kern_clock.c revision 1.48 1 /* $NetBSD: kern_clock.c,v 1.48 1999/05/04 16:16:54 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include "opt_ntp.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/dkstat.h>
48 #include <sys/callout.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <vm/vm.h>
54 #include <sys/sysctl.h>
55 #include <sys/timex.h>
56 #include <sys/sched.h>
57
58 #include <machine/cpu.h>
59
60 #ifdef GPROF
61 #include <sys/gmon.h>
62 #endif
63
64 /*
65 * Clock handling routines.
66 *
67 * This code is written to operate with two timers that run independently of
68 * each other. The main clock, running hz times per second, is used to keep
69 * track of real time. The second timer handles kernel and user profiling,
70 * and does resource use estimation. If the second timer is programmable,
71 * it is randomized to avoid aliasing between the two clocks. For example,
72 * the randomization prevents an adversary from always giving up the cpu
73 * just before its quantum expires. Otherwise, it would never accumulate
74 * cpu ticks. The mean frequency of the second timer is stathz.
75 *
76 * If no second timer exists, stathz will be zero; in this case we drive
77 * profiling and statistics off the main clock. This WILL NOT be accurate;
78 * do not do it unless absolutely necessary.
79 *
80 * The statistics clock may (or may not) be run at a higher rate while
81 * profiling. This profile clock runs at profhz. We require that profhz
82 * be an integral multiple of stathz.
83 *
84 * If the statistics clock is running fast, it must be divided by the ratio
85 * profhz/stathz for statistics. (For profiling, every tick counts.)
86 */
87
88 /*
89 * TODO:
90 * allocate more timeout table slots when table overflows.
91 */
92
93
94 #ifdef NTP /* NTP phase-locked loop in kernel */
95 /*
96 * Phase/frequency-lock loop (PLL/FLL) definitions
97 *
98 * The following variables are read and set by the ntp_adjtime() system
99 * call.
100 *
101 * time_state shows the state of the system clock, with values defined
102 * in the timex.h header file.
103 *
104 * time_status shows the status of the system clock, with bits defined
105 * in the timex.h header file.
106 *
107 * time_offset is used by the PLL/FLL to adjust the system time in small
108 * increments.
109 *
110 * time_constant determines the bandwidth or "stiffness" of the PLL.
111 *
112 * time_tolerance determines maximum frequency error or tolerance of the
113 * CPU clock oscillator and is a property of the architecture; however,
114 * in principle it could change as result of the presence of external
115 * discipline signals, for instance.
116 *
117 * time_precision is usually equal to the kernel tick variable; however,
118 * in cases where a precision clock counter or external clock is
119 * available, the resolution can be much less than this and depend on
120 * whether the external clock is working or not.
121 *
122 * time_maxerror is initialized by a ntp_adjtime() call and increased by
123 * the kernel once each second to reflect the maximum error bound
124 * growth.
125 *
126 * time_esterror is set and read by the ntp_adjtime() call, but
127 * otherwise not used by the kernel.
128 */
129 int time_state = TIME_OK; /* clock state */
130 int time_status = STA_UNSYNC; /* clock status bits */
131 long time_offset = 0; /* time offset (us) */
132 long time_constant = 0; /* pll time constant */
133 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
134 long time_precision = 1; /* clock precision (us) */
135 long time_maxerror = MAXPHASE; /* maximum error (us) */
136 long time_esterror = MAXPHASE; /* estimated error (us) */
137
138 /*
139 * The following variables establish the state of the PLL/FLL and the
140 * residual time and frequency offset of the local clock. The scale
141 * factors are defined in the timex.h header file.
142 *
143 * time_phase and time_freq are the phase increment and the frequency
144 * increment, respectively, of the kernel time variable.
145 *
146 * time_freq is set via ntp_adjtime() from a value stored in a file when
147 * the synchronization daemon is first started. Its value is retrieved
148 * via ntp_adjtime() and written to the file about once per hour by the
149 * daemon.
150 *
151 * time_adj is the adjustment added to the value of tick at each timer
152 * interrupt and is recomputed from time_phase and time_freq at each
153 * seconds rollover.
154 *
155 * time_reftime is the second's portion of the system time at the last
156 * call to ntp_adjtime(). It is used to adjust the time_freq variable
157 * and to increase the time_maxerror as the time since last update
158 * increases.
159 */
160 long time_phase = 0; /* phase offset (scaled us) */
161 long time_freq = 0; /* frequency offset (scaled ppm) */
162 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
163 long time_reftime = 0; /* time at last adjustment (s) */
164
165 #ifdef PPS_SYNC
166 /*
167 * The following variables are used only if the kernel PPS discipline
168 * code is configured (PPS_SYNC). The scale factors are defined in the
169 * timex.h header file.
170 *
171 * pps_time contains the time at each calibration interval, as read by
172 * microtime(). pps_count counts the seconds of the calibration
173 * interval, the duration of which is nominally pps_shift in powers of
174 * two.
175 *
176 * pps_offset is the time offset produced by the time median filter
177 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
178 * this filter.
179 *
180 * pps_freq is the frequency offset produced by the frequency median
181 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
182 * by this filter.
183 *
184 * pps_usec is latched from a high resolution counter or external clock
185 * at pps_time. Here we want the hardware counter contents only, not the
186 * contents plus the time_tv.usec as usual.
187 *
188 * pps_valid counts the number of seconds since the last PPS update. It
189 * is used as a watchdog timer to disable the PPS discipline should the
190 * PPS signal be lost.
