kern_clock.c revision 1.50.2.3 1 /* $NetBSD: kern_clock.c,v 1.50.2.3 2001/01/18 09:23:43 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. All advertising materials mentioning features or use of this software
58 * must display the following acknowledgement:
59 * This product includes software developed by the University of
60 * California, Berkeley and its contributors.
61 * 4. Neither the name of the University nor the names of its contributors
62 * may be used to endorse or promote products derived from this software
63 * without specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75 * SUCH DAMAGE.
76 *
77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
78 */
79
80 #include "opt_ntp.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94
95 #include <machine/cpu.h>
96
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100
101 /*
102 * Clock handling routines.
103 *
104 * This code is written to operate with two timers that run independently of
105 * each other. The main clock, running hz times per second, is used to keep
106 * track of real time. The second timer handles kernel and user profiling,
107 * and does resource use estimation. If the second timer is programmable,
108 * it is randomized to avoid aliasing between the two clocks. For example,
109 * the randomization prevents an adversary from always giving up the cpu
110 * just before its quantum expires. Otherwise, it would never accumulate
111 * cpu ticks. The mean frequency of the second timer is stathz.
112 *
113 * If no second timer exists, stathz will be zero; in this case we drive
114 * profiling and statistics off the main clock. This WILL NOT be accurate;
115 * do not do it unless absolutely necessary.
116 *
117 * The statistics clock may (or may not) be run at a higher rate while
118 * profiling. This profile clock runs at profhz. We require that profhz
119 * be an integral multiple of stathz.
120 *
121 * If the statistics clock is running fast, it must be divided by the ratio
122 * profhz/stathz for statistics. (For profiling, every tick counts.)
123 */
124
125 #ifdef NTP /* NTP phase-locked loop in kernel */
126 /*
127 * Phase/frequency-lock loop (PLL/FLL) definitions
128 *
129 * The following variables are read and set by the ntp_adjtime() system
130 * call.
131 *
132 * time_state shows the state of the system clock, with values defined
133 * in the timex.h header file.
134 *
135 * time_status shows the status of the system clock, with bits defined
136 * in the timex.h header file.
137 *
138 * time_offset is used by the PLL/FLL to adjust the system time in small
139 * increments.
140 *
141 * time_constant determines the bandwidth or "stiffness" of the PLL.
142 *
143 * time_tolerance determines maximum frequency error or tolerance of the
144 * CPU clock oscillator and is a property of the architecture; however,
145 * in principle it could change as result of the presence of external
146 * discipline signals, for instance.
147 *
148 * time_precision is usually equal to the kernel tick variable; however,
149 * in cases where a precision clock counter or external clock is
150 * available, the resolution can be much less than this and depend on
151 * whether the external clock is working or not.
152 *
153 * time_maxerror is initialized by a ntp_adjtime() call and increased by
154 * the kernel once each second to reflect the maximum error bound
155 * growth.
156 *
157 * time_esterror is set and read by the ntp_adjtime() call, but
158 * otherwise not used by the kernel.
159 */
160 int time_state = TIME_OK; /* clock state */
161 int time_status = STA_UNSYNC; /* clock status bits */
162 long time_offset = 0; /* time offset (us) */
163 long time_constant = 0; /* pll time constant */
164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */
165 long time_precision = 1; /* clock precision (us) */
166 long time_maxerror = MAXPHASE; /* maximum error (us) */
167 long time_esterror = MAXPHASE; /* estimated error (us) */
168
169 /*
170 * The following variables establish the state of the PLL/FLL and the
171 * residual time and frequency offset of the local clock. The scale
172 * factors are defined in the timex.h header file.
173 *
174 * time_phase and time_freq are the phase increment and the frequency
175 * increment, respectively, of the kernel time variable.
176 *
177 * time_freq is set via ntp_adjtime() from a value stored in a file when
178 * the synchronization daemon is first started. Its value is retrieved
179 * via ntp_adjtime() and written to the file about once per hour by the
180 * daemon.
181 *
182 * time_adj is the adjustment added to the value of tick at each timer
183 * interrupt and is recomputed from time_phase and time_freq at each
184 * seconds rollover.
185 *
186 * time_reftime is the second's portion of the system time at the last
187 * call to ntp_adjtime(). It is used to adjust the time_freq variable
188 * and to increase the time_maxerror as the time since last update
189 * increases.
190 */
191 long time_phase = 0; /* phase offset (scaled us) */
192 long time_freq = 0; /* frequency offset (scaled ppm) */
193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0; /* time at last adjustment (s) */
195
196 #ifdef PPS_SYNC
197 /*
198 * The following variables are used only if the kernel PPS discipline
199 * code is configured (PPS_SYNC). The scale factors are defined in the
200 * timex.h header file.
201 *
202 * pps_time contains the time at each calibration interval, as read by
203 * microtime(). pps_count counts the seconds of the calibration
204 * interval, the duration of which is nominally pps_shift in powers of
205 * two.
206 *
207 * pps_offset is the time offset produced by the time median filter
208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209 * this filter.
210 *
211 * pps_freq is the frequency offset produced by the frequency median
212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213 * by this filter.
214 *
215 * pps_usec is latched from a high resolution counter or external clock
216 * at pps_time. Here we want the hardware counter contents only, not the
217 * contents plus the time_tv.usec as usual.
218 *
219 * pps_valid counts the number of seconds since the last PPS update. It
220 * is used as a watchdog timer to disable the PPS discipline should the
221 * PPS signal be lost.
222 *
223 * pps_glitch counts the number of seconds since the beginning of an
224 * offset burst more than tick/2 from current nominal offset. It is used
225 * mainly to suppress error bursts due to priority conflicts between the
226 * PPS interrupt and timer interrupt.
227 *
228 * pps_intcnt counts the calibration intervals for use in the interval-
229 * adaptation algorithm. It's just too complicated for words.
230 */
231 struct timeval pps_time; /* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */
233 long pps_offset = 0; /* pps time offset (us) */
234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */
236 long pps_freq = 0; /* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
238 long pps_usec = 0; /* microsec counter at last interval */
239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */
240 int pps_glitch = 0; /* pps signal glitch counter */
241 int pps_count = 0; /* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
243 int pps_intcnt = 0; /* intervals at current duration */
244
245 /*
246 * PPS signal quality monitors
247 *
248 * pps_jitcnt counts the seconds that have been discarded because the
249 * jitter measured by the time median filter exceeds the limit MAXTIME
250 * (100 us).
251 *
252 * pps_calcnt counts the frequency calibration intervals, which are
253 * variable from 4 s to 256 s.
254 *
255 * pps_errcnt counts the calibration intervals which have been discarded
256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257 * calibration interval jitter exceeds two ticks.
