kern_clock.c revision 1.50 1 /* $NetBSD: kern_clock.c,v 1.50 1999/09/06 20:44:02 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
41 */
42
43 #include "opt_ntp.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/dkstat.h>
48 #include <sys/callout.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <vm/vm.h>
54 #include <sys/sysctl.h>
55 #include <sys/timex.h>
56 #include <sys/sched.h>
57
58 #include <machine/cpu.h>
59
60 #ifdef GPROF
61 #include <sys/gmon.h>
62 #endif
63
64 /*
65 * Clock handling routines.
66 *
67 * This code is written to operate with two timers that run independently of
68 * each other. The main clock, running hz times per second, is used to keep
69 * track of real time. The second timer handles kernel and user profiling,
70 * and does resource use estimation. If the second timer is programmable,
71 * it is randomized to avoid aliasing between the two clocks. For example,
72 * the randomization prevents an adversary from always giving up the cpu
73 * just before its quantum expires. Otherwise, it would never accumulate
74 * cpu ticks. The mean frequency of the second timer is stathz.
75 *
76 * If no second timer exists, stathz will be zero; in this case we drive
77 * profiling and statistics off the main clock. This WILL NOT be accurate;
78 * do not do it unless absolutely necessary.
79 *
80 * The statistics clock may (or may not) be run at a higher rate while
81 * profiling. This profile clock runs at profhz. We require that profhz
82 * be an integral multiple of stathz.
83 *
84 * If the statistics clock is running fast, it must be divided by the ratio
85 * profhz/stathz for statistics. (For profiling, every tick counts.)
86 */
87
88 /*
89 * TODO:
90 * allocate more timeout table slots when table overflows.
91 */
92
93
94 #ifdef NTP /* NTP phase-locked loop in kernel */
95 /*
96 * Phase/frequency-lock loop (PLL/FLL) definitions
97 *
98 * The following variables are read and set by the ntp_adjtime() system
99 * call.
100 *
101 * time_state shows the state of the system clock, with values defined
102 * in the timex.h header file.
103 *
104 * time_status shows the status of the system clock, with bits defined
105 * in the timex.h header file.
106 *
107 * time_offset is used by the PLL/FLL to adjust the system time in small
108 * increments.
109 *
110 * time_constant determines the bandwidth or "stiffness" of the PLL.
111 *
112 * time_tolerance determines maximum frequency error or tolerance of the
113 * CPU clock oscillator and is a property of the architecture; however,
114 * in principle it could change as result of the presence of external
115 * discipline signals, for instance.
116 *
117 * time_precision is usually equal to the kernel tick variable; however,
118 * in cases where a precision clock counter or external clock is
119 * available, the resolution can be much less than this and depend on
120 * whether the external clock is working or not.
121 *
122 * time_maxerror is initialized by a ntp_adjtime() call and increased by
123 * the kernel once each second to reflect the maximum error bound
124 * growth.
125 *
126 * time_esterror is set and read by the ntp_adjtime() call, but
127 * otherwise not used by the kernel.
128 */
129 int time_state = TIME_OK; /* clock state */
130 int time_status = STA_UNSYNC; /* clock status bits */
131 long time_offset = 0; /* time offset (us) */
132 long time_constant = 0; /* pll time constant */
133 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
134 long time_precision = 1; /* clock precision (us) */
135 long time_maxerror = MAXPHASE; /* maximum error (us) */
136 long time_esterror = MAXPHASE; /* estimated error (us) */
137
138 /*
139 * The following variables establish the state of the PLL/FLL and the
140 * residual time and frequency offset of the local clock. The scale
141 * factors are defined in the timex.h header file.
142 *
143 * time_phase and time_freq are the phase increment and the frequency
144 * increment, respectively, of the kernel time variable.
145 *
146 * time_freq is set via ntp_adjtime() from a value stored in a file when
147 * the synchronization daemon is first started. Its value is retrieved
148 * via ntp_adjtime() and written to the file about once per hour by the
149 * daemon.
150 *
151 * time_adj is the adjustment added to the value of tick at each timer
152 * interrupt and is recomputed from time_phase and time_freq at each
153 * seconds rollover.
154 *
155 * time_reftime is the second's portion of the system time at the last
156 * call to ntp_adjtime(). It is used to adjust the time_freq variable
157 * and to increase the time_maxerror as the time since last update
158 * increases.
159 */
160 long time_phase = 0; /* phase offset (scaled us) */
161 long time_freq = 0; /* frequency offset (scaled ppm) */
162 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
163 long time_reftime = 0; /* time at last adjustment (s) */
164
165 #ifdef PPS_SYNC
166 /*
167 * The following variables are used only if the kernel PPS discipline
168 * code is configured (PPS_SYNC). The scale factors are defined in the
169 * timex.h header file.
170 *
171 * pps_time contains the time at each calibration interval, as read by
172 * microtime(). pps_count counts the seconds of the calibration
173 * interval, the duration of which is nominally pps_shift in powers of
174 * two.
175 *
176 * pps_offset is the time offset produced by the time median filter
177 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
178 * this filter.
179 *
180 * pps_freq is the frequency offset produced by the frequency median
181 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
182 * by this filter.
183 *
184 * pps_usec is latched from a high resolution counter or external clock
185 * at pps_time. Here we want the hardware counter contents only, not the
186 * contents plus the time_tv.usec as usual.
187 *
188 * pps_valid counts the number of seconds since the last PPS update. It
189 * is used as a watchdog timer to disable the PPS discipline should the
190 * PPS signal be lost.