191 *
192 * pps_glitch counts the number of seconds since the beginning of an
193 * offset burst more than tick/2 from current nominal offset. It is used
194 * mainly to suppress error bursts due to priority conflicts between the
195 * PPS interrupt and timer interrupt.
196 *
197 * pps_intcnt counts the calibration intervals for use in the interval-
198 * adaptation algorithm. It's just too complicated for words.
199 */
200 struct timeval pps_time; /* kernel time at last interval */
201 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
202 long pps_offset = 0; /* pps time offset (us) */
203 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
204 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
205 long pps_freq = 0; /* frequency offset (scaled ppm) */
206 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
207 long pps_usec = 0; /* microsec counter at last interval */
208 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
209 int pps_glitch = 0; /* pps signal glitch counter */
210 int pps_count = 0; /* calibration interval counter (s) */
211 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
212 int pps_intcnt = 0; /* intervals at current duration */
213
214 /*
215 * PPS signal quality monitors
216 *
217 * pps_jitcnt counts the seconds that have been discarded because the
218 * jitter measured by the time median filter exceeds the limit MAXTIME
219 * (100 us).
220 *
221 * pps_calcnt counts the frequency calibration intervals, which are
222 * variable from 4 s to 256 s.
223 *
224 * pps_errcnt counts the calibration intervals which have been discarded
225 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
226 * calibration interval jitter exceeds two ticks.
227 *
228 * pps_stbcnt counts the calibration intervals that have been discarded
229 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
230 */
231 long pps_jitcnt = 0; /* jitter limit exceeded */
232 long pps_calcnt = 0; /* calibration intervals */
233 long pps_errcnt = 0; /* calibration errors */
234 long pps_stbcnt = 0; /* stability limit exceeded */
235 #endif /* PPS_SYNC */
236
237 #ifdef EXT_CLOCK
238 /*
239 * External clock definitions
240 *
241 * The following definitions and declarations are used only if an
242 * external clock is configured on the system.
243 */
244 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
245
246 /*
247 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
248 * interrupt and decremented once each second.
249 */
250 int clock_count = 0; /* CPU clock counter */
251
252 #ifdef HIGHBALL
253 /*
254 * The clock_offset and clock_cpu variables are used by the HIGHBALL
255 * interface. The clock_offset variable defines the offset between
256 * system time and the HIGBALL counters. The clock_cpu variable contains
257 * the offset between the system clock and the HIGHBALL clock for use in
258 * disciplining the kernel time variable.
259 */
260 extern struct timeval clock_offset; /* Highball clock offset */
261 long clock_cpu = 0; /* CPU clock adjust */
262 #endif /* HIGHBALL */
263 #endif /* EXT_CLOCK */
264 #endif /* NTP */
265
266
267 /*
268 * Bump a timeval by a small number of usec's.
269 */
270 #define BUMPTIME(t, usec) { \
271 register volatile struct timeval *tp = (t); \
272 register long us; \
273 \
274 tp->tv_usec = us = tp->tv_usec + (usec); \
275 if (us >= 1000000) { \
276 tp->tv_usec = us - 1000000; \
277 tp->tv_sec++; \
278 } \
279 }
280
281 int stathz;
282 int profhz;
283 int profprocs;
284 int ticks;
285 static int psdiv, pscnt; /* prof => stat divider */
286 int psratio; /* ratio: prof / stat */
287 int tickfix, tickfixinterval; /* used if tick not really integral */
288 #ifndef NTP
289 static int tickfixcnt; /* accumulated fractional error */
290 #else
291 int fixtick; /* used by NTP for same */
292 int shifthz;
293 #endif
294
295 /*
296 * We might want ldd to load the both words from time at once.
297 * To succeed we need to be quadword aligned.
298 * The sparc already does that, and that it has worked so far is a fluke.
299 */
300 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
301 volatile struct timeval mono_time;
302
303 /*
304 * Initialize clock frequencies and start both clocks running.
305 */
306 void
307 initclocks()
308 {
309 register int i;
310
311 /*
312 * Set divisors to 1 (normal case) and let the machine-specific
313 * code do its bit.
314 */
315 psdiv = pscnt = 1;
316 cpu_initclocks();
317
318 /*
319 * Compute profhz/stathz, and fix profhz if needed.
320 */
321 i = stathz ? stathz : hz;
322 if (profhz == 0)
323 profhz = i;
324 psratio = profhz / i;
325
326 #ifdef NTP
327 switch (hz) {
328 case 60:
329 case 64:
330 shifthz = SHIFT_SCALE - 6;
331 break;
332 case 96:
333 case 100:
334 case 128:
335 shifthz = SHIFT_SCALE - 7;
336 break;
337 case 256:
338 shifthz = SHIFT_SCALE - 8;
339 break;
340 case 512:
341 shifthz = SHIFT_SCALE - 9;
342 break;
343 case 1000:
344 case 1024:
345 shifthz = SHIFT_SCALE - 10;
346 break;
347 default:
348 panic("weird hz");
349 }
350 #endif
351 }
352
353 /*
354 * The real-time timer, interrupting hz times per second.
355 */
356 void
357 hardclock(frame)
358 register struct clockframe *frame;
359 {
360 register struct callout *p1;
361 register struct proc *p;
362 register int delta, needsoft;
363 extern int tickdelta;
364 extern long timedelta;
365 #ifdef NTP
366 register int time_update;
367 register int ltemp;
368 #endif
369
370 /*
371 * Update real-time timeout queue.
372 * At front of queue are some number of events which are ``due''.
373 * The time to these is <= 0 and if negative represents the
374 * number of ticks which have passed since it was supposed to happen.