258 *
259 * pps_stbcnt counts the calibration intervals that have been discarded
260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261 */
262 long pps_jitcnt = 0; /* jitter limit exceeded */
263 long pps_calcnt = 0; /* calibration intervals */
264 long pps_errcnt = 0; /* calibration errors */
265 long pps_stbcnt = 0; /* stability limit exceeded */
266 #endif /* PPS_SYNC */
267
268 #ifdef EXT_CLOCK
269 /*
270 * External clock definitions
271 *
272 * The following definitions and declarations are used only if an
273 * external clock is configured on the system.
274 */
275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */
276
277 /*
278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279 * interrupt and decremented once each second.
280 */
281 int clock_count = 0; /* CPU clock counter */
282
283 #ifdef HIGHBALL
284 /*
285 * The clock_offset and clock_cpu variables are used by the HIGHBALL
286 * interface. The clock_offset variable defines the offset between
287 * system time and the HIGBALL counters. The clock_cpu variable contains
288 * the offset between the system clock and the HIGHBALL clock for use in
289 * disciplining the kernel time variable.
290 */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0; /* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296
297
298 /*
299 * Bump a timeval by a small number of usec's.
300 */
301 #define BUMPTIME(t, usec) { \
302 volatile struct timeval *tp = (t); \
303 long us; \
304 \
305 tp->tv_usec = us = tp->tv_usec + (usec); \
306 if (us >= 1000000) { \
307 tp->tv_usec = us - 1000000; \
308 tp->tv_sec++; \
309 } \
310 }
311
312 int stathz;
313 int profhz;
314 int profprocs;
315 int softclock_running; /* 1 => softclock() is running */
316 static int psdiv; /* prof => stat divider */
317 int psratio; /* ratio: prof / stat */
318 int tickfix, tickfixinterval; /* used if tick not really integral */
319 #ifndef NTP
320 static int tickfixcnt; /* accumulated fractional error */
321 #else
322 int fixtick; /* used by NTP for same */
323 int shifthz;
324 #endif
325
326 /*
327 * We might want ldd to load the both words from time at once.
328 * To succeed we need to be quadword aligned.
329 * The sparc already does that, and that it has worked so far is a fluke.
330 */
331 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t))));
332 volatile struct timeval mono_time;
333
334 /*
335 * The callout mechanism is based on the work of Adam M. Costello and
336 * George Varghese, published in a technical report entitled "Redesigning
337 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
338 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
339 *
340 * The original work on the data structures used in this implementation
341 * was published by G. Varghese and A. Lauck in the paper "Hashed and
342 * Hierarchical Timing Wheels: Data Structures for the Efficient
343 * Implementation of a Timer Facility" in the Proceedings of the 11th
344 * ACM Annual Symposium on Operating System Principles, Austin, Texas,
345 * November 1987.
346 */
347 struct callout_queue *callwheel;
348 int callwheelsize, callwheelbits, callwheelmask;
349
350 static struct callout *nextsoftcheck; /* next callout to be checked */
351
352 #ifdef CALLWHEEL_STATS
353 int callwheel_collisions; /* number of hash collisions */
354 int callwheel_maxlength; /* length of the longest hash chain */
355 int *callwheel_sizes; /* per-bucket length count */
356 u_int64_t callwheel_count; /* # callouts currently */
357 u_int64_t callwheel_established; /* # callouts established */
358 u_int64_t callwheel_fired; /* # callouts that fired */
359 u_int64_t callwheel_disestablished; /* # callouts disestablished */
360 u_int64_t callwheel_changed; /* # callouts changed */
361 u_int64_t callwheel_softclocks; /* # times softclock() called */
362 u_int64_t callwheel_softchecks; /* # checks per softclock() */
363 u_int64_t callwheel_softempty; /* # empty buckets seen */
364 #endif /* CALLWHEEL_STATS */
365
366 /*
367 * This value indicates the number of consecutive callouts that
368 * will be checked before we allow interrupts to have a chance
369 * again.
370 */
371 #ifndef MAX_SOFTCLOCK_STEPS
372 #define MAX_SOFTCLOCK_STEPS 100
373 #endif
374
375 struct simplelock callwheel_slock;
376
377 #define CALLWHEEL_LOCK(s) \
378 do { \
379 s = splclock(); \
380 simple_lock(&callwheel_slock); \
381 } while (0)
382
383 #define CALLWHEEL_UNLOCK(s) \
384 do { \
385 simple_unlock(&callwheel_slock); \
386 splx(s); \
387 } while (0)
388
389 static void callout_stop_locked(struct callout *);
390
391 /*
392 * These are both protected by callwheel_lock.
393 * XXX SHOULD BE STATIC!!
394 */
395 u_int64_t hardclock_ticks, softclock_ticks;
396
397 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
398 void softclock(void *);
399 void *softclock_si;
400 #endif
401
402 /*
403 * Initialize clock frequencies and start both clocks running.
404 */
405 void
406 initclocks(void)
407 {
408 int i;
409
410 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
411 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
412 if (softclock_si == NULL)
413 panic("initclocks: unable to register softclock intr");
414 #endif
415
416 /*
417 * Set divisors to 1 (normal case) and let the machine-specific
418 * code do its bit.
419 */
420 psdiv = 1;
421 cpu_initclocks();
422
423 /*
424 * Compute profhz/stathz/rrticks, and fix profhz if needed.
425 */
426 i = stathz ? stathz : hz;
427 if (profhz == 0)
428 profhz = i;
429 psratio = profhz / i;
430 rrticks = hz / 10;
431
432 #ifdef NTP
433 switch (hz) {
434 case 1:
435 shifthz = SHIFT_SCALE - 0;
436 break;
437 case 2:
438 shifthz = SHIFT_SCALE - 1;
439 break;
440 case 4:
441 shifthz = SHIFT_SCALE - 2;
442 break;
443 case 8:
444 shifthz = SHIFT_SCALE - 3;
445 break;
446 case 16:
447 shifthz = SHIFT_SCALE - 4;
448 break;
449 case 32:
450 shifthz = SHIFT_SCALE - 5;
451 break;
452 case 60:
453 case 64:
454 shifthz = SHIFT_SCALE - 6;
455 break;
456 case 96:
457 case 100:
458 case 128:
459 shifthz = SHIFT_SCALE - 7;
460 break;
461 case 256:
462 shifthz = SHIFT_SCALE - 8;
463 break;
464 case 512:
465 shifthz = SHIFT_SCALE - 9;
466 break;
467 case 1000:
468 case 1024:
469 shifthz = SHIFT_SCALE - 10;
470 break;
471 case 1200:
472 case 2048:
473 shifthz = SHIFT_SCALE - 11;
474 break;
475 case 4096:
476 shifthz = SHIFT_SCALE - 12;
477 break;
478 case 8192:
479 shifthz = SHIFT_SCALE - 13;
480 break;
481 case 16384:
482 shifthz = SHIFT_SCALE - 14;
483 break;
484 case 32768:
485 shifthz = SHIFT_SCALE - 15;
486 break;
487 case 65536:
488 shifthz = SHIFT_SCALE - 16;
489 break;
490 default:
491 panic("weird hz");
492 }
493 if (fixtick == 0) {
494 /*
495 * Give MD code a chance to set this to a better
496 * value; but, if it doesn't, we should.