191 *
192 * pps_glitch counts the number of seconds since the beginning of an
193 * offset burst more than tick/2 from current nominal offset. It is used
194 * mainly to suppress error bursts due to priority conflicts between the
195 * PPS interrupt and timer interrupt.
196 *
197 * pps_intcnt counts the calibration intervals for use in the interval-
198 * adaptation algorithm. It's just too complicated for words.
199 */
200 struct timeval pps_time; /* kernel time at last interval */
201 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
202 long pps_offset = 0; /* pps time offset (us) */
203 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
204 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
205 long pps_freq = 0; /* frequency offset (scaled ppm) */
206 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
207 long pps_usec = 0; /* microsec counter at last interval */
208 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
209 int pps_glitch = 0; /* pps signal glitch counter */
210 int pps_count = 0; /* calibration interval counter (s) */
211 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
212 int pps_intcnt = 0; /* intervals at current duration */
213
214 /*
215 * PPS signal quality monitors
216 *
217 * pps_jitcnt counts the seconds that have been discarded because the
218 * jitter measured by the time median filter exceeds the limit MAXTIME
219 * (100 us).
220 *
221 * pps_calcnt counts the frequency calibration intervals, which are
222 * variable from 4 s to 256 s.
223 *
224 * pps_errcnt counts the calibration intervals which have been discarded
225 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
226 * calibration interval jitter exceeds two ticks.
227 *
228 * pps_stbcnt counts the calibration intervals that have been discarded
229 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
230 */
231 long pps_jitcnt = 0; /* jitter limit exceeded */
232 long pps_calcnt = 0; /* calibration intervals */
233 long pps_errcnt = 0; /* calibration errors */
234 long pps_stbcnt = 0; /* stability limit exceeded */
235 #endif /* PPS_SYNC */
236
237 #ifdef EXT_CLOCK
238 /*
239 * External clock definitions
240 *
241 * The following definitions and declarations are used only if an
242 * external clock is configured on the system.
243 */
244 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
245
246 /*
247 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
248 * interrupt and decremented once each second.
249 */
250 int clock_count = 0; /* CPU clock counter */
251
252 #ifdef HIGHBALL
253 /*
254 * The clock_offset and clock_cpu variables are used by the HIGHBALL
255 * interface. The clock_offset variable defines the offset between
256 * system time and the HIGBALL counters. The clock_cpu variable contains
257 * the offset between the system clock and the HIGHBALL clock for use in
258 * disciplining the kernel time variable.
259 */
260 extern struct timeval clock_offset; /* Highball clock offset */
261 long clock_cpu = 0; /* CPU clock adjust */
262 #endif /* HIGHBALL */
263 #endif /* EXT_CLOCK */
264 #endif /* NTP */
265
266
267 /*
268 * Bump a timeval by a small number of usec's.
269 */
270 #define BUMPTIME(t, usec) { \
271 register volatile struct timeval *tp = (t); \
272 register long us; \
273 \
274 tp->tv_usec = us = tp->tv_usec + (usec); \
275 if (us >= 1000000) { \
276 tp->tv_usec = us - 1000000; \
277 tp->tv_sec++; \
278 } \
279 }
280
281 int stathz;
282 int profhz;
283 int profprocs;
284 int ticks;
285 static int psdiv, pscnt; /* prof => stat divider */
286 int psratio; /* ratio: prof / stat */
287 int tickfix, tickfixinterval; /* used if tick not really integral */
288 #ifndef NTP
289 static int tickfixcnt; /* accumulated fractional error */
290 #else
291 int fixtick; /* used by NTP for same */
292 int shifthz;
293 #endif
294
295 /*
296 * We might want ldd to load the both words from time at once.
297 * To succeed we need to be quadword aligned.
298 * The sparc already does that, and that it has worked so far is a fluke.
299 */
300 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
301 volatile struct timeval mono_time;
302
303 /*
304 * Initialize clock frequencies and start both clocks running.
305 */
306 void
307 initclocks()
308 {
309 register int i;
310
311 /*
312 * Set divisors to 1 (normal case) and let the machine-specific
313 * code do its bit.
314 */
315 psdiv = pscnt = 1;
316 cpu_initclocks();
317
318 /*
319 * Compute profhz/stathz, and fix profhz if needed.
320 */
321 i = stathz ? stathz : hz;
322 if (profhz == 0)
323 profhz = i;
324 psratio = profhz / i;
325
326 #ifdef NTP
327 switch (hz) {
328 case 60:
329 case 64:
330 shifthz = SHIFT_SCALE - 6;
331 break;
332 case 96:
333 case 100:
334 case 128:
335 shifthz = SHIFT_SCALE - 7;
336 break;
337 case 256:
338 shifthz = SHIFT_SCALE - 8;
339 break;
340 case 512:
341 shifthz = SHIFT_SCALE - 9;
342 break;
343 case 1000:
344 case 1024:
345 shifthz = SHIFT_SCALE - 10;
346 break;
347 default:
348 panic("weird hz");
349 }
350 if (fixtick == 0) {
351 /* give MD code a chance to set this to a better value; but, if it doesn't, we should.. */
352 fixtick = (1000000 - (hz*tick));
353 }
354 #endif
355 }
356
357 /*
358 * The real-time timer, interrupting hz times per second.
359 */
360 void
361 hardclock(frame)
362 register struct clockframe *frame;
363 {
364 register struct callout *p1;
365 register struct proc *p;
366 register int delta, needsoft;
367 extern int tickdelta;
368 extern long timedelta;
369 #ifdef NTP
370 register int time_update;
371 register int ltemp;
372 #endif
373
374 /*
375 * Update real-time timeout queue.
376 * At front of queue are some number of events which are ``due''.