375 * The rest of the q elements (times > 0) are events yet to happen,
376 * where the time for each is given as a delta from the previous.
377 * Decrementing just the first of these serves to decrement the time
378 * to all events.
379 */
380 needsoft = 0;
381 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
382 if (--p1->c_time > 0)
383 break;
384 needsoft = 1;
385 if (p1->c_time == 0)
386 break;
387 }
388
389 p = curproc;
390 if (p) {
391 register struct pstats *pstats;
392
393 /*
394 * Run current process's virtual and profile time, as needed.
395 */
396 pstats = p->p_stats;
397 if (CLKF_USERMODE(frame) &&
398 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
399 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
400 psignal(p, SIGVTALRM);
401 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
402 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
403 psignal(p, SIGPROF);
404 }
405
406 /*
407 * If no separate statistics clock is available, run it from here.
408 */
409 if (stathz == 0)
410 statclock(frame);
411
412 /*
413 * Increment the time-of-day. The increment is normally just
414 * ``tick''. If the machine is one which has a clock frequency
415 * such that ``hz'' would not divide the second evenly into
416 * milliseconds, a periodic adjustment must be applied. Finally,
417 * if we are still adjusting the time (see adjtime()),
418 * ``tickdelta'' may also be added in.
419 */
420 ticks++;
421 delta = tick;
422
423 #ifndef NTP
424 if (tickfix) {
425 tickfixcnt += tickfix;
426 if (tickfixcnt >= tickfixinterval) {
427 delta++;
428 tickfixcnt -= tickfixinterval;
429 }
430 }
431 #endif /* !NTP */
432 /* Imprecise 4bsd adjtime() handling */
433 if (timedelta != 0) {
434 delta += tickdelta;
435 timedelta -= tickdelta;
436 }
437
438 #ifdef notyet
439 microset();
440 #endif
441
442 #ifndef NTP
443 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
444 #endif
445 BUMPTIME(&mono_time, delta);
446
447 #ifdef NTP
448 time_update = delta;
449
450 /*
451 * Compute the phase adjustment. If the low-order bits
452 * (time_phase) of the update overflow, bump the high-order bits
453 * (time_update).
454 */
455 time_phase += time_adj;
456 if (time_phase <= -FINEUSEC) {
457 ltemp = -time_phase >> SHIFT_SCALE;
458 time_phase += ltemp << SHIFT_SCALE;
459 time_update -= ltemp;
460 } else if (time_phase >= FINEUSEC) {
461 ltemp = time_phase >> SHIFT_SCALE;
462 time_phase -= ltemp << SHIFT_SCALE;
463 time_update += ltemp;
464 }
465
466 #ifdef HIGHBALL
467 /*
468 * If the HIGHBALL board is installed, we need to adjust the
469 * external clock offset in order to close the hardware feedback
470 * loop. This will adjust the external clock phase and frequency
471 * in small amounts. The additional phase noise and frequency
472 * wander this causes should be minimal. We also need to
473 * discipline the kernel time variable, since the PLL is used to
474 * discipline the external clock. If the Highball board is not
475 * present, we discipline kernel time with the PLL as usual. We
476 * assume that the external clock phase adjustment (time_update)
477 * and kernel phase adjustment (clock_cpu) are less than the
478 * value of tick.
479 */
480 clock_offset.tv_usec += time_update;
481 if (clock_offset.tv_usec >= 1000000) {
482 clock_offset.tv_sec++;
483 clock_offset.tv_usec -= 1000000;
484 }
485 if (clock_offset.tv_usec < 0) {
486 clock_offset.tv_sec--;
487 clock_offset.tv_usec += 1000000;
488 }
489 time.tv_usec += clock_cpu;
490 clock_cpu = 0;
491 #else
492 time.tv_usec += time_update;
493 #endif /* HIGHBALL */
494
495 /*
496 * On rollover of the second the phase adjustment to be used for
497 * the next second is calculated. Also, the maximum error is
498 * increased by the tolerance. If the PPS frequency discipline
499 * code is present, the phase is increased to compensate for the
500 * CPU clock oscillator frequency error.
501 *
502 * On a 32-bit machine and given parameters in the timex.h
503 * header file, the maximum phase adjustment is +-512 ms and
504 * maximum frequency offset is a tad less than) +-512 ppm. On a
505 * 64-bit machine, you shouldn't need to ask.
506 */
507 if (time.tv_usec >= 1000000) {
508 time.tv_usec -= 1000000;
509 time.tv_sec++;
510 time_maxerror += time_tolerance >> SHIFT_USEC;
511
512 /*
513 * Leap second processing. If in leap-insert state at
514 * the end of the day, the system clock is set back one
515 * second; if in leap-delete state, the system clock is
516 * set ahead one second. The microtime() routine or
517 * external clock driver will insure that reported time
518 * is always monotonic. The ugly divides should be
519 * replaced.
520 */
521 switch (time_state) {
522 case TIME_OK:
523 if (time_status & STA_INS)
524 time_state = TIME_INS;
525 else if (time_status & STA_DEL)
526 time_state = TIME_DEL;
527 break;
528
529 case TIME_INS:
530 if (time.tv_sec % 86400 == 0) {
531 time.tv_sec--;
532 time_state = TIME_OOP;
533 }
534 break;
535
536 case TIME_DEL:
537 if ((time.tv_sec + 1) % 86400 == 0) {
538 time.tv_sec++;
539 time_state = TIME_WAIT;
540 }
541 break;
542
543 case TIME_OOP:
544 time_state = TIME_WAIT;
545 break;
546
547 case TIME_WAIT:
548 if (!(time_status & (STA_INS | STA_DEL)))
549 time_state = TIME_OK;
550 break;
551 }
552
553 /*
554 * Compute the phase adjustment for the next second. In
555 * PLL mode, the offset is reduced by a fixed factor
556 * times the time constant. In FLL mode the offset is
557 * used directly. In either mode, the maximum phase
558 * adjustment for each second is clamped so as to spread
559 * the adjustment over not more than the number of
560 * seconds between updates.
