to the tolerance. It
1268 * will be processed later by the hardclock() routine.
1269 */
1270 v_usec = (v_usec >> 1) - pps_stabil;
1271 if (v_usec < 0)
1272 pps_stabil -= -v_usec >> PPS_AVG;
1273 else
1274 pps_stabil += v_usec >> PPS_AVG;
1275 if (pps_stabil > MAXFREQ >> 2) {
1276 pps_stbcnt++;
1277 time_status |= STA_PPSWANDER;
1278 return;
1279 }
1280 if (time_status & STA_PPSFREQ) {
1281 if (u_usec < 0) {
1282 pps_freq -= -u_usec >> PPS_AVG;
1283 if (pps_freq < -time_tolerance)
1284 pps_freq = -time_tolerance;
1285 u_usec = -u_usec;
1286 } else {
1287 pps_freq += u_usec >> PPS_AVG;
1288 if (pps_freq > time_tolerance)
1289 pps_freq = time_tolerance;
1290 }
1291 }
1292
1293 /*
1294 * Here the calibration interval is adjusted. If the maximum
1295 * time difference is greater than tick / 4, reduce the interval
1296 * by half. If this is not the case for four consecutive
1297 * intervals, double the interval.
1298 */
1299 if (u_usec << pps_shift > bigtick >> 2) {
1300 pps_intcnt = 0;
1301 if (pps_shift > PPS_SHIFT)
1302 pps_shift--;
1303 } else if (pps_intcnt >= 4) {
1304 pps_intcnt = 0;
1305 if (pps_shift < PPS_SHIFTMAX)
1306 pps_shift++;
1307 } else
1308 pps_intcnt++;
1309 }
1310 #endif /* PPS_SYNC */
1311 #endif /* NTP */
1312
1313
1314 /*
1315 * Return information about system clocks.
1316 */
1317 int
1318 sysctl_clockrate(where, sizep)
1319 register char *where;
1320 size_t *sizep;
1321 {
1322 struct clockinfo clkinfo;
1323
1324 /*
1325 * Construct clockinfo structure.
1326 */
1327 clkinfo.tick = tick;
1328 clkinfo.tickadj = tickadj;
1329 clkinfo.hz = hz;
1330 clkinfo.profhz = profhz;
1331 clkinfo.stathz = stathz ? stathz : hz;
1332 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1333 }
1334
1335