377 * The time to these is <= 0 and if negative represents the
378 * number of ticks which have passed since it was supposed to happen.
379 * The rest of the q elements (times > 0) are events yet to happen,
380 * where the time for each is given as a delta from the previous.
381 * Decrementing just the first of these serves to decrement the time
382 * to all events.
383 */
384 needsoft = 0;
385 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
386 if (--p1->c_time > 0)
387 break;
388 needsoft = 1;
389 if (p1->c_time == 0)
390 break;
391 }
392
393 p = curproc;
394 if (p) {
395 register struct pstats *pstats;
396
397 /*
398 * Run current process's virtual and profile time, as needed.
399 */
400 pstats = p->p_stats;
401 if (CLKF_USERMODE(frame) &&
402 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
403 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
404 psignal(p, SIGVTALRM);
405 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
406 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
407 psignal(p, SIGPROF);
408 }
409
410 /*
411 * If no separate statistics clock is available, run it from here.
412 */
413 if (stathz == 0)
414 statclock(frame);
415
416 /*
417 * Increment the time-of-day. The increment is normally just
418 * ``tick''. If the machine is one which has a clock frequency
419 * such that ``hz'' would not divide the second evenly into
420 * milliseconds, a periodic adjustment must be applied. Finally,
421 * if we are still adjusting the time (see adjtime()),
422 * ``tickdelta'' may also be added in.
423 */
424 ticks++;
425 delta = tick;
426
427 #ifndef NTP
428 if (tickfix) {
429 tickfixcnt += tickfix;
430 if (tickfixcnt >= tickfixinterval) {
431 delta++;
432 tickfixcnt -= tickfixinterval;
433 }
434 }
435 #endif /* !NTP */
436 /* Imprecise 4bsd adjtime() handling */
437 if (timedelta != 0) {
438 delta += tickdelta;
439 timedelta -= tickdelta;
440 }
441
442 #ifdef notyet
443 microset();
444 #endif
445
446 #ifndef NTP
447 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
448 #endif
449 BUMPTIME(&mono_time, delta);
450
451 #ifdef NTP
452 time_update = delta;
453
454 /*
455 * Compute the phase adjustment. If the low-order bits
456 * (time_phase) of the update overflow, bump the high-order bits
457 * (time_update).
458 */
459 time_phase += time_adj;
460 if (time_phase <= -FINEUSEC) {
461 ltemp = -time_phase >> SHIFT_SCALE;
462 time_phase += ltemp << SHIFT_SCALE;
463 time_update -= ltemp;
464 } else if (time_phase >= FINEUSEC) {
465 ltemp = time_phase >> SHIFT_SCALE;
466 time_phase -= ltemp << SHIFT_SCALE;
467 time_update += ltemp;
468 }
469
470 #ifdef HIGHBALL
471 /*
472 * If the HIGHBALL board is installed, we need to adjust the
473 * external clock offset in order to close the hardware feedback
474 * loop. This will adjust the external clock phase and frequency
475 * in small amounts. The additional phase noise and frequency
476 * wander this causes should be minimal. We also need to
477 * discipline the kernel time variable, since the PLL is used to
478 * discipline the external clock. If the Highball board is not
479 * present, we discipline kernel time with the PLL as usual. We
480 * assume that the external clock phase adjustment (time_update)
481 * and kernel phase adjustment (clock_cpu) are less than the
482 * value of tick.
483 */
484 clock_offset.tv_usec += time_update;
485 if (clock_offset.tv_usec >= 1000000) {
486 clock_offset.tv_sec++;
487 clock_offset.tv_usec -= 1000000;
488 }
489 if (clock_offset.tv_usec < 0) {
490 clock_offset.tv_sec--;
491 clock_offset.tv_usec += 1000000;
492 }
493 time.tv_usec += clock_cpu;
494 clock_cpu = 0;
495 #else
496 time.tv_usec += time_update;
497 #endif /* HIGHBALL */
498
499 /*
500 * On rollover of the second the phase adjustment to be used for
501 * the next second is calculated. Also, the maximum error is
502 * increased by the tolerance. If the PPS frequency discipline
503 * code is present, the phase is increased to compensate for the
504 * CPU clock oscillator frequency error.
505 *
506 * On a 32-bit machine and given parameters in the timex.h
507 * header file, the maximum phase adjustment is +-512 ms and
508 * maximum frequency offset is a tad less than) +-512 ppm. On a
509 * 64-bit machine, you shouldn't need to ask.
510 */
511 if (time.tv_usec >= 1000000) {
512 time.tv_usec -= 1000000;
513 time.tv_sec++;
514 time_maxerror += time_tolerance >> SHIFT_USEC;
515
516 /*
517 * Leap second processing. If in leap-insert state at
518 * the end of the day, the system clock is set back one
519 * second; if in leap-delete state, the system clock is
520 * set ahead one second. The microtime() routine or
521 * external clock driver will insure that reported time
522 * is always monotonic. The ugly divides should be
523 * replaced.
524 */
525 switch (time_state) {
526 case TIME_OK:
527 if (time_status & STA_INS)
528 time_state = TIME_INS;
529 else if (time_status & STA_DEL)
530 time_state = TIME_DEL;
531 break;
532
533 case TIME_INS:
534 if (time.tv_sec % 86400 == 0) {
535 time.tv_sec--;
536 time_state = TIME_OOP;
537 }
538 break;
539
540 case TIME_DEL:
541 if ((time.tv_sec + 1) % 86400 == 0) {
542 time.tv_sec++;
543 time_state = TIME_WAIT;
544 }
545 break;
546
547 case TIME_OOP:
548 time_state = TIME_WAIT;
549 break;
550
551 case TIME_WAIT:
552 if (!(time_status & (STA_INS | STA_DEL)))
553 time_state = TIME_OK;
554 break;
555 }
556
557 /*
558 * Compute the phase adjustment for the next second. In
559 * PLL mode, the offset is reduced by a fixed factor
560 * times the time constant. In FLL mode the offset is
561 * used directly. In either mode, the maximum phase
562 * adjustment for each second is clamped so as to spread
563 * the adjustment over not more than the number of
564 * seconds between updates.