561 */
562 if (time_offset < 0) {
563 ltemp = -time_offset;
564 if (!(time_status & STA_FLL))
565 ltemp >>= SHIFT_KG + time_constant;
566 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
567 ltemp = (MAXPHASE / MINSEC) <<
568 SHIFT_UPDATE;
569 time_offset += ltemp;
570 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
571 } else if (time_offset > 0) {
572 ltemp = time_offset;
573 if (!(time_status & STA_FLL))
574 ltemp >>= SHIFT_KG + time_constant;
575 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
576 ltemp = (MAXPHASE / MINSEC) <<
577 SHIFT_UPDATE;
578 time_offset -= ltemp;
579 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
580 } else
581 time_adj = 0;
582
583 /*
584 * Compute the frequency estimate and additional phase
585 * adjustment due to frequency error for the next
586 * second. When the PPS signal is engaged, gnaw on the
587 * watchdog counter and update the frequency computed by
588 * the pll and the PPS signal.
589 */
590 #ifdef PPS_SYNC
591 pps_valid++;
592 if (pps_valid == PPS_VALID) {
593 pps_jitter = MAXTIME;
594 pps_stabil = MAXFREQ;
595 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
596 STA_PPSWANDER | STA_PPSERROR);
597 }
598 ltemp = time_freq + pps_freq;
599 #else
600 ltemp = time_freq;
601 #endif /* PPS_SYNC */
602
603 if (ltemp < 0)
604 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
605 else
606 time_adj += ltemp >> (SHIFT_USEC - shifthz);
607 time_adj += (long)fixtick << shifthz;
608
609 /*
610 * When the CPU clock oscillator frequency is not a
611 * power of 2 in Hz, shifthz is only an approximate
612 * scale factor.
613 *
614 * To determine the adjustment, you can do the following:
615 * bc -q
616 * scale=24
617 * obase=2
618 * idealhz/realhz
619 * where `idealhz' is the next higher power of 2, and `realhz'
620 * is the actual value.
621 *
622 * Likewise, the error can be calculated with (e.g. for 100Hz):
623 * bc -q
624 * scale=24
625 * ((1+2^-2+2^-5)*realhz-idealhz)/idealhz
626 * (and then multiply by 100 to get %).
627 */
628 switch (hz) {
629 case 96:
630 /* A factor of 1.0101010101 gives about .025% error. */
631 if (time_adj < 0) {
632 time_adj -= (-time_adj >> 2);
633 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
634 } else {
635 time_adj += (time_adj >> 2);
636 time_adj += (time_adj >> 4) + (time_adj >> 8);
637 }
638 break;
639
640 case 100:
641 /* A factor of 1.01001 gives about .1% error. */
642 if (time_adj < 0)
643 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
644 else
645 time_adj += (time_adj >> 2) + (time_adj >> 5);
646 break;
647
648 case 60:
649 /* A factor of 1.00010001 gives about .025% error. */
650 if (time_adj < 0)
651 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
652 else
653 time_adj += (time_adj >> 4) + (time_adj >> 8);
654 break;
655
656 case 1000:
657 /* A factor of 1.0000011 gives about .055% error. */
658 if (time_adj < 0)
659 time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
660 else
661 time_adj += (time_adj >> 6) + (time_adj >> 7);
662 break;
663 }
664
665 #ifdef EXT_CLOCK
666 /*
667 * If an external clock is present, it is necessary to
668 * discipline the kernel time variable anyway, since not
669 * all system components use the microtime() interface.
670 * Here, the time offset between the external clock and
671 * kernel time variable is computed every so often.
672 */
673 clock_count++;
674 if (clock_count > CLOCK_INTERVAL) {
675 clock_count = 0;
676 microtime(&clock_ext);
677 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
678 delta.tv_usec = clock_ext.tv_usec -
679 time.tv_usec;
680 if (delta.tv_usec < 0)
681 delta.tv_sec--;
682 if (delta.tv_usec >= 500000) {
683 delta.tv_usec -= 1000000;
684 delta.tv_sec++;
685 }
686 if (delta.tv_usec < -500000) {
687 delta.tv_usec += 1000000;
688 delta.tv_sec--;
689 }
690 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
691 delta.tv_usec > MAXPHASE) ||
692 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
693 delta.tv_usec < -MAXPHASE)) {
694 time = clock_ext;
695 delta.tv_sec = 0;
696 delta.tv_usec = 0;
697 }
698 #ifdef HIGHBALL
699 clock_cpu = delta.tv_usec;
700 #else /* HIGHBALL */
701 hardupdate(delta.tv_usec);
702 #endif /* HIGHBALL */
703 }
704 #endif /* EXT_CLOCK */
705 }
706
707 #endif /* NTP */
708
709 /*
710 * Process callouts at a very low cpu priority, so we don't keep the
711 * relatively high clock interrupt priority any longer than necessary.
712 */
713 if (needsoft) {
714 if (CLKF_BASEPRI(frame)) {
715 /*
716 * Save the overhead of a software interrupt;
717 * it will happen as soon as we return, so do it now.