497 */
498 fixtick = (1000000 - (hz*tick));
499 }
500 #endif
501 }
502
503 /*
504 * The real-time timer, interrupting hz times per second.
505 */
506 void
507 hardclock(struct clockframe *frame)
508 {
509 struct proc *p;
510 int delta;
511 extern int tickdelta;
512 extern long timedelta;
513 struct cpu_info *ci = curcpu();
514 #ifdef NTP
515 int time_update;
516 int ltemp;
517 #endif
518
519 p = curproc;
520 if (p) {
521 struct pstats *pstats;
522
523 /*
524 * Run current process's virtual and profile time, as needed.
525 */
526 pstats = p->p_stats;
527 if (CLKF_USERMODE(frame) &&
528 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
529 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
530 psignal(p, SIGVTALRM);
531 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
532 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
533 psignal(p, SIGPROF);
534 }
535
536 /*
537 * If no separate statistics clock is available, run it from here.
538 */
539 if (stathz == 0)
540 statclock(frame);
541 if ((--ci->ci_schedstate.spc_rrticks) <= 0)
542 roundrobin(ci);
543
544 #if defined(MULTIPROCESSOR)
545 /*
546 * If we are not the primary CPU, we're not allowed to do
547 * any more work.
548 */
549 if (CPU_IS_PRIMARY(ci) == 0)
550 return;
551 #endif
552
553 /*
554 * Increment the time-of-day. The increment is normally just
555 * ``tick''. If the machine is one which has a clock frequency
556 * such that ``hz'' would not divide the second evenly into
557 * milliseconds, a periodic adjustment must be applied. Finally,
558 * if we are still adjusting the time (see adjtime()),
559 * ``tickdelta'' may also be added in.
560 */
561 delta = tick;
562
563 #ifndef NTP
564 if (tickfix) {
565 tickfixcnt += tickfix;
566 if (tickfixcnt >= tickfixinterval) {
567 delta++;
568 tickfixcnt -= tickfixinterval;
569 }
570 }
571 #endif /* !NTP */
572 /* Imprecise 4bsd adjtime() handling */
573 if (timedelta != 0) {
574 delta += tickdelta;
575 timedelta -= tickdelta;
576 }
577
578 #ifdef notyet
579 microset();
580 #endif
581
582 #ifndef NTP
583 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */
584 #endif
585 BUMPTIME(&mono_time, delta);
586
587 #ifdef NTP
588 time_update = delta;
589
590 /*
591 * Compute the phase adjustment. If the low-order bits
592 * (time_phase) of the update overflow, bump the high-order bits
593 * (time_update).
594 */
595 time_phase += time_adj;
596 if (time_phase <= -FINEUSEC) {
597 ltemp = -time_phase >> SHIFT_SCALE;
598 time_phase += ltemp << SHIFT_SCALE;
599 time_update -= ltemp;
600 } else if (time_phase >= FINEUSEC) {
601 ltemp = time_phase >> SHIFT_SCALE;
602 time_phase -= ltemp << SHIFT_SCALE;
603 time_update += ltemp;
604 }
605
606 #ifdef HIGHBALL
607 /*
608 * If the HIGHBALL board is installed, we need to adjust the
609 * external clock offset in order to close the hardware feedback
610 * loop. This will adjust the external clock phase and frequency
611 * in small amounts. The additional phase noise and frequency
612 * wander this causes should be minimal. We also need to
613 * discipline the kernel time variable, since the PLL is used to
614 * discipline the external clock. If the Highball board is not
615 * present, we discipline kernel time with the PLL as usual. We
616 * assume that the external clock phase adjustment (time_update)
617 * and kernel phase adjustment (clock_cpu) are less than the
618 * value of tick.
619 */
620 clock_offset.tv_usec += time_update;
621 if (clock_offset.tv_usec >= 1000000) {
622 clock_offset.tv_sec++;
623 clock_offset.tv_usec -= 1000000;
624 }
625 if (clock_offset.tv_usec < 0) {
626 clock_offset.tv_sec--;
627 clock_offset.tv_usec += 1000000;
628 }
629 time.tv_usec += clock_cpu;
630 clock_cpu = 0;
631 #else
632 time.tv_usec += time_update;
633 #endif /* HIGHBALL */
634
635 /*
636 * On rollover of the second the phase adjustment to be used for
637 * the next second is calculated. Also, the maximum error is
638 * increased by the tolerance. If the PPS frequency discipline
639 * code is present, the phase is increased to compensate for the
640 * CPU clock oscillator frequency error.
641 *
642 * On a 32-bit machine and given parameters in the timex.h
643 * header file, the maximum phase adjustment is +-512 ms and
644 * maximum frequency offset is a tad less than) +-512 ppm. On a
645 * 64-bit machine, you shouldn't need to ask.
646 */
647 if (time.tv_usec >= 1000000) {
648 time.tv_usec -= 1000000;
649 time.tv_sec++;
650 time_maxerror += time_tolerance >> SHIFT_USEC;
651
652 /*
653 * Leap second processing. If in leap-insert state at
654 * the end of the day, the system clock is set back one
655 * second; if in leap-delete state, the system clock is
656 * set ahead one second. The microtime() routine or
657 * external clock driver will insure that reported time
658 * is always monotonic. The ugly divides should be
659 * replaced.
660 */
661 switch (time_state) {
662 case TIME_OK:
663 if (time_status & STA_INS)
664 time_state = TIME_INS;
665 else if (time_status & STA_DEL)
666 time_state = TIME_DEL;
667 break;
668
669 case TIME_INS:
670 if (time.tv_sec % 86400 == 0) {
671 time.tv_sec--;
672 time_state = TIME_OOP;
673 }
674 break;
675
676 case TIME_DEL:
677 if ((time.tv_sec + 1) % 86400 == 0) {
678 time.tv_sec++;
679 time_state = TIME_WAIT;
680 }
681 break;
682
683 case TIME_OOP:
684 time_state = TIME_WAIT;
685 break;
686
687 case TIME_WAIT:
688 if (!(time_status & (STA_INS | STA_DEL)))
689 time_state = TIME_OK;
690 break;
691 }
692
693 /*
694 * Compute the phase adjustment for the next second. In
695 * PLL mode, the offset is reduced by a fixed factor
696 * times the time constant. In FLL mode the offset is
697 * used directly. In either mode, the maximum phase
698 * adjustment for each second is clamped so as to spread
699 * the adjustment over not more than the number of
700 * seconds between updates.