565 */
566 if (time_offset < 0) {
567 ltemp = -time_offset;
568 if (!(time_status & STA_FLL))
569 ltemp >>= SHIFT_KG + time_constant;
570 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
571 ltemp = (MAXPHASE / MINSEC) <<
572 SHIFT_UPDATE;
573 time_offset += ltemp;
574 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
575 } else if (time_offset > 0) {
576 ltemp = time_offset;
577 if (!(time_status & STA_FLL))
578 ltemp >>= SHIFT_KG + time_constant;
579 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
580 ltemp = (MAXPHASE / MINSEC) <<
581 SHIFT_UPDATE;
582 time_offset -= ltemp;
583 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
584 } else
585 time_adj = 0;
586
587 /*
588 * Compute the frequency estimate and additional phase
589 * adjustment due to frequency error for the next
590 * second. When the PPS signal is engaged, gnaw on the
591 * watchdog counter and update the frequency computed by
592 * the pll and the PPS signal.
593 */
594 #ifdef PPS_SYNC
595 pps_valid++;
596 if (pps_valid == PPS_VALID) {
597 pps_jitter = MAXTIME;
598 pps_stabil = MAXFREQ;
599 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
600 STA_PPSWANDER | STA_PPSERROR);
601 }
602 ltemp = time_freq + pps_freq;
603 #else
604 ltemp = time_freq;
605 #endif /* PPS_SYNC */
606
607 if (ltemp < 0)
608 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
609 else
610 time_adj += ltemp >> (SHIFT_USEC - shifthz);
611 time_adj += (long)fixtick << shifthz;
612
613 /*
614 * When the CPU clock oscillator frequency is not a
615 * power of 2 in Hz, shifthz is only an approximate
616 * scale factor.
617 *
618 * To determine the adjustment, you can do the following:
619 * bc -q
620 * scale=24
621 * obase=2
622 * idealhz/realhz
623 * where `idealhz' is the next higher power of 2, and `realhz'
624 * is the actual value.
625 *
626 * Likewise, the error can be calculated with (e.g. for 100Hz):
627 * bc -q
628 * scale=24
629 * ((1+2^-2+2^-5)*realhz-idealhz)/idealhz
630 * (and then multiply by 100 to get %).
631 */
632 switch (hz) {
633 case 96:
634 /* A factor of 1.0101010101 gives about .025% error. */
635 if (time_adj < 0) {
636 time_adj -= (-time_adj >> 2);
637 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
638 } else {
639 time_adj += (time_adj >> 2);
640 time_adj += (time_adj >> 4) + (time_adj >> 8);
641 }
642 break;
643
644 case 100:
645 /* A factor of 1.01001 gives about .1% error. */
646 if (time_adj < 0)
647 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
648 else
649 time_adj += (time_adj >> 2) + (time_adj >> 5);
650 break;
651
652 case 60:
653 /* A factor of 1.00010001 gives about .025% error. */
654 if (time_adj < 0)
655 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
656 else
657 time_adj += (time_adj >> 4) + (time_adj >> 8);
658 break;
659
660 case 1000:
661 /* A factor of 1.0000011 gives about .055% error. */
662 if (time_adj < 0)
663 time_adj -= (-time_adj >> 6) + (-time_adj >> 7);
664 else
665 time_adj += (time_adj >> 6) + (time_adj >> 7);
666 break;
667 }
668
669 #ifdef EXT_CLOCK
670 /*
671 * If an external clock is present, it is necessary to
672 * discipline the kernel time variable anyway, since not
673 * all system components use the microtime() interface.
674 * Here, the time offset between the external clock and
675 * kernel time variable is computed every so often.
676 */
677 clock_count++;
678 if (clock_count > CLOCK_INTERVAL) {
679 clock_count = 0;
680 microtime(&clock_ext);
681 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
682 delta.tv_usec = clock_ext.tv_usec -
683 time.tv_usec;
684 if (delta.tv_usec < 0)
685 delta.tv_sec--;
686 if (delta.tv_usec >= 500000) {
687 delta.tv_usec -= 1000000;
688 delta.tv_sec++;
689 }
690 if (delta.tv_usec < -500000) {
691 delta.tv_usec += 1000000;
692 delta.tv_sec--;
693 }
694 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
695 delta.tv_usec > MAXPHASE) ||
696 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
697 delta.tv_usec < -MAXPHASE)) {
698 time = clock_ext;
699 delta.tv_sec = 0;
700 delta.tv_usec = 0;
701 }
702 #ifdef HIGHBALL
703 clock_cpu = delta.tv_usec;
704 #else /* HIGHBALL */
705 hardupdate(delta.tv_usec);
706 #endif /* HIGHBALL */
707 }
708 #endif /* EXT_CLOCK */
709 }
710
711 #endif /* NTP */
712
713 /*
714 * Process callouts at a very low cpu priority, so we don't keep the
715 * relatively high clock interrupt priority any longer than necessary.
716 */
717 if (needsoft) {
718 if (CLKF_BASEPRI(frame)) {
719 /*
720 * Save the overhead of a software interrupt;
721 * it will happen as soon as we return, so do it now.