718 */
719 (void)splsoftclock();
720 softclock();
721 } else
722 setsoftclock();
723 }
724 }
725
726 /*
727 * Software (low priority) clock interrupt.
728 * Run periodic events from timeout queue.
729 */
730 /*ARGSUSED*/
731 void
732 softclock()
733 {
734 register struct callout *c;
735 register void *arg;
736 register void (*func) __P((void *));
737 register int s;
738
739 s = splhigh();
740 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
741 func = c->c_func;
742 arg = c->c_arg;
743 calltodo.c_next = c->c_next;
744 c->c_next = callfree;
745 callfree = c;
746 splx(s);
747 (*func)(arg);
748 (void) splhigh();
749 }
750 splx(s);
751 }
752
753 /*
754 * timeout --
755 * Execute a function after a specified length of time.
756 *
757 * untimeout --
758 * Cancel previous timeout function call.
759 *
760 * See AT&T BCI Driver Reference Manual for specification. This
761 * implementation differs from that one in that no identification
762 * value is returned from timeout, rather, the original arguments
763 * to timeout are used to identify entries for untimeout.
764 */
765 void
766 timeout(ftn, arg, ticks)
767 void (*ftn) __P((void *));
768 void *arg;
769 register int ticks;
770 {
771 register struct callout *new, *p, *t;
772 register int s;
773
774 if (ticks <= 0)
775 ticks = 1;
776
777 /* Lock out the clock. */
778 s = splhigh();
779
780 /* Fill in the next free callout structure. */
781 if (callfree == NULL)
782 panic("timeout table full");
783 new = callfree;
784 callfree = new->c_next;
785 new->c_arg = arg;
786 new->c_func = ftn;
787
788 /*
789 * The time for each event is stored as a difference from the time
790 * of the previous event on the queue. Walk the queue, correcting
791 * the ticks argument for queue entries passed. Correct the ticks
792 * value for the queue entry immediately after the insertion point
793 * as well. Watch out for negative c_time values; these represent
794 * overdue events.
795 */
796 for (p = &calltodo;
797 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
798 if (t->c_time > 0)
799 ticks -= t->c_time;
800 new->c_time = ticks;
801 if (t != NULL)
802 t->c_time -= ticks;
803
804 /* Insert the new entry into the queue. */
805 p->c_next = new;
806 new->c_next = t;
807 splx(s);
808 }
809
810 void
811 untimeout(ftn, arg)
812 void (*ftn) __P((void *));
813 void *arg;
814 {
815 register struct callout *p, *t;
816 register int s;
817
818 s = splhigh();
819 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
820 if (t->c_func == ftn && t->c_arg == arg) {
821 /* Increment next entry's tick count. */
822 if (t->c_next && t->c_time > 0)
823 t->c_next->c_time += t->c_time;
824
825 /* Move entry from callout queue to callfree queue. */
826 p->c_next = t->c_next;
827 t->c_next = callfree;
828 callfree = t;
829 break;
830 }
831 splx(s);
832 }
833
834 /*
835 * Compute number of hz until specified time. Used to
836 * compute third argument to timeout() from an absolute time.
837 */
838 int
839 hzto(tv)
840 struct timeval *tv;
841 {
842 register long ticks, sec;
843 int s;
844
845 /*
846 * If number of microseconds will fit in 32 bit arithmetic,
847 * then compute number of microseconds to time and scale to
848 * ticks. Otherwise just compute number of hz in time, rounding
849 * times greater than representible to maximum value. (We must
850 * compute in microseconds, because hz can be greater than 1000,
851 * and thus tick can be less than one millisecond).
852 *
853 * Delta times less than 14 hours can be computed ``exactly''.
854 * (Note that if hz would yeild a non-integral number of us per
855 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
856 * than they should be.) Maximum value for any timeout in 10ms
857 * ticks is 250 days.
858 */
859 s = splclock();
860 sec = tv->tv_sec - time.tv_sec;
861 if (sec <= 0x7fffffff / 1000000 - 1)
862 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
863 (tv->tv_usec - time.tv_usec)) / tick;
864 else if (sec <= 0x7fffffff / hz)
865 ticks = sec * hz;
866 else
867 ticks = 0x7fffffff;
868 splx(s);
869 return (ticks);
870 }
871
872 /*
873 * Start profiling on a process.
874 *
875 * Kernel profiling passes proc0 which never exits and hence
876 * keeps the profile clock running constantly.
877 */
878 void
879 startprofclock(p)
880 register struct proc *p;
881 {
882 int s;
883
884 if ((p->p_flag & P_PROFIL) == 0) {
885 p->p_flag |= P_PROFIL;
886 if (++profprocs == 1 && stathz != 0) {
887 s = splstatclock();
888 psdiv = pscnt = psratio;
889 setstatclockrate(profhz);
890 splx(s);
891 }
892 }
893 }
894
895 /*
896 * Stop profiling on a process.
897 */
898 void
899 stopprofclock(p)
900 register struct proc *p;
901 {
902 int s;
903
904 if (p->p_flag & P_PROFIL) {
905 p->p_flag &= ~P_PROFIL;
906 if (--profprocs == 0 && stathz != 0) {
907 s = splstatclock();
908 psdiv = pscnt = 1;
909 setstatclockrate(stathz);
910 splx(s);
911 }
912 }
913 }
914
915 /*
916 * Statistics clock. Grab profile sample, and if divider reaches 0,
917 * do process and kernel statistics.