701 */
702 if (time_offset < 0) {
703 ltemp = -time_offset;
704 if (!(time_status & STA_FLL))
705 ltemp >>= SHIFT_KG + time_constant;
706 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
707 ltemp = (MAXPHASE / MINSEC) <<
708 SHIFT_UPDATE;
709 time_offset += ltemp;
710 time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
711 } else if (time_offset > 0) {
712 ltemp = time_offset;
713 if (!(time_status & STA_FLL))
714 ltemp >>= SHIFT_KG + time_constant;
715 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
716 ltemp = (MAXPHASE / MINSEC) <<
717 SHIFT_UPDATE;
718 time_offset -= ltemp;
719 time_adj = ltemp << (shifthz - SHIFT_UPDATE);
720 } else
721 time_adj = 0;
722
723 /*
724 * Compute the frequency estimate and additional phase
725 * adjustment due to frequency error for the next
726 * second. When the PPS signal is engaged, gnaw on the
727 * watchdog counter and update the frequency computed by
728 * the pll and the PPS signal.
729 */
730 #ifdef PPS_SYNC
731 pps_valid++;
732 if (pps_valid == PPS_VALID) {
733 pps_jitter = MAXTIME;
734 pps_stabil = MAXFREQ;
735 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
736 STA_PPSWANDER | STA_PPSERROR);
737 }
738 ltemp = time_freq + pps_freq;
739 #else
740 ltemp = time_freq;
741 #endif /* PPS_SYNC */
742
743 if (ltemp < 0)
744 time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
745 else
746 time_adj += ltemp >> (SHIFT_USEC - shifthz);
747 time_adj += (long)fixtick << shifthz;
748
749 /*
750 * When the CPU clock oscillator frequency is not a
751 * power of 2 in Hz, shifthz is only an approximate
752 * scale factor.
753 *
754 * To determine the adjustment, you can do the following:
755 * bc -q
756 * scale=24
757 * obase=2
758 * idealhz/realhz
759 * where `idealhz' is the next higher power of 2, and `realhz'
760 * is the actual value. You may need to factor this result
761 * into a sequence of 2 multipliers to get better precision.
762 *
763 * Likewise, the error can be calculated with (e.g. for 100Hz):
764 * bc -q
765 * scale=24
766 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
767 * (and then multiply by 1000000 to get ppm).
768 */
769 switch (hz) {
770 case 60:
771 /* A factor of 1.000100010001 gives about 15ppm
772 error. */
773 if (time_adj < 0) {
774 time_adj -= (-time_adj >> 4);
775 time_adj -= (-time_adj >> 8);
776 } else {
777 time_adj += (time_adj >> 4);
778 time_adj += (time_adj >> 8);
779 }
780 break;
781
782 case 96:
783 /* A factor of 1.0101010101 gives about 244ppm error. */
784 if (time_adj < 0) {
785 time_adj -= (-time_adj >> 2);
786 time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
787 } else {
788 time_adj += (time_adj >> 2);
789 time_adj += (time_adj >> 4) + (time_adj >> 8);
790 }
791 break;
792
793 case 100:
794 /* A factor of 1.010001111010111 gives about 1ppm
795 error. */
796 if (time_adj < 0) {
797 time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
798 time_adj += (-time_adj >> 10);
799 } else {
800 time_adj += (time_adj >> 2) + (time_adj >> 5);
801 time_adj -= (time_adj >> 10);
802 }
803 break;
804
805 case 1000:
806 /* A factor of 1.000001100010100001 gives about 50ppm
807 error. */
808 if (time_adj < 0) {
809 time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
810 time_adj -= (-time_adj >> 7);
811 } else {
812 time_adj += (time_adj >> 6) + (time_adj >> 11);
813 time_adj += (time_adj >> 7);
814 }
815 break;
816
817 case 1200:
818 /* A factor of 1.1011010011100001 gives about 64ppm
819 error. */
820 if (time_adj < 0) {
821 time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
822 time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
823 } else {
824 time_adj += (time_adj >> 1) + (time_adj >> 6);
825 time_adj += (time_adj >> 3) + (time_adj >> 10);
826 }
827 break;
828 }
829
830 #ifdef EXT_CLOCK
831 /*
832 * If an external clock is present, it is necessary to
833 * discipline the kernel time variable anyway, since not
834 * all system components use the microtime() interface.
835 * Here, the time offset between the external clock and
836 * kernel time variable is computed every so often.
837 */
838 clock_count++;
839 if (clock_count > CLOCK_INTERVAL) {
840 clock_count = 0;
841 microtime(&clock_ext);
842 delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
843 delta.tv_usec = clock_ext.tv_usec -
844 time.tv_usec;
845 if (delta.tv_usec < 0)
846 delta.tv_sec--;
847 if (delta.tv_usec >= 500000) {
848 delta.tv_usec -= 1000000;
849 delta.tv_sec++;
850 }
851 if (delta.tv_usec < -500000) {
852 delta.tv_usec += 1000000;
853 delta.tv_sec--;
854 }
855 if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
856 delta.tv_usec > MAXPHASE) ||
857 delta.tv_sec < -1 || (delta.tv_sec == -1 &&
858 delta.tv_usec < -MAXPHASE)) {
859 time = clock_ext;
860 delta.tv_sec = 0;
861 delta.tv_usec = 0;
862 }
863 #ifdef HIGHBALL
864 clock_cpu = delta.tv_usec;
865 #else /* HIGHBALL */
866 hardupdate(delta.tv_usec);
867 #endif /* HIGHBALL */
868 }
869 #endif /* EXT_CLOCK */
870 }
871
872 #endif /* NTP */
873
874 /*
875 * Process callouts at a very low cpu priority, so we don't keep the
876 * relatively high clock interrupt priority any longer than necessary.
877 */
878 simple_lock(&callwheel_slock); /* already at splclock() */
879 hardclock_ticks++;
880 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
881 simple_unlock(&callwheel_slock);
882 if (CLKF_BASEPRI(frame)) {
883 /*
884 * Save the overhead of a software interrupt;
885 * it will happen as soon as we return, so do
886 * it now.
887 *
888 * NOTE: If we're at ``base priority'', softclock()
889 * was not already running.
890 */
891 spllowersoftclock();
892 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
893 softclock(NULL);
894 KERNEL_UNLOCK();
895 } else {
896 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
897 softintr_schedule(softclock_si);
898 #else
899 setsoftclock();
900 #endif
901 }
902 return;
903 } else if (softclock_running == 0 &&
904 (softclock_ticks + 1) == hardclock_ticks) {
905 softclock_ticks++;
906 }
907 simple_unlock(&callwheel_slock);
908 }
909
910 /*
911 * Software (low priority) clock interrupt.
912 * Run periodic events from timeout queue.