722 */
723 (void)spllowersoftclock();
724 softclock();
725 } else
726 setsoftclock();
727 }
728 }
729
730 /*
731 * Software (low priority) clock interrupt.
732 * Run periodic events from timeout queue.
733 */
734 /*ARGSUSED*/
735 void
736 softclock()
737 {
738 register struct callout *c;
739 register void *arg;
740 register void (*func) __P((void *));
741 register int s;
742
743 s = splhigh();
744 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
745 func = c->c_func;
746 arg = c->c_arg;
747 calltodo.c_next = c->c_next;
748 c->c_next = callfree;
749 callfree = c;
750 splx(s);
751 (*func)(arg);
752 (void) splhigh();
753 }
754 splx(s);
755 }
756
757 /*
758 * timeout --
759 * Execute a function after a specified length of time.
760 *
761 * untimeout --
762 * Cancel previous timeout function call.
763 *
764 * See AT&T BCI Driver Reference Manual for specification. This
765 * implementation differs from that one in that no identification
766 * value is returned from timeout, rather, the original arguments
767 * to timeout are used to identify entries for untimeout.
768 */
769 void
770 timeout(ftn, arg, ticks)
771 void (*ftn) __P((void *));
772 void *arg;
773 register int ticks;
774 {
775 register struct callout *new, *p, *t;
776 register int s;
777
778 if (ticks <= 0)
779 ticks = 1;
780
781 /* Lock out the clock. */
782 s = splhigh();
783
784 /* Fill in the next free callout structure. */
785 if (callfree == NULL)
786 panic("timeout table full");
787 new = callfree;
788 callfree = new->c_next;
789 new->c_arg = arg;
790 new->c_func = ftn;
791
792 /*
793 * The time for each event is stored as a difference from the time
794 * of the previous event on the queue. Walk the queue, correcting
795 * the ticks argument for queue entries passed. Correct the ticks
796 * value for the queue entry immediately after the insertion point
797 * as well. Watch out for negative c_time values; these represent
798 * overdue events.
799 */
800 for (p = &calltodo;
801 (t = p->c_next) != NULL && ticks > t->c_time; p = t)
802 if (t->c_time > 0)
803 ticks -= t->c_time;
804 new->c_time = ticks;
805 if (t != NULL)
806 t->c_time -= ticks;
807
808 /* Insert the new entry into the queue. */
809 p->c_next = new;
810 new->c_next = t;
811 splx(s);
812 }
813
814 void
815 untimeout(ftn, arg)
816 void (*ftn) __P((void *));
817 void *arg;
818 {
819 register struct callout *p, *t;
820 register int s;
821
822 s = splhigh();
823 for (p = &calltodo; (t = p->c_next) != NULL; p = t)
824 if (t->c_func == ftn && t->c_arg == arg) {
825 /* Increment next entry's tick count. */
826 if (t->c_next && t->c_time > 0)
827 t->c_next->c_time += t->c_time;
828
829 /* Move entry from callout queue to callfree queue. */
830 p->c_next = t->c_next;
831 t->c_next = callfree;
832 callfree = t;
833 break;
834 }
835 splx(s);
836 }
837
838 /*
839 * Compute number of hz until specified time. Used to
840 * compute third argument to timeout() from an absolute time.
841 */
842 int
843 hzto(tv)
844 struct timeval *tv;
845 {
846 register long ticks, sec;
847 int s;
848
849 /*
850 * If number of microseconds will fit in 32 bit arithmetic,
851 * then compute number of microseconds to time and scale to
852 * ticks. Otherwise just compute number of hz in time, rounding
853 * times greater than representible to maximum value. (We must
854 * compute in microseconds, because hz can be greater than 1000,
855 * and thus tick can be less than one millisecond).
856 *
857 * Delta times less than 14 hours can be computed ``exactly''.
858 * (Note that if hz would yeild a non-integral number of us per
859 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
860 * than they should be.) Maximum value for any timeout in 10ms
861 * ticks is 250 days.
862 */
863 s = splclock();
864 sec = tv->tv_sec - time.tv_sec;
865 if (sec <= 0x7fffffff / 1000000 - 1)
866 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
867 (tv->tv_usec - time.tv_usec)) / tick;
868 else if (sec <= 0x7fffffff / hz)
869 ticks = sec * hz;
870 else
871 ticks = 0x7fffffff;
872 splx(s);
873 return (ticks);
874 }
875
876 /*
877 * Start profiling on a process.
878 *
879 * Kernel profiling passes proc0 which never exits and hence
880 * keeps the profile clock running constantly.
881 */
882 void
883 startprofclock(p)
884 register struct proc *p;
885 {
886 int s;
887
888 if ((p->p_flag & P_PROFIL) == 0) {
889 p->p_flag |= P_PROFIL;
890 if (++profprocs == 1 && stathz != 0) {
891 s = splstatclock();
892 psdiv = pscnt = psratio;
893 setstatclockrate(profhz);
894 splx(s);
895 }
896 }
897 }
898
899 /*
900 * Stop profiling on a process.
901 */
902 void
903 stopprofclock(p)
904 register struct proc *p;
905 {
906 int s;
907
908 if (p->p_flag & P_PROFIL) {
909 p->p_flag &= ~P_PROFIL;
910 if (--profprocs == 0 && stathz != 0) {
911 s = splstatclock();
912 psdiv = pscnt = 1;
913 setstatclockrate(stathz);
914 splx(s);
915 }
916 }
917 }
918
919 /*
920 * Statistics clock. Grab profile sample, and if divider reaches 0,
921 * do process and kernel statistics.