918 */
919 void
920 statclock(frame)
921 register struct clockframe *frame;
922 {
923 #ifdef GPROF
924 register struct gmonparam *g;
925 register int i;
926 #endif
927 static int schedclk;
928 register struct proc *p;
929
930 if (CLKF_USERMODE(frame)) {
931 p = curproc;
932 if (p->p_flag & P_PROFIL)
933 addupc_intr(p, CLKF_PC(frame), 1);
934 if (--pscnt > 0)
935 return;
936 /*
937 * Came from user mode; CPU was in user state.
938 * If this process is being profiled record the tick.
939 */
940 p->p_uticks++;
941 if (p->p_nice > NZERO)
942 cp_time[CP_NICE]++;
943 else
944 cp_time[CP_USER]++;
945 } else {
946 #ifdef GPROF
947 /*
948 * Kernel statistics are just like addupc_intr, only easier.
949 */
950 g = &_gmonparam;
951 if (g->state == GMON_PROF_ON) {
952 i = CLKF_PC(frame) - g->lowpc;
953 if (i < g->textsize) {
954 i /= HISTFRACTION * sizeof(*g->kcount);
955 g->kcount[i]++;
956 }
957 }
958 #endif
959 if (--pscnt > 0)
960 return;
961 /*
962 * Came from kernel mode, so we were:
963 * - handling an interrupt,
964 * - doing syscall or trap work on behalf of the current
965 * user process, or
966 * - spinning in the idle loop.
967 * Whichever it is, charge the time as appropriate.
968 * Note that we charge interrupts to the current process,
969 * regardless of whether they are ``for'' that process,
970 * so that we know how much of its real time was spent
971 * in ``non-process'' (i.e., interrupt) work.
972 */
973 p = curproc;
974 if (CLKF_INTR(frame)) {
975 if (p != NULL)
976 p->p_iticks++;
977 cp_time[CP_INTR]++;
978 } else if (p != NULL) {
979 p->p_sticks++;
980 cp_time[CP_SYS]++;
981 } else
982 cp_time[CP_IDLE]++;
983 }
984 pscnt = psdiv;
985
986 if (p != NULL) {
987 ++p->p_cpticks;
988 /*
989 * If no schedclock is provided, call it here at ~~12-25 Hz,
990 * ~~16 Hz is best
991 */
992 if(schedhz == 0)
993 if ((++schedclk & 3) == 0)
994 schedclock(p);
995 }
996 }
997
998
999 #ifdef NTP /* NTP phase-locked loop in kernel */
1000
1001 /*
1002 * hardupdate() - local clock update
1003 *
1004 * This routine is called by ntp_adjtime() to update the local clock
1005 * phase and frequency. The implementation is of an adaptive-parameter,
1006 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1007 * time and frequency offset estimates for each call. If the kernel PPS
1008 * discipline code is configured (PPS_SYNC), the PPS signal itself
1009 * determines the new time offset, instead of the calling argument.
1010 * Presumably, calls to ntp_adjtime() occur only when the caller
1011 * believes the local clock is valid within some bound (+-128 ms with
1012 * NTP). If the caller's time is far different than the PPS time, an
1013 * argument will ensue, and it's not clear who will lose.
1014 *
1015 * For uncompensated quartz crystal oscillatores and nominal update
1016 * intervals less than 1024 s, operation should be in phase-lock mode
1017 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1018 * intervals greater than thiss, operation should be in frequency-lock
1019 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1020 *
1021 * Note: splclock() is in effect.
1022 */
1023 void
1024 hardupdate(offset)
1025 long offset;
1026 {
1027 long ltemp, mtemp;
1028
1029 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1030 return;
1031 ltemp = offset;
1032 #ifdef PPS_SYNC
1033 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1034 ltemp = pps_offset;
1035 #endif /* PPS_SYNC */
1036
1037 /*
1038 * Scale the phase adjustment and clamp to the operating range.
1039 */
1040 if (ltemp > MAXPHASE)
1041 time_offset = MAXPHASE << SHIFT_UPDATE;
1042 else if (ltemp < -MAXPHASE)
1043 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1044 else
1045 time_offset = ltemp << SHIFT_UPDATE;
1046
1047 /*
1048 * Select whether the frequency is to be controlled and in which
1049 * mode (PLL or FLL). Clamp to the operating range. Ugly
1050 * multiply/divide should be replaced someday.
1051 */
1052 if (time_status & STA_FREQHOLD || time_reftime == 0)
1053 time_reftime = time.tv_sec;
1054 mtemp = time.tv_sec - time_reftime;
1055 time_reftime = time.tv_sec;
1056 if (time_status & STA_FLL) {
1057 if (mtemp >= MINSEC) {
1058 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1059 SHIFT_UPDATE));
1060 if (ltemp < 0)
1061 time_freq -= -ltemp >> SHIFT_KH;
1062 else
1063 time_freq += ltemp >> SHIFT_KH;
1064 }
1065 } else {
1066 if (mtemp < MAXSEC) {
1067 ltemp *= mtemp;
1068 if (ltemp < 0)
1069 time_freq -= -ltemp >> (time_constant +
1070 time_constant + SHIFT_KF -
1071 SHIFT_USEC);
1072 else
1073 time_freq += ltemp >> (time_constant +
1074 time_constant + SHIFT_KF -
1075 SHIFT_USEC);
1076 }
1077 }
1078 if (time_freq > time_tolerance)
1079 time_freq = time_tolerance;
1080 else if (time_freq < -time_tolerance)
1081 time_freq = -time_tolerance;
1082 }
1083
1084 #ifdef PPS_SYNC
1085 /*
1086 * hardpps() - discipline CPU clock oscillator to external PPS signal
1087 *
1088 * This routine is called at each PPS interrupt in order to discipline
1089 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1090 * and leaves it in a handy spot for the hardclock() routine. It
1091 * integrates successive PPS phase differences and calculates the
1092 * frequency offset. This is used in hardclock() to discipline the CPU
1093 * clock oscillator so that intrinsic frequency error is cancelled out.