913 */
914 /*ARGSUSED*/
915 void
916 softclock(void *v)
917 {
918 struct callout_queue *bucket;
919 struct callout *c;
920 void (*func)(void *);
921 void *arg;
922 int s, idx;
923 int steps = 0;
924
925 CALLWHEEL_LOCK(s);
926
927 softclock_running = 1;
928
929 #ifdef CALLWHEEL_STATS
930 callwheel_softclocks++;
931 #endif
932
933 while (softclock_ticks != hardclock_ticks) {
934 softclock_ticks++;
935 idx = (int)(softclock_ticks & callwheelmask);
936 bucket = &callwheel[idx];
937 c = TAILQ_FIRST(bucket);
938 #ifdef CALLWHEEL_STATS
939 if (c == NULL)
940 callwheel_softempty++;
941 #endif
942 while (c != NULL) {
943 #ifdef CALLWHEEL_STATS
944 callwheel_softchecks++;
945 #endif
946 if (c->c_time != softclock_ticks) {
947 c = TAILQ_NEXT(c, c_link);
948 if (++steps >= MAX_SOFTCLOCK_STEPS) {
949 nextsoftcheck = c;
950 /* Give interrupts a chance. */
951 CALLWHEEL_UNLOCK(s);
952 CALLWHEEL_LOCK(s);
953 c = nextsoftcheck;
954 steps = 0;
955 }
956 } else {
957 nextsoftcheck = TAILQ_NEXT(c, c_link);
958 TAILQ_REMOVE(bucket, c, c_link);
959 #ifdef CALLWHEEL_STATS
960 callwheel_sizes[idx]--;
961 callwheel_fired++;
962 callwheel_count--;
963 #endif
964 func = c->c_func;
965 arg = c->c_arg;
966 c->c_func = NULL;
967 c->c_flags &= ~CALLOUT_PENDING;
968 CALLWHEEL_UNLOCK(s);
969 (*func)(arg);
970 CALLWHEEL_LOCK(s);
971 steps = 0;
972 c = nextsoftcheck;
973 }
974 }
975 }
976 nextsoftcheck = NULL;
977 softclock_running = 0;
978 CALLWHEEL_UNLOCK(s);
979 }
980
981 /*
982 * callout_setsize:
983 *
984 * Determine how many callwheels are necessary and
985 * set hash mask. Called from allocsys().
986 */
987 void
988 callout_setsize(void)
989 {
990
991 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
992 /* loop */ ;
993 callwheelmask = callwheelsize - 1;
994 }
995
996 /*
997 * callout_startup:
998 *
999 * Initialize the callwheel buckets.
1000 */
1001 void
1002 callout_startup(void)
1003 {
1004 int i;
1005
1006 for (i = 0; i < callwheelsize; i++)
1007 TAILQ_INIT(&callwheel[i]);
1008
1009 simple_lock_init(&callwheel_slock);
1010 }
1011
1012 /*
1013 * callout_init:
1014 *
1015 * Initialize a callout structure so that it can be used
1016 * by callout_reset() and callout_stop().
1017 */
1018 void
1019 callout_init(struct callout *c)
1020 {
1021
1022 memset(c, 0, sizeof(*c));
1023 }
1024
1025 /*
1026 * callout_reset:
1027 *
1028 * Establish or change a timeout.
1029 */
1030 void
1031 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1032 {
1033 struct callout_queue *bucket;
1034 int s;
1035
1036 if (ticks <= 0)
1037 ticks = 1;
1038
1039 CALLWHEEL_LOCK(s);
1040
1041 /*
1042 * If this callout's timer is already running, cancel it
1043 * before we modify it.
1044 */
1045 if (c->c_flags & CALLOUT_PENDING) {
1046 callout_stop_locked(c); /* Already locked */
1047 #ifdef CALLWHEEL_STATS
1048 callwheel_changed++;
1049 #endif
1050 }
1051
1052 c->c_arg = arg;
1053 c->c_func = func;
1054 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1055 c->c_time = hardclock_ticks + ticks;
1056
1057 bucket = &callwheel[c->c_time & callwheelmask];
1058
1059 #ifdef CALLWHEEL_STATS
1060 if (TAILQ_FIRST(bucket) != NULL)
1061 callwheel_collisions++;
1062 #endif
1063
1064 TAILQ_INSERT_TAIL(bucket, c, c_link);
1065
1066 #ifdef CALLWHEEL_STATS
1067 callwheel_count++;
1068 callwheel_established++;
1069 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1070 callwheel_maxlength =
1071 callwheel_sizes[c->c_time & callwheelmask];
1072 #endif
1073
1074 CALLWHEEL_UNLOCK(s);
1075 }
1076
1077 /*
1078 * callout_stop_locked:
1079 *
1080 * Disestablish a timeout. Callwheel is locked.
1081 */
1082 static void
1083 callout_stop_locked(struct callout *c)
1084 {
1085
1086 /*
1087 * Don't attempt to delete a callout that's not on the queue.
1088 */
1089 if ((c->c_flags & CALLOUT_PENDING) == 0) {
1090 c->c_flags &= ~CALLOUT_ACTIVE;
1091 return;
1092 }
1093
1094 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1095
1096 if (nextsoftcheck == c)
1097 nextsoftcheck = TAILQ_NEXT(c, c_link);
1098
1099 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1100 #ifdef CALLWHEEL_STATS
1101 callwheel_count--;
1102 callwheel_disestablished++;
1103 callwheel_sizes[c->c_time & callwheelmask]--;
1104 #endif
1105
1106 c->c_func = NULL;
1107 }
1108
1109 /*
1110 * callout_stop:
1111 *
1112 * Disestablish a timeout. Callwheel is unlocked. This is
1113 * the standard entry point.
1114 */
1115 void
1116 callout_stop(struct callout *c)
1117 {
1118 int s;
1119
1120 CALLWHEEL_LOCK(s);
1121 callout_stop_locked(c);
1122 CALLWHEEL_UNLOCK(s);
1123 }
1124
1125 #ifdef CALLWHEEL_STATS
1126 /*
1127 * callout_showstats:
1128 *
1129 * Display callout statistics. Call it from DDB.
1130 */
1131 void
1132 callout_showstats(void)
1133 {
1134 u_int64_t curticks;
1135 int s;
1136
1137 s = splclock();
1138 curticks = softclock_ticks;
1139 splx(s);
1140
1141 printf("Callwheel statistics:\n");
1142 printf("\tCallouts currently queued: %llu\n", callwheel_count);
1143 printf("\tCallouts established: %llu\n", callwheel_established);
1144 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1145 if (callwheel_changed != 0)
1146 printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1147 printf("\tCallouts that fired: %llu\n", callwheel_fired);
1148 printf("\tNumber of buckets: %d\n", callwheelsize);
1149 printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1150 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1151 printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1152 callwheel_softclocks, callwheel_softchecks);
1153 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1154 }
1155 #endif
1156
1157 /*
1158 * Compute number of hz until specified time. Used to compute second
1159 * argument to callout_reset() from an absolute time.