922 */
923 void
924 statclock(frame)
925 register struct clockframe *frame;
926 {
927 #ifdef GPROF
928 register struct gmonparam *g;
929 register int i;
930 #endif
931 static int schedclk;
932 register struct proc *p;
933
934 if (CLKF_USERMODE(frame)) {
935 p = curproc;
936 if (p->p_flag & P_PROFIL)
937 addupc_intr(p, CLKF_PC(frame), 1);
938 if (--pscnt > 0)
939 return;
940 /*
941 * Came from user mode; CPU was in user state.
942 * If this process is being profiled record the tick.
943 */
944 p->p_uticks++;
945 if (p->p_nice > NZERO)
946 cp_time[CP_NICE]++;
947 else
948 cp_time[CP_USER]++;
949 } else {
950 #ifdef GPROF
951 /*
952 * Kernel statistics are just like addupc_intr, only easier.
953 */
954 g = &_gmonparam;
955 if (g->state == GMON_PROF_ON) {
956 i = CLKF_PC(frame) - g->lowpc;
957 if (i < g->textsize) {
958 i /= HISTFRACTION * sizeof(*g->kcount);
959 g->kcount[i]++;
960 }
961 }
962 #endif
963 if (--pscnt > 0)
964 return;
965 /*
966 * Came from kernel mode, so we were:
967 * - handling an interrupt,
968 * - doing syscall or trap work on behalf of the current
969 * user process, or
970 * - spinning in the idle loop.
971 * Whichever it is, charge the time as appropriate.
972 * Note that we charge interrupts to the current process,
973 * regardless of whether they are ``for'' that process,
974 * so that we know how much of its real time was spent
975 * in ``non-process'' (i.e., interrupt) work.
976 */
977 p = curproc;
978 if (CLKF_INTR(frame)) {
979 if (p != NULL)
980 p->p_iticks++;
981 cp_time[CP_INTR]++;
982 } else if (p != NULL) {
983 p->p_sticks++;
984 cp_time[CP_SYS]++;
985 } else
986 cp_time[CP_IDLE]++;
987 }
988 pscnt = psdiv;
989
990 if (p != NULL) {
991 ++p->p_cpticks;
992 /*
993 * If no schedclock is provided, call it here at ~~12-25 Hz,
994 * ~~16 Hz is best
995 */
996 if(schedhz == 0)
997 if ((++schedclk & 3) == 0)
998 schedclock(p);
999 }
1000 }
1001
1002
1003 #ifdef NTP /* NTP phase-locked loop in kernel */
1004
1005 /*
1006 * hardupdate() - local clock update
1007 *
1008 * This routine is called by ntp_adjtime() to update the local clock
1009 * phase and frequency. The implementation is of an adaptive-parameter,
1010 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1011 * time and frequency offset estimates for each call. If the kernel PPS
1012 * discipline code is configured (PPS_SYNC), the PPS signal itself
1013 * determines the new time offset, instead of the calling argument.
1014 * Presumably, calls to ntp_adjtime() occur only when the caller
1015 * believes the local clock is valid within some bound (+-128 ms with
1016 * NTP). If the caller's time is far different than the PPS time, an
1017 * argument will ensue, and it's not clear who will lose.
1018 *
1019 * For uncompensated quartz crystal oscillatores and nominal update
1020 * intervals less than 1024 s, operation should be in phase-lock mode
1021 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1022 * intervals greater than thiss, operation should be in frequency-lock
1023 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1024 *
1025 * Note: splclock() is in effect.
1026 */
1027 void
1028 hardupdate(offset)
1029 long offset;
1030 {
1031 long ltemp, mtemp;
1032
1033 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1034 return;
1035 ltemp = offset;
1036 #ifdef PPS_SYNC
1037 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1038 ltemp = pps_offset;
1039 #endif /* PPS_SYNC */
1040
1041 /*
1042 * Scale the phase adjustment and clamp to the operating range.
1043 */
1044 if (ltemp > MAXPHASE)
1045 time_offset = MAXPHASE << SHIFT_UPDATE;
1046 else if (ltemp < -MAXPHASE)
1047 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1048 else
1049 time_offset = ltemp << SHIFT_UPDATE;
1050
1051 /*
1052 * Select whether the frequency is to be controlled and in which
1053 * mode (PLL or FLL). Clamp to the operating range. Ugly
1054 * multiply/divide should be replaced someday.
1055 */
1056 if (time_status & STA_FREQHOLD || time_reftime == 0)
1057 time_reftime = time.tv_sec;
1058 mtemp = time.tv_sec - time_reftime;
1059 time_reftime = time.tv_sec;
1060 if (time_status & STA_FLL) {
1061 if (mtemp >= MINSEC) {
1062 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1063 SHIFT_UPDATE));
1064 if (ltemp < 0)
1065 time_freq -= -ltemp >> SHIFT_KH;
1066 else
1067 time_freq += ltemp >> SHIFT_KH;
1068 }
1069 } else {
1070 if (mtemp < MAXSEC) {
1071 ltemp *= mtemp;
1072 if (ltemp < 0)
1073 time_freq -= -ltemp >> (time_constant +
1074 time_constant + SHIFT_KF -
1075 SHIFT_USEC);
1076 else
1077 time_freq += ltemp >> (time_constant +
1078 time_constant + SHIFT_KF -
1079 SHIFT_USEC);
1080 }
1081 }
1082 if (time_freq > time_tolerance)
1083 time_freq = time_tolerance;
1084 else if (time_freq < -time_tolerance)
1085 time_freq = -time_tolerance;
1086 }
1087
1088 #ifdef PPS_SYNC
1089 /*
1090 * hardpps() - discipline CPU clock oscillator to external PPS signal
1091 *
1092 * This routine is called at each PPS interrupt in order to discipline
1093 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1094 * and leaves it in a handy spot for the hardclock() routine. It
1095 * integrates successive PPS phase differences and calculates the
1096 * frequency offset. This is used in hardclock() to discipline the CPU
1097 * clock oscillator so that intrinsic frequency error is cancelled out.