1094 * The code requires the caller to capture the time and hardware counter
1095 * value at the on-time PPS signal transition.
1096 *
1097 * Note that, on some Unix systems, this routine runs at an interrupt
1098 * priority level higher than the timer interrupt routine hardclock().
1099 * Therefore, the variables used are distinct from the hardclock()
1100 * variables, except for certain exceptions: The PPS frequency pps_freq
1101 * and phase pps_offset variables are determined by this routine and
1102 * updated atomically. The time_tolerance variable can be considered a
1103 * constant, since it is infrequently changed, and then only when the
1104 * PPS signal is disabled. The watchdog counter pps_valid is updated
1105 * once per second by hardclock() and is atomically cleared in this
1106 * routine.
1107 */
1108 void
1109 hardpps(tvp, usec)
1110 struct timeval *tvp; /* time at PPS */
1111 long usec; /* hardware counter at PPS */
1112 {
1113 long u_usec, v_usec, bigtick;
1114 long cal_sec, cal_usec;
1115
1116 /*
1117 * An occasional glitch can be produced when the PPS interrupt
1118 * occurs in the hardclock() routine before the time variable is
1119 * updated. Here the offset is discarded when the difference
1120 * between it and the last one is greater than tick/2, but not
1121 * if the interval since the first discard exceeds 30 s.
1122 */
1123 time_status |= STA_PPSSIGNAL;
1124 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1125 pps_valid = 0;
1126 u_usec = -tvp->tv_usec;
1127 if (u_usec < -500000)
1128 u_usec += 1000000;
1129 v_usec = pps_offset - u_usec;
1130 if (v_usec < 0)
1131 v_usec = -v_usec;
1132 if (v_usec > (tick >> 1)) {
1133 if (pps_glitch > MAXGLITCH) {
1134 pps_glitch = 0;
1135 pps_tf[2] = u_usec;
1136 pps_tf[1] = u_usec;
1137 } else {
1138 pps_glitch++;
1139 u_usec = pps_offset;
1140 }
1141 } else
1142 pps_glitch = 0;
1143
1144 /*
1145 * A three-stage median filter is used to help deglitch the pps
1146 * time. The median sample becomes the time offset estimate; the
1147 * difference between the other two samples becomes the time
1148 * dispersion (jitter) estimate.
1149 */
1150 pps_tf[2] = pps_tf[1];
1151 pps_tf[1] = pps_tf[0];
1152 pps_tf[0] = u_usec;
1153 if (pps_tf[0] > pps_tf[1]) {
1154 if (pps_tf[1] > pps_tf[2]) {
1155 pps_offset = pps_tf[1]; /* 0 1 2 */
1156 v_usec = pps_tf[0] - pps_tf[2];
1157 } else if (pps_tf[2] > pps_tf[0]) {
1158 pps_offset = pps_tf[0]; /* 2 0 1 */
1159 v_usec = pps_tf[2] - pps_tf[1];
1160 } else {
1161 pps_offset = pps_tf[2]; /* 0 2 1 */
1162 v_usec = pps_tf[0] - pps_tf[1];
1163 }
1164 } else {
1165 if (pps_tf[1] < pps_tf[2]) {
1166 pps_offset = pps_tf[1]; /* 2 1 0 */
1167 v_usec = pps_tf[2] - pps_tf[0];
1168 } else if (pps_tf[2] < pps_tf[0]) {
1169 pps_offset = pps_tf[0]; /* 1 0 2 */
1170 v_usec = pps_tf[1] - pps_tf[2];
1171 } else {
1172 pps_offset = pps_tf[2]; /* 1 2 0 */
1173 v_usec = pps_tf[1] - pps_tf[0];
1174 }
1175 }
1176 if (v_usec > MAXTIME)
1177 pps_jitcnt++;
1178 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1179 if (v_usec < 0)
1180 pps_jitter -= -v_usec >> PPS_AVG;
1181 else
1182 pps_jitter += v_usec >> PPS_AVG;
1183 if (pps_jitter > (MAXTIME >> 1))
1184 time_status |= STA_PPSJITTER;
1185
1186 /*
1187 * During the calibration interval adjust the starting time when
1188 * the tick overflows. At the end of the interval compute the
1189 * duration of the interval and the difference of the hardware
1190 * counters at the beginning and end of the interval. This code
1191 * is deliciously complicated by the fact valid differences may
1192 * exceed the value of tick when using long calibration
1193 * intervals and small ticks. Note that the counter can be
1194 * greater than tick if caught at just the wrong instant, but
1195 * the values returned and used here are correct.