1160 */
1161 int
1162 hzto(struct timeval *tv)
1163 {
1164 unsigned long ticks;
1165 long sec, usec;
1166 int s;
1167
1168 /*
1169 * If the number of usecs in the whole seconds part of the time
1170 * difference fits in a long, then the total number of usecs will
1171 * fit in an unsigned long. Compute the total and convert it to
1172 * ticks, rounding up and adding 1 to allow for the current tick
1173 * to expire. Rounding also depends on unsigned long arithmetic
1174 * to avoid overflow.
1175 *
1176 * Otherwise, if the number of ticks in the whole seconds part of
1177 * the time difference fits in a long, then convert the parts to
1178 * ticks separately and add, using similar rounding methods and
1179 * overflow avoidance. This method would work in the previous
1180 * case, but it is slightly slower and assume that hz is integral.
1181 *
1182 * Otherwise, round the time difference down to the maximum
1183 * representable value.
1184 *
1185 * If ints are 32-bit, then the maximum value for any timeout in
1186 * 10ms ticks is 248 days.
1187 */
1188 s = splclock();
1189 sec = tv->tv_sec - time.tv_sec;
1190 usec = tv->tv_usec - time.tv_usec;
1191 splx(s);
1192
1193 if (usec < 0) {
1194 sec--;
1195 usec += 1000000;
1196 }
1197
1198 if (sec < 0 || (sec == 0 && usec <= 0)) {
1199 /*
1200 * Would expire now or in the past. Return 0 ticks.
1201 * This is different from the legacy hzto() interface,
1202 * and callers need to check for it.
1203 */
1204 ticks = 0;
1205 } else if (sec <= (LONG_MAX / 1000000))
1206 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1207 / tick) + 1;
1208 else if (sec <= (LONG_MAX / hz))
1209 ticks = (sec * hz) +
1210 (((unsigned long)usec + (tick - 1)) / tick) + 1;
1211 else
1212 ticks = LONG_MAX;
1213
1214 if (ticks > INT_MAX)
1215 ticks = INT_MAX;
1216
1217 return ((int)ticks);
1218 }
1219
1220 /*
1221 * Start profiling on a process.
1222 *
1223 * Kernel profiling passes proc0 which never exits and hence
1224 * keeps the profile clock running constantly.
1225 */
1226 void
1227 startprofclock(struct proc *p)
1228 {
1229
1230 if ((p->p_flag & P_PROFIL) == 0) {
1231 p->p_flag |= P_PROFIL;
1232 if (++profprocs == 1 && stathz != 0)
1233 psdiv = psratio;
1234 }
1235 }
1236
1237 /*
1238 * Stop profiling on a process.
1239 */
1240 void
1241 stopprofclock(struct proc *p)
1242 {
1243
1244 if (p->p_flag & P_PROFIL) {
1245 p->p_flag &= ~P_PROFIL;
1246 if (--profprocs == 0 && stathz != 0)
1247 psdiv = 1;
1248 }
1249 }
1250
1251 /*
1252 * Statistics clock. Grab profile sample, and if divider reaches 0,
1253 * do process and kernel statistics.
1254 */
1255 void
1256 statclock(struct clockframe *frame)
1257 {
1258 #ifdef GPROF
1259 struct gmonparam *g;
1260 intptr_t i;
1261 #endif
1262 struct cpu_info *ci = curcpu();
1263 struct schedstate_percpu *spc = &ci->ci_schedstate;
1264 struct proc *p;
1265
1266 /*
1267 * Notice changes in divisor frequency, and adjust clock
1268 * frequency accordingly.
1269 */
1270 if (spc->spc_psdiv != psdiv) {
1271 spc->spc_psdiv = psdiv;
1272 spc->spc_pscnt = psdiv;
1273 if (psdiv == 1) {
1274 setstatclockrate(stathz);
1275 } else {
1276 setstatclockrate(profhz);
1277 }
1278 }
1279 p = curproc;
1280 if (CLKF_USERMODE(frame)) {
1281 if (p->p_flag & P_PROFIL)
1282 addupc_intr(p, CLKF_PC(frame));
1283 if (--spc->spc_pscnt > 0)
1284 return;
1285 /*
1286 * Came from user mode; CPU was in user state.
1287 * If this process is being profiled record the tick.
1288 */
1289 p->p_uticks++;
1290 if (p->p_nice > NZERO)
1291 spc->spc_cp_time[CP_NICE]++;
1292 else
1293 spc->spc_cp_time[CP_USER]++;
1294 } else {
1295 #ifdef GPROF
1296 /*
1297 * Kernel statistics are just like addupc_intr, only easier.
1298 */
1299 g = &_gmonparam;
1300 if (g->state == GMON_PROF_ON) {
1301 i = CLKF_PC(frame) - g->lowpc;
1302 if (i < g->textsize) {
1303 i /= HISTFRACTION * sizeof(*g->kcount);
1304 g->kcount[i]++;
1305 }
1306 }
1307 #endif
1308 #ifdef PROC_PC
1309 if (p && p->p_flag & P_PROFIL)
1310 addupc_intr(p, PROC_PC(p));
1311 #endif
1312 if (--spc->spc_pscnt > 0)
1313 return;
1314 /*
1315 * Came from kernel mode, so we were:
1316 * - handling an interrupt,
1317 * - doing syscall or trap work on behalf of the current
1318 * user process, or
1319 * - spinning in the idle loop.
1320 * Whichever it is, charge the time as appropriate.
1321 * Note that we charge interrupts to the current process,
1322 * regardless of whether they are ``for'' that process,
1323 * so that we know how much of its real time was spent
1324 * in ``non-process'' (i.e., interrupt) work.
1325 */
1326 if (CLKF_INTR(frame)) {
1327 if (p != NULL)
1328 p->p_iticks++;
1329 spc->spc_cp_time[CP_INTR]++;
1330 } else if (p != NULL) {
1331 p->p_sticks++;
1332 spc->spc_cp_time[CP_SYS]++;
1333 } else
1334 spc->spc_cp_time[CP_IDLE]++;
1335 }
1336 spc->spc_pscnt = psdiv;
1337
1338 if (p != NULL) {
1339 ++p->p_cpticks;
1340 /*
1341 * If no separate schedclock is provided, call it here
1342 * at ~~12-25 Hz, ~~16 Hz is best
1343 */
1344 if (schedhz == 0)
1345 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1346 schedclock(p);
1347 }
1348 }
1349
1350
1351 #ifdef NTP /* NTP phase-locked loop in kernel */
1352
1353 /*
1354 * hardupdate() - local clock update
1355 *
1356 * This routine is called by ntp_adjtime() to update the local clock
1357 * phase and frequency. The implementation is of an adaptive-parameter,
1358 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1359 * time and frequency offset estimates for each call. If the kernel PPS
1360 * discipline code is configured (PPS_SYNC), the PPS signal itself
1361 * determines the new time offset, instead of the calling argument.
1362 * Presumably, calls to ntp_adjtime() occur only when the caller
1363 * believes the local clock is valid within some bound (+-128 ms with
1364 * NTP). If the caller's time is far different than the PPS time, an
1365 * argument will ensue, and it's not clear who will lose.