1098 * The code requires the caller to capture the time and hardware counter
1099 * value at the on-time PPS signal transition.
1100 *
1101 * Note that, on some Unix systems, this routine runs at an interrupt
1102 * priority level higher than the timer interrupt routine hardclock().
1103 * Therefore, the variables used are distinct from the hardclock()
1104 * variables, except for certain exceptions: The PPS frequency pps_freq
1105 * and phase pps_offset variables are determined by this routine and
1106 * updated atomically. The time_tolerance variable can be considered a
1107 * constant, since it is infrequently changed, and then only when the
1108 * PPS signal is disabled. The watchdog counter pps_valid is updated
1109 * once per second by hardclock() and is atomically cleared in this
1110 * routine.
1111 */
1112 void
1113 hardpps(tvp, usec)
1114 struct timeval *tvp; /* time at PPS */
1115 long usec; /* hardware counter at PPS */
1116 {
1117 long u_usec, v_usec, bigtick;
1118 long cal_sec, cal_usec;
1119
1120 /*
1121 * An occasional glitch can be produced when the PPS interrupt
1122 * occurs in the hardclock() routine before the time variable is
1123 * updated. Here the offset is discarded when the difference
1124 * between it and the last one is greater than tick/2, but not
1125 * if the interval since the first discard exceeds 30 s.
1126 */
1127 time_status |= STA_PPSSIGNAL;
1128 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1129 pps_valid = 0;
1130 u_usec = -tvp->tv_usec;
1131 if (u_usec < -500000)
1132 u_usec += 1000000;
1133 v_usec = pps_offset - u_usec;
1134 if (v_usec < 0)
1135 v_usec = -v_usec;
1136 if (v_usec > (tick >> 1)) {
1137 if (pps_glitch > MAXGLITCH) {
1138 pps_glitch = 0;
1139 pps_tf[2] = u_usec;
1140 pps_tf[1] = u_usec;
1141 } else {
1142 pps_glitch++;
1143 u_usec = pps_offset;
1144 }
1145 } else
1146 pps_glitch = 0;
1147
1148 /*
1149 * A three-stage median filter is used to help deglitch the pps
1150 * time. The median sample becomes the time offset estimate; the
1151 * difference between the other two samples becomes the time
1152 * dispersion (jitter) estimate.
1153 */
1154 pps_tf[2] = pps_tf[1];
1155 pps_tf[1] = pps_tf[0];
1156 pps_tf[0] = u_usec;
1157 if (pps_tf[0] > pps_tf[1]) {
1158 if (pps_tf[1] > pps_tf[2]) {
1159 pps_offset = pps_tf[1]; /* 0 1 2 */
1160 v_usec = pps_tf[0] - pps_tf[2];
1161 } else if (pps_tf[2] > pps_tf[0]) {
1162 pps_offset = pps_tf[0]; /* 2 0 1 */
1163 v_usec = pps_tf[2] - pps_tf[1];
1164 } else {
1165 pps_offset = pps_tf[2]; /* 0 2 1 */
1166 v_usec = pps_tf[0] - pps_tf[1];
1167 }
1168 } else {
1169 if (pps_tf[1] < pps_tf[2]) {
1170 pps_offset = pps_tf[1]; /* 2 1 0 */
1171 v_usec = pps_tf[2] - pps_tf[0];
1172 } else if (pps_tf[2] < pps_tf[0]) {
1173 pps_offset = pps_tf[0]; /* 1 0 2 */
1174 v_usec = pps_tf[1] - pps_tf[2];
1175 } else {
1176 pps_offset = pps_tf[2]; /* 1 2 0 */
1177 v_usec = pps_tf[1] - pps_tf[0];
1178 }
1179 }
1180 if (v_usec > MAXTIME)
1181 pps_jitcnt++;
1182 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1183 if (v_usec < 0)
1184 pps_jitter -= -v_usec >> PPS_AVG;
1185 else
1186 pps_jitter += v_usec >> PPS_AVG;
1187 if (pps_jitter > (MAXTIME >> 1))
1188 time_status |= STA_PPSJITTER;
1189
1190 /*
1191 * During the calibration interval adjust the starting time when
1192 * the tick overflows. At the end of the interval compute the
1193 * duration of the interval and the difference of the hardware
1194 * counters at the beginning and end of the interval. This code
1195 * is deliciously complicated by the fact valid differences may
1196 * exceed the value of tick when using long calibration
1197 * intervals and small ticks. Note that the counter can be
1198 * greater than tick if caught at just the wrong instant, but
1199 * the values returned and used here are correct.