1196 */
1197 bigtick = (long)tick << SHIFT_USEC;
1198 pps_usec -= pps_freq;
1199 if (pps_usec >= bigtick)
1200 pps_usec -= bigtick;
1201 if (pps_usec < 0)
1202 pps_usec += bigtick;
1203 pps_time.tv_sec++;
1204 pps_count++;
1205 if (pps_count < (1 << pps_shift))
1206 return;
1207 pps_count = 0;
1208 pps_calcnt++;
1209 u_usec = usec << SHIFT_USEC;
1210 v_usec = pps_usec - u_usec;
1211 if (v_usec >= bigtick >> 1)
1212 v_usec -= bigtick;
1213 if (v_usec < -(bigtick >> 1))
1214 v_usec += bigtick;
1215 if (v_usec < 0)
1216 v_usec = -(-v_usec >> pps_shift);
1217 else
1218 v_usec = v_usec >> pps_shift;
1219 pps_usec = u_usec;
1220 cal_sec = tvp->tv_sec;
1221 cal_usec = tvp->tv_usec;
1222 cal_sec -= pps_time.tv_sec;
1223 cal_usec -= pps_time.tv_usec;
1224 if (cal_usec < 0) {
1225 cal_usec += 1000000;
1226 cal_sec--;
1227 }
1228 pps_time = *tvp;
1229
1230 /*
1231 * Check for lost interrupts, noise, excessive jitter and
1232 * excessive frequency error. The number of timer ticks during
1233 * the interval may vary +-1 tick. Add to this a margin of one
1234 * tick for the PPS signal jitter and maximum frequency
1235 * deviation. If the limits are exceeded, the calibration
1236 * interval is reset to the minimum and we start over.
1237 */
1238 u_usec = (long)tick << 1;
1239 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1240 || (cal_sec == 0 && cal_usec < u_usec))
1241 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1242 pps_errcnt++;
1243 pps_shift = PPS_SHIFT;
1244 pps_intcnt = 0;
1245 time_status |= STA_PPSERROR;
1246 return;
1247 }
1248
1249 /*
1250 * A three-stage median filter is used to help deglitch the pps
1251 * frequency. The median sample becomes the frequency offset
1252 * estimate; the difference between the other two samples
1253 * becomes the frequency dispersion (stability) estimate.
1254 */
1255 pps_ff[2] = pps_ff[1];
1256 pps_ff[1] = pps_ff[0];
1257 pps_ff[0] = v_usec;
1258 if (pps_ff[0] > pps_ff[1]) {
1259 if (pps_ff[1] > pps_ff[2]) {
1260 u_usec = pps_ff[1]; /* 0 1 2 */
1261 v_usec = pps_ff[0] - pps_ff[2];
1262 } else if (pps_ff[2] > pps_ff[0]) {
1263 u_usec = pps_ff[0]; /* 2 0 1 */
1264 v_usec = pps_ff[2] - pps_ff[1];
1265 } else {
1266 u_usec = pps_ff[2]; /* 0 2 1 */
1267 v_usec = pps_ff[0] - pps_ff[1];
1268 }
1269 } else {
1270 if (pps_ff[1] < pps_ff[2]) {
1271 u_usec = pps_ff[1]; /* 2 1 0 */
1272 v_usec = pps_ff[2] - pps_ff[0];
1273 } else if (pps_ff[2] < pps_ff[0]) {
1274 u_usec = pps_ff[0]; /* 1 0 2 */
1275 v_usec = pps_ff[1] - pps_ff[2];
1276 } else {
1277 u_usec = pps_ff[2]; /* 1 2 0 */
1278 v_usec = pps_ff[1] - pps_ff[0];
1279 }
1280 }
1281
1282 /*
1283 * Here the frequency dispersion (stability) is updated. If it
1284 * is less than one-fourth the maximum (MAXFREQ), the frequency
1285 * offset is updated as well, but clamped to the tolerance. It
1286 * will be processed later by the hardclock() routine.
1287 */
1288 v_usec = (v_usec >> 1) - pps_stabil;
1289 if (v_usec < 0)
1290 pps_stabil -= -v_usec >> PPS_AVG;
1291 else
1292 pps_stabil += v_usec >> PPS_AVG;
1293 if (pps_stabil > MAXFREQ >> 2) {
1294 pps_stbcnt++;
1295 time_status |= STA_PPSWANDER;
1296 return;
1297 }
1298 if (time_status & STA_PPSFREQ) {
1299 if (u_usec < 0) {
1300 pps_freq -= -u_usec >> PPS_AVG;
1301 if (pps_freq < -time_tolerance)
1302 pps_freq = -time_tolerance;
1303 u_usec = -u_usec;
1304 } else {
1305 pps_freq += u_usec >> PPS_AVG;
1306 if (pps_freq > time_tolerance)
1307 pps_freq = time_tolerance;
1308 }
1309 }
1310
1311 /*
1312 * Here the calibration interval is adjusted. If the maximum
1313 * time difference is greater than tick / 4, reduce the interval
1314 * by half. If this is not the case for four consecutive
1315 * intervals, double the interval.
1316 */
1317 if (u_usec << pps_shift > bigtick >> 2) {
1318 pps_intcnt = 0;
1319 if (pps_shift > PPS_SHIFT)
1320 pps_shift--;
1321 } else if (pps_intcnt >= 4) {
1322 pps_intcnt = 0;
1323 if (pps_shift < PPS_SHIFTMAX)
1324 pps_shift++;
1325 } else
1326 pps_intcnt++;
1327 }
1328 #endif /* PPS_SYNC */
1329 #endif /* NTP */
1330
1331
1332 /*
1333 * Return information about system clocks.
1334 */
1335 int
1336 sysctl_clockrate(where, sizep)
1337 register char *where;
1338 size_t *sizep;
1339 {
1340 struct clockinfo clkinfo;
1341
1342 /*
1343 * Construct clockinfo structure.
1344 */
1345 clkinfo.tick = tick;
1346 clkinfo.tickadj = tickadj;
1347 clkinfo.hz = hz;
1348 clkinfo.profhz = profhz;
1349 clkinfo.stathz = stathz ? stathz : hz;
1350 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1351 }
1352
1353