1366 *
1367 * For uncompensated quartz crystal oscillatores and nominal update
1368 * intervals less than 1024 s, operation should be in phase-lock mode
1369 * (STA_FLL = 0), where the loop is disciplined to phase. For update
1370 * intervals greater than thiss, operation should be in frequency-lock
1371 * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1372 *
1373 * Note: splclock() is in effect.
1374 */
1375 void
1376 hardupdate(long offset)
1377 {
1378 long ltemp, mtemp;
1379
1380 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1381 return;
1382 ltemp = offset;
1383 #ifdef PPS_SYNC
1384 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1385 ltemp = pps_offset;
1386 #endif /* PPS_SYNC */
1387
1388 /*
1389 * Scale the phase adjustment and clamp to the operating range.
1390 */
1391 if (ltemp > MAXPHASE)
1392 time_offset = MAXPHASE << SHIFT_UPDATE;
1393 else if (ltemp < -MAXPHASE)
1394 time_offset = -(MAXPHASE << SHIFT_UPDATE);
1395 else
1396 time_offset = ltemp << SHIFT_UPDATE;
1397
1398 /*
1399 * Select whether the frequency is to be controlled and in which
1400 * mode (PLL or FLL). Clamp to the operating range. Ugly
1401 * multiply/divide should be replaced someday.
1402 */
1403 if (time_status & STA_FREQHOLD || time_reftime == 0)
1404 time_reftime = time.tv_sec;
1405 mtemp = time.tv_sec - time_reftime;
1406 time_reftime = time.tv_sec;
1407 if (time_status & STA_FLL) {
1408 if (mtemp >= MINSEC) {
1409 ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1410 SHIFT_UPDATE));
1411 if (ltemp < 0)
1412 time_freq -= -ltemp >> SHIFT_KH;
1413 else
1414 time_freq += ltemp >> SHIFT_KH;
1415 }
1416 } else {
1417 if (mtemp < MAXSEC) {
1418 ltemp *= mtemp;
1419 if (ltemp < 0)
1420 time_freq -= -ltemp >> (time_constant +
1421 time_constant + SHIFT_KF -
1422 SHIFT_USEC);
1423 else
1424 time_freq += ltemp >> (time_constant +
1425 time_constant + SHIFT_KF -
1426 SHIFT_USEC);
1427 }
1428 }
1429 if (time_freq > time_tolerance)
1430 time_freq = time_tolerance;
1431 else if (time_freq < -time_tolerance)
1432 time_freq = -time_tolerance;
1433 }
1434
1435 #ifdef PPS_SYNC
1436 /*
1437 * hardpps() - discipline CPU clock oscillator to external PPS signal
1438 *
1439 * This routine is called at each PPS interrupt in order to discipline
1440 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1441 * and leaves it in a handy spot for the hardclock() routine. It
1442 * integrates successive PPS phase differences and calculates the
1443 * frequency offset. This is used in hardclock() to discipline the CPU
1444 * clock oscillator so that intrinsic frequency error is cancelled out.
1445 * The code requires the caller to capture the time and hardware counter
1446 * value at the on-time PPS signal transition.
1447 *
1448 * Note that, on some Unix systems, this routine runs at an interrupt
1449 * priority level higher than the timer interrupt routine hardclock().
1450 * Therefore, the variables used are distinct from the hardclock()
1451 * variables, except for certain exceptions: The PPS frequency pps_freq
1452 * and phase pps_offset variables are determined by this routine and
1453 * updated atomically. The time_tolerance variable can be considered a
1454 * constant, since it is infrequently changed, and then only when the
1455 * PPS signal is disabled. The watchdog counter pps_valid is updated
1456 * once per second by hardclock() and is atomically cleared in this
1457 * routine.
1458 */
1459 void
1460 hardpps(struct timeval *tvp, /* time at PPS */
1461 long usec /* hardware counter at PPS */)
1462 {
1463 long u_usec, v_usec, bigtick;
1464 long cal_sec, cal_usec;
1465
1466 /*
1467 * An occasional glitch can be produced when the PPS interrupt
1468 * occurs in the hardclock() routine before the time variable is
1469 * updated. Here the offset is discarded when the difference
1470 * between it and the last one is greater than tick/2, but not
1471 * if the interval since the first discard exceeds 30 s.
1472 */
1473 time_status |= STA_PPSSIGNAL;
1474 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1475 pps_valid = 0;
1476 u_usec = -tvp->tv_usec;
1477 if (u_usec < -500000)
1478 u_usec += 1000000;
1479 v_usec = pps_offset - u_usec;
1480 if (v_usec < 0)
1481 v_usec = -v_usec;
1482 if (v_usec > (tick >> 1)) {
1483 if (pps_glitch > MAXGLITCH) {
1484 pps_glitch = 0;
1485 pps_tf[2] = u_usec;
1486 pps_tf[1] = u_usec;
1487 } else {
1488 pps_glitch++;
1489 u_usec = pps_offset;
1490 }
1491 } else
1492 pps_glitch = 0;
1493
1494 /*
1495 * A three-stage median filter is used to help deglitch the pps
1496 * time. The median sample becomes the time offset estimate; the
1497 * difference between the other two samples becomes the time
1498 * dispersion (jitter) estimate.
1499 */
1500 pps_tf[2] = pps_tf[1];
1501 pps_tf[1] = pps_tf[0];
1502 pps_tf[0] = u_usec;
1503 if (pps_tf[0] > pps_tf[1]) {
1504 if (pps_tf[1] > pps_tf[2]) {
1505 pps_offset = pps_tf[1]; /* 0 1 2 */
1506 v_usec = pps_tf[0] - pps_tf[2];
1507 } else if (pps_tf[2] > pps_tf[0]) {
1508 pps_offset = pps_tf[0]; /* 2 0 1 */
1509 v_usec = pps_tf[2] - pps_tf[1];
1510 } else {
1511 pps_offset = pps_tf[2]; /* 0 2 1 */
1512 v_usec = pps_tf[0] - pps_tf[1];
1513 }
1514 } else {
1515 if (pps_tf[1] < pps_tf[2]) {
1516 pps_offset = pps_tf[1]; /* 2 1 0 */
1517 v_usec = pps_tf[2] - pps_tf[0];
1518 } else if (pps_tf[2] < pps_tf[0]) {
1519 pps_offset = pps_tf[0]; /* 1 0 2 */
1520 v_usec = pps_tf[1] - pps_tf[2];
1521 } else {
1522 pps_offset = pps_tf[2]; /* 1 2 0 */
1523 v_usec = pps_tf[1] - pps_tf[0];
1524 }
1525 }
1526 if (v_usec > MAXTIME)
1527 pps_jitcnt++;
1528 v_usec = (v_usec << PPS_AVG) - pps_jitter;
1529 if (v_usec < 0)
1530 pps_jitter -= -v_usec >> PPS_AVG;
1531 else
1532 pps_jitter += v_usec >> PPS_AVG;
1533 if (pps_jitter > (MAXTIME >> 1))
1534 time_status |= STA_PPSJITTER;
1535
1536 /*
1537 * During the calibration interval adjust the starting time when
1538 * the tick overflows. At the end of the interval compute the
1539 * duration of the interval and the difference of the hardware
1540 * counters at the beginning and end of the interval. This code
1541 * is deliciously complicated by the fact valid differences may
1542 * exceed the value of tick when using long calibration
1543 * intervals and small ticks. Note that the counter can be
1544 * greater than tick if caught at just the wrong instant, but
1545 * the values returned and used here are correct.