1200 */
1201 bigtick = (long)tick << SHIFT_USEC;
1202 pps_usec -= pps_freq;
1203 if (pps_usec >= bigtick)
1204 pps_usec -= bigtick;
1205 if (pps_usec < 0)
1206 pps_usec += bigtick;
1207 pps_time.tv_sec++;
1208 pps_count++;
1209 if (pps_count < (1 << pps_shift))
1210 return;
1211 pps_count = 0;
1212 pps_calcnt++;
1213 u_usec = usec << SHIFT_USEC;
1214 v_usec = pps_usec - u_usec;
1215 if (v_usec >= bigtick >> 1)
1216 v_usec -= bigtick;
1217 if (v_usec < -(bigtick >> 1))
1218 v_usec += bigtick;
1219 if (v_usec < 0)
1220 v_usec = -(-v_usec >> pps_shift);
1221 else
1222 v_usec = v_usec >> pps_shift;
1223 pps_usec = u_usec;
1224 cal_sec = tvp->tv_sec;
1225 cal_usec = tvp->tv_usec;
1226 cal_sec -= pps_time.tv_sec;
1227 cal_usec -= pps_time.tv_usec;
1228 if (cal_usec < 0) {
1229 cal_usec += 1000000;
1230 cal_sec--;
1231 }
1232 pps_time = *tvp;
1233
1234 /*
1235 * Check for lost interrupts, noise, excessive jitter and
1236 * excessive frequency error. The number of timer ticks during
1237 * the interval may vary +-1 tick. Add to this a margin of one
1238 * tick for the PPS signal jitter and maximum frequency
1239 * deviation. If the limits are exceeded, the calibration
1240 * interval is reset to the minimum and we start over.
1241 */
1242 u_usec = (long)tick << 1;
1243 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1244 || (cal_sec == 0 && cal_usec < u_usec))
1245 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1246 pps_errcnt++;
1247 pps_shift = PPS_SHIFT;
1248 pps_intcnt = 0;
1249 time_status |= STA_PPSERROR;
1250 return;
1251 }
1252
1253 /*
1254 * A three-stage median filter is used to help deglitch the pps
1255 * frequency. The median sample becomes the frequency offset
1256 * estimate; the difference between the other two samples
1257 * becomes the frequency dispersion (stability) estimate.
1258 */
1259 pps_ff[2] = pps_ff[1];
1260 pps_ff[1] = pps_ff[0];
1261 pps_ff[0] = v_usec;
1262 if (pps_ff[0] > pps_ff[1]) {
1263 if (pps_ff[1] > pps_ff[2]) {
1264 u_usec = pps_ff[1]; /* 0 1 2 */
1265 v_usec = pps_ff[0] - pps_ff[2];
1266 } else if (pps_ff[2] > pps_ff[0]) {
1267 u_usec = pps_ff[0]; /* 2 0 1 */
1268 v_usec = pps_ff[2] - pps_ff[1];
1269 } else {
1270 u_usec = pps_ff[2]; /* 0 2 1 */
1271 v_usec = pps_ff[0] - pps_ff[1];
1272 }
1273 } else {
1274 if (pps_ff[1] < pps_ff[2]) {
1275 u_usec = pps_ff[1]; /* 2 1 0 */
1276 v_usec = pps_ff[2] - pps_ff[0];
1277 } else if (pps_ff[2] < pps_ff[0]) {
1278 u_usec = pps_ff[0]; /* 1 0 2 */
1279 v_usec = pps_ff[1] - pps_ff[2];
1280 } else {
1281 u_usec = pps_ff[2]; /* 1 2 0 */
1282 v_usec = pps_ff[1] - pps_ff[0];
1283 }
1284 }
1285
1286 /*
1287 * Here the frequency dispersion (stability) is updated. If it
1288 * is less than one-fourth the maximum (MAXFREQ), the frequency
1289 * offset is updated as well, but clamped to the tolerance. It
1290 * will be processed later by the hardclock() routine.
1291 */
1292 v_usec = (v_usec >> 1) - pps_stabil;
1293 if (v_usec < 0)
1294 pps_stabil -= -v_usec >> PPS_AVG;
1295 else
1296 pps_stabil += v_usec >> PPS_AVG;
1297 if (pps_stabil > MAXFREQ >> 2) {
1298 pps_stbcnt++;
1299 time_status |= STA_PPSWANDER;
1300 return;
1301 }
1302 if (time_status & STA_PPSFREQ) {
1303 if (u_usec < 0) {
1304 pps_freq -= -u_usec >> PPS_AVG;
1305 if (pps_freq < -time_tolerance)
1306 pps_freq = -time_tolerance;
1307 u_usec = -u_usec;
1308 } else {
1309 pps_freq += u_usec >> PPS_AVG;
1310 if (pps_freq > time_tolerance)
1311 pps_freq = time_tolerance;
1312 }
1313 }
1314
1315 /*
1316 * Here the calibration interval is adjusted. If the maximum
1317 * time difference is greater than tick / 4, reduce the interval
1318 * by half. If this is not the case for four consecutive
1319 * intervals, double the interval.
1320 */
1321 if (u_usec << pps_shift > bigtick >> 2) {
1322 pps_intcnt = 0;
1323 if (pps_shift > PPS_SHIFT)
1324 pps_shift--;
1325 } else if (pps_intcnt >= 4) {
1326 pps_intcnt = 0;
1327 if (pps_shift < PPS_SHIFTMAX)
1328 pps_shift++;
1329 } else
1330 pps_intcnt++;
1331 }
1332 #endif /* PPS_SYNC */
1333 #endif /* NTP */
1334
1335
1336 /*
1337 * Return information about system clocks.
1338 */
1339 int
1340 sysctl_clockrate(where, sizep)
1341 register char *where;
1342 size_t *sizep;
1343 {
1344 struct clockinfo clkinfo;
1345
1346 /*
1347 * Construct clockinfo structure.
1348 */
1349 clkinfo.tick = tick;
1350 clkinfo.tickadj = tickadj;
1351 clkinfo.hz = hz;
1352 clkinfo.profhz = profhz;
1353 clkinfo.stathz = stathz ? stathz : hz;
1354 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1355 }
1356
1357