1546 */
1547 bigtick = (long)tick << SHIFT_USEC;
1548 pps_usec -= pps_freq;
1549 if (pps_usec >= bigtick)
1550 pps_usec -= bigtick;
1551 if (pps_usec < 0)
1552 pps_usec += bigtick;
1553 pps_time.tv_sec++;
1554 pps_count++;
1555 if (pps_count < (1 << pps_shift))
1556 return;
1557 pps_count = 0;
1558 pps_calcnt++;
1559 u_usec = usec << SHIFT_USEC;
1560 v_usec = pps_usec - u_usec;
1561 if (v_usec >= bigtick >> 1)
1562 v_usec -= bigtick;
1563 if (v_usec < -(bigtick >> 1))
1564 v_usec += bigtick;
1565 if (v_usec < 0)
1566 v_usec = -(-v_usec >> pps_shift);
1567 else
1568 v_usec = v_usec >> pps_shift;
1569 pps_usec = u_usec;
1570 cal_sec = tvp->tv_sec;
1571 cal_usec = tvp->tv_usec;
1572 cal_sec -= pps_time.tv_sec;
1573 cal_usec -= pps_time.tv_usec;
1574 if (cal_usec < 0) {
1575 cal_usec += 1000000;
1576 cal_sec--;
1577 }
1578 pps_time = *tvp;
1579
1580 /*
1581 * Check for lost interrupts, noise, excessive jitter and
1582 * excessive frequency error. The number of timer ticks during
1583 * the interval may vary +-1 tick. Add to this a margin of one
1584 * tick for the PPS signal jitter and maximum frequency
1585 * deviation. If the limits are exceeded, the calibration
1586 * interval is reset to the minimum and we start over.
1587 */
1588 u_usec = (long)tick << 1;
1589 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1590 || (cal_sec == 0 && cal_usec < u_usec))
1591 || v_usec > time_tolerance || v_usec < -time_tolerance) {
1592 pps_errcnt++;
1593 pps_shift = PPS_SHIFT;
1594 pps_intcnt = 0;
1595 time_status |= STA_PPSERROR;
1596 return;
1597 }
1598
1599 /*
1600 * A three-stage median filter is used to help deglitch the pps
1601 * frequency. The median sample becomes the frequency offset
1602 * estimate; the difference between the other two samples
1603 * becomes the frequency dispersion (stability) estimate.
1604 */
1605 pps_ff[2] = pps_ff[1];
1606 pps_ff[1] = pps_ff[0];
1607 pps_ff[0] = v_usec;
1608 if (pps_ff[0] > pps_ff[1]) {
1609 if (pps_ff[1] > pps_ff[2]) {
1610 u_usec = pps_ff[1]; /* 0 1 2 */
1611 v_usec = pps_ff[0] - pps_ff[2];
1612 } else if (pps_ff[2] > pps_ff[0]) {
1613 u_usec = pps_ff[0]; /* 2 0 1 */
1614 v_usec = pps_ff[2] - pps_ff[1];
1615 } else {
1616 u_usec = pps_ff[2]; /* 0 2 1 */
1617 v_usec = pps_ff[0] - pps_ff[1];
1618 }
1619 } else {
1620 if (pps_ff[1] < pps_ff[2]) {
1621 u_usec = pps_ff[1]; /* 2 1 0 */
1622 v_usec = pps_ff[2] - pps_ff[0];
1623 } else if (pps_ff[2] < pps_ff[0]) {
1624 u_usec = pps_ff[0]; /* 1 0 2 */
1625 v_usec = pps_ff[1] - pps_ff[2];
1626 } else {
1627 u_usec = pps_ff[2]; /* 1 2 0 */
1628 v_usec = pps_ff[1] - pps_ff[0];
1629 }
1630 }
1631
1632 /*
1633 * Here the frequency dispersion (stability) is updated. If it
1634 * is less than one-fourth the maximum (MAXFREQ), the frequency
1635 * offset is updated as well, but clamped to the tolerance. It
1636 * will be processed later by the hardclock() routine.
1637 */
1638 v_usec = (v_usec >> 1) - pps_stabil;
1639 if (v_usec < 0)
1640 pps_stabil -= -v_usec >> PPS_AVG;
1641 else
1642 pps_stabil += v_usec >> PPS_AVG;
1643 if (pps_stabil > MAXFREQ >> 2) {
1644 pps_stbcnt++;
1645 time_status |= STA_PPSWANDER;
1646 return;
1647 }
1648 if (time_status & STA_PPSFREQ) {
1649 if (u_usec < 0) {
1650 pps_freq -= -u_usec >> PPS_AVG;
1651 if (pps_freq < -time_tolerance)
1652 pps_freq = -time_tolerance;
1653 u_usec = -u_usec;
1654 } else {
1655 pps_freq += u_usec >> PPS_AVG;
1656 if (pps_freq > time_tolerance)
1657 pps_freq = time_tolerance;
1658 }
1659 }
1660
1661 /*
1662 * Here the calibration interval is adjusted. If the maximum
1663 * time difference is greater than tick / 4, reduce the interval
1664 * by half. If this is not the case for four consecutive
1665 * intervals, double the interval.
1666 */
1667 if (u_usec << pps_shift > bigtick >> 2) {
1668 pps_intcnt = 0;
1669 if (pps_shift > PPS_SHIFT)
1670 pps_shift--;
1671 } else if (pps_intcnt >= 4) {
1672 pps_intcnt = 0;
1673 if (pps_shift < PPS_SHIFTMAX)
1674 pps_shift++;
1675 } else
1676 pps_intcnt++;
1677 }
1678 #endif /* PPS_SYNC */
1679 #endif /* NTP */
1680
1681 /*
1682 * Return information about system clocks.
1683 */
1684 int
1685 sysctl_clockrate(void *where, size_t *sizep)
1686 {
1687 struct clockinfo clkinfo;
1688
1689 /*
1690 * Construct clockinfo structure.
1691 */
1692 clkinfo.tick = tick;
1693 clkinfo.tickadj = tickadj;
1694 clkinfo.hz = hz;
1695 clkinfo.profhz = profhz;
1696 clkinfo.stathz = stathz ? stathz : hz;
1697 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1698 }